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Optimizing geometric measures for fixed
minimal annulus and inradius

Maŕıa A. Hernández Cifre and Pedro J. Herrero Piñeyro

Abstract
In this paper we relate the minimal annulus of a planar convex

body K with its inradius, obtaining all the upper and lower bounds,
in terms of these quantities, for the classic geometric measures asso-
ciated with the set: area, perimeter, diameter, minimal width and
circumradius. We prove the optimal inequalities for each one of those
problems, determining also its corresponding extremal sets.

1. Introduction

Let K be a convex body (compact convex set) in the Euclidean plane. As-
sociated with K there are a number of well-known functionals: the area
A = A(K) and the perimeter p = p(K); the diameter D = D(K) and the
minimal width ω = ω(K) (minimum distance between two parallel support
hyperplanes of K); among all discs containing K there is exactly one with
minimum radius, called the circumradius RK of the set K; respectively,
among all discs which are contained in K, those whose radii have maximum
value, provide the inradius of the body, r

K
. These special discs (named cir-

cumcircle and incircles) have very useful properties; some of them will be
stated and used later.

Another interesting functional to be considered for a convex body K
is the thickness of its minimal annulus. The minimal annulus of K is the
annulus (the closed set consisting of the points lying between two concentric
discs –concentric n-balls in R

n) with minimal difference of radii that contains
the boundary of K. Of course, the minimal annulus is uniquely determined
(Bonnesen, [2], in R

2 and R
3, and Bárány, [1], in higher dimension). From

now on, we shall denote by A(c, r, R) the minimal annulus of the planar
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convex body K, where c, r and R represent, respectively, its center, radius of
the inner circle, and radius of the outer circle. This object and its properties
were studied mainly by Bonnesen for planar convex sets (see [2] and [3]).
More recently, very interesting works have appeared, in which, the minimal
annulus has been studied in a more general setting: for arbitrary dimension,
replacing the ball by the boundary of a fixed smooth strictly convex body,
in Minkowski space. . . (see, for instance, [1, 8, 9, 10, 11, 14]).

Another interesting problem would be to look for inequalities involving
the classical functionals and the minimal annulus, finding the convex sets for
which the equality sign is attained: the extremal sets. In [2], [5] and [4], Bon-
nesen and Favard studied this type of problems: in [2] and [5] the minimum
and the maximum of the isoperimetric deficit p2/(4π)−A were obtained; in
the third paper, the optimal bounds of the area and the perimeter for fixed
minimal annulus were determined.

In [6], the bounds for the remaining measures (diameter, minimal width,
circumradius and inradius) in terms of the minimal annulus have been ob-
tained, as well as the optimal inequalities that state the best bounds for
the classical magnitudes when the minimal annulus and the circumradius
are fixed (see [6] and [7]): let us note that if three measures are involved,
the question becomes more interesting when the equality, for a particular
inequality, is not attained for a single figure, but for a continuous family of
sets; in this case, that inequality, named optimal, provides the maximum or
minimum value of a measure for each pair of possible values of the others.

In this paper, we obtain all the possible (and optimal) relations which
state the maximum and minimum values of the area, the perimeter, the
diameter and the minimal width of a convex body, when its minimal annulus
and its inradius are given. We prove the optimal inequalities for each one
of these problems, determining also their corresponding extremal sets. The
circumradius case was solved in [7].

2. Some previous results

Before stating the main results of the paper, let us consider some properties
of the minimal annulus of a convex body K, which will play a crucial role
in the proofs of the results. Let us denote by cr and CR, respectively, the
inner and the outer circles of the minimal annulus A(c, r, R) of K.

As usual, ∂K will denote the boundary of the set K. Given two points
P, Q ∈ R

2, PQ will denote the straight line determined by them; PQ the line

segment joining them; and
� �

PQ any circular arc with P, Q as extreme points.
Besides, if P, Q lie on a circumference (with center c), we call central angle of
P and Q the angle ∠(PcQ) determined by them with respect to the center c.
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The following well-known properties were studied by Bonnesen in [2]:

(P1) Each one of the circumferences ∂cr and ∂CR touches the boundary ∂K
of K in, at least, two points.

(P2) The sets ∂cr ∩ ∂K and ∂CR ∩ ∂K can not be separated.

(Two sets A and B can be separated if there exists a line � such that
A ⊂ �+ and B ⊂ �−, where �+, �− represent the halfplanes determined
by �).

(P3) The minimal annulus of a convex body K is uniquely determined.

(P4) The minimal annulus of a convex body K is the only annulus that
contains ∂K and verifies properties (P1) and (P2).

