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Abstract

We prove that a locally compact metric space that supports a dou-
bling measure and a weak p-Poincaré inequality for some 1 ≤ p < ∞ is
a MECp-space. The methods developed for this purpose include mea-
surability considerations and lead to interesting consequences. For
example, we verify that each extended real valued function having a
p-integrable upper gradient is locally p-integrable.

1. Introduction and main results

From the analytical point of view, the concept of a rectifiable path connected
set is crucial in the study of metric spaces. It is well known that if the
gradient of a Sobolev function in R

n equals zero almost everywhere, then
the function is constant. This is not valid in general metric spaces with
the notation of upper gradient given below in Definition 1.1. Indeed, it is
evident from Definition 1.1 that if there are no rectifiable paths in the metric
space, then 0 is an upper gradient of any function - even if the function is not
constant. However, as stated in [19], it turns out that the MECp-property
of a metric space (see Definition 1.3), guaranteeing that almost all points of
the space belong to the same rectifiable path connected component, implies
that each function which has 0 as an upper gradient, or more generally as a
p-weak upper gradient (see [19, Definition 2.3]), is constant. This leads us
to the natural question of which metric spaces admit the MECp-property.
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For the purpose of studying quasi-conformal maps in certain metric
spaces, Heinonen and Koskela [10] considered the following notion of an
upper gradient.

Definition 1.1. Given a metric space (X, d) with a Borel measure µ, let u
be an extended real valued function defined on X. A non-negative Borel
function ρ is said to be an upper gradient of u if for all compact rectifiable
paths γ : I → X (I ⊂ R is compact) the following inequality holds:

|u(x) − u(y)| ≤
∫

γ

ρ ds,

where x and y denote the endpoints of the path γ. Note that the right hand
side of the above inequality should be infinite whenever at least one of |u(x)|
and |u(y)| is infinite.

Remark 1.2. Throughout this paper we will consider only outer measures
and simply refer to them as measures. So a measure is defined on the power
set and not just only on some σ-algebra. For more information on this
simplification, see [13, p. 8].

If the function ρ defines a metric in X, that is, if the expression

dρ(x, y) = inf
γ

∫
γ

ρ ds,

where the infimum is taken over all compact rectifiable paths γ connecting x
to y, gives a metric on X, then Definition 1.1 can be re-interpreted to state
that u is a 1-Lipschitz mapping with respect to the metric dρ.

In the theory of Sobolev spaces one usually restricts attention to Lp-
functions. Hence it is useful to know when it is true that every non-negative
Borel measurable ρ ∈ Lp(X) defines a dρ-quasi metric in a set Xρ ⊂ X with
µ(X \ Xρ) = 0. Metric spaces satisfying this condition are said to admit
the MECp-property (see Definition 1.3). It is evident from Definitions 1.1
and 1.3 that if X satisfies the MECp-property, then whenever ρ ∈ Lp(X) is
an upper gradient of a function u on X, the set of points where u is infinite
must be contained in the exceptional set X \ Xρ. Such a set is very small
from the point of view of potential theory.

Throughout, (X, d) is a metric space with a σ-finite Borel measure µ.
The triple (X, d, µ) is called a metric measure space. A path γ : I → X is
said to be compact if I ⊂ R is a compact set. Given x, y ∈ X, let Γxy be
the set of all compact rectifiable paths in X connecting x to y. Note that a
constant path is also a compact rectifiable path. The length of a path γ is
denoted by �(γ).
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Definition 1.3. A Borel function ρ : X → [0,∞] defines an equivalence
relation ∼ρ as follows: For x, y ∈ X we have x ∼ρ y if there is γ ∈ Γxy

such that
∫

γ
ρ ds < ∞. We use the notation [x]ρ = {y ∈ X : y ∼ρ x} to

denote the equivalence classes of x ∈ X. Let 1 ≤ p < ∞. A metric measure
space X is said to admit the main equivalence class property with respect
to p, abbreviated as MECp-property, if for each non-negative Borel function
ρ ∈ Lp(X) there is a point x ∈ X such that µ(X \ [x]ρ) = 0. We call this
equivalence class [x]ρ the main equivalence class of ρ.

The fact that all Euclidean domains have the MECp-property for all
p ≥ 1 was first noticed by Ohtsuka [14]. Clearly, the work of Ohtsuka
also shows that smooth Riemann manifolds admit the MECp-property for
all p ≥ 1. This property was abstracted to the metric space setting by
Shanmugalingam in [17, 18].

In this note we address the question of how generally the MECp-property
is valid in metric spaces. It appears that all metric spaces that support
a doubling measure (see Definition 1.4) and satisfy an analytic property
called a weak p-Poincaré inequality for some 1 ≤ p < ∞ (see Definition 1.5)
have the MECp-property. This is the content of one of our main results,
Theorem 1.6. As an immediate consequence of it we see that Heisenberg
groups and the metric spaces constructed by Bourdon and Pajot [2] as well
as Laakso [12] admit the MECp-property. As far as we know, this has been
unknown until now.

Definition 1.4. We say that the measure µ on X is doubling if there is a
positive constant Cµ such that

µ(B(x, 2r)) ≤ Cµµ(B(x, r))

for every x ∈ X and r > 0. Here B(x, r) is an open ball with center at x
and with radius r > 0.

