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A universal Lipschitz extension property
of Gromov hyperbolic spaces

Alexander Brudnyi and Yuri Brudnyi

Abstract

A metric space U has the universal Lipschitz extension property
if for an arbitrary metric space M and every subspace S of M isomet-
ric to a subspace of U there exists a continuous linear extension of
Banach-valued Lipschitz functions on S to those on all of M . We show
that the finite direct sum of Gromov hyperbolic spaces of bounded
geometry is universal in the sense of this definition.

1. Formulation of Main Results

In order to present a precise formulation of the main results we need several
definitions.

Let (M, d) be a metric space with underlying set M and metric d (we
write simply M if d can be restored from the context). The space of
Banach-valued Lipschitz functions on M with target space X is denoted
by Lip(M,X); this space is endowed with the standard seminorm

(1.1) L(f) := sup
m�=m′

{‖f(m) − f(m′)‖
d(m,m′)

}
.

(In case X = R we write Lip(M) instead of Lip(M,R).)
A subset S ⊂ M will be regarded as a metric (sub-) space equipped

with the induced metric d|S×S. Hence, the notations Lip(S,X), and L(f)
for f ∈ Lip(S,X) are clear.

A simultaneous Lipschitz extension from S to M is a continuous linear
operator T : Lip(S,X) → Lip(M,X) such that

Tf |S = f.
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The set of all such T is denoted by Ext(S,M ;X) and an (optimal) extension
constant is given by

(1.2) λ(S,M ;X) := inf{‖T‖ : T ∈ Ext(S,M ;X)}.
(This becomes ∞, if Ext(S,M ;X) = ∅.)

It is shown in [BB] that there are rather simple metric spaces (e.g., metric
graphs with the vertex degrees bounded by 3) and subspaces of these spaces
for which Ext(S,M ; R) = ∅. The results presented below show that never-
theless there are many subspaces in a metric space for which the extension
constants (1.2) are finite.

In what follows we will use the following definitions.

A map φ : (M, d) → (M1, d1) is said to be C-Lipschitz, if its Lip-
schitz constant is bounded by a constant C (and simply Lipschitz, if L(φ) is
bounded).

If, in addition, φ is an injection and for all m,m′ ∈ M and given C ≥ 1

(1.3) C−1d(m,m′) ≤ d1(φ(m), φ(m′)) ≤ Cd(m,m′),

then φ is a C-isometric embedding (simply quasi-isometric embedding, if (1.3)
holds for some C).

Note that the distortion of φ (written dst(φ)) satisfies

(1.4) dst(φ) := L(φ)L(φ−1) ≤ C2.

Finally, φ : M → M1 is a C-isometry, if φ is a bijection satisfying (1.3).
(A 1-isometry is called isometry.)

Now we present the basic definitions of the paper.

Definition 1.1 A metric space U is said to be universal with respect to
simultaneous Lipschitz extensions if for an arbitrary metric space M and
every subspace S of M isometric to a subspace of U

λ(S,M ;X) ≤ c(U)

where c(U) depends only on U .

Remark 1.2 In fact, in all our results related to universality we will es-
tablish a stronger property: if, using the notation of Definition 1.1, S is
C-isometric (C ≥ 1) to a subspace of U , then

λ(S,M ;X) ≤ C2c(U)

with c(U) depending only on U . This clearly implies the universality of U .
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A deep result by Lee and Naor, see [LN, Theorem 1.6], implies univer-
sality in this sense of every doubling metric space. Let us recall that M is
doubling if there is a constant D such that for each R > 0 every ball of
radius 2R can be covered by at most D balls of radius R. The minimal D
is the doubling constant of M (denoted by D(M)).

The aforementioned theorem states that if M0 is a doubling subspace of
a metric space M , then for some numerical constant C ≥ 1

(1.5) sup
X
λ(M0,M ;X) ≤ C log2D(M0).

Since every subspace S ofM0 inherits the doubling property withD(S) ≤
D(M0), inequality (1.5) implies the universality of M0.

The main result of this paper presents a wide class of universal met-
ric spaces which have no such hereditary property. For its formulation we
require

Definition 1.3 A metric space is of bounded geometry with parameters n,
R, C if every open ball of this space of radius R admits a C-isometric em-
bedding into Rn.

Remark 1.4 Hereafter Rn is regarded as the Euclidean space endowed with

the standard norm ‖x‖2 :=
{∑n

i=1 x
2
i

}1/2
, x = (x1, . . . , xn).

Notation. The class of metric spaces, satisfying Definition 1.3 is denoted
by Gn(R,C).

Our main result is

Theorem 1.5 Let M :=
⊕N

i=1Mi where every metric space (Mi, di) is a
(Gromov) hyperbolic space of bounded geometry. Then M is universal.

Here
⊕N

i=1Mi is a metric space with underlying set
∏N

i=1Mi and metric
d := max1≤i≤N di. In the sequel we also use direct p-products of these spaces
(1 ≤ p ≤ ∞) with the same underlying set and the metric dp given by

(1.6) dp(m,m
′) :=

( N∑
i=1

dp
i (mi, m

′
i)

)1/p

.

For the convenience of the reader we recall the Rips definition of Gromov
hyperbolicity (the background material, basic properties and examples can
be found in the monographs [BH] and [Gr]).
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Definition 1.6 A geodesic metric space is δ-hyperbolic (δ ≥ 0) if every
geodesic triangle is δ-slim, that is, each side of the triangle lies in the δ-
neighbourhood of the union of the remaining sides.
We will say that M is (Gromov) hyperbolic if it is δ-hyperbolic for some δ≥0.

Let us also recall that a metric space (M, d) is said to be geodesic, if
every pair of points can be joined by a geodesic segment. In turn, a geodesic
segment joining m and m′ is the image of a geodesic, a curve γ : [0, a] →M
such that γ(0) = m, γ(a) = m′ and d(γ(t), γ(s)) = |t− s| for all t, s ∈ [0, a]
(in particular, a = d(m,m′) and also is equal to the length of γ).

Finally, a geodesic triangle with vertices m1 	= m2 	= m3 is the union of
geodesic segments with endpoints at these points.

Example 1.7 (a) The Lobachevski space Hn is δ-hyperbolic with δ = ln 3,
see, e.g., [CDP]. A straightforward computation also shows that Hn is of
bounded geometry and belongs to Gn(R,C) for every R>0 and C=C(n,R).1

(b) A simply connected n-dimensional Riemannian manifold with sec-
tional curvature κ satisfying −b2 ≤ κ ≤ −a2 < 0 for some a, b > 0, is
hyperbolic (a consequence of (a) and Toponogov’s comparison theorem) and
belongs to Gn(R,C) with C = C(n,R) for every R > 0 (a consequence of
Rauch’s comparison theorem).

(c) A metric tree is 0-hyperbolic, since there are no nondegenerate tri-
angles (cycles) in this space. If the degrees of the vertices of the tree are
uniformly bounded, it belongs to G2(R,C), C = C(R), for any R > 0.

(d) A bounded strongly pseudoconvex domain in Cn with the Kobayashi
metric is Gromov hyperbolic and of bounded geometry. More generally this
holds for uniform domains in R

n with the quasi-hyperbolic metric, see [BHK,
Chapter 1].

Remark 1.8 Theorem 1.5 is of interest only in the case of unbounded geo-
desic spaces Mi. In fact, a bounded geodesic space is clearly Gromov hy-
perbolic. If, in addition, it is of bounded geometry, then by Proposition 2.2
below this space is doubling and its universality follows from the Lee-Naor
theorem.

Combining Theorem 1.5 with the above mentioned result of Lee and
Naor [LN, Theorem 1.6] one obtains the following

Corollary 1.9 Let M :=
⊕N

i=1Mi where every (Mi, di) is either a doubling
metric space or a Gromov hyperbolic space of bounded geometry. Then M
is universal.

1In the sequel C, C1 etc denote constants; we write C = C(α, β, . . . ) if the C depends
only on the parameters α, β, . . . .
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The proof of Theorem 1.5 is based on several recent results on Lipschitz
embeddings and extensions and a new theorem of our own that will be
formulated now. For this goal we need several notions.

Definition 1.10 A nonnegative Borel measure on a metric space (M, d) is
said to be doubling at a point m ∈ M if every open ball centered at m is of
finite strictly positive measure and the doubling constant

Dm(µ) := sup
R>0

µ(B2R(m))

µ(BR(m))
<∞.

If, in addition,
D(µ) := sup

m∈M
Dm(µ) <∞

then µ is said to be a doubling measure.

Here and below BR(m) is the open ball {m′ ∈ M : d(m,m′) < R} and
BR(m) is the closed ball {m′ ∈M : d(m,m′) ≤ R}.

