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Weak type estimates associated to
Burkholder’s martingale inequality

Javier Parcet

Abstract

Given a probability space (Ω,A, µ), let A1,A2, . . . be a filtration of
σ-subalgebras of A and let E1,E2, . . . denote the corresponding fam-
ily of conditional expectations. Given a martingale f = (f1, f2, . . .)
adapted to this filtration and bounded in Lp(Ω) for some 2 ≤ p < ∞,
Burkholder’s inequality claims that

‖f‖p ∼cp

∥∥∥( ∞∑
k=1

Ek−1(|dfk|2)
) 1

2
∥∥∥

p
+

( ∞∑
k=1

‖dfk‖p
p

) 1
p
.

Motivated by quantum probability, Junge and Xu recently extended
this result to the range 1 < p < 2. In this paper we study Burkholder’s
inequality for p = 1, for which the techniques must be different.
Quite surprisingly, we obtain two non-equivalent estimates which play
the role of the weak type (1, 1) analog of Burkholder’s inequality.
As application we obtain new properties of Davis decomposition for
martingales.

Introduction and Main Results

Sums of independent random variables and martingale inequalities are nowa-
days powerful tools in classical harmonic analysis. Mostly in the 70’s and
80’s, the works of Bourgain, Burkholder, Davis, Gundy, Pisier, Rosenthal
and many others illustrated a fruitful interaction between these subjects
and Calderón-Zygmund theory of singular integrals as well as Littlewood-
Paley theory. Our first motivation in this paper comes from a fundamental
result due to Burkholder [1, 2] which can be stated as follows. Given a pro-
bability space (Ω,A, µ), let A1,A2, . . . be a filtration of σ-subalgebras of A
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and let E1,E2, . . . denote the corresponding family of conditional expecta-
tions. Given 2 ≤ p < ∞ and a martingale f = (f1, f2, . . .) adapted to this
filtration and bounded in Lp(Ω), we have

(B+
p ) ‖f‖p ∼cp

∥∥∥( ∞∑
k=1

Ek−1(|dfk|2)
) 1

2
∥∥∥

p
+

∥∥∥( ∞∑
k=1

|dfk|p
) 1

p
∥∥∥

p
.

The first term on the right is called the conditional square function of f ,
while the second is the p-variation of f . The optimal growth of the equiva-
lence constant is given by cp ∼ p/ log p as p→ ∞ and (B+

p ) fails on L∞(Ω),
we refer to the papers [8, 9] for more details. Apart from the relation with
harmonic analysis, Burkholder’s inequality has deep implications in the geo-
metry of Banach spaces. Let us mention for instance Maurey/Pisier’s theory
of type and cotype or the isomorphism and embedding theory of Lp spaces
via p-stable processes.

These assertions are justified by the following observations. First, Rosen-
thal’s inequality [21] appears as the particular case where the sequence
df1, df2, . . . is given by a family of independent mean-zero random variables
dfk = ξk. In this case we have Ek−1(|dfk|2) = ‖ξk‖2

2 and deduce Rosenthal’s
inequality

(Rp)
∥∥∥ ∞∑

k=1

ξk

∥∥∥
p
∼cp

( ∞∑
k=1

‖ξk‖2
2

) 1
2

+
( ∞∑

k=1

‖ξk‖p
p

) 1
p
.

Moreover, we can go further and take ξk = λkεk with λk ∈ C and ε1, ε2, ε3, . . .
independent Bernoulli random variables equidistributed in ±1, the reader
can think for instance in the sequence of Rademacher functions on the unit
interval. In this case, the two terms on the right of (Rp) collapse into the
first one and we recover the classical Khintchine inequalities for 2 ≤ p <∞

(Kp)
∥∥∥ ∞∑

k=1

λkεk

∥∥∥
p
∼cp

( ∞∑
k=1

|λk|2
) 1

2
.