Definition 1.5. Let 1 ≤ p < ∞. We say that the metric measure space X
supports a weak p-Poincaré inequality if there exist constants τ ≥ 1 and
Cp ≥ 1 such that for all r > 0 and x ∈ X, for all µ-measurable functions
f ∈ L1(B(x, r)) defined on X, and for all upper gradients ρ of f we have

1

µ(B(x, r))

∫
B(x,r)

|f − fB(x,r)| dµ ≤ Cpr

(
1

µ(B(x, τr))

∫
B(x,τr)

ρp dµ

) 1
p

,

where f
B(x,r)

= 1
µ(B(x,r))

∫
B(x,r)

f dµ is the integral average of f on the ball B(x, r).

Our main result concerning MECp-spaces is as follows:
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Theorem 1.6. Let X be a locally compact metric space that supports a
doubling Borel measure µ which is non-trivial and finite on balls. If X
supports a weak p-Poincaré inequality for some 1 ≤ p < ∞, then X is a
MECp-space.

In [19, Thm. 2.17] a similar result was first claimed, but the proof given
there is not complete because it failed to prove that the equivalence classes
are measurable. This problem is rectified by Theorem 1.8 of this paper.

Remark 1.7. Given a complete separable metric space Z, a set A ⊂ Z is
said to be analytic if there exist a complete separable metric space Y and a
continuous function f : Y → Z such that f(Y ) = A. Hence the continuous
image of an analytic set is analytic. In particular, a continuous image of
a Borel set is analytic, since Borel sets are analytic ([11, Theorem 14.2]).
By Lusin’s theorem (see [11, Theorem 21.10]), analytic subsets of Z are
ν-measurable for any σ-finite Borel measure ν on Z. Countable unions and
countable intersections of analytic sets are analytic.

Theorem 1.8. Let X be a complete separable metric space equipped with a
σ-finite Borel measure µ. If ρ : X → [0,∞] is a Borel function, then [x]ρ is
analytic for all x ∈ X. In particular, [x]ρ is µ-measurable for all x ∈ X.

With the choice ρ ≡ 1 we have an immediate consequence:

Corollary 1.9. Let X be a complete separable metric space equipped with
a σ-finite Borel measure µ. Then the rectifiable path connected components
of X are µ-measurable.

Furthermore, the proof of Theorem 1.8 yields the following corollary:

Corollary 1.10. Let X be a complete separable metric space equipped with
a σ-finite Borel measure µ, and let ρ : X → [0,∞] be a Borel function. Then
for each x0 ∈ X, the function u : X → [0,∞], defined for all x ∈ X by

u(x) = inf
{∫

γ

ρ ds : γ ∈ Γx0x

}
,

is measurable with respect to the σ-algebra generated by analytic sets, and
therefore, it is µ-measurable.

Weaker versions of Corollary 1.10 have appeared earlier in the literature.
For example, in [10] it is stated that u is continuous if X is quasi-convex
and ρ is bounded.

It should be noted that not all metric spaces admit the MECp-property.
For example, the metric space, obtained by gluing two planar triangular
regions at one vertex point and using the length metric obtained from
the Euclidean metric of the two triangular regions, is not a MECp-space
when 1 ≤ p ≤ 2. It should be also noted that the converse of Theorem 1.6
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is not true. Indeed, the metric space X obtained by removing a radial slit
from the unit disc D in the plane, that is, X = D \ [0, 1] ⊂ R

2, is easily seen
to be a MECp-space whenever p ≥ 1, but never supports a weak p-Poincaré
inequality. While this is not a complete metric space, one can modify it
to obtain a complete metric space that admits the MECp-property when-
ever p ≥ 1 but does not support a weak p-Poincaré inequality for certain
values of p. For example, let X be the metric space achieved by consid-
ering the length metric induced by the Euclidean distance metric on the
set obtained by removing the two open disks B((−1, 0), 1) and B((1, 0), 1)
from R

2. Such a space has MECp-property whenever p ≥ 1, but fails to have
a weak p-Poincaré inequality whenever 1 ≤ p ≤ 2.

The methods from the proofs of Proposition 3.2 and Theorem 1.6 turn out
to be quite powerful for other purposes as well. Indeed, they give the fol-
lowing surprising result according to which, under the assumptions of Theo-
rem 1.6, all we need to know to conclude that a function belongs to Lp

loc(X)
is that it has an upper gradient in Lp(X). Recall that u ∈ Lp

loc(X) if and
only if for all x ∈ X there is a neighborhood Vx of x such that u ∈ Lp(Vx).

Theorem 1.11. Let X be a complete metric space that supports a doubling
Borel measure µ which is non-trivial and finite on balls. Assume that X
supports a weak p-Poincaré inequality for some 1 ≤ p < ∞. If an extended
real valued function u : X → [−∞,∞] has a p-integrable upper gradient,
then u is measurable and locally p-integrable.

This paper is organized as follows: In the next section we state and
verify three auxiliary results whereas Section 3 contains the proofs of the
results introduced in this section. For the convenience of the reader, a
version of a quasi-convexity result, needed in the proofs of Proposition 3.2
and Theorem 1.6, is included as an appendix. Indeed, in Section 4 we show
that if a locally compact metric space supports a doubling measure and a
weak p-Poincaré inequality, then it is quasi-convex.