A metric space endowed with a fixed doubling measure is said to be
of homogeneous type; that is to say, this is a triple (M, d, µ) where µ is a
doubling measure. It is known, see [CW], that

log2D(M) ≤ c log2D(µ)

where c > 1 is a numerical constant.

The following definition gives a useful generalization of spaces of homo-
geneous type.

Definition 1.11 A metric space (M, d) with a fixed family of nonnegative
Borel measures {µm}m∈M on M is said to be of pointwise homogeneous type
if the following holds.

(i) Uniform doubling condition:

For every m ∈M , µm is doubling at m and

D := sup
m∈M

Dm(µm) <∞.

(ii) Consistency with the metric:

For some constant C > 0 and all m1, m2 ∈ M and R > 0 such that
d(m1, m2) ≤ R

|µm1 − µm2 |(BR(m)) ≤ C
µm(BR(m))

R
d(m1, m2)

where m = m1 or m2.

By C(t) ≤ C, 0 ≤ t ≤ 1, we denote the optimal constant in the above
inequality with d(m1, m2) ≤ tR, m1, m2 ∈M .
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The next examples clarify this definition.

Example 1.12 (a) A metric space (M, d) of homogeneous type endowed
with a doubling measure µ clearly satisfies Definition 1.11 with C = 0 and
D = D(µ).

(b) Let (M, d) be a doubling metric space (with doubling constant D(M)).
By the Koniagin-Vol’berg theorem [KV] (see also [LS]) M carries a doubling
measure µ such that

log2D(µ) ≤ c log2D(M)

with some numerical constant c ≥ 1. Hence (M, d) is of homogeneous type.

(c) H
n can be equipped with a family of Borel measures satisfying the con-

ditions of Definition 1.11, see [BSh, pp. 537-540].

Finally, we need

Definition 1.13 A family of nonnegative Borel measures {µm}m∈M on a
metric space M is said to be K-uniform (K ≥ 1), if for all m1, m2 ∈ M and
R > 0

µm1(BR(m1)) ≤ Kµm2(BR(m2)).

Now, all is ready to formulate our second main result. In its formulation
(M, dp) is the direct p-sum

⊕N
i=1(Mi, di), see (1.6), and (Mi, di) is of point-

wise homogeneous type with respect to a family of Borel measures {µi
m}m∈Mi

with optimal constants Di and Ci := Ci(1), 1 ≤ i ≤ N , see Definition 1.11.

Theorem 1.14 Assume that {µi
m}m∈Mi

is Ki-uniform for all 1 ≤ i ≤ N .
Then for every subspace S ⊂ (M, dp) the extension constant, see (1.2), sat-
isfies the following inequality:

(1.7) λ(S,M ;X) ≤ c0(C̃p + 1)(log2 D̃ + 1);

where

D̃ :=
N∏

i=1

Di, C̃p :=

( N∑
i=1

Cq
i

)1/q N∏
i=1

Ki,

c0 is a numerical constant and q relates to p by
1

p
+

1

q
= 1.

For X = R a similar result is proved in the authors paper [BB, The-
orem 2.25]. As an easy consequence one derives from there a special case
of Theorem 1.14 when the target space X is complemented in its second
dual X∗∗. In particular, the result holds for dual Banach spaces X (i.e.,
X = Y ∗ for a Banach space Y ). But for general X the proof of The-
orem 2.25 presented in [BB] needs to be modified. This matter will be
discussed in section 3.
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Remark 1.15 (a) It is shown in the proof that for N = 1 a sharper in-
equality holds:

λ(S,M ;X) ≤ c0(C1 + 1)(log2D1 + 1)

where c0 is a numerical constant. In this case, the assumption of K-unifor-
mity for the families {µi

m} is excluded from the theorem. This assumption
can be eliminated also in the case N > 1. Since this requires some addi-
tional technical consideration and enlarges substantially the right-hand side
in (1.7), we will not state this generalization of Theorem 1.14.

(b) It is important for some applications that the extension operator of
Theorem 1.14 maps a Lipschitz function f : S → X into a function whose
range is contained in the closure of conv f(S), the convex hull of f(S).
In particular, all the above formulated results are also true when the target
space is a closed convex subset of a Banach space X.

(c) It can be seen from the proof that Theorem 1.14 remains true for M1

a space of homogeneous type (with a doubling measure µ). In this case
D1 = D(µ), C1 = 0 and we may replace K1 by 1 in (1.7), see Remarks 3.11
and 3.14 below.

2. Proofs of Theorem 1.5 and Corollary 1.9

Proof of Theorem 1.5. We need several auxiliary results. In the forth-
coming formulations, a subset of M is said to be ε − dense if its distance2

from each point of M is less than ε, and ε−separated if the distance between
every two distinct points of the set is more than or equal to ε.

Proposition 2.1 (see [NPSS, Corollary 6.2]) Let F : M −→ M1 be a C-
Lipschitz map, and A be an ε-dense subset of M . Assume that there exists
µ ∈ (0, 1] such that for all a, a′ ∈ A

d1(F (a), F (a′)) ≥ µCd(a, a′).

Assume also that M ∈ Gn0(R0, C0) and that

(2.1) µR0 = 64ε.

Then there exist a constant K = K(n0, C0, R0, µ, C) and an integer
N = N(n0, C0) such that M admits a K-isometric embedding into the
direct sum M1

⊕
RN .

2The distance from S ⊂ M to m is defined by d(m, S) := inf{d(m, m′) : m′ ∈ S}.
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Proposition 2.2 Let (M, d) be a geodesic metric space belonging to
Gn0(R0, C0). Then for every R > 0 there exist an integer n and a constant C
such that M ∈ Gn(R,C).

Proof. We must prove that every ball BR(m) admits a C-isometric embed-
ding into some Rn where C and n are independent of the center m. To find
the required embedding we choose a maximal ε-separated set Aε in M . Due
to maximality, the family of balls Ba := Bε(a), a ∈ Aε, covers M . On the

other hand, the family B̃a := Bε/2(a), a ∈ Aε, consists of pairwise disjoint
balls.

Lemma 2.3 (a) If ε ≤ R0/2, then the order of the open cover {Ba}a∈Aε is
at most (4C2

0)
n0.

(b) For the same ε and every a ∈ Aε there is a bounded linear extension
operator Ea : Lip(Ba ∩ Aε) → Lip(Ba) whose norm is bounded by 24n0C

2
0 .

Proof. (a) By definition the order of B := {Ba}a∈Aε is given by

ord(B) := sup
m∈M

card{a ∈ Aε : m ∈ Ba}.

The union ∪{Ba : Ba � m} is contained in the ball B2ε(m). As 2ε ≤ R0,
there is a C0-isometric embedding φ of B2ε(m) into the Euclidean ball
Bρ(φ(m)) ⊂ Rn0 of radius ρ := 2C0ε. On the other hand, the family

{φ(B̃a) : a ∈ Aε} consists of pairwise disjoint sets. This implies that
that the family of Euclidean balls {Bρ′(φ(a))}Ba�m, ρ′ := ε

2C0
, consists of

pairwise disjoint sets containing in Bρ(φ(m)). Comparing the n0-measures
of the sets ∪{Bρ′(φ(a)) : Ba � m} and Bρ(φ(m)) we then get(

ε

2C0

)n0

card{a ∈ Aε : Ba � m} ≤ (2C0ε)
n0.

This implies the required estimate of ord(B).

(b) Since Ba ⊂ BR0(a), there is a C0-isometric embedding φa : Ba → Rn0.
By the Whitney extension theorem there is a bounded linear extension op-
erator acting from Lip(φa(Aε ∩ Ba)) into Lip(Rn0) whose norm is bounded
by a constant K = K(n0); in [BB, Corollary 2.24] this constant is estimated
by 24n0. Then compositions with φ−1

a and φa give the required operator
Ea : Lip(Aε ∩Ba) → Lip(Ba). �

Using an appropriate Lipschitz partition of unity subordinate to the cover
{Ba : a ∈ Aε∩BR(m)} of the ball BR(m) we paste together the operatorsEa

to get a linear extension operator from Lip(Aε ∩ BR(m)) into Lip(BR(m))
whose norm is bounded by a constant k depending only on ord(B) and
supa ‖Ea‖, see [BB, Lemma 11.3] for details.
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Then for the subspaces Lip0(Aε ∩BR(m)) and Lip0(BR(m)) of Lip(Aε ∩
BR(m)) and Lip(BR(m)) determined by the condition

f(a∗) = 0 for a fixed a∗ ∈ Aε ∩BR(m),

we obtain the linear extension operator

(2.2) E : Lip0(Aε ∩ BR(m)) → Lip0(BR(m)) with ‖E‖ ≤ k(n0, C0).

Now we use a duality argument which requires the Banach space K(M)
defined as the closed linear span in Lip0(M)∗ of the point evaluation func-
tionals

δM (m)[f ] := f(m), m ∈M.