Our second motivation comes from the noncommutative analogues of the
results mentioned so far. Roughly speaking, we replace functions by ope-
rators (this process is known as quantization) and study noncommutative
generalizations of the classical results. In this setting, the main objects are
noncommutative Lp spaces constructed over von Neumann algebras [17] and
noncommutative martingales [23]. The theory of noncommutative martin-
gale inequalities (a subfield of quantum probability) has reached an spectacu-
lar development after Pisier/Xu’s seminal paper [16]. Indeed, it can be said
that almost every classical martingale inequality has been successfully trans-
ferred to the noncommutative setting. We find noncommutative analogues
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of the Burkholder-Gundy inequalities [16], Doob’s maximal inequality [10]
and weak type (1, 1) estimates for martingale transforms [18]. Burkholder’s
inequality was finally obtained by Junge and Xu in [12].

The new insight provided by the noncommutative formulation led Junge
and Xu to extend in [12] Burkholder’s inequality to the range 1 < p ≤ 2.
This extension was new even in the commutative case and can be explained
(we only consider here commutative random variables) as follows. The right
hand side of (B+

p ) can be understood as the norm in the intersection of two
Banach spaces, respectively called conditional and diagonal Hardy spaces
of martingales. Thus, it is natural to guess that in the dual formulation
of (B+

p ), we will find a sum of the dual Hardy spaces. Then, recalling the
definition of the norm on a sum of Banach spaces, Burkholder’s inequality
for 1 < p ≤ 2 reads as follows

(B−
p ) ‖f‖p ∼cp inf

f=g+h

{∥∥∥( ∞∑
k=1

Ek−1(|dgk|2)
) 1

2
∥∥∥

p
+

∥∥∥( ∞∑
k=1

|dhk|p
) 1

p
∥∥∥

p

}
,

where the infimum runs over all possible decompositions of f as a sum
f = g + h of two martingales. Note that the right expressions for (B+

2 ) and
(B−

2 ) are equivalent so that the quadratic case explains the transition from in-
tersections to sums. Let us mention that this is a typical phenomenon in the
noncommutative setting which also appears for instance in the noncommuta-
tive Khintchine inequalities [14] or the noncommutative Burkholder-Gundy
inequalities [16]. In particular, Junge/Xu’s paper [12] illustrated how a non-
commutative problem can give some light in its commutative counterpart!
We think this is also the case in this paper.

The problem of determining the behavior of Burkholder’s inequality on
L1(Ω) naturally came out after Junge/Xu’s extension. As it was pointed
out in [12], the upper estimate holds with an absolute constant c

‖f‖1 ≤ c inf
f=g+h

{∥∥∥( ∞∑
k=1

Ek−1(|dgk|2)
) 1

2
∥∥∥

1
+

∥∥∥ ∞∑
k=1

|dhk|
∥∥∥

1

}
.

Keeping the notation, our first weak type estimate reads as follows.

Theorem A. Let f = (f1, f2, . . .) be a bounded martingale in L1(Ω). Then,
we can decompose f as a sum f = g + h of two martingales adapted to
the same filtration and satisfying the following inequality with an absolute
constant c

(WB1)
∥∥∥( ∞∑

k=1

Ek−1(|dgk|2)
) 1

2
∥∥∥

1,∞
+

∥∥∥ ∞∑
k=1

|dhk|
∥∥∥

1,∞
≤ c ‖f‖1.
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The first relevant difficulty in proving Theorem A resides on the fact
that we need to guess the right decomposition of f before estimating the
associated norms on the corresponding Hardy spaces. Note that this problem
was avoided in [12] by using a duality argument, which is not available in
our case. The solution to this problem turns out to be very elegant. Indeed,
quite surprisingly the right decomposition is given by the classical Davis
decomposition [5]. Moreover, the proof becomes quite involved since we
combine Davis and Gundy decompositions to estimate the diagonal term.
It is also worthy of mention that Theorem A provides an improvement of
Davis decomposition. The reader is referred to the last section of this paper
for the details.