2. Auxiliary results

Given any metric space (X, d), we use the notation (X̂, d̂) for the completion
of X which is complete and unique up to an isometry. Note that (X, d) is

a subspace of (X̂, d̂) and X is dense in X̂. For our purposes, the crucial

observation is that the essential features of X are inherited by X̂. Indeed,
supposing that there is a doubling Borel measure on X which is non-trivial
and finite on balls, we may extend it to X̂ such that X̂ \X has zero measure
and the extended measure has the same properties as the original one. Also,
if X supports a weak p-Poincaré inequality for some 1 ≤ p < ∞, then X̂
does too, see for example [1, Proposition 7.1].
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We proceed by stating a series of lemmas which will be needed in the
next section.

Remark 2.1. In the following lemma, we consider all paths, not only rectifi-
able ones. The reason is that in the proof of Theorem 1.8 and in Remark 3.1
we need to study a complete metric space of paths and the space of rectifiable
paths is not complete under the supremum norm.

The integral of a Borel function ρ over a rectifiable path γ : I → X is
usually defined via the path length parametrization γ0, that is,

∫
γ
ρ ds =∫ �(γ)

0
ρ ◦ γ0(t) dt. There is an alternative definition of path integrals that ex-

tends to non-rectifiable paths as well. Namely if γ : I → X is a path, let
F be the set of all closed subintervals C ⊂ I. Define ζ : F → [0,∞] by set-
ting ζ([a, b]) = �(γ|[a,b]). The usual Carathéodory construction now yields a
Borel regular measure µγ defined on I. The measure has the property that
µγ([a, b]) = �(γ|[a,b]). Define

∫
γ
ρ ds =

∫
I
ρ ◦ γ(t) dµγ(t). If γ is a rectifiable

path, then this definition of path integral coincides with the previous defi-
nition. Observe also that when ρ is continuous the path integral defined in
this way may be calculated as the supremum of lower Riemannian sums.

Lemma 2.2. Let γi : [0, 1] → X be a sequence of paths such that γi → γ
uniformly. Then for each lower semicontinuous function ρ : X → [0,∞] we
have ∫

γ

ρ ds ≤ lim inf
i→∞

∫
γi

ρ ds.

Proof. If ρ is continuous, then the claim follows from the definition of the
path integral and the compactness of γ([0, 1]). If ρ is lower semicontinuous,
there exists a sequence (gj) of continuous functions such that gj ↗ ρ as
j → ∞. By the monotone convergence theorem we have∫

γ

ρ ds = lim inf
j→∞

∫
γ

gj ds ≤ lim inf
j→∞

lim inf
i→∞

∫
γi

gj ds ≤ lim inf
i→∞

∫
γi

ρ ds.
�

The following lemma is a version of the Vitali-Carathéodory theorem
tailored for our purposes. The difference between the Vitali-Carathéodory
theorem and the following lemma is that we do not assume that the function
f is everywhere finite.

Lemma 2.3. Let X be a locally compact metric space that supports a Borel
measure µ which is non-trivial and finite on balls. Assume that f ∈ Lp(X)
is a non-negative extended real valued Borel function. Then for every ε > 0
there is a lower semicontinuous function g ∈ Lp(X) such that g(x) ≥ f(x)
for all x ∈ X and ||g − f ||p ≤ ε.

Proof. One may approximate f with appropriate simple or continuous func-
tions in the similar manner as in the proof of [5, Proposition 7.14]. �
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The last result of this section serves as a base of our measurability con-
siderations in the next section. It is a modification of [11, Theorem 11.6].

Lemma 2.4. Let X be a metric space and let Y be a class of functions
g : X → [0,∞] such that the following properties are valid:

(a) If g : X → [0,∞] is continuous, then g ∈ Y.

(b) If (gi) is an increasing sequence of functions in Y converging up to g,
then g ∈ Y.

(c) If r, s ∈ R+ and g, f ∈ Y, then rg + sf ∈ Y.

(d) If g ∈ Y and 0 ≤ g ≤ 1, then 1 − g ∈ Y.

Then Y contains all Borel functions g : X → [0,∞].

Proof. The proof is a simplified version of that of [11, Theorem 11.6]. Using
(a) and (b), one first verifies that the characteristic functions of open sets
belong to Y . Note that finite intersections of open sets are open. Let S
be the collection of all subsets of X whose characteristic functions belong
to Y . Then by (d) the family S is closed under complements, and by (b) it is
closed under countable disjoint unions, and as we have noted, open sets be-
long to S; therefore by [11, Theorem 10.1(iii)] (also called the π–λ theorem
and states that the smallest collection of subsets of X that contains all open
sets and is closed under complementation and countable disjoint unions is
the Borel class), we see that S contains all Borel subsets of X. Thus the
characteristic functions of Borel sets are in Y . Finally, an application of (b)
and (c) completes the proof. �

3. Proofs of main results

In this section we prove the results of Section 1. We proceed in a slightly dif-
ferent order here because, when verifying Proposition 3.2 and Theorem 1.6,
we need the measurability result, Theorem 1.8.