By the Kantorovich-Rubinshtein duality theorem (see, e.g., [W] and refer-
ences therein or the Appendix in [BB])

(2.3) K(M)∗ = Lip0(M).

Also, if S ⊂M is a subspace containing a∗, then by the McShane extension
theorem (on extension of Lipschitz functions) K(S) is naturally identified
with a closed subspace of K(M) and δM |S = δS.

We apply this construction to the spaces in (2.2). Since the domain of
E is finite-dimensional, there exists an operator

P : K(BR(m)) → K(Aε ∩BR(m))

such that
P ∗ = E and ‖P‖ = ‖E‖ ≤ k(n0, C0).

(By definition, P is the restriction of the operator E∗ to K(BR(m)).) More-
over, E is an extension operator and therefore P is a linear projection onto
K(Aε ∩ BR(m)).

Next, by the McShane extension theorem

‖δM(m′) − δM(m′′)‖K(M) = d(m′, m′′), m′, m′′ ∈M.

In particular, δBR(m) is an isometric embedding of BR(m) into K(BR(m))
and the analogous statement holds for δBR(m)∩Aε .

Setting now T := P ◦ δBR(m) we so define a k(n0, C0)-Lipschitz map of
BR(m) into K(Aε ∩ BR(m)) such that for a′, a′′ ∈ Aε ∩ BR(m) we have

‖T (a′) − T (a′′)‖K(Aε∩BR(m)) = ‖δBR(m)(a
′) − δBR(m)(a

′′)‖K(BR(m)) = d(a′, a′′).

Now we are under the conditions of Proposition 2.1 with M := BR(m),
M1 := K(Aε ∩ BR(m)), C := k(n0, C0) and µ := 1

k(n0,C0)
: choosing here ε

equal to ε0 := R0

64k(n0,C0)
we derive from this proposition the following.
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There exist an integer N = N(n0, C0) and a constant k1 = k1(n0, C0, R0)
such that the metric space BR(m) admits a k1-isometric embedding into
K(Aε0 ∩BR(m))

⊕
RN .

Further, note that

dimK(Aε0 ∩ BR(m)) = card(Aε0 ∩ BR(m)) − 1 := d ≤ N1

where N1 is independent of the choice of m, see, e.g., [NPSS, page 18] for
details. Also, K(Aε0∩BR(m))∗ is C1-isometric to ld∞ (considered as the space
of bounded functions on Aε0 ∩BR(m) equal to 0 at a∗) with C1 = C1(ε0, R).
This follows from the inequalities

|f(a′) − f(a′′)| ≤ 2‖f‖ld∞ ≤ 2

ε0
‖f‖ld∞d(a

′, a′′), a′, a′′ ∈ Aε0 ∩ BR(m),

and
‖f‖ld∞ := max

a∈Aε0∩BR(m)
|f(a)| ≤ 2L(f)R.

Passing to the dual spaces we get from here that K(Aε0 ∩ BR(m)) is C1-
isometric to ld1. To finish the proof of the proposition it remains to use the
natural linear quasi-isometry between ld1 and ld2 and the fact that d ≤ N1.
Together with the previous statement this implies existence of a C-isometric
embedding of BR(m) into R

N+N1 with C = C(n0, C0, R0, R). �

Lemma 2.4 Let (M, d) be the direct sum
⊕N

i=0Mi where Mi = H
ni for

1 ≤ i ≤ N , and M0 is an n0-dimensional Banach space. Then for the
extension constant of M we have

λ(S,M,X) ≤ c(M).

Proof. We apply Theorem 1.14 to our setting. (The proof of this theorem
is presented in section 3.) In this case the Banach space M0 endowed with
the Lebesgue measure λM0 is clearly of homogeneous type with parameters
D0 = 2n0 and C0 = 0. Moreover,

λM0(BR(m)) = c(n0)R
n0

and therefore λM0 is 1-uniform in the sense of Definition 1.13. Next, it was
proved in [BSh, pp. 537-540] that there exist a metric ρi on Mi equivalent to
the hyperbolic metric of Mi and a family of Borel measures {µi

m}m∈M such
that (Mi, ρi) is of pointwise homogeneous type with respect to this family,
and, moreover, {µi

m}m∈M is 1-uniform on (Mi, ρi). Then the required result
follows from Theorem 1.14. �
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Lemma 2.5 Let (M, d) be a Gromov hyperbolic space of bounded geometry.
Then there are an integer n, a constant K≥1 and a finite-dimensional Eucli-
dean space B such that M admits a K-isometric embedding into Hn

⊕
B.

Proof. By the Bonk-Schramm theorem [BS] there exists a rough (C, k)-
similarity φ of M into some Hn with constants C ≥ 1 and k ≥ 0. In other
words, φ : M → Hn satisfies for all m,m′

(2.4) Cd(m,m′) − k ≤ dh(φ(m), φ(m′)) ≤ Cd(m,m′) + k;

here dh is the inner metric on Hn.
For k = 0 this implies that φ is even a C-isometric embedding into Hn.

So it remains to consider the case k > 0.
Set ε := 2k

C
and define A ⊂M to be a maximal ε-separated set. That is,

for all a, a′ ∈ A with a 	= a′

(2.5) d(a, a′) ≥ ε

and because of maximality for every m ∈ M there is a ∈ A such that
d(m, a) < ε. From (2.4), (2.5) and the choice of ε

C

2
d(a, a′) ≤ dh(φ(a), φ(a′)) ≤ 3C

2
d(a, a′)

for all a, a′ ∈ A. Hence, φ|A is a 3C
2

-Lipschitz map from A into Hn. By the
Lang-Pavlović-Schroeder extension theorem [LPS] φ|A admits a Lipschitz

extension φ̂ : M → Hn with Lipschitz constant

L(φ̂) ≤ 3

2
c(n)C.

Moreover, at points a, a′ of the ε-net A this map satisfies

dh(φ̂(a), φ̂(a′)) = dh(φ(a), φ(a′)) ≥ C

2
d(a, a′).

Finally, being a geodesic space of bounded geometry, (M, d) belongs to
GN (R,C) for every R > 0 and some N , C depending only on R and the pa-
rameters in the definition of bounded geometry for M , see Proposition 2.2.
Choose

R0 =
384kc(n)

C
.

Then, the space (M, d), the ε-separated set A and the Lipschitz map φ̂ satisfy
the conditions of Proposition 2.1. By this proposition there are a constant
K ≥ 1 and a finite-dimensional Euclidean space B such that (M, d) admits
a K-isometric embedding into Hn

⊕
B. �
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We are now ready to finish the proof of Theorem 1.5. So, let S be a sub-
space of a metric space M̂ and let φ :S→⊕N

i=1Mi be a C-isometric embed-
ding. Here Mi is a Gromov hyperbolic space of bounded geometry, 1≤ i≤N .

We must find a linear extension operator E : Lip(S,X) → Lip(M̂ ,X)
whose norm is bounded by a constant depending only on the characteristics
of the spaces Mi and the embedding constant C (≥ L(φ)).

For this goal we first use Lemma 2.5 to a find a C1-isometric embedding
ψ of

⊕N
i=1Mi into the space

⊕N
i=1 Hni

⊕
Rn0 . Note that C1 depends only

on the characteristics of the spaces Mi. Then the composition ψ ◦ φ is a
CC1-isometric embedding of S into

⊕N
i=1 Hni

⊕
Rn0 . Set

Ŝ := Image (ψ ◦ φ) ⊂
( N⊕

i=1

H
ni

⊕
R

n0

)
and define the linear operator E1 on Lip(S,X) by the formula

(2.6) E1f := f ◦ φ−1 ◦ ψ−1.

Then E1 : Lip(S,X) → Lip(Ŝ, X) and

(2.7) ‖E1‖ ≤ CC1.

We use now Lemma 2.4 to find a linear continuous operator

E2 : Lip(Ŝ, X) → Lip

( N⊕
i=1

H
ni

⊕
R

n0 , X

)
such that

(2.8) E2g|�S = g for g ∈ Lip(Ŝ, X)

and, in addition,

(2.9) ‖E2‖ ≤ c(n)

where n := (n0, n1, . . . , nN).
Finally, the coordinatewise application of the Lang-Pavlović-Schroeder

theorem [LPS] allows us to extend the map ψ ◦ φ : S → ⊕N
i=1 Hni

⊕
Rn0 to

a Lipschitz map Φ : M̂ → ⊕N
i=1 Hni

⊕
Rn0 such that

(2.10) Φ|S = ψ ◦ φ and L(Φ) ≤ c(n)CC1

where n :=
∑n

i=0 ni.
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Next, define the linear operator E3 on Lip(
⊕N

i=1 H
ni
⊕

R
n0 , X) by

E3h := h ◦ Φ.

Then Lip(M̂,X) is the target space of E3 and

(2.11) ‖E3‖ ≤ L(Φ) ≤ c(n)CC1.