The first term on the left of (WB1) is clearly the natural weak analog of
the first term on the right of (B−

p ). However, the second term on the left
of (WB1) is only one possible interpretation for the corresponding Lp term.
Indeed, we have chosen the L1,∞ norm of the 1-variation of h. In other
words, the norm of the martingale difference sequence dh in L1,∞(Ω; �1).
This choice is motivated by the fact that the Lp term is exactly the norm
of dh in Lp(Ω; �p). Another interpretation arises after rewriting Lp(Ω; �p) as
the scalar-valued space Lp(Ω⊕∞) where the associated measure is given by

µ⊕∞
( ⊕

k≥1

Ak

)
=

∑
k≥1

µ(Ak).

In this case, the weak analog of the p-variation is given by

∥∥∥ ∞∑
k=1

δk ⊗ dhk

∥∥∥
L1,∞(Ω⊕∞)

= sup
λ>0

λ

∞∑
k=1

µ
{
|dhk| > λ

}
,

where (δk)k≥1 denotes the canonical unit vector basis. At this point, it
is worthy of mention that the norms of L1,∞(Ω; �1) and L1,∞(Ω⊕∞) are not
equivalent nor even comparable. Indeed, taking ϕk = χ[0,1/k] and ξk = 1

k
χ[0,1],

it is easy to check that

sup
λ>0

λµ
{ m∑

k=1

ϕk > λ
}
∼ 1 << logm ∼ sup

λ>0
λ

m∑
k=1

µ
{
ϕk > λ

}
,

sup
λ>0

λµ
{ m∑

k=1

ξk > λ
}
∼ logm >> 1 ∼ sup

λ>0
λ

m∑
k=1

µ
{
ξk > λ

}
.

Therefore, it makes sense to study the weak type estimate associated to this
new interpretation of the p-variation. In order to state our second weak type
estimate, we need to recall the notion of a regular filtration. The filtration
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A1,A2,A3, . . . of σ-subalgebras of A is called k-regular for some constant
k > 1 if every non-negative martingale f = (f1, f2, . . .) adapted to this
filtration satisfies

fn ≤ kfn−1.

Examples of regular martingales arise from the filtrations generated by
bounded Vilenkin systems. In particular, the dyadic martingales are the
most well-known examples of this kind, see [22] for more on this topic.

Theorem B. Let f = (f1, f2, . . .) be a bounded martingale in L1(Ω) adapted
to a k-regular filtration. Then, we can decompose f as a sum f = g + h of
two martingales adapted to the same filtration and satisfying the following
inequality with an absolute constant c

(WB2)
∥∥∥( ∞∑

k=1

Ek−1(|dgk|2)
) 1

2
∥∥∥

L1,∞(Ω)
+

∥∥∥ ∞∑
k=1

δk ⊗ dhk

∥∥∥
L1,∞(Ω⊕∞)

≤ ck ‖f‖1.

The notion of k-regular filtration (equivalently that of previsible martin-
gale) is necessary to formulate many martingale inequalities, see e.g. [1, 2] or
Chapter 2 in [22]. However, it is still unclear whether or not the k-regularity
assumption in Theorem B is necessary. On one side, in view of some similar
results in [2], it seems a natural condition. However, the proof we present
here (see Paragraph 3.4 for a much simpler but less interesting one) gives
some evidences that Theorem B might hold for general martingales with an
absolute constant.

Nevertheless, even in the present form, Theorem B presents some ad-
vantages with respect to Theorem A. First, as we shall explain in the last
section of this paper, it is much simpler to reprove Burkholder’s inequality
(via real interpolation and duality) starting from Theorem B. Second, our
more elaborated proof of Theorem B goes further and gives rise to the result
below.