The following lemmas were obtained in [6], where we proved some prop-
erties of the minimal annulus of a convex body K, as well as its relation
with the inradius of K. They will be very useful in the proofs of the results.

Lemma 1. Let K be a convex body with minimal annulus A(c, r, R). The
following properties hold:

(a) There are points P, Q ∈ ∂CR ∩ ∂K whose central angle α verifies
α ≥ 2 arccos(r/R).

c

P Q

R
r

Figure 1. The limit case when the central angle
of the points P,Q ∈ ∂CR ∩ ∂K is, precisely, α =
2arccos(r/R).

(b) K contains a 2-cap-body generated by the convex hull of cr and two
points of ∂CR ∩ ∂K, whose minimal annulus is A(c, r, R) (a cap-body
is the convex hull of a disc and countable many points such that the
line segment joining any pair of those points intersects the disc).

(c) K is contained in a circular slice of the outer circle CR determined
by two support lines to cr, whose minimal annulus is A(c, r, R) (a
circular slice is the part of a circle bounded by two straight lines, whose
intersection point, if it exists, is not interior to it).

The following lemma collects some properties relating the minimal annu-
lus of a convex body with its inradius. From now on, we shall denote by c

K

an incircle of the body K, and by y0 one of its incenters.
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Lemma 2. Let K be a convex body with minimal annulus A(c, r, R) and
incircle c

K
. The following properties hold:

(i) r ≤ r
K
.

(ii) conv(cr ∪ c
K
) ⊂ K ⊂ CR.

(iii) cr can not be strictly contained in c
K
, having the following possible

relative positions between them (see Figure 2):

(a) cr ≡ c
K
.

(b) ∂cr ∩ ∂c
K

contains, exactly, two points.

(c) The boundaries ∂cr, ∂c
K

touch (from outside) in one point.

(d) There are no common points.

0

0 0

(a) (b) (c) (d)

c

y

c

y

c

y

c

Figure 2: Some examples for the relative positions of cr and c
K

.

(iv) The boundary of the set conv(cr∪c
K
) is formed by two line segments PS

and QT , and the corresponding circular arcs
� �

PQ ⊂ ∂cr and
� �

ST ⊂ ∂c
K
.

Then, each of those arcs has, at least, one point of ∂K.

(v) The arc
� �

PQ ⊂ ∂cr contains two points P ′, Q′ ∈ ∂K (which can coin-
cide with P and Q), determining a central angle α ≥ 2 arccos(r/R).

Let us add a new property to this lemma which will be needed also later:

(vi) K contains a convex body K2c = conv{cr ∪ c
K
, N, M}, with the same

minimal annulus and inradius as K, where N and M lie, respectively,
on each arc of ∂CR determined by the lines PS and QT (see figure 3).

0

c

y

P
Q

S T

N

M

Figure 3: A set K2c ⊂ K with the same minimal annulus and inradius.
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Proof of property (vi): Property (v) of lemma 2 assures the existence of,

at least, two points P ′, Q′ of ∂K, lying on the circular arc
� �

PQ ⊂ ∂cr, and
determining a central angle α ≥ 2 arccos(r/R). Then, K is contained in the
circular slice Ks of CR determined by the support lines to cr through P ′

and Q′ (see figure 4).

0

c

y

P'
Q'

P Q

S T

N

0

c

y

P'
Q'

P Q

S T

N

S' T'

M

(a) (b)

Figure 4: Construction of the set K2c ⊂ K.

On the other hand, property (b) of lemma 1 states that K contains a
2-cap-body Kc = conv{cr, N, M}, with N, M ∈ ∂CR ∩ ∂K. Besides, this
cap-body can be chosen in such a way that there is one vertex lying on
each circular arc of the boundary of Ks; in the opposite case, property (P2)
would be contradicted. Hence, we can suppose, for instance, that N lies on

the circular arc of ∂Ks which is “closer” to
� �

P ′Q′ (see figure 4(a)), and M
on the opposite arc.