Proof of Theorem 1.8. Let ρ : X → [0,∞] be a Borel function and fix
x0 ∈ X. The space

Y = {γ : [0, 1] → X : γ is a path with γ(0) = x0}
equipped with the metric

d∞(γ, γ̃) = sup
t∈[0,1]

d(γ(t), γ̃(t))

is a complete separable metric space. This follows from [11, Theorem 4.19]
combined with the fact that every subset of a separable metric space is
separable.
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Consider the mapping ϕg : Y → [0,∞] defined by

ϕg(γ) =

∫
γ

g ds.

If g is continuous, then Lemma 2.2 implies that ϕg is lower semicontinuous,
and therefore a Borel function. Thus choosing g ≡ 1 we have that Y0 =
ϕ−1

1 ([0,∞)) is a Borel set. From now on we will restrict the mappings ϕg to
Y0. We proceed by checking that the assumptions (a)-(d) of Lemma 2.4 are
valid for the class

Y = {g : X → [0,∞] : ϕg : Y0 → [0,∞] is a Borel map}.
We already saw that (a) is valid. Letting γ ∈ Y and gi ∈ Y be such that
gi ↗ g pointwise, we obtain by the monotone convergence theorem

ϕg(γ) =

∫
γ

g ds = lim
i→∞

∫
γ

gi ds = lim
i→∞

ϕgi
(γ).

Hence, ϕg is a Borel function, since it is a limit of Borel functions, and (b)
is satisfied. The items (c) and (d) follow from the linearity of the integral
operator.

Thus the assumptions of Lemma 2.4 are satisfied, and it follows that Y
contains all non-negative Borel functions. In particular, ϕρ : Y0 → [0,∞]
is a Borel function. Defining π : Y → X as π(γ) = γ(1) for all γ ∈ Y ,
the choice for metric in Y guarantees that π is continuous. Therefore,
[x0]ρ = π(ϕ−1

ρ ([0,∞))) is an analytic set by Remark 1.7. �

Remark 3.1. In Theorem 1.8, the metric space X does not need to be
complete. It is sufficient to assume that X is separable and an open subset
of the completion X̂ of X. Indeed, fix x0 ∈ X, and define

Y = {γ : [0, 1] → X : γ is a path with γ(0) = x0}
and

Ŷ = {γ : [0, 1] → X̂ : γ is a path with γ(0) = x0}.
Since X̂ is complete and separable the set Ŷ has the same properties. More-
over, the openness of X guarantees that Y is an open subset of Ŷ . Given
a Borel function ρ : X → [0,∞], define a Borel map ρ̂ : X̂ → [0,∞] by

ρ̂(x) = ρ(x) if x ∈ X, and ρ̂(x) = 0 otherwise. Letting ϕρ̂ : Ŷ0 → [0,∞]
be as in the proof of Theorem 1.8, we see that ϕ−1

ρ̂ ([0,∞)) is a Borel

subset of Ŷ which, in turn, implies that ϕ−1
ρ̂ ([0,∞)) ∩ Y is a Borel set

since Y is open. Finally, if π : Ŷ → X̂ is defined by π(γ) = γ(1) for all

γ ∈ Ŷ , then we conclude, similarly as in the proof of Theorem 1.8, that
[x0]ρ = π(ϕ−1

ρ̂ ([0,∞)) ∩ Y ) is analytic.
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Proof of Corollary 1.10. Let P be the set of all compact paths in X
equipped with the same metric as Y in the proof of Theorem 1.8. Let
Px0 ⊂ P be the set of all paths starting from x0. By Lemma 2.2 the function
Φ: P → [0,∞], Φ(γ) = �(γ), is lower semicontinuous, and therefore

G = ∪x∈XΓx0x = Φ−1([0,∞)) ∩ Px0

is a Borel set. Letting ρ : X → [0,∞] be a Borel map and defining functions
ϕρ and π as in the proof of Theorem 1.8, gives u−1([0, a)) = π(ϕ−1

ρ ([0, a))∩G)
for all real numbers a > 0. From the above consideration we know that ϕρ is
a Borel map and π is continuous. The claim follows since π(ϕ−1

ρ ([0, a))∩G)
is analytic, as verified in the proof of Theorem 1.8. �

Before giving the proof of Theorem 1.6, we will prove a corresponding
result with slightly stronger assumptions. Observe that in a complete metric
space X the existence of a doubling Borel measure which is non-trivial and
finite on balls implies that X is separable, and closed bounded subsets of
X are compact, in particular, X is locally compact. The reason for stating
Proposition 3.2 as a separate result is that we need the methods from its
proof when verifying Theorem 1.6.

Proposition 3.2. Let X be a complete metric space that supports a doubling
Borel measure µ which is non-trivial and finite on balls. If X supports a weak
p-Poincaré inequality for some 1 ≤ p < ∞, then X is a MECp-space.

Proof. Let ρ ∈ Lp(X) be a non-negative Borel function. In order to verify
the MECp-property we have to show the existence of x ∈ X such that
µ(X \ [x]ρ) = 0. By Lemma 2.3, there is a lower semicontinuous function
ρ̃ ∈ Lp(X) such that ρ̃ ≥ ρ everywhere. Noticing that [x]ρ̃ ⊂ [x]ρ for every
x ∈ X, it suffices to prove that there exists x ∈ X such that µ(X \ [x]ρ̃) = 0.