Corollary C. Let f = (f1, f2, . . .) be a bounded martingale in L1(Ω). Then,
we can decompose each fn as a sum fn = gn + hn of two functions (non-
necessarily martingales) adapted to the same filtration and satisfying the
following inequality with an absolute constant c∥∥∥( ∞∑

k=1

Ek−1(|dgk|2)
) 1

2
∥∥∥

L1,∞(Ω)
+

∥∥∥ ∞∑
k=1

δk ⊗ dhk

∥∥∥
L1,∞(Ω⊕∞)

≤ c ‖f‖1.

At the time of this writing, Randrianantoanina independently obtained
in [20] the noncommutative analogue of the result above. However, Theo-
rems A and B have not been considered there. The noncommutative form of
Corollary C has been applied to obtain the optimal constants in Junge/Xu’s
noncommutative Burkholder inequality.
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The reader familiar with the noncommutative setting will recognize the
similarities between both papers. However, it is important to note that no
background in noncommutative martingales is required to read this paper.
In any case, we have decided to add a paragraph at the end explaining
how both arguments are related (only for those readers familiar with the
noncommutative theory). More concretely, although this is not mentioned
in Randrianantoanina’s paper, we shall explain how Davis decomposition
appears (in a very indirect form) in [20].

Acknowledgements. I have received interesting suggestions and comments
from Marius Junge, Teresa Mart́ınez and Fernando Soria. I am specially
indebted to Michael Cwikel for providing me an answer of Question 4.1
below. Finally, I would also like to thank the referee of this paper, whose
suggestions led to an improved presentation.

1. Martingale Decompositions

Let us fix once and for all a probability space (Ω,A, µ) and a filtration
A1,A2, . . . of σ-subalgebras of A with corresponding conditional expecta-
tions E1,E2, . . . Davis decomposition is a fundamental tool in the theory of
martingale inequalities and it appeared for the first time in [5], where Davis
applied it to prove his well-known theorem on the equivalence in L1(Ω) be-
tween the martingale square function and Doob’s maximal function

‖f ∗‖1 ∼c

∥∥∥( ∞∑
k=1

|dfk|2
) 1

2
∥∥∥

1
.

Considering the truncated maximal functions

f ∗
n(w) = sup

1≤k≤n
|fk(w)|,

we formulate Davis decomposition f = g + h by defining the differences

dgk = dfkχ{f∗
k <2f∗

k−1} − Ek−1

(
dfkχ{f∗

k <2f∗
k−1}

)
,

dhk = dfkχ{f∗
k≥2f∗

k−1} − Ek−1

(
dfkχ{f∗

k≥2f∗
k−1}

)
.

It is clear that dgk and dhk are martingale differences so that g and h become
martingales adapted to the filtration A1,A2, . . . The properties stated in [5]
and which appear in the literature are the following

(1) |dgk| ≤ 8f ∗
k−1 and

∥∥∥ ∞∑
k=1

|dhk|
∥∥∥

p
≤ (4 + 4p) ‖f ∗‖p
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for 1 ≤ p < ∞, see e.g. [22] for an estimate of g in the norm of the space
of predictable martingales. The proof of these properties is rather simple,
in contrast with their weak type analogs which arise from Theorem A, see
Section 4.

Let us now describe Gundy’s decomposition. Let f = (f1, f2, . . .) be a
martingale on (Ω,A, µ) relative to the filtration fixed above that is bounded
in L1(Ω). Let λ be a positive real number. Then we define the martingales
α, β and γ by their martingale differences

dαk = dfkχ{f∗
k−1>λ},

dβk = dfkχ{f∗
k≤λ} − Ek−1

(
dfkχ{f∗

k≤λ}
)
,(2)

dγk = dfkχ{f∗
k−1≤λ<f∗

k} − Ek−1

(
dfkχ{f∗

k−1≤λ<f∗
k}

)
.