Now, since c
K

is an incircle of K, it meets ∂K either in two diametrically
opposite points, or in three points that form the vertices of an acute-angled
triangle (see [3]); or equivalently, in three points which do not lie on the same
half-circumference. Thus, we can always choose two points S ′, T ′ ∈ ∂c

K
∩∂K

in such a way that
� �

S ′T ′ ⊂
� �

ST is bigger than a half-circumference. It implies
that the support lines to K through S ′ and T ′ do not intersect in the interior
of CR, and they determine a new circular arc on which the point M lies (see
figure 4(b)). Let us note that the points P ′, Q′, S ′, T ′ can coincide with
P, Q, S, T , respectively. So, K contains the set K2c = conv{cr ∪ c

K
, N, M},

with N, M verifying the assumptions of the result.
Finally, let us note that K2c has minimal annulus A(c, r, R) by prop-

erty (P4) and inradius r
K
, since its boundary contains, necessarily, diamet-

rically opposite points of ∂c
K
. �

In the following, we are going to obtain all the possible (and optimal)
relations which state the maximum and minimum values of the area, the
perimeter, the diameter and the minimal width of a convex body, when
its minimal annulus and its inradius are given. The circumradius case was
studied and solved in [7].
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3. Optimizing the area and the perimeter

In this section we state the relation between the minimal annulus, the in-
radius and both, the area and the perimeter of a convex body K. More
precisely, we are going to obtain the best bounds (upper and lower bounds)
for A and p, when we suppose that the minimal annulus of the convex body
and its inradius are fixed, determining also the extremal sets in each case.
We start with the upper bounds.

Let us recall that, by lemma 1(c), if the minimal annulus of K is A(c, r,R),
then K is contained in a circular slice Ks of CR determined by support lines
to cr through two points of ∂cr ∩ ∂K; all these sets have the same area and
the same perimeter, and thus, it holds

A ≤ A(Ks) = 2
(
r
√

R2 − r2 + R2 arcsin
r

R

)
,

p ≤ p(Ks) = 4
(√

R2 − r2 + R arcsin
r

R

)
.

The following theorem states also these ones as the upper bounds for any
value r

K
of the inradius.

Proposition 1. Let K be a convex body with minimal annulus A(c, r, R)
and inradius r

K
. Then,

A ≤ 2
(
r
√

R2 − r2 + R2 arcsin
r

R

)
,(3.1)

p ≤ 4
(√

R2 − r2 + R arcsin
r

R

)
.(3.2)

The equality holds, in both inequalities, if and only if the convex body K is
the circular slice of CR determined by the common support lines to cr and c

K
,

when ∂c
K

touches (in the interior) ∂CR (see figure 5).

K
r

0

0

r
K

c

y

c

y

Figure 5: Circular slices of CR with maximum area and perimeter.
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Proof: We just have to see that, if r
K

is the inradius of K, then there is a
circular slice Ks of CR (verifying the above assumptions) with inradius r

K
.

In order to do that, let us take the incenter y0 in such a way that ∂c
K

touches ∂CR. Then, the circular slice Ks of CR determined by the com-
mon support lines to cr and c

K
has inradius r

K
, since ∂c

K
contains three

points that form an acute-angled triangle (see figure 5); and by minimal
annulus A(c, r, R) by property (P4). Let us note that the convex body Ks

so generated is always a circular slice, i.e., the lines determining it do never
intersect in the interior of CR; it holds because r

K
≤ 2Rr/(R + r) always

(see [6, Subsect. 3.4, Prop. 7]), and just for the equality case the intersec-
tion point lies on the boundary of CR. �

We conclude this section stating the lower bounds for the area and the
perimeter of a convex body with prescribed minimal annulus and inradius.

0

c

N

y

Figure 6. The set Kd.

We state some useful notation: for r
K

and
A(c, r, R) given, let us suppose the incenter y0

located to the suitable distance of c in order
to the intersection point of the common sup-
port lines to cr and c

K
lies, precisely, on the

boundary of CR; this point will be denoted
by N (see figure 6). It is an easy computa-
tion to check that this distance is given by
d(y0, c) = R(r

K
− r)/r. We are going to de-

note by Kd := conv{cr ∪ c
K
, N} (see figure 6),

which is just the cap-body conv{c
K
, N}, since

it always holds the relation r
K
≥ r.

Theorem 1. Let K be a convex body with minimal annulus A(c, r, R) and
inradius r

K
. Then,

(3.3) A ≥ r2
K

r

(√
R2 − r2 +

1

r
K

√
R2(2r − r

K
)2 − r2r2

K

)
+ r2

K
θ,

(3.4) p ≥ 2

(
r
K

r

√
R2 − r2 +

1

r

√
R2(2r − r

K
)2 − r2r2

K
+ r

K
θ

)
,

where
θ = arcsin

rr
K

R(2r − r
K
)

+ arcsin
r

R
.

The equality holds, in both inequalities, if, and only if, K =conv{Kd, M},
where M is the point of ∂CR diametrically opposite to N (see figure 7).
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0

c

N

y

M

Figure 7: The convex body conv{Kd,M} has minimum area and perimeter.