For m ∈ N, define

Sm = {x ∈ X : M(ρ̃p)(x) ≤ mp}.
Here M is the non-centered maximal function operator defined for f ∈
L1

loc(X) as

Mf(x) = sup
{ 1

µ(B)

∫
B

|f | dµ : B is a ball containing x
}

.

Since ρ̃p ∈ L1(X), [8, Theorem 2.2] implies that µ(X \ ∪mSm) = 0. Let m0

be the smallest integer for which Sm0 
= ∅. Fix x0 ∈ Sm0 . We will verify that
for every y ∈ ∪m≥m0Sm there is γ ∈ Γx0y with the property

∫
γ
ρ̃ ds < ∞.

This shows that ∪m≥m0Sm ⊂ [x0]ρ̃, and by the choice of m0, we have µ(X \
∪m≥m0Sm) = 0 which, in turn, will imply the claim.
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Defining for all k ∈ N a lower semicontinuous function ρ̃k = min{ρ̃, k}, set

uk(x) = inf
{
�(γ) +

∫
γ

ρ̃k ds : γ ∈ Γx0x

}
and u(x) = inf

{
�(γ) +

∫
γ

ρ̃ ds : γ ∈ Γx0x

}
with the interpretation that the infimum of an empty set is infinite. Our
claim is that u(y) < ∞ for every y ∈ ∪m≥m0Sm. Note that u is measurable
by Corollary 1.10, but nothing else is known about it. A priori it could
be infinite in a set of positive measure. Trying directly to prove that u is
finite almost everywhere is therefore difficult and that is why we use the
functions uk.

Since the complete metric space X supports a doubling measure and a
weak p-Poincaré inequality, it is quasi-convex with a constant Cq which only
depends on constants associated with the measure and the Poincaré inequal-
ity (see Appendix: Lemma 4.1). Recall that quasi-convexity means that for
every pair of points z, y∈X there is γ∈Γzy such that �(γ)≤Cqd(z, y).

Take z, y ∈ X and let ε > 0. By quasi-convexity uk(z), uk(y) < ∞, and
we may assume that uk(z) ≥ uk(y). By the definition of uk, for all ε > 0
there is a path γy ∈ Γx0y such that

uk(y) ≥ �(γy) +

∫
γy

ρ̃k ds − ε.

Thus noticing that

uk(z) ≤ �(γy ∪ γyz) +

∫
γy∪γyz

ρ̃k ds

for all γyz ∈ Γyz, we obtain

|uk(z) − uk(y)| ≤ uk(z) − �(γy) −
∫

γy

ρ̃k ds + ε ≤ �(γyz) +

∫
γyz

ρ̃k ds + ε.

By choosing γyz ∈ Γyz so that �(γ) ≤ Cqd(z, y) and remembering that
ρ̃k ≤ k, we see that uk is a Cq(k + 1)-Lipschitz function.

Next we will show that the restriction of uk to Sm is a C(m+1)-Lipschitz
function, where C does not depend on k. From the above calculation we
deduce that for each γ ∈ Γyz we have

|uk(z) − uk(y)| ≤
∫

γ

(ρ̃k + 1) ds ≤
∫

γ

(ρ̃ + 1) ds.
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This shows that ρ̃ + 1 is an upper gradient for uk. Fix z, y ∈ Sm. For
i ∈ Z, set Bi = B(z, 2−id(z, y)) when i ≥ 1, B0 = B(z, 2d(z, y)), and
Bi = B(y, 2id(z, y)) when i ≤ −1. In what follows we use the notation
τB(x, r) = B(x, τr). In the first inequality of the following estimation we
use the fact that, since uk is continuous, all points are its Lebesgue points.
Combining the weak p-Poincaré inequality with the doubling condition gives
the third inequality. Finally, the fourth one comes from the Minkowski
inequality whereas the fifth one follows from the definition of Sm:

|uk(z) − uk(y)| ≤
∑
i∈Z

|(uk)Bi
− (uk)Bi+1

|

≤
∑
i∈Z

1

µ(Bi)

∫
Bi

|(uk) − (uk)Bi+1
| dµ

≤ CµCpd(z, y)
∑
i∈Z

2−|i|
( 1

µ(τBi)

∫
τBi

(ρ̃ + 1)p dµ
) 1

p
(3.1)

≤ CµCpd(z, y)
∑
i∈Z

2−|i|
(

1 +
( 1

µ(τBi)

∫
τBi

ρ̃p dµ
) 1

p

)
≤ CµCpd(z, y)(1 + m)

∑
i∈Z

2−|i|

≤ C(m + 1)d(z, y),

where C is a constant depending only on Cµ and Cp. Hence on Sm, uk is a
C(m + 1)-Lipschitz function for all k. Notice that uk ≤ uk+1 and therefore
we may define

v(x) = sup
k

uk(x) = lim
k→∞

uk(x).

Thus v is a C(m+1)-Lipschitz function on Sm. Since v(x0) = 0 and x0 ∈ Sm

when m ≥ m0, we have that v(x) < ∞ for every x ∈ ∪m≥m0Sm.

Our claim reduces to showing that u(x)≤v(x) for x∈∪m≥m0Sm. For this,
fix m ≥ m0 and x ∈ Sm. For each k there is γk ∈ Γx0x such that

�(γk) +

∫
γk

ρ̃k ds ≤ uk(x) +
1

k
≤ C(m + 1)d(x, x0) +

1

k
.