Again, these are clearly martingale differences with sum dfk and thus we get
a decomposition f = α + β + γ into three martingales. This decomposition
is in fact due to Burkholder [1] and is simpler than the one originally for-
mulated by Gundy [7]. Indeed, the decomposition stated above uses only
one stopping time while the one originally formulated by Gundy needs two
stopping times. I learned this simpler (but weaker, see below) decomposition
from Narcisse Randrianantoanina. The following are the properties satisfied
by the given decomposition.

i) The martingale α satisfies

λµ
{ ∞∑

k=1

|dαk| > 0
}
≤ c‖f‖1.

ii) The martingale β satisfies

‖β‖1 ≤ c‖f‖1 and
1

λ
‖β‖2

2 ≤ c‖f‖1.

iii) The martingale γ satisfies

∞∑
k=1

‖dγk‖1 ≤ c‖f‖1.

Gundy’s original decomposition, paying the price of using two stopping
times, obtains the additional estimate ‖β‖∞ ≤ cλ. In particular, we can
control any Lp norm of β by means of Hölder’s inequality. Nevertheless,
we shall only need the L2 estimate in this paper. Gundy’s decomposition
theorem plays a central role in classical martingale theory and it can be
regarded as a probabilistic counterpart of the well-known Calderón-Zygmund
decomposition for integrable functions in harmonic analysis, see [6, 7] for
further details.
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2. Proof of Theorem A

We first observe that we may assume without lost of generality that f is a
positive martingale. Indeed, otherwise we can always decompose fn into a
linear combination of four positive functions

fn =
(
f (1)

n − f (2)
n

)
+ i

(
f (3)

n − f (4)
n

)
.

According to a classical result due to Krickeberg, it turns out that this
provides a martingale decomposition of f into four positive martingales.
Therefore, since we have the inequality

4∑
k=1

‖f (k)
n ‖1 ≤ 2 ‖fn‖1

and the expressions on the left of (WB1) clearly satisfy a quasi-triangle
inequality, we may assume that f is positive. On the other hand, as we have
anticipated in the Introduction, the right decomposition to prove the weak
Burkholder inequality is Davis decomposition

dgk = dfkχ{f∗
k <2f∗

k−1} − Ek−1

(
dfkχ{f∗

k <2f∗
k−1}

)
,

dhk = dfkχ{f∗
k≥2f∗

k−1} − Ek−1

(
dfkχ{f∗

k≥2f∗
k−1}

)
.

In what follows, c might have different values from one instance to another.

2.1. Step 1: Proof of the estimate

∥∥∥( ∞∑
k=1

Ek−1(|dgk|2)
) 1

2
∥∥∥

1,∞
≤ c ‖f‖1.

Taking τk = dfkχ{f∗
k <2f∗

k−1}, we have

Ek−1(|dgk|2) = Ek−1

(
|τk|2 +

∣∣Ek−1(τk)
∣∣2 − 2 τkEk−1(τk)

)
≤ Ek−1(|τk|2).

Thus, we may replace dgk by τk and defining the function

Φ =
∞∑

k=1

Ek−1

(|dfk|2χ{f∗
k <2f∗

k−1}
)
,

it suffices to prove that λµ
(
Φ > λ2

) ≤ c‖f‖1 for all λ > 0. For fixed λ we
have

λµ
(
Φ > λ2

) ≤ λµ
(
f ∗ > λ

)
+ λµ

(
χ{f∗≤λ}Φ > λ2/2

)
.
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Therefore, since E0 = E1 and χ{f∗≤λ} ≤ χ{f∗
k−1≤λ} for k ≥ 2, we have

λµ
(
Φ > λ2

) ≤ λµ
(
f ∗ > λ

)
+ λµ

( ∞∑
k=1

Ek−1

(|dfk|2χ{f∗
k≤2λ}

)
> λ2/2

)
.