Proof: Let us notice that, when r
K

= r, inequalities (3.3) and (3.4) turn
into, respectively, the well-known relations

A ≥ 2r
(√

R2 − r2 + r arcsin
r

R

)
and p ≥ 4

(√
R2 − r2 + r arcsin

r

R

)
(see [4]); in both cases, the extremal set is a cap-body with two vertices
lying on ∂CR. Thus, from now on we will assume that r

K
> r and hence,

that c
K
	≡ cr.

We know (lemma 2(vi)) that K contains a set K2c = conv{cr∪c
K
, N, M},

for suitable N, M ∈ ∂CR (see figure 8(a)), and therefore, A ≥ A(K2c) and
p ≥ p(K2c). Since K2c has minimal annulus A(c, r, R) and inradius r

K
,

we have reduce the problem to study the area and the perimeter for this
particular family of sets.

0

c

y

P
Q

S
T

N

MA

B
0

c

y

P
Q

S
T

N

MA

B
0

c

y

P
Q

S T

A

N

M

B

0

c

P

N

M

Q

y

S T

A B

(a) (b) (c) (d)

Figure 8: Minimizing the area and the perimeter.

Let us note first that, for each fixed y0, the area and the perimeter of the
set conv{cr ∪ c

K
, N} are constant for any possible position of N (it moves

just on the arc of ∂CR determined by the support lines to ∂cr through P
and Q, see figure 8(a)), due to cr and CR are concentric. Thus, without loss
of generality, we can choose N to be the intersection point of the line cy0

with ∂CR (see figure 8(b)).

On the other hand, if we denote by A and B the tangent points where the
support lines to c

K
(which passes through M) touch ∂c

K
, the set limited by

the circular arc
� �

AB and the line segments AM and BM , has minimum area
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when the distance from M to ∂c
K

is as small as possible; this is, when M is
the second intersection point of the straight line cy0 with ∂CR. It is also in
this case when the length of the line segments AM and BM is the smallest
possible (see figure 8(c)). So, it suffices to consider the sets K2c which are
symmetric with respect to the line cy0.

Let us denote by x the distance between the centers y0 and c, x :=
d(y0, c). It is clear that

(3.5)
R

r
(r

K
− r) ≤ x ≤ R − r

K
,

where the lower bound corresponds to the limit case when the common
support lines to cr and c

K
intersect precisely on N , whereas the upper bound

is given when ∂c
K

touches ∂CR. It is a tedious calculation to compute the
area and the perimeter of these figures in terms of the distance x:

A(x) = (r + r
K
)
√

x2 − (r
K
− r)2 + r

K

√
(R − x)2 − r2

K
+ r

√
R2 − r2

+ (r2
K
− r2) arcsin

r
K
− r

x
+ r2

K
arcsin

r
K

R − x
+ r2 arcsin

r

R
,

1

2
p(x) =

√
x2 − (r

K
− r)2 +

√
(R − x)2 − r2

K
+
√

R2 − r2

+ (r
K
− r) arcsin

r
K
− r

x
+ r

K
arcsin

r
K

R − x
+ r arcsin

r

R
.

So, we have just to study these functions and to obtain their minimum. It
can be checked that the first derivatives are

A′(x) = −r
K

√
1 −

( r
K

R − x

)2

+ (r
K

+ r)

√
1 −

(r
K
− r

x

)2

,

1

2
p′(x) = −

√
1 −

( r
K

R − x

)2

+

√
1 −

(r
K
− r

x

)2

.

But it always hold

(3.6)

√
1 −

(r
K
− r

x

)2

≥
√

1 −
( r

K

R − x

)2

:

in fact, inequality (3.6) is equivalent to the easier (r
K
− r)/x ≤ r

K
/(R − x),

which is, in turn, equivalent to the relation

(3.7) x ≥ R(r
K
− r)

2r
K
− r

;

but since it holds the lower bound in (3.5), and also r
K

> r, we can obtain
easily (3.7) and hence, (3.6).
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All in all, inequality (3.6) assures that both derivatives A′(x) and 1
2
p′(x)

are (strictly) positive, and hence, that A(x) and (1/2)p(x) are (strictly)
increasing functions on the interval

[
R(r

K
− r)/r, R − r

K

]
. It proves the

required result:

A ≥ A

(
R

r
(r

K
− r)

)
=

r2
K

r

(√
R2 − r2 +

1

r
K

√
R2(2r − r

K
)2 − r2r2

K

)
+ r2

K
θ,

1

2
p ≥ p

(
R

r
(r

K
− r)

)
=

r
K

r

√
R2 − r2 +

1

r

√
R2(2r − r

K
)2 − r2r2

K
+ r

K
θ,

where θ = arcsin
rr

K

R(2r − r
K
)

+ arcsin
r

R
.