This implies that �(γk) ≤ C(m + 1)d(x, x0) + 1 =: M for every k. Thus,
by reparametrization, we may assume that γk is an M-Lipschitz function
and γk : [0, 1] → B(x0, M) for all k. Since X is complete and doubling,
and therefore proper (that is, closed balls are compact), we may use the
Ascoli-Arzela theorem to obtain a subsequence (γk) (which we denote by
the same subscripts as the original one) and γ : [0, 1] → X such that γk → γ
uniformly.
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For each k0, the function 1 + ρ̃k0 is lower semicontinuous, and therefore
Lemma 2.2 and the fact that (ρ̃k) is an increasing sequence of functions
imply

�(γ) +

∫
γ

ρ̃k0 ds =

∫
γ

(1 + ρ̃k0) ds ≤ lim inf
k→∞

∫
γk

(1 + ρ̃k0) ds

≤ lim inf
k→∞

∫
γk

(1 + ρ̃k) ds.

Using the monotone convergence theorem on the left hand side and letting
k0 tend to infinity yields

�(γ) +

∫
γ

ρ̃ ds ≤ lim inf
k→∞

∫
γk

(1 + ρ̃k) ds.

Since γ ∈ Γx0x we have

u(x) ≤ �(γ) +

∫
γ

ρ̃ ds ≤ lim inf
k→∞

∫
γk

(1 + ρ̃k) ds

≤ lim inf
k→∞

(uk(x) +
1

k
) ≤ v(x)

completing the proof. �

Similar methods serve as the base of the verification of Theorem 1.6.

Proof of Theorem 1.6. Let X̂ be the completion of X. We extend the
measure µ to X̂ according to the discussion at the beginning of Section 2.
The extension will still be denoted by µ. Note that the claim does not follow
directly from Proposition 3.2 since there might be paths connecting different
equivalence classes of X via X̂ \ X.

First we will show that there is x0 such that µ([x0]ρ) > 0. For this let

ρ ∈ Lp(X) be a non-negative Borel function. Extend ρ by zero to X̂ \ X.

Let ρ̃ ∈ Lp(X̂) be a lower semicontinuous function given by Lemma 2.3 such

that ‖ρ̃ − ρ‖p < 1 and ρ̃(x) ≥ ρ(x) for all x ∈ X̂. Setting for all m ∈ N

S̃m = {x ∈ X̂ : M(ρ̃p)(x) ≤ mp},
we obtain, similarly as in the proof of Proposition 3.2, that

µ(X̂ \ (∪mS̃m)) = 0.

For m ∈ N, define Sm = S̃m ∩ X . Since µ is non-trivial and µ(X̂ \ X) = 0
we may pick m0 such that µ(Sm0) > 0.
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Let x0 ∈ Sm0 be a point of density for Sm0 . As before, define for all x ∈ X̂

u(x) = inf
{
�(γ) +

∫
γ

ρ̃ ds : γ ∈ Γx0x(X̂)
}
,

where Γx0x(X̂) is the set of all rectifiable paths in X̂ connecting x0 to x.
Recall that Γx0x is the set of corresponding paths in X. From the proof of

Proposition 3.2 we see that u is a C1(m0 +1)-Lipschitz function on S̃m0 , and
therefore, on Sm0 as well. (Observe that, using the notation of the proof of
Proposition 3.2, we have u(x) = v(x) for all x ∈ Sm0 .)

Since x0 is a point of density of Sm0 we have that µ(Sm0∩B(x0, r)) > 0 for
all r > 0. Furthermore, X is locally compact, and therefore there exists r0

such that B(x0, r0) ⊂ X. Setting r = (3C1(m0 + 1))−1r0, we obtain

u(y) = |u(y)− u(x0)| ≤ C1(m0 + 1)d(y, x0)

for all y ∈ Sm0 ∩ B(x0, r). Thus there is γ ∈ Γx0y(X̂) such that

�(γ) ≤ 2C1(m0 + 1)r ≤ 2

3
r0.

This gives γ ⊂ B(x0, r0) ⊂ X, and so γ ∈ Γx0y. Moreover,
∫

γ
ρ̃ ds < ∞,

implying that Sm0 ∩ B(x0, r) ⊂ [x0]ρ̃ ⊂ [x0]ρ, where the equivalence classes
are defined in X. Thus µ([x0]ρ) > 0.

It remains to prove that µ(X \ [x0]ρ) = 0. Assume to the contrary that
µ(X \ [x0]ρ) > 0. Since X is locally compact and µ is a doubling Borel mea-
sure which is non-trivial and finite on balls, the space X is separable and
an open subset of X̂. From Remark 3.1 we know that [x0]ρ is µ-measurable.
Moreover, for all ε > 0, the mapping ερ is an upper gradient of the char-
acteristic function χ[x0]ρ of the set [x0]ρ. Choosing R > 0 sufficiently large
so that both µ(B(x0, R) ∩ [x0]ρ) > 0 and µ(B(x0, R) \ [x0]ρ) > 0 and apply-
ing the weak p-Poincaré inequality to the function-weak upper gradient pair
(χ[x0]ρ , ερ) gives a contradiction since the left hand side of the inequality
is positive whereas the right hand side tends to zero as ε → 0. Therefore
X \ [x0]ρ must be of zero measure, and the proof is done. �

The proof of the following result employs similar techniques to that of
Proposition 3.2.