According to Doob’s maximal inequality, the first term is controlled by
c‖f‖1. On the other hand, in order to estimate the second term, we need to
decompose it into two pieces. We use Chebychev’s inequality

λµ
( ∞∑

k=1

Ek−1

(|dfk|2χ{f∗
k≤2λ}

)
> λ2/2

)

≤ 2

λ

∥∥∥ ∞∑
k=1

Ek−1

(|dfk|2χ{f∗
k≤2λ}

)∥∥∥
1

=
2

λ

∞∑
k=1

∥∥dfkχ{f∗
k≤2λ}

∥∥2

2

≤ 4

λ

∞∑
k=1

∥∥fkχ{f∗
k≤2λ} − fk−1χ{f∗

k−1≤2λ}
∥∥2

2

+
4

λ

∞∑
k=2

∥∥fk−1χ{f∗
k−1≤2λ} − fk−1χ{f∗

k≤2λ}
∥∥2

2
.

Denoting by A and B the two terms on the right, we have

A =
4

λ

∞∑
k=1

∫
Ω

f 2
kχ{f∗

k≤2λ} − f 2
k−1χ{f∗

k−1≤2λ} dµ

+
8

λ

∞∑
k=2

∫
Ω

fk−1χ{f∗
k−1≤2λ}

(
fk−1 − fkχ{f∗

k≤2λ}
)
dµ

=
4

λ
lim

n→∞

∫
Ω

f 2
nχ{f∗

n≤2λ} dµ

+
8

λ

∞∑
k=2

∫
Ω

fk−1χ{f∗
k−1≤2λ}

(
fk−1χ{f∗

k−1≤2λ} − Ek−1(fkχ{f∗
k≤2λ})

)
dµ

≤ 4

λ
lim

n→∞
‖fn‖1

∥∥fnχ{f∗
n≤2λ}

∥∥
∞

+
8

λ

∞∑
k=2

∥∥fk−1χ{f∗
k−1≤2λ}

∥∥
∞

∫
Ω

∣∣fk−1χ{f∗
k−1≤2λ} − Ek−1(fkχ{f∗

k≤2λ})
∣∣ dµ.

This gives

A ≤ 8 ‖f‖1 + 16
∞∑

k=2

∫
Ω

∣∣fk−1χ{f∗
k−1≤2λ} − Ek−1(fkχ{f∗

k≤2λ})
∣∣ dµ.

However, we may drop the modulus in the integral since

Ek−1(fkχ{f∗
k≤2λ}) ≤ Ek−1(fkχ{f∗

k−1≤2λ}) = fk−1χ{f∗
k−1≤2λ}.
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In that case, Ek−1 disappears and we obtain a telescopic sum of decreasing
terms

A ≤ 8 ‖f‖1 + 16

∞∑
k=2

∫
Ω

fk−1χ{f∗
k−1≤2λ} dµ−

∫
Ω

fkχ{f∗
k≤2λ} dµ ≤ 24 ‖f‖1.

It remains to estimate the term B. This term is much easier to handle

B =
4

λ

∞∑
k=2

∥∥fk−1χ{f∗
k−1≤2λ<f∗

k }
∥∥2

2

≤ 4

λ

∞∑
k=2

∥∥χ{f∗
k−1≤2λ<f∗

k }
∥∥

1

∥∥f 2
k−1χ{f∗

k−1≤2λ<f∗
k}

∥∥
∞

≤ 16λ

∞∑
k=2

∫
Ω

χ{f∗
k−1≤2λ} − χ{f∗

k≤2λ} dµ ≤ 16λµ
(
f ∗ > 2λ

) ≤ 8 ‖f‖1.

2.2. Step 2: Proof of the estimate∥∥∥ ∞∑
k=1

|dhk|
∥∥∥

1,∞
≤ c ‖f‖1.

Taking into account the form of dhk according to Davis decomposition, we
have ∥∥∥ ∞∑

k=1

|dhk|
∥∥∥

1,∞
≤ 2

∥∥∥ ∞∑
k=1

∣∣dfkχ{f∗
k≥2f∗

k−1}
∣∣∥∥∥

1,∞

+ 2
∥∥∥ ∞∑

k=1

∣∣Ek−1

(
dfkχ{f∗

k≥2f∗
k−1}

)∣∣∥∥∥
1,∞

= C + D.