Moreover, by (2.10)

(2.12) (E3h)|S = h(Φ|S) = h ◦ ψ ◦ φ.

Finally, define the desired linear extension operator E by

E = E3E2E1.

According to (2.6), (2.8) and (2.12) E acts from Lip(S,X) into Lip(M̂ ,X)
and

Ef |S = f.

In addition, (2.7), (2.9) and (2.11) imply that

‖E‖ ≤ C2C2
1C2(n).

Hence, the extension constant λ(S, M̂ ;X) is bounded by the constant on
the right-hand side which depends only on the characteristics of the spaces
Mi and the embedding constant C of φ. �

Proof of Corollary 1.9. Let M :=
⊕N

i=1Mi. Without loss of generality
we assume that (Mi, di) is doubling for i = 1 and Gromov hyperbolic of
bounded geometry for i ≥ 2.

Let S be a subspace of an arbitrary metric space M̃ and φ : S → M be
a C-isometric embedding. Set M1 :=

⊕N
i=2Mi, so that M = M1

⊕
M1.

By Lemma 2.5 we embed M1 quasi-isometrically into

H :=
N⊕

i=2

H
ni

⊕
R

n0 .

Further, using the map δM1 , see the proof of Proposition 2.2, we embed
M1 isometrically into the predual space K(M1) of Lip0(M1). The latter, in
turn, we embed isometrically into the Banach space l∞(B) where B is the
unit ball of K(M1). This allows us to identify the set M with its image in
l∞(B)

⊕
H and the map φ : S →M with a quasi-isometric embedding into

this image. Then φ = (φ1, φ2) where φ1 : S → l∞(B) and φ2 : S → H .
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Next, by the McShane extension theorem, φ1 admits a Lipschitz exten-
sion to all of M̃ preserving its Lipschitz constant while φ2 can be extended
to all of M̃ with Lipschitz constant bounded by c(

∑N
i=2 ni, n0)L(φ2), by

the Lang-Pavlović-Schroeder theorem [LPS]. Hence there is a Lipschitz map

φ̃ : M̃ → l∞(B)
⊕

H such that φ̃|S = φ and L(φ̃) is bounded by a constant
c(M)C.

Following the arguments of the proof of Theorem 1.5, we now determine
certain linear extension operators E1 : Lip(φ(S), X) → Lip(M1

⊕
H,X)

and E2 : Lip(M1

⊕
H,X) → Lip(l∞(B)

⊕
H,X) with bounds of their

norms depending only on the basic parameters of M . Setting then

E(f)[x] := (E2E1)(f ◦ φ−1)[φ̃(x)], x ∈ M̃, f ∈ Lip(S,X),

we obtain a linear extension operator Lip(S,X) → Lip(M̃,X) whose norm
is bounded by the basic parameters of M and C. This completes the proof
of the corollary.

The operator E1 is given by Theorem 1.14 with M1 being a doubling
metric space, see Remarks 3.11 and 3.14.

To define E2 we first use the Lee-Naor bounded linear extension operator

Ẽ : Lip(M1, X) → Lip(l∞(B), X)

whose norm is controlled by the doubling constant D(M1). Moreover, Ẽ is
an averaging operator and therefore

Ẽf ⊂ conv f(M1) (closure in X).

Now for every h ∈ H we define a linear operator

πh : Lip(M1

⊕
H,X) → Lip(M1, X)

by πhf := f(·, h), and then set for f ∈ Lip(M1

⊕
H,X)

(E2f)(m, h) := (Ẽπhf)(m), (m, h) ∈ l∞(B)
⊕

H.

By this definition

‖(E2f)(m1, h1) − (E2f)(m2, h2)‖X

≤ ‖Ẽ(πh1f)(m1) − Ẽ(πh1f)(m2)‖X + ‖Ẽ[(πh1 − πh2)f ](m2)‖X .

The first term in the second line is bounded by ‖Ẽ‖L(f)dM1(m1, m2) while
the second one is bounded by

sup{‖x‖X : x ∈ conv[f(·, h1) − f(·, h2)]}
= sup

{∣∣∣∣∣∣∑αi[f(mi, h1)−f(mi, h2)]
∣∣∣∣∣∣

X
: αi ≥ 0,

∑
αi =1 and {mi}⊂M1

}
.
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This supremum is clearly bounded by L(f)dH(h1, h2). Together with the
previous this gives the required estimate of the Lipschitz constant of E2f in
Lip(l∞(B)

⊕
H,X) by that of f . �

3. Proof of Theorem 1.14

Let S be a subset of a metric space {M, dp} where M =
∏N

i=1Mi and

dp :=

{ N∑
i=1

dp
i

}1/p

(1 ≤ p ≤ ∞).

Let us recall that (Mi, di) is of pointwise homogeneous type with respect to
the family {µi

m}m∈Mi
of Borel measures on Mi, and Di, Ci are, respectively,

the uniform doubling constant and the consistency constant for this fam-
ily, see Definition 1.11. Moreover, the family {µi

m}m∈Mi
is Ki-uniform, see

Definition 1.13.

Given these we must find a linear extension operator

E : Lip(S,X) → Lip(M,X)

with the required estimate of its norm.

We divide the proof into three parts.

First, the required extension operator will be constructed for a single metric
space of pointwise homogeneous type.

Then we will obtain the corresponding norm estimate for this operator.

Finally, the results obtained will be applied to prove the required result for
the direct product of the spaces Mi, 1 ≤ i ≤ N .

A. Extension operator

Given a metric space (M, d) of pointwise homogeneous type of Defini-
tion 1.11 and a subspace S we now construct an extension operator E acting
from Lip(S,X) into Lip(M,X) and having the desired norm estimate. In
the construction presented below E acts between pointed Lipschitz spaces
Lip0(S,X) and Lip0(M,X) determined by the condition

f(m∗) = 0;

here m∗ is a fixed point in S. Since there exist linear projections on the
pointed subspaces of norm one, the extension operator E constructed for
these subspaces gives rise to the required linear extension operator Ê from
Lip(S,X) into Lip(M,X) with ‖Ê‖ = ‖E‖.
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We prefer to work with pointed Lipschitz spaces because of the following
duality result which plays an essential role in our construction.

The space K(M) = K(M, d) is defined to be the closed linear span of
the point evaluation functionals

δM (m)(f) := f(m), m ∈M, f ∈ Lip0(M),

in Lip0(M)∗. Then the Kantorovich-Rubinshtein duality theorem states that

(3.1) K(M)∗ = Lip0(M).

The map δM : M → K(M) is readily seen to be an isometric embedding.
Consider now the map

δS : S → K(S).

By the Dugundji extension theorem [D] there exists a continuous exten-

sion δ̂S of δS to the whole of M satisfying

(3.2) δ̂S(M) ⊂ span (δS(S)).

To apply this theorem we must assume that S is closed. Clearly without
loss of generality we can accept this restriction on S.

Let us recall Dugundji’s extension construction.
Let {Bm}m∈Sc be an open cover of the open set Sc := M \S by the open

balls

(3.3) Bm := Brm(m), where rm :=
1

3
d(m,S).

Here the distance d(m,S) from a point m to S is defined as infm′∈S d(m,m
′).

Since any metric space is paracompact, there exists a continuous par-
tition of unity {pα}α∈A subordinate to the cover {Bm} whose supports
Uα := {m ∈ Sc : pα(m) > 0} form a locally finite cover of Sc.

For every α ∈ A, we now pick points

(3.4) m1(α) ∈ S and m2(α) ∈ Uα = supp pα

such that

(3.5) d(m1(α), m2(α)) < 2d(m2(α), S).

The aforementioned continuous extension δ̂S is then given by

(3.6) δ̂S(m) :=

⎧⎪⎪⎨⎪⎪⎩
δS(m) if m ∈ S∑

α∈A

δS(m1(α))pα(m) if m ∈ Sc.
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Lemma 3.1 Let f ∈ Lip0(S,X). Then the function f̂ : M → X given by

(3.7) f̂(m) :=

⎧⎨⎩
f(m) if m ∈ S∑

α∈A

f(m1(α))pα(m) if m ∈ Sc

satisfies for all m,m′ ∈M the inequality

(3.8) ‖f̂(m) − f̂(m′)‖X ≤ 7L(f){d(m,m′) + d(m,S) + d(m′, S)}.
Proof. In the case m,m′ ∈ S, inequality (3.8) (even with constant 1) is

trivial, since f̂ = f on S and d(m,S) = d(m′, S) = 0.
Let now m ∈ S and m′ ∈ Sc. We denote by Vm an open ball in the

Banach space X given by the inequality

(3.9) ‖f̂(m) − x‖X < (5d(m,m′) + 2d(m′, S))L(f), x ∈ X.

Inequality (3.8) in this case, clearly follows from the inclusion

(3.10) f̂(m′) ∈ Vm.