The equality holds, in both inequalities, if and only if x = R(r
K
− r)/r,

i.e., when the common support lines to cr and c
K

intersect on N . Therefore,
the extremal set is the one described in the statement of the theorem: the
convex hull conv{Kd, M}, where M ∈ ∂CR is the diametrically opposite
point to N (see figure 8(d)). �

4. Optimizing the diameter

In this section we are going to state the relation among the minimal annulus,
the inradius and the diameter of a convex body K. The upper bound is
almost trivial:

Proposition 2. Let K be a convex body with minimal annulus A(c, r, R)
and inradius r

K
. Then:

(4.1) D ≤ 2R,

where equality holds for any set containing diametrically opposite points
of ∂CR; for instance, the convex body K2c = conv{cr ∪ c

K
, N, M}, where

{N, M} = cy0 ∩ ∂CR (see figure 9).

0

D=2Rc

y

N

M

Figure 9: The convex body K2c has maximum diameter.
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Proof: Inequality (4.1) holds trivially, independently of the value of the
inradius, since K ⊂ CR. Now, the set described in the statement of the
proposition has minimal annulus A(c, r, R), inradius r

K
, and diameter ex-

actly D(K2c) = d(N, M) = 2R. �

Theorem 2. Let K be a convex body with minimal annulus A(c, r, R) and
inradius r

K
. Then:

(4.2) D ≥

⎧⎪⎨
⎪⎩

r
K

r
(R + r) if r

K
≥ 2r

√
R−r
R+r

, (4.2.a)

2
√

R2 − r2 if r
K
≤ 2r

√
R−r
R+r

. (4.2.b)

The equality holds in both cases, for instance, for the set conv{Kd, M}, where
M is the second intersection point (besides N) of any of the two common
support lines to cr and c

K
with ∂CR (see figure 10).

D

0

c

N

M y

D

0

c

N

M

y

(a) (b)

Figure 10: The convex body conv{Kd,M} has minimum diameter.

Proof: Let us note that if r
K

= r, the relation r
K
≥ 2r

√
(R − r)/(R + r) is

equivalent to R ≤ 5r/3. Hence, inequalities (4.2.a) and (4.2.b) turn into

D ≥
{

R + r if R ≤ 5r/3,

2
√

R2 − r2 if R ≥ 5r/3,

respectively, which are known (see [6, Prop. 3]); in both cases, the extremal
sets are also transformed in the corresponding ones: 2-cap-bodies such that
the line segment determined by the two vertices (lying on ∂CR) is tangent
to ∂cr. Thus, from now on we will assume that r

K
> r and hence, that

c
K
	≡ cr.

Lemma 2(vi) assures that K contains a set K2c = conv{cr ∪ c
K
, N, M},

for suitable N, M ∈ ∂CR, with the same minimal annulus and inradius as K.
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Hence, D ≥ D(K2c), and it suffices to study the diameter for this particular
family of sets. But because of the shape of K2c, it is clear that its diameter
is attained in one of the following distances:

(d1) distance between N and M ;

(d2) distance between N and the tangent line to ∂c
K

orthogonal to Ny0;

(d3) distance between M and the tangent line to ∂c
K

orthogonal to My0;

(d4) distance between M and the tangent line to ∂cr orthogonal to Mc.

Let us notice that, since r
K

> r, the last two possibilities are not feasible,
since both d3 and d4 give values less than the one of the second option, d2.
So, we have to study just the above first two distances: d1 and d2.

The smallest possible distance between N and M (see lemma 1(a)) is
attained when the line segment MN is tangent to ∂cr, and hence, when
the straight line NM coincides with one of the common support lines to cr

and c
K
. This distance is always d1 = 2

√
R2 − r2, independently of the

situation of the circles cr and c
K
.

On the other hand, the distance d2 is less as closer from c lies y0, attaining
the minimum in the limit case when d(y0, c) = R(r

K
− r)/r; i.e., when the

common support lines to cr and c
K

intersect on N . The value of such a
distance is r

K
(R + r)/r (see figure 11).

D

(a)

0

c

y

P

S

N

M
D

(b)

0

c

P

N

M y

S

Figure 11: The distance d2 is minimal if d(y0, c) = R(r
K
− r)/r.