The estimate for the term C is very simple. Indeed, it suffices to use the
classical property of this part of Davis decomposition. Namely, we have
f ∗

k ≥ 2f ∗
k−1 if and only if f ∗

k ≤ 2(f ∗
k − f ∗

k−1). In particular, we deduce∣∣dfkχ{f∗
k≥2f∗

k−1}
∣∣ ≤ 2f ∗

kχ{f∗
k≤2(f∗

k−f∗
k−1)} ≤ 4(f ∗

k − f ∗
k−1)

and conclude the following estimate

C ≤ 8 sup
λ>0

λµ
{ ∞∑

k=1

f ∗
k − f ∗

k−1 > λ
}

= 8 sup
λ>0

λµ
(
f ∗ > λ

) ≤ 8 ‖f‖1.

The estimate for D is a little more complicated, we have

D = 2 sup
λ>0

λµ
{ ∞∑

k=1

∣∣Ek−1

(
dfkχ{f∗

k≥2f∗
k−1}

)∣∣ > λ
}
.
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Then we fix λ > 0 and apply Gundy’s decomposition (2) to f

dfk = dαk + dβk + dγk.

By the quasi-triangle inequality we may write

λµ
{ ∞∑

k=1

∣∣Ek−1

(
dfkχ{f∗

k≥2f∗
k−1}

)∣∣>λ}

≤ λµ
{ ∞∑

k=1

Ek−1

(|dαk|χ{f∗
k≥2f∗

k−1}
)
>
λ

3

}

+ λµ
{ ∞∑

k=1

Ek−1

(|dβk|χ{f∗
k≥2f∗

k−1}
)
>
λ

3

}

+ λµ
{ ∞∑

k=1

Ek−1

(|dγk|χ{f∗
k≥2f∗

k−1}
)
>
λ

3

}
.

We shall denote these terms by Dα, Dβ and Dγ respectively. The estimates
for α and γ are straightforward. Indeed, recalling that dαk = dfkχ{f∗

k−1>λ}
and that the function χ{f∗

k−1>λ} is predictable, we conclude

Dα = λµ
{ ∞∑

k=1

χ{f∗
k−1>λ}Ek−1

(|dfk|χ{f∗
k≥2f∗

k−1}
)
>
λ

3

}
≤ λµ

(
f ∗ > λ) ≤ ‖f‖1.

On the other hand, by Chebychev’s inequality we deduce

Dγ ≤ 3
∥∥∥ ∞∑

k=1

Ek−1

(|dγk|χ{f∗
k≥2f∗

k−1}
)∥∥∥

1
≤ 3

∞∑
k=1

‖dγk‖1 ≤ c ‖f‖1,

where the last inequality follows from property iii) in Gundy’s decomposi-
tion, see Section 1. It only remains to estimate the term Dβ. To that aim,
we first recall the dual form of Doob’s maximal inequality, since we shall
need it in the proof. Given 1 ≤ p < ∞ and a sequence (ψm)m≥1 of positive
functions in Lp(Ω), we have

(3)
∥∥∥ ∑

m
Em−1(φm)

∥∥∥
p
≤ cp

∥∥∥ ∑
m
φm

∥∥∥
p
.

I learned this from Marius Junge, see Burkholder’s paper [1] for more de-
tails. We now apply Chebychev’s inequality for p = 3 and the dual Doob
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inequality (3) for the same index, we obtain

Dβ ≤ cλ−2
∥∥∥ ∞∑

k=1

Ek−1

(|dβk|χ{f∗
k≥2f∗

k−1}
)∥∥∥3

3

≤ cλ−2
∥∥∥ ∞∑

k=1

|dβk|χ{f∗
k≥2f∗

k−1}
∥∥∥3

3

≤ cλ−2
∥∥∥( ∞∑

k=1

|dβk|2
) 1

3
( ∞∑

k=1

|dβk| 12χ{f∗
k≥2f∗

k−1}
) 2

3
∥∥∥3

3

= cλ−2
∥∥∥( ∞∑

k=1

|dβk|2
)( ∞∑

k=1

|dβk| 12χ{f∗
k≥2f∗

k−1}
)2∥∥∥

1

≤ cλ−2
∥∥∥ ∞∑

k=1

|dβk|2
∥∥∥

1

∥∥∥ ∞∑
k=1

|dβk| 12χ{f∗
k≥2f∗

k−1}
∥∥∥2

∞
.