Since f̂(m′) is a convex combination of the points f(m1(α)), α ∈ A0, where
the finite set A0 is given by

A0 := {α ∈ A : m′ ∈ supp pα},
see (3.7), inclusion (3.10) follows from the condition

f(m1(α)) ∈ Vm, α ∈ A0.

This, in turn, is a consequence of the inequality

(3.11) d(m1(α), m) < 5d(m,m′) + 2d(m′, S)

and the fact that f ∈ Lip0(S,X).
To prove (3.11) we choose for α ∈ A0 a point m(α) ∈ Sc so that

Bm(α) ⊃ supp pα (� m2(α)).

Then m′ ∈ Bm(α), m ∈ S, and this and (3.3) imply that

d(m(α), S)≤d(m(α), m)≤d(m(α), m′)+d(m′, m)≤ 1

3
d(m(α), S)+d(m,m′).

Hence,

(3.12) d(m(α), S) ≤ d(m(α), m) ≤ 3

2
d(m,m′).

Further, m2(α) ∈ Bm(α) and therefore

d(m2(α), m) ≤ d(m2(α), m(α))+ d(m(α), m) ≤ 1

3
d(m(α), S)+ d(m(α), m).
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Combining this with the previous inequality we obtain

d(m2(α), m) ≤ 3d(m,m′).

Finally, this, (3.5) and (3.12) together with the inequality

d(m1(α), m) ≤ d(m1(α), m2(α)) + d(m2(α), m)

give the required inequality (3.11).
It remains to consider the case of m,m′ ∈ Sc. Let, for the sake of defi-

niteness,

(3.13) d(m′, S) ≤ d(m,S).

Given ε > 0 we pick a point m′′ ∈ S satisfying

d(m′, m′′) ≤ d(m′, S) + ε.

We write now

‖f̂(m) − f̂(m′)‖X ≤ ‖f̂(m) − f̂(m′′)‖X + ‖f̂(m′′) − f̂(m′)‖X .

Since m′′ ∈ S, we can apply the estimate obtained in the previous part of
the proof to bound the right-hand side by

L(f){2(d(m,S) + d(m′, S)) + 5(d(m,m′′) + d(m′, m′′))}.
Moreover, by the choice of m′′

d(m,m′′) ≤ d(m,m′) + d(m′, m′′) ≤ d(m,m′) + d(m′, S) + ε.

Therefore, the sum in the curly brackets is bounded by

2(d(m,S) + d(m′, S)) + 5d(m,m′) + 10d(m′, S) + 10ε.

This and (3.13), in turn, give the required inequality (3.8).
The lemma has been proved. �
We are now ready to define the required extension operator E. It is given

for f ∈ Lip0(S,X) by

(3.14) (Ef)(m) :=

{
f(m) if m ∈ S

I(f̂ ;m, d(m)) if m ∈ Sc.

Here

(3.15) d(m) := d(m,S),

f̂ is defined by (3.7), and for a locally continuous and locally bounded func-
tion3 g : M → X we set

(3.16) I(g;m,R) :=
1

µm(BR(m))

∫
BR(m)

g dµm.

3i.e., continuous and bounded on every bounded subset of M .
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Let us recall that {µm}m∈M is the family of Borel measures onM , subject
to Definition 1.11.

Let us show that E is well-defined, that is, that the vector function f̂ is
(strongly) continuous and bounded on every bounded subset of M .

Indeed, it is well-known (see, e.g., [GK]) that for any f ∈ Lip0(S,X)

there exists a uniquely defined linear continuous map f̃ : K(S) → X such
that

f = f̃ ◦ δS.
Then by the definitions of f̂ , see (3.7), and δ̂S, see (3.6), we have

f̂ = f̃ ◦ δ̂S.

Since all the functions on the right-hand side are continuous and locally
bounded, f̂ is continuous and locally bounded on M . Therefore the integral
I((f̂ ;m, d(m)) is finite.

Remark 3.2 Our construction of the operator E would be much simpler if
we could define a Borel measurable map φ : Sc → S satisfying the condition

d(m,φ(m)) ≤ Cd(m,S), m ∈M,

with some constant C ≥ 1 independent of m and S. Then f̂ in (3.14)
would be replaced by the composite f ◦ φ for which an inequality similar to
inequality (3.8) of Lemma 3.1 trivially holds (with 7 replaced by C).

Unfortunately, such φ does not exist in general even in the simplest case
of M = R2, see the corresponding counter-example in the paper [N] by
P. Novikov.

At the next stage we must estimate the norm of the constructed exten-
sion operator. The derivation presented below leads to an expression which
contains max

(
l

l−1
, D(l)

)
where the function D : [1,∞) → R+ is given by

(3.17) D(l) := sup
m∈M

sup
R>0

µm(BlR(m))

µm(BR(m))
.

If D(l) = lλ for some constant λ ≥ 1, then the term max
(

l
l−1
, D(l)

)
can by

minimized by choosing l := 1+1/λ. This gives the bound O(λ) = O(log2D)
as required.

In general, we have for l ≤ 2 only the trivial estimate D(l) ≤ D which
does not allow to achieve the result declared in Theorem 1.14 (for N = 1).

To overcome this obstacle we replace the original metric space (M, d) by
a new one for which the D(l) is “almost” lλ for some λ > 1. Moreover, this
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new space, say (M̂, d̂), contains an isometric copy of (M, d). Therefore the
extension constants of these spaces, see (1.2), satisfy

(3.18) sup
S⊂M

λ(S,M ;X) ≤ sup
�S⊂�M

λ(Ŝ, M̂ ;X).

As soon as an appropriate bound of the right-hand side of (3.18) via the
doubling and the consistency constants for the M , has been obtained the
desired inequality for λ(S,M ;X) has been established. We will realize this
program in two steps:

In subsection B, we estimate the basic parameters of M̂ via those of M .
In the next subsection, we obtain the required estimate for the norm of

extension operator (3.14). This gives the proof of Theorem 1.14 for a single
space (N = 1).

B. The basic properties of the extended metric space

The desired metric space (M̂, d̂) has underlying set

(3.19) Mn := M × R
n

and metric given by

(3.20) dn := d
⊕

δn

where d is the metric of the original space M and δn is the l1-metric of Rn.
The integer n ≥ 2 will be chosen later to minimize the corresponding esti-
mates.

We then equip the space (Mn, dn) with the family of measures Fn :=
{µ

�m} �m∈Mn where

(3.21) µ
�m := µm ⊗ λn, m̃ = (m, x) ∈ M × R

n;

here λn is the Lebesgue measure on Rn and F := {µm}m∈M is the family of
pointwise doubling measures on (M, d), see Definition 1.11.

It is easy to show that theMn equipped with the family Fn is of pointwise
homogeneous type but we need qualitative estimates of its basic parameters
in terms of those for (M, d).

This goal will be achieved in several lemmas presented below. In their
formulations, Dn and Cn(t) are the doubling and consistency constants and
Dn(l) is the dilation function for (Mn, dn). The function Dn(l) is defined
as in (3.17) with µm replaced by measure (3.21). We recall also that D
and C(t) are the analogous constants for (M, d).
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Lemma 3.3 Assume that n is related to the doubling constant D by

(3.22) n ≥ [log2D] + 5.

Then we have

Dn(1 + 1/n) ≤ 6

5
e4.

Proof. Note that the open ball BR(m̃) of Mn is the set

{(m′, y) ∈M × ln1 : d(m′, m) + ‖x− y‖1 < R}.
Therefore an application of Fubini’s theorem yields

(3.23) µ
�m(BR(m̃)) = γn

∫
BR(m)

(R− d(m,m′))ndµm(m′);

here BR(m) is a ball of M and γn is the volume of the unit ln1 -ball.

We estimate this measure with R replaced by Rn := (1 + 1/n)R. Split
the integral in (3.23) into one over B3R/4(m) and one over the remaining
part BRn(m) \B3R/4(m). Denote these integrals by I1 and I2. For I2 we get
from (3.23)

I2 ≤ γn(Rn − 3R/4)n

∫
BRn (m)

dµm(m′) = γn

(
1

4
+

1

n

)n

Rnµm(BRn(m)).

Using the doubling constant for F = {µm} we further have

µm(BRn(m)) ≤ Dµm(BRn/2(m)).

Moreover, by (3.22), D < 2[log2 D]+1 ≤ 1
16

2n. Combining all these inequalities
we obtain

(3.24) I2 ≤ γn
1

16
2−n

(
1 +

4

n

)n

Rnµm(BRn/2(m)).

To estimate I1 we present its integrand (which equals to that in (3.23)
with R replaced by Rn) in the following way.(

1 +
1

n

)n

(R − d(m,m′))n

(
1 +

d(m,m′)
(n+ 1)(R− d(m,m′))

)n

.