In summary, the diameter will take either the value 2
√

R2 − r2, when it
is attained in the distance d1 = d(N, M), or r

K
(R + r)/r, if it is attained

in the distance d2 from N to the support line to c
K

orthogonal to Ny0;
it depends on the relation between R, r and r

K
. It is easy to check that

D ≥ r
K
(R + r)/r if r

K
≥ 2r

√
(R − r)/(R + r) (see figure 10(a)), and that

D ≥ 2
√

R2 − r2 when r
K
≤ 2r

√
(R − r)/(R + r) (see figure 10(b)). �
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5. Optimizing the minimal width

In this section we state the relation between the minimal annulus, the inra-
dius and the minimal width of a convex body K. The lower bound is almost
trivial:

Proposition 3. Let K be a convex body with minimal annulus A(c, r, R)
and inradius r

K
. Then:

(5.1) ω ≥ 2r
K
,

where equality holds for any set containing in its boundary diametrically op-
posite points of ∂c

K
; for instance, the convex body K2c = conv{cr∪c

K
, N, M},

where {N, M} = cy0 ∩ ∂CR (see figure 12).

0

c

y

N

M

Figure 12: The convex body K2c has minimum width.

Proof: Inequality (5.1) holds trivially, independently of the minimal annu-
lus, since K ⊃ c

K
. Now, the set described in the statement of the proposi-

tion has minimal annulus A(c, r, R), inradius r
K
, and minimal width exactly

ω(K2c) = 2r
K
. �

Theorem 3. Let K be a convex body with minimal annulus A(c, r, R) and
inradius r

K
. Then:

(5.2)

ω ≤

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

R + r if R ≤ 2r, (5.2.a)

4r

R2
(R2 − r2) if R ≥ 2r and r

K
≥ 2r(R − r)

R
, (5.2.b)

4r

R2
(R2 − r2)

sin β

sin(α + β)
if R ≥ 2r and r

K
≤ 2r(R − r)

R
, (5.2.c)

where

α = 2 arcsin
r

R
and β = 2 arctan

rr
K

(2r − r
K
)
√

R2 − r2
.
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The equality holds, in inequalities (5.2.a) and (5.2.b), for instance, for
the convex bodies KB shown in figures 13(a,b): let us consider the circular
slice of CR determined by the common support lines to cr and c

K
, �′ and �′′,

when they intersect on the point N ∈ ∂CR; and let us take the halfplane
delimited by the support line to c

K
, orthogonal to cy0, containing c

K
; the

intersection of both sets gives KB.
In inequality (5.2.c), the equality holds only for the triangle determined

by �′, �′′, and the support line to c
K

passing through the point M ′ ∈ �′∩∂CR,
M ′ 	= N (see figure 13(c)).

0

l''l'

(a)

c

y

N

M' M''
0

l' l''
(b)

c

N

y

M' M''

0

l'
l''

c

N

y

M'

(c)

Figure 13: The convex bodies with maximum minimal width.

Let us note that the triangle obtained as extremal set of inequality (5.2.c)
verifies that its angles α and β (as previously defined, see figure 13 (c)) are
always less or equal than the third one, π − α− β. It implies, in particular,
that 2β + α ≤ π, i.e., α + β ≤ π − β. Consequently, sin β ≤ sin(α + β),
which assures that the upper bound in (5.2.c) is always less (or equal) than
the upper bound in (5.2.b), as was to be expected. And they will be equal
precisely if β = π − α − β, i.e., when the triangle is isosceles, which holds
only if r

K
= 2r(R − r)/R.

Proof: When R ≤ 2r, it is known that inequality (5.2.a) always holds
(for given minimal annulus), independently of the value of the inradius (see
[6, Subsect. 3.2, Prop. 2]); hence, we just have to find a convex body
with inradius r

K
verifying the equality. Thus, if we consider the convex

body KB defined in the statement of the theorem, it is clear that it has
minimal annulus A(c, r, R) and inradius r

K
(in the particular case r

K
= r, it

is enough to consider c
K
≡ cr and �′, �′′ to be the support lines to cr which

intersect on N ∈ ∂CR). Let us denote by M ′ and M ′′ the intersection points
of, respectively, �′ and �′′ with ∂CR (different from N , see figure 13 (a)).
Let us note that, if R = 2r, then the triangle NM ′M ′′ is equilateral and
circumscribes cr; and since r

K
≥ r, the minimal width of KB is precisely

the distance d(M ′′, �′). Therefore, if R ≤ 2r, the minimal width of KB

is attained in the distance between the straight line �′ and its parallel one
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supporting KB; and this touching point will lie on the circular arc of ∂CR ∩
∂KB starting in M ′′ (see figure 13(a)). This distance is, clearly, R+r, which
proves the case.