Proof of Theorem 1.11. Let ρ be a p-integrable upper gradient of u.
As in the proof of Proposition 3.2, apply Lemma 2.3 to produce a lower
semicontinuous function ρ̃ ∈ Lp such that ρ̃ ≥ ρ pointwise. Define

f(x, y) = inf
{

l(γ) +

∫
γ

ρ̃ ds : γ ∈ Γxy

}
.
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As before, we see that for x, y ∈ Sm = {x ∈ X : M(ρ̃p)(x) ≤ mp} we have

f(x, y) ≤ C(m + 1)d(x, y).

Moreover, for x, y ∈ Sm,

|u(x) − u(y)| ≤ inf
{∫

γ

ρ ds : γ ∈ Γxy

}
(3.2)

≤ inf
{
�(γ) +

∫
γ

ρ̃ ds : γ ∈ Γxy

}
= f(x, y) ≤ C(m + 1)d(x, y).

Hence, u : Sm → [−∞,∞] is a Lipschitz function, and therefore a Borel
function. Thus u : ∪m Sm → [−∞,∞] is a Borel function, and since µ(X \
∪mSm) = 0, we see that u is measurable.

To prove the local p-integrability of u, we first observe that under our
assumptions there exist constants λ ≥ 1 and C̃p ≥ 1 such that for all r > 0
and x ∈ X, for all µ-measurable functions f ∈ L1(B(x, r)) defined on X,
and for all upper gradients ρ of f we have

(
1

µ(B(x, r))

∫
B(x,r)

|f − fB(x,r)|p dµ

) 1
p

(3.3)

≤ C̃pr

(
1

µ(B(x, λr))

∫
B(x,λr)

ρp dµ

) 1
p

by arguments in [6] and [7].

Next fix x0 ∈ Sm0 , where m0 is the smallest integer such that Sm0 
= ∅.
Notice that |u(x0)| < ∞ (see the definition of the upper gradient and (3.2)).
As in the proof of Proposition 3.2, for all k ∈ N consider the lower semicon-
tinuous functions ρ̃k = min{ρ̃, k}, and set

vk(x) = inf
{
�(γ) +

∫
γ

ρ̃k ds : γ ∈ Γx0x

}
and v(x) = inf

{
�(γ) +

∫
γ

ρ̃ ds : γ ∈ Γx0x

}
.

By the proof of Proposition 3.2, we have v(x) = supk vk(x) = limk vk(x) for
all x ∈ ∪mSm. Let r > 0 and set Bi = Bi(x0, 2

−ir) for i = 0, 1, . . . . Since vk

is continuous at x0 and vk(x0) = 0, by an argument similar to the one that
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led to the chain of inequalities (3.1) we can obtain

1

µ(B(x0, r))

∫
B(x0,r)

vk dµ ≤
∞∑
i=0

|(vk)Bi
− (vk)Bi+1

|

≤ CpCµ

∞∑
i=0

2−ir

(
1 +

(
1

µ(τBi)

∫
τBi

ρ̃p dµ

) 1
p

)
(3.4)

≤ CpCµr
(
1 + (Mρ̃p(x0))

1
p

)
< ∞,

since x0 ∈ Sm0 . Using equations (3.3) and (3.4) and the fact (a + b)p ≤
2p(ap + bp) for any positive numbers a and b, we get

1

µ(B(x0, r))

∫
B(x0,r)

vp
k dµ ≤

≤ 2p

µ(B(x0, r))

∫
B(x0,r)

|vk − (vk)B(x0,r)|p dµ + 2p(vk)
p
B(x0,r)

≤ 2pC̃p
pr

p 1

µ(B(x0, λr))

∫
B(x0,λr)

(ρ̃ + 1)p dµ

+ 2p
(
CpCµr

(
1 + (Mρ̃p(x0))

1
p

))p

< ∞.

Notice that the upper bound for the mean values of vp
k’s does not depend

on k.

By the monotone convergence theorem we see that(
1

µ(B(x0, r))

∫
B(x0,r)

|u|p dµ

) 1
p

≤

≤
(

1

µ(B(x0, r))

∫
B(x0,r)

|u − u(x0)|p dµ

) 1
p

+ |u(x0)|

≤
(

1

µ(B(x0, r))

∫
B(x0,r)

vp dµ

) 1
p

+ |u(x0)|

= lim
k→∞

(
1

µ(B(x0, r))

∫
B(x0,r)

vp
k dµ

) 1
p

+ |u(x0)|.

The above calculations imply that the first term is finite and we know that
|u(x0)| < ∞. Hence we get that u ∈ Lp(B(x0, r)). Since r > 0 was arbitrary,
we obtain the claim. �
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4. Appendix: Quasi-convexity

It is folklore that if a metric measure space admits a weak Poincaré inequality
and possesses additional miscellaneous properties, then it is quasi-convex.
The proof of this fact can be found in [3], [7], and [16]. For the convenience
of the reader we include one form of this folklore.

Lemma 4.1. Let (X, d) be a locally compact metric space with a doubling
Borel measure µ that is non-trivial and finite on balls and admits a weak
p-Poincaré inequality for some 1 ≤ p < ∞. Then there exists C > 0,
depending only on the constants of the Poincaré inequality and the doubling
condition, so that for each pair of points x, y ∈ X there exists γ ∈ Γxy with
�(γ) ≤ Cd(x, y).