Since d(m,m′) ≤ 3R/4 for m′ ∈ B3R/4(m), the last factor is at most(
1 + 3

n+1

)n
. Hence, we have

I1 ≤ γn

(
1 +

1

n

)n(
1 +

3

n + 1

)n ∫
B3R/4(m)

(R − d(m,m′))ndµm(m′).
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Using then (3.23) we, finally, obtain

(3.25) I1 ≤ e4µ
�m(BR(m̃)).

To estimate Dn(l) with l = 1 + 1/n it remains to bound the fractions

Ĩk :=
Ik

µ
�m(BR(m̃))

, k = 1, 2.

For k = 2 we estimate the denominator from below as follows. Since
Rn < 2R, we bound µ

�m(BR(m̃)) from below by

γn

∫
BRn/2(m)

(R− d(m,m′))ndµm(m′) ≥ γn2−n

(
1 − 1

n

)n

Rn

∫
BRn/2(m)

dµm(m′)

= γn2−n

(
1 − 1

n

)n

Rnµm(BRn/2(m)) .

Combining this with (3.24) we get

Ĩ2 ≤ 1

16

(
1 − 1

n

)−n (
1 +

4

n

)n

.

Since
(
1 − 1

n

)−n ≤ (
1 − 1

5

)−5
as n ≥ 5, we finally obtain

Ĩ2 ≤ 1

5
e4.

For Ĩ1 using (3.25) one immediately has

Ĩ1 ≤ e4.

Hence, we have

Dn(1 + 1/n) ≤ sup
�m,R

(Ĩ1 + Ĩ2) ≤ 6

5
e4.

�

Our next auxiliary result evaluates the consistency constants Cn(t) for
family Fn = {µ

�m} in terms of that for F := {µm}. Recall that the latter
constant is the C in the inequality

(3.26) |µm1 − µm2 |(BR(mi)) ≤ Cµmi
(BR(mi))

R
d(m1, m2)

wherem1, m2 are arbitrary points ofM andR > 0 is such that d(m1, m2) ≤ R,
and i = 1, 2.

Lemma 3.4

Cn(t) ≤
(

1 +
4e

3

)
nC , 0 ≤ t ≤ 1

n
.
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Proof. Using Fubini’s theorem, rewrite (3.23) in the form

(3.27) µ
�m(BR(m̃)) = βn

∫ R

0

µm(Bs(m))(R− s)n−1ds

where βn is the volume of the unit sphere in ln1 . Then for dn(m̃1, m̃2) ≤ R
r

and i = 1, 2 we have

|µ
�m1 − µ

�m2|(BR(m̃i)) ≤ βn

∫ R

0

|µm1 − µm2 |(Bs(mi)) · (R − s)n−1ds.

Divide now the interval of integration into subintervals [0, R/n] and [R/n,R]
and denote the corresponding integrals over these intervals by I1 and I2.
It suffices to find appropriate upper bounds for Ik. Replacing Bs(mi) in I1
by the bigger ball Bs+R/n(mi) and applying (3.26) we obtain

I1 ≤ C

(
βn

∫ R/n

0

µmi
(Bs+R/n(mi))

s+R/n
(R− s)n−1ds

)
d(m1, m2).

Replacing s by t = s+R/n we bound the expression in the brackets by(
βn

∫ 2R/n

R/n

µmi
(Bt(mi))(R− t)n−1dt

)
max

R/n≤t≤2R/n

(R+R/n− t)n−1

t(R− t)n−1
.

Since [R/n, 2R/n] ⊂ [0, R] and the maximum < n
R

(
1 + 1

n−2

)n−1
< 4e

3
n
R

for
n ≥ 5, this and (3.27) yield

I1 ≤ 4e

3
Cn

µ
�mi

(BR(m̃i))

R
d(m1, m2).

For the second term we get from (3.26)

I2 ≤ C

(
βn

∫ R

R/n

µmi
(Bs(mi))

s
(R− s)n−1ds

)
d(m1, m2)

and by (3.27) the term in the brackets is at most µ
�mi

(BR(m̃i)) · n
R
. Hence,

we have

I2 ≤ Cn
µ
�mi

(BR(m̃i))

R
d(m1, m2).

Further note that d(m1, m2) ≤ dn(m̃1, m̃2). Hence, we obtain finally the
inequality

|µ
�m1 − µ

�m2 |(BR(m̃i)) ≤
(

1 +
4e

3

)
nC

µ
�mi

(BR(m̃i))

R
dn(m̃1, m̃2)

whence Cn(t) ≤ (
1 + 4e

3

)
nC, 0 ≤ t ≤ 1

n
. �
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Lemma 3.5 Let

An :=
6

5
e4n and n ≥ [log2D] + 6.

Then for all R2 ≥ R1 > 0 and m̃ ∈Mn

µ
�m

(
BR2(m̃)

)− µ
�m

(
BR1(m̃)

) ≤ An
µ
�m(BR2(m̃))

R2
(R2 −R1).

Proof. By definition

Mn = Mn−1 × R and µ
�m = µ

�m ⊗ λ1,

where m̂ ∈Mn−1. Then by Fubini’s theorem we have for 0 < R1 ≤ R2

µ
�m(BR2(m̃)) − µ

�m(BR1(m̃)) = 2

∫ R2

R1

µ
�m(Bs(m̂))ds

≤ 2R2µ �m(BR2(m̂))

R2
(R2 − R1).

We claim that for arbitrary l > 1 and R > 0

(3.28) Rµ
�m(BR(m̂)) ≤ lDn−1(l)

2(l − 1)
µ
�m(BR(m̃)).

Together with the previous inequality this will yield

µ
�m(BR2(m̃)) − µ

�m(BR1(m̃)) ≤ lDn−1(l)

l − 1
· µ �m(BR2(m̃))

R2
(R2 − R1),

Finally choose here l = 1 + 1
n−1

and use Lemma 3.3. This will give the
required inequality.

Hence, it remains to establish (3.28). By the definition of Dn−1(l) we
have for l > 1

µ
�m

(
BlR(m̃)

)
= 2l

∫ R

0

µ
�m

(
Bls(m̂)

)
ds ≤ lDn−1(l)µ �m

(
BR(m̃)

)
.

On the other hand, replacing [0, R] by [l−1R,R] we also have

µ
�m

(
BlR(m̃)

) ≥ 2lµ
�m

(
BR(m̂)

)
(R− l−1R) = 2(l − 1)Rµ

�m

(
BR(m̂)

)
.

Combining the last two inequalities we get (3.28). �
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C. Bound for the norm of the extension operator

Let Ê be the extension operator defined by (3.14)–(3.15) with (M, d,F)
replaced by (Mn, dn,Fn). To formulate the basic result we set

(3.29) Kn(l) := 42(An + Ĉn)Dn(l)(l + 3)

where Ĉn := Cn(1/n) and l and n are related by

(3.30) l = 1 +
1

n
.

Proposition 3.6 The following estimate

‖Ê‖ ≤ 56An + max

(
14(l + 3)

l − 1
, Kn(l)

)
is true.

Before beginning the proof let us note that choosing here

n := [log2D] + 6

and applying Lemmas 3.3-3.5 we immediately obtain the inequality

(3.31) ‖Ê‖ ≤ a0(C + a1)(log2D + 6)

with some numerical constants a0 and a1. This clearly proves Theorem 1.14
for N = 1.

Proof. We have to show that for every m̃1, m̃2 ∈Mn

(3.32) ‖(Êf)(m̃1) − (Êf)(m̃2)‖X ≤ K‖f‖Lip(S,X)dn(m̃1, m̃2)

where S ⊂ Mn and K is the constant in the inequality of the proposition.
It suffices to consider only two cases:

(a) m̃1 ∈ S and m̃2 	∈ S;

(b) m̃1, m̃2 	∈ S.

We assume without loss of generality that

(3.33) ‖f‖Lip(S,X) = 1

and simplify the computations by introducing for 1 ≤ i, j ≤ 2 the following
notations:

(3.34) Ri := dn(m̃i), µi := µ
�mi
, Bij := BRj

(m̃i), vij := µi(Bij).



886 A. Brudnyi and Y. Brudnyi

We assume also for definiteness that

(3.35) 0 < R1 ≤ R2.

By the triangle inequality we then have

(3.36) 0 ≤ R2 −R1 ≤ dn(m̃1, m̃2).