Now we suppose that R ≥ 2r. Then, inequality (5.2.b) always holds,
independently of the value of the inradius (see [6, Subsect. 3.2, Prop. 2]).
Let us state the range of r

K
for which (5.2.b) keeps its validity. In order to

do that, we consider again the set KB previously defined. Let us notice that,
if r

K
= r, the relation r ≥ 2r(R − r)/R would be equivalent to R ≤ 2r, and

hence, inequality (5.2.b) would be nonsense. Therefore, for this case, r
K

> r,
and c

K
	≡ cr. If r

K
is large enough for the line segment M ′M ′′ intersects ∂c

K

(see figure 13(b)), then its width is attained in the distance d(M ′′, �′), i.e.,
4r(R2 − r2)/R2. It is an easy computation to check that it happens when
r
K

≥ 2r(R − r)/R (if r
K

= 2r(R − r)/R, M ′M ′′ just touches ∂c
K
). This

proves inequality (5.2.b).
Finally, let us suppose that R ≥ 2r and r

K
≤ 2r(R − r)/R. Under these

assumptions, the line segment M ′M ′′ will never intersect c
K
; at most, it will

touch its boundary precisely when r
K

= 2r(R − r)/R (see figure 14).

0

l' l''

c

N

y

M' M''

Figure 14. If R ≥ 2r and rK ≤ 2r(R − r)/R,
the line segment M ′M ′′ never intersects the in-
circle c

K
.

Lemma 1(c) states that K is contained in a circular slice Ks of CR,
determined by two support lines to cr, and with minimal annulus A(c, r, R);
of course, since K ⊂ Ks, both ω(K) ≤ ω(Ks) and r

K
≤ rKs. On the other

hand, since c
K

is the incircle of K, ∂K contains two diametrically opposite
points of ∂c

K
, or three points X, Y, Z ∈ ∂c

K
forming the vertices of an acute-

angled triangle. In the first case, ω = 2r
K
, which can be excluded, because it

gives the minimum value of the width, and we want to maximize it. So, we
suppose the existence of X, Y, Z ∈ ∂c

K
under the above conditions, which

also implies the uniqueness of the incircle.

Let us start assuming that r
K

> r, and consequently, that c
K

	≡ cr.
Lemma 2(ii) assures that conv(cr ∪ c

K
) ⊂ K; hence, the support lines deter-

mining Ks touch ∂cr in the circular arc
� �

PQ ⊂ ∂cr ⊂ conv(cr ∪ c
K
), whereas

the points X, Y, Z lie on the circular arc
� �

ST ⊂ ∂c
K
⊂ conv(cr ∪ c

K
).
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From now on, we are going to use a prime, ′, for denoting the symmetral
of a point of ∂c

K
with respect to y0. Following this notation, we can assure

that one of the points X, Y, Z lies on the circular arc, either
� �

ST ′, or
� �

S ′T :

in the opposite case, the three of them would lie on the
� �

S ′T ′, and thus, on
a half-circumference, which is impossible (see figure 15(a)). Without loss of

generality, let us suppose that X ∈
� �

ST ′. Then, one of the two remaining

points, say Y , lies on the circular arc
� �

TX ′ (again because otherwise, the three

of them would be located on the half-circumference
� �

XX ′). Finally, since

X, Y, Z determine an acute-angled triangle, Z ∈
� �

X ′Y ′ ∈ ∂c
K
. Besides, K is

contained in the intersection set of Ks with the triangle TXY Z determined
by the support lines �X , �Y , �Z , to c

K
through X, Y, Z, respectively (see

figure 15).

l

l

l X Y

Z
0

X
Y

c
P

y
S

Q
T

S'T'

X X'
Y

M M
Z

l

l

l XY

Z

X

Y

0=c  y

X
Y

M

MZ

(a) (b)

Figure 15: The problem is reduced to study the sets Ks ∩ TXY Z .

On the other hand, if r
K

= r, then c
K
≡ cr; in the opposite case, it would

be impossible to find three points of ∂c
K
∩ ∂K determining an acute-angled

triangle. Now, there is no arcs
� �

PQ or
� �

ST , because conv(cr ∪ c
K
) ≡ c

K
.

So, in this case, we will just suppose that Z ∈
� �

XY and that lies “below”
both points, X and Y (as shown in figure 15(b)). Besides, the set K̄ will
be just the intersection K̄ = TXY Z ∩ CR. In the following, almost all the
arguments will be valid in both cases, c

K
≡ cr or not. So, the remainder

part of the proof is the same, and we will distinguish the cases just in the
precise moment when it is necessary.