Proof. Since X admits a weak p-Poincaré inequality, it is connected. We
first consider the case where X is complete. For each ε > 0, consider the
equivalence relation ∼ε given by x ∼ε y if and only if there exists a finite ε-
chain connecting x to y, i.e. a finite sequence x0, x1, . . . , xn of points so that
x0 = x, xn = y, and d(xi, xi+1) < ε for each i. Then the equivalence classes
are open, and since X is connected there is only one equivalence class, X
itself. This means that every pair of points in X can be connected with a
finite ε-chain. Hence, for a fixed point x0 ∈ X and for each ε > 0, we can
define the function

fε(x)=inf
{ n∑

i=1

d(xi, xi−1) : x0, ..., xn is a finite ε-chain connecting x0 to x
}
.

When d(x, y) < ε, we see that |fε(x) − fε(y)| ≤ d(x, y). Hence, fε is a
locally 1-Lipschitz function, in particular, every point is a Lebesgue point of
fε and the function ρ = 1 is an upper gradient of fε. A similar argument as
in the proof of Proposition 3.2 (see (3.1)) then gives us that for each ε > 0,
fε is a globally C-Lipschitz function where C depends only on the data of
X. Moreover, for each ε > 0, fε(x0) = 0. Hence the function

f(x) = sup
ε>0

fε(x) = lim
ε↓0

fε(x)

is also a C-Lipschitz function with f(x0) = 0.

We now claim that if f(x) < M , then there exists a 1-Lipschitz path
γ : [0, M ] → X so that γ(0) = x0 and γ(M) = x. Indeed, let x be such that
f(x) < M . For each i ∈ N, let εi = 1

2i . Then for each i, there exists a finite
εi-chain xi

0, x
i
1, . . . , x

i
mi

connecting x0 to x so that

mi∑
j=1

d(xi
j−1, x

i
j) ≤ M.
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Let

Ti =

mi∑
j=1

d(xi
j−1, x

i
j).

View X as a subset of

B(X) = {f : X → R : f is bounded}
via the isometric embedding ι(y) = gy where gy(z) = d(z, y)−d(z, x0). Here
B(X) is equipped with the sup-norm. To simplify the notation, we omit the
embedding ι from now on. Since X is complete, we may view X as a closed
subset of the Banach space B(X). For each i, define γi : [0, Ti] → B(X) as the
1-Lipschitz path that connects the successive points x0 = xi

0, x
i
1, . . . , x

i
mi

= x
via line segments. Extend γi : [0, M ] → B(X) by setting γ(t) = x for t ≥ Ti.
Then for each i, γi is a 1-Lipschitz function. Note that for each i and each
0 ≤ t ≤ M , d(γi(t), x0) ≤ M , γi(0) = x0 and γi(M) = x. Let

Y =
( ⋃

i

γi([0, M ])
)
∪ ι(B(x0, M)).

Since X is locally compact and closed (in B(X)), ι(B(x0, M)) is compact.
Thus it is a straightforward task to see that Y is compact. Apply the
Ascoli-Arzela theorem to the sequence (γi) to produce a subsequence (γij)
which converges uniformly to a 1-Lipschitz path γ : [0, M ] → Y . Clearly,
γ(0) = x0 and γ(M) = x. Finally, γ([0, M ]) ⊂ X, since X is closed and
dist(X, γi(t)) ≤ εi for all 0 ≤ t ≤ M and i ∈ N.

Tying this together, we see that if f(x) < M , then there exists a rec-
tifiable path in X connecting x0 to x with length no more than M . Now
f(x0) = 0 and f is a C-Lipschitz function. Thus for each x there exists
γ ∈ Γx0x such that �(γ) ≤ Cd(x, x0). As x0 was arbitrary, we conclude that
X is quasi-convex.

We now handle the situation where X is only locally compact. Let X̂
be the completion of X and view X as a subset of X̂. Since X is locally
compact we see that X is an open subset of X̂. Extend the measure µ to
X̂ by setting µ(X̂ \X) = 0. Then X̂ equipped with the doubling measure

µ admits a weak p-Poincaré inequality. In particular, X̂ is quasi-convex.
Since X is locally compact and hence is an open subset of X̂, X is locally
quasi-convex. Create the equivalence relation on X via x ∼ y if and only if
there exists γ ∈ Γxy. Since X is locally quasi-convex, the equivalence classes
are open. That X is connected implies that there is only one equivalence
class. Hence X is rectifiably path connected.

Fix x0 ∈ X. Define the function

g(x) = inf {�(γ) : γ ∈ Γx0x} .
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Since X is locally quasi-convex, we see as in the proof of Proposition 3.2
that g is a locally Lipschitz function. Hence every point in X is a Lebesgue
point of g. It follows from the definition of g that the function ρ = 1 is
an upper gradient of g. As before in the proof of Proposition 3.2 we see
that g is a C-Lipschitz function with C depending only on the constants of
the Poincaré inequality and the doubling condition. In particular, for each
x ∈ X there exists γ ∈ Γx0x with �(γ) ≤ Cd(x, x0). As x0 was arbitrary we
conclude that X is quasi-convex. �
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