Further, the quantities introduced satisfy the following inequalities:

vi2 − vi1 ≤ Anvi2

R2
(R2 − R1),(3.37)

|µ1 − µ2|(Bij) ≤ Ĉnvij

Rj
dn(m̃1, m̃2) , dn(m̃1, m̃2) ≤ R

n
.(3.38)

Now, from inequality (3.8) applied to our setting and the triangle in-
equality we obtain

(3.39) max{‖f̃(m̃)‖X : m̃ ∈ Bi2} ≤ 28R2 + 7(i− 1)dn(m̃1, m̃2).

here i = 1, 2 and we set

(3.40) f̃(m̃) := f̂(m̃) − f̂(m̃1)

where f̂ is the extension of f given by (3.7).
We now prove (3.32) for m̃1 ∈ S and m̃2 	∈ S. We begin with the evident

inequality

‖(Êf)(m̃2) − (Êf)(m̃1)‖X =
1

v22

∥∥∥∫
B22

f̃(m̃)dµ2

∥∥∥
X
≤ max

B22

‖f̃‖X ,

see (3.34) and (3.40). Applying (3.39) with i = 2 we then bound this
maximum by 28R2 + 7dn(m̃1, m̃2). But m̃1 ∈ S and so

R2 = dn(m̃2) ≤ dn(m̃1, m̃2);

therefore (3.32) holds in this case with K = 35.

The remaining case m̃1, m̃2 	∈ S requires some additional auxiliary re-
sults. For their formulations we first write

(3.41) (Êf)(m̃1) − (Êf)(m̃2) := D1 +D2

where

(3.42)
D1 := I(f̃ ; m̃1, R1) − I(f̃ ; m̃1, R2)

D2 := I(f̃ ; m̃1, R2) − I(f̃ ; m̃2, R2),

see (3.16) and (3.40).
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Lemma 3.7 We have

‖D1‖X ≤ 56Andn(m̃1, m̃2).

Recall that An is the constant in Lemma 3.5.

Proof. By (3.42), (3.40) and (3.34),

D1 =
1

v11

∫
B11

f̃dµ1− 1

v12

∫
B12̃

fdµ1 =

(
1

v11
− 1

v12

)∫
B11̃

fdµ1− 1

v12

∫
B12\B11̃

fdµ1.

This immediately implies that

‖D1‖X ≤ 2 · v12 − v11

v12

· max
B12

‖f̃‖X .

Applying now (3.37) and (3.36), and then (3.39) with i = 1 we get the
desired estimate. �

To obtain a similar estimate for D2 we will use the following two facts.

Lemma 3.8 Assume that for a given l > 1

(3.43) dn(m̃1, m̃2) ≤ (l − 1)R2.

Let for definiteness

(3.44) v22 ≤ v12.

Then we have

(3.45) µ2(B12∆B22) ≤ 2(An + Ĉn)Dn(l)
v12

R2

dn(m̃1, m̃2)

(here ∆ denotes symmetric difference of sets).

Proof. Set

R := R2 + dn(m̃1, m̃2).

Then B12 ∪B22 ⊂ BR(m̃1) ∩BR(m̃2) and

(3.46) µ2(B12∆B22) ≤ (µ2(BR(m̃1))− µ2(B12)) + (µ2(BR(m̃2))−µ2(B22)).

The first term on the right-hand side is at most

|µ2 − µ1|(BR(m̃1)) + |µ2 − µ1|(BR2(m̃1)) + (µ1(BR(m̃1)) − µ1(BR2(m̃1)).
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Estimating the first two terms by the inequality for the consistency constant
(see Definition 1.11) and the third by Lemma 3.5 we bound this sum by

Ĉn

(
µ1(BR(m̃1))

R
+
µ1(BR2(m̃1))

R2

)
dn(m̃1, m̃2) + An

µ1(BR(m̃1))

R
(R− R2).

Moreover, R2 ≤ R ≤ lR2 and R− R2 := dn(m̃1, m̃2), see (3.43); taking into
account (3.17) for (Mn, dn) and the notations (3.34) we therefore have

µ2(BR(m̃1)) − µ2(B12) ≤ [Ĉn(Dn(l) + 1) +AnDn(l)]
v12

R2
dn(m̃1, m̃2).

Similarly, by Lemma 3.5 and (3.44)

µ2(BR(m̃2)) − µ2(B22) ≤ An
µ2(BR(m̃2))

R
(R− R2)

≤ AnDn(l)
v22

R2
dn(m̃1, m̃2) ≤ AnDn(l)

v12

R2
dn(m̃1, m̃2).

Combining the last two estimates with (3.46) we get the result. �

Lemma 3.9 Under the assumptions of the previous lemma we have

(3.47) v12 − v22 ≤ 3(An + Ĉn)Dn(l)
v12

R2

dn(m̃1, m̃2).

Proof. By (3.34) the left-hand side is bounded by∣∣µ1(B12) − µ2(B12)
∣∣+ µ2(B12∆B22).

Estimating these terms by (3.38) and (3.45) we get the result. �

We now estimate D2 from (3.42) beginning with

Lemma 3.10 Under the conditions of Lemma 3.8 we have

‖D2‖X ≤ Kn(l) dn(m̃1, m̃2)

where Kn(l) := 42(An + Ĉn)Dn(l)(l + 3).

Proof. By the definition ofD2 and our notation, see (3.42),(3.40) and (3.34),

‖D2‖X :=

∥∥∥∥ 1

v12

∫
B12

f̃dµ1 − 1

v22

∫
B22

f̃dµ2

∥∥∥∥
X

≤ 1

v12

∫
B12

‖f̃‖X d|µ1−µ2| +
1

v12

∫
B12∆B22

‖f̃‖X dµ2 +

∣∣∣∣ 1

v12

− 1

v22

∣∣∣∣ ∫
B22

‖f̃‖X dµ2

:= J1 + J2 + J3.
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By (3.38) and (3.39) with i = 1

J1 ≤ 1

v12
|µ1 − µ2|(B12) sup

B12

‖f̃‖X ≤ Ĉn

R2
dn(m̃1, m̃2)28R2 = 28Ĉndn(m̃1, m̃2).

In turn, by (3.45), (3.43) and (3.39)

J2 ≤ 1

v12
µ2(B12∆B22) sup

B12∆B22

‖f̃‖X

≤ 2(An + Ĉn)Dn(l)

R2
dn(m̃1, m̃2)(7dn(m̃1, m̃2) + 28R2)

≤ 14(An + Ĉn)Dn(l)(l + 3)dn(m̃1, m̃2).

Finally, (3.47), (3.39) and (3.43) yield

J3 ≤ 21(An + Ĉn)Dn(l)(l + 3)dn(m̃1, m̃2).

Combining these we get the required estimate. �

It remains to consider the case of m̃1, m̃2 ∈Mn satisfying the inequality

dn(m̃1, m̃2) > (l − 1)R2

converse to (3.43). Now the definition (3.42) of D2 and (3.39) imply that

‖D2‖X ≤ 2 sup
B12∪B22

‖f̃‖X

≤ 2
(
28R2 + 7dn(m̃1, m̃2)

)≤(
56

l − 1
+ 14

)
dn(m̃1, m̃2).

Combining this with the inequalities of Lemmas 3.7 and 3.10 and equal-
ity (3.41) we obtain the required estimate of the Lipschitz norm of the ex-

tension operator Ê. Actually, we have proved that

(3.48) ‖Ê‖ ≤ 56An + max

(
14(l + 3)

l − 1
, Kn(l)

)
where Kn(l) is the constant in (3.29). This gives the proof of Theorem 1.14
for N = 1.

Remark 3.11 Let us note that in the proof of this part of Theorem 1.14
the condition of K-uniformity was not used.
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D. Proof of Theorem 1.14 for an arbitrary N

(1) Let, first, p = ∞. Since the metric in (M, d∞) is given by

d∞ := max
1≤i≤N

di,

where di is the metric on Mi, the ball BR(m) of M is the product of balls
BR(mi) of Mi, 1 ≤ i ≤ N . Therefore for the family of measures {µm}m∈M

given by the tensor product

(3.49) µm :=
N⊗

i=1

µi
mi
, m = (m1, . . . , mN ),

we get

(3.50) µm(BR(m)) =

N∏
i=1

µi
mi

(BR(mi)).

Hence for the dilation function (3.17) of the family {µm}m∈M we get

(3.51) D(l) =
N∏

i=1

Di(l)

where Di is the dilation function of {µi
m}m∈Mi

. In particular, {µm}m∈M sat-

isfies the uniform doubling condition of Definition 1.11 with D̃ := D1 · · ·DN .
We check that condition (ii) of this definition (i.e., consistency with the

metric) holds for this family with constant

(3.52) C̃∞ :=

( N∏
i=1

Ki

) N∑
i=1

Ci.

In fact, the identity

(3.53) µm − µ
�m =

N∑
i=1

(⊗i−1
j=1µ

j
�mj

) ⊗ (µi
mi

− µi
�mi

) ⊗ (⊗N
j=i+1µ

j
mj

)

together with (3.50), the consistency with the metric for each Mj and Kj-
uniformity of {µj

m}m∈Mj
implies that for m̂ = m or m̃, d∞(m, m̃) ≤ R,

|µm − µ
�m|(BR(m̂)) ≤

N∑
i=1

(∏
j �=i

Kj

)
Ci
µ
�m(BR(m̂))

R
di(mi, m̃i)

≤ C̃∞
µ
�m(BR(m̂))

R
d∞(m, m̃).
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Thus (M, d∞) is of pointwise homogeneous type with respect to the fam-

ily (3.49) with optimal constants bounded by D̃ and C̃∞. Hence, by the
previous part of the theorem for N = 1 we have the required estimate for
λ(S,M ;X) in this case.