Let us notice that the straight line �Z intersects the circular arc
� �

MXMY ,
where MX , MY ∈ ∂Ks denote the intersection points of �X and �Y with ∂CR:

otherwise, there would be no point of ∂CR ∩ ∂K on the arc
� �

MXMY , which
would be a contradiction to property (P2) (∂CR ∩ ∂K and ∂cr ∩ ∂K could
be separated).
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It is clear that the set K ′ has minimal annulus A(c, r, R) and inradius r
K
.

Since K ⊂ K̄, ω(K) ≤ ω(K̄), and the problem has been reduced to study
the width of the convex bodies belonging to this particular family. Let us
note the following:

1. The angle determined by �X and �Y is always less or equal than the one
corresponding to the straight lines that determine Ks (when r

K
> r;

if r
K

= r, Ks plays no role, and this observation is not considered).

2. The angle determined by �X and �Y can not vanish, i.e., �X and �Y

will never be parallel, since in this case the points X, Y, Z would lie on
the same half-circumference.

3. Since X, Y, Z are not on a half-circumference, the intersection point
�X ∩ �Y lies on the upper halfplane determined by the orthogonal line
to cy0 passing through c; besides, �X ∩ �Y is not an interior point of
the circle CR.

4. The triangle TXY Z has inradius r
K

and verifies that, at most, just one
of its vertices (either �Y ∩ �Z or �X ∩ �z) lies in the interior of CR.

From these observations we can conclude that the minimal width of K̄
will be attained in the distance of the only vertex of TXY Z which lies in the
interior of CR to the opposite side, if it exists, or it will be, in the opposite
case, the minimum of the distances d(MX , �Y ), d(MY , �X). But in any of
these two cases, the minimal width will increase, as bigger is the angle θ
determined by the lines �X and �Y : in fact, both the only “interior” vertex
of TXY Z (if it exists), as well as the points MX , MY increase their distance
to their corresponding opposite sides (either �X or �Y ) when θ increases.

Thus, let us first note that, if r
K

> r and we fix c
K
, the angle θ will be

maximal when the points X and Y coincide, respectively, with the extreme
points S and T of the circular arc of ∂c

K
⊂ ∂(cr ∪ c

K
). Now, after this

observation, and thus assuming that X ≡ S and Y ≡ T , it is clear that θ
will also increase (and hence the minimal width) as closer is the incenter y0

to c (see figure 16). The limit case will be when d(y0, c) = R(r
K
− r)/r, i.e.,

when the lines �X , �Y are, precisely, the common support lines, �′, �′, to cr

and c
K

which intersect on N ∈ ∂CR.
Let us notice that if r

K
= r, the above argument is trivial: we just have

to increase the angle θ till �X ∩ �Y ∈ ∂CR, because y0 ≡ c.
On the other hand, for any possible position of the incircle c

K
(even,

in the case c
K

≡ cr), and fixing the lines �X and �Y , it is clear that the
minimal width of K̄ is larger as closer is Z to the intersection point cy0∩∂c

K

(Ny0 ∩ ∂c
K

if c ≡ y0). But let us recall that we are assuming R ≥ 2r and
r
K
≤ 2r(R−r)R, which implies that, in the limit situation for the maximum
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minimal width (i.e., �X ≡ �′, �Y ≡ �′′ and �X ∩ �Y = N ∈ ∂CR), the line
segment MXMY ≡ M ′M ′′ does not intersect c

K
; at most it will touch ∂c

K

when R = 2r and r
K

= r. Hence, the real limit position for the point Z is
the one when �Z passes, precisely, through MX (or equivalently MY , because
of the symmetry of the figure), see figure 16).

(a)

l

l

l X Y

Z

X
Y

0

cP Q
y

X=S Y=T

M

Z
M

(b)

l

l

l X

Y

Z

0

X
Y

___
___

____ __M' M''

l'
l''

c

P Q

y
X=S

M
Z

Y=T

M

Figure 16: Moving the incenter in order to increase the minimal width.

In this way, we can conclude that under the assumptions of the theorem,
the convex body with maximum minimal width is the triangle determined
by the straight lines �′, �′′, and the support line to c

K
passing through M ′

(see figure 13). An easy computation shows that the minimal width of this
triangle is given by

ω = 2
√

R2 − r2
sin α sin β

sin(α + β)
=

4r

R2
(R2 − r2)

sin β

sin(α + β)
,

where

α = 2 arcsin
r

R
and β = 2 arctan

rr
K

(2r − r
K
)
√

R2 − r2
,

which proves inequality (5.2.c). �
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