(2) Let now 1 ≤ p < ∞. In this case we cannot estimate the optimal
constants C and D for the space

(3.54) (M, dp) :=
⊕

p

{(Mi, di)}1≤i≤N

directly. To overcome this difficulty we use the argument of the proof of
the previous part of Theorem 1.14 (for N = 1) and isometrically embed this
space into the space

(M̂, d̂) := (M, dp)
⊕

1

la1

with a suitable a. Hence, a point m̂ ∈ M̂ is an (N + a)-tuple

m̂ := (m, x) := (m1, . . . , mN , x1, . . . , xa)

with m ∈ ∏N
i=1Mi and x ∈ Ra. Moreover, the metric d̂ is given by

d̂(m̂, m̂′) :=

( N∑
i=1

di(mi, m
′
i)

p

)1/p

+

a∑
i=1

|xi − x′i|.

We endow M̂ with the family of measures given by the tensor product

µ
�m := µm ⊗ λa, m̂ ∈ M̂,

where λa is the Lebesgue measure on Ra and µm := ⊗N
i=1µ

i
mi

.

We will show that λ(S, M̂ ;X) is bounded as required in Theorem 1.14. This
immediately yields the desired estimate for λ(S,M ;X) and completes the
proof of the theorem.

To accomplish this we need

Lemma 3.12 The optimal uniform doubling constant D of the family
{µm}m∈M satisfies

D ≤
N∏

i=1

Di.

Recall that Di is the optimal uniform doubling constant of {µi
mi
}mi∈Mi

.
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Proof. (by induction on N). For the µm-measure of the ball

B2R(m) := {m′ ∈M :
N∑

i=1

di(mi, m
′
i)

p < (2R)p}

we get by Fubini’s theorem:

µm(B2R(m)) =

∫
d1<(2R)p

dµ1(m′)
∫

d1<(2R)p−d1

dµ1(m
′
1).

Here we set for simplicity:

d1 :=
N∑

i=2

di(mi, m
′
i)

p, d1 := d(m1, m
′
1)

p, µ1 :=
N⊗

i=2

µi
mi
, µ1 := µ1

m1
.

The second integral is the µ1-measure of the ball B2ρ(m1) where ρ :=
p
√
Rp − 2−pd1 which is bounded by D1µ1(Bρ(m1)). This and Fubini’s theo-

rem imply that

µm(B2R(m)) ≤ D1

∫
2−pd1<Rp

dµ1(m′)
∫

d1<Rp−2−pd1

dµ1(m
′
1)

= D1

∫
d1<Rp

dµ1(m
′
1)

∫
d1<(2R)p−2pd1

dµ1(m′).

By the induction hypothesis the inner integral in the right-hand side is
bounded by

( N∏
i=2

Di

)
µ1(B p√Rp−d1

(m2, . . . , mN )) =
N∏

i=2

Di

∫
d1<Rp−d1

dµ1(m′).

Combining this with the previous inequality to get the required result:

µm(B2R(m)) ≤
( N∏

i=1

Di

)
µm(BR(m)). �

Using Lemma 3.12 we estimate now the dilation function Da(s) of the
family {µ

�m}. Recall that for s > 1

(3.55) Da(s) := sup
�m∈�M

{
µ
�m(BsR(m̂))

µ
�m(BR(m̂))

}
.

To this end we simply apply to this setting Lemma 3.3 with D replaced by∏N
i=1Di and n by a. This yields
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Lemma 3.13 If a ≥ [log2

∏N
i=1Di] + 5, then

Da(1 + 1/a) ≤ 6

5
e4.

Now we estimate the consistency constant C̃a := C(1/a) for the family
{µ

�m}
�m∈�M , see Definition 1.11. To this goal we use (3.53) for µ

�m − µ
�m′ ,

d̂(m̂, m̂′) ≤ R
a
, and then apply Fubini’s theorem to get for m̂′′ := m̂ or m̂′

|µ
�m − µ

�m′|(BR(m̂′′))

≤
N∑

i=1

∫
δa<R

dλa

∫
di<(R−δa)p

dµ′
idµi

∫
di<(R−δa)p−di

d|µi
mi

− µi
m′

i
|.(3.56)

Here we use the notation:

δa :=

a∑
j=1

|xj − x′′j |, di :=
∑
j �=i

dj(m
′′
j , mj)

p, di := d(m′′
i , mi)

p,

µ′
i :=

⊗
j<i

µj
m′

j
, µi :=

⊗
j>i

µj
mj
.

Recall that m̂ = (m, x) ∈M × Ra.

The inner integral in the i-th term of the right-hand side of (3.56) equals
|µi

mi
− µi

m′
i
|(Bρ(m

′′
i )) where

ρ := p
√

(R− δa)p − di.

Replacing here ρ by
ρa := p

√
(Ra − δa)p − di

with Ra := (1 + 1
a
)R and applying the consistency inequality for (Mi, di)

(observe that di(mi, m
′
i) ≤ R

a
) we then bound this inner integral by

Ci µ
i
m′′

i
(Bρa(m

′′
i ))

ρa
di(mi, m

′
i).

Since di ≤ (R−δa)p, the denominator here is at least Ra−R = 1
a
R. Therefore

the inner integral is bounded by

aCi di(mi, m
′
i)

R

∫
di<(Ra−δa)p−di

dµi
m′′

i
.

Inserting this in (3.56) and replacing there R by Ra we get

|µ
�m − µ

�m′ |(BR(m̂′′)) ≤ a

R

N∑
i=1

Cidi(mi, m
′
i)

∫
BRa (�m′′)

dλa dµ
′
i dµi dµ

i
m′′

i
.
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To replace in this inequality each µj
m′

j
(or µj

mj
) by µj

m′′
j

we now use

the Kj-uniformity of the family {µj
mj
}mj∈Mj

, see Definition 1.13. Applying
this to the right-hand side of the previous inequality and recalling defini-
tion (3.55) we estimate the i-th integral there by( N∏

i=1

Ki

)∫
BRa (�m′′)

dλadµm′′ =

( N∏
i=1

Ki

)
µ
�m′′(BRa(m̂

′′))

≤ Da(1 + 1/a)

( N∏
i=1

Ki

)
µ
�m′′(BR(m̂′′)).

Combining with the previous inequality we get for m̂′′ = m̂ or m̂′

∣∣µ
�m − µ

�m′
∣∣(BR(m̂′′)

)≤aDa(1 + 1/a)

R

( N∏
i=1

Ki

)( N∑
i=1

Cidi(mi, m
′
i)

)
µ
�m′′
(
BR(m̂′′)

)
.

By Hölder’s inequality the sum in the brackets is at most( N∑
i=1

Cq
i

)1/q( N∑
i=1

di(mi, m
′
i)

p

)1/p

=:

( N∑
i=1

Cq
i

)1/q

dp(m,m
′);

here 1
p

+ 1
q

= 1. Hence the consistency constant Ĉa of the family {µ
�m}

�m∈�M
satisfies

(3.57) Ĉa ≤ aDa(1 + 1/a)

( N∏
i=1

Ki

)( N∑
i=1

Cq
i

)1/q

.

Choose now a := [log2

∏N
i=1Di] + 6 and use Lemma 3.5 for the space

(M̂, d̂) equipped with the family {µ
�m}

�m∈�M . Then we have

Aa ≤ 6

5
e4
(

log2

( N∏
i=1

Di

)
+ 6

)
.

Combining Lemma 3.13 with (3.57) and the above inequality we finally
obtain the required result (cf. (3.48))

λ(S, M̂ ;X) ≤ c0(C̃p + 1)

(
log2

( N∏
i=1

Di

)
+ 1

)

with C̃p :=
(∑N

i=1C
q
i

)1/q (∏N
i=1Ki

)
and 1

p
+ 1

q
= 1. �
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Remark 3.14 It is easily checked that the proof of this part of Theo-
rem 1.14 is valid for the case of M1 a doubling metric space. In fact, due
to Koniagin-Vol’berg’s theorem [KV] this space can be endowed with a dou-
bling measure µ and therefore Theorem 1.14 holds for this case with N = 1,
see Remark 3.11. If N ≥ 2 note that since the family of doubling mea-
sures for M1 consists of a single measure µ, the condition of K1-uniformity
is not needed in the proof. Hence, in this setting Theorem 1.14 holds with
D1 = D(µ), C1 = 0 and with 1 instead of K1.
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