Thus, by the quadratic estimate in Gundy’s decomposition (see Section 1)

Dβ ≤ cλ−1
∥∥∥ ∞∑

k=1

|dβk| 12χ{f∗
k≥2f∗

k−1}
∥∥∥2

∞
‖f‖1.

Therefore, the only remaining estimate to conclude the proof of Theorem A
is the following

(4)
∥∥∥ ∞∑

k=1

|dβk| 12χ{f∗
k≥2f∗

k−1}
∥∥∥
∞

≤ c
√
λ.

In order to prove inequality (4) we write dβk as follows

dβk = fkχ{f∗
k≤λ} − fk−1χ{f∗

k≤λ}
+ Ek−1

(
fk−1χ{f∗

k≤λ}
) − Ek−1

(
fkχ{f∗

k≤λ}
)

= ak − bk + ck − dk.

We clearly have
max(ak, bk) ≤ f ∗

kχ{f∗
k≤λ}.

On the other hand, the following estimates hold

ck = fk−1Ek−1(χ{f∗
k≤λ}) ≤ fk−1Ek−1(χ{f∗

k−1≤λ}) ≤ f ∗
k−1χ{f∗

k−1≤λ},

dk ≤ Ek−1

(
fkχ{f∗

k−1≤λ}
)

= fk−1χ{f∗
k−1≤λ} ≤ f ∗

k−1χ{f∗
k−1≤λ}.

Thus we conclude

|dβk| 12 ≤
√
ak + bk +

√
ck + dk ≤

√
2
(√

f ∗
kχ{f∗

k≤λ} +
√
f ∗

k−1χ{f∗
k−1≤λ}

)
.
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This means that it suffices to prove the following estimates

E =
∥∥∥ ∞∑

k=1

√
f ∗

k χ{f∗
k≤λ} χ{f∗

k≥2f∗
k−1}

∥∥∥
∞

≤ c
√
λ,(5)

F =
∥∥∥ ∞∑

k=2

√
f ∗

k−1 χ{f∗
k−1≤λ} χ{f∗

k≥2f∗
k−1}

∥∥∥
∞

≤ c
√
λ.(6)

2.3. Step 3: Proof of the estimate

max
(
E,F

) ≤
√

2√
2 − 1

√
λ.

Fix w ∈ Ω and set

SE,n(w) =

n∑
k=1

φk(w) =

n∑
k=1

√
f ∗

k (w)χ{f∗
k≤λ}(w)χ{f∗

k≥2f∗
k−1}(w).

We shall prove by induction on n that SE,n(w) ≤ √
2λ/(

√
2−1). Indeed, the

assertion is clear for n = 1. Thus, let us assume that the assertion holds for
n−1 and let us estimate SE,n(w). If φn(w) = 0 we have SE,n(w) = SE,n−1(w)
and there is nothing to prove. If φn(w) 
= 0, we must have f ∗

n(w) ≤ λ and

f ∗
n−1(w) ≤ 1

2
f ∗

n(w) ≤ λ/2.

Then, if φn−1(w) 
= 0 we know that

f ∗
n−1(w) ≤ λ/2 and f ∗

n−2(w) ≤ 1

2
f ∗

n−1(w) ≤ λ/4.

On the other hand, if φn−1(w) = 0 we may ignore that term in the sum and
we still have at our disposal that f ∗

n−2(w) ≤ f ∗
n−1(w) ≤ λ/2, so that we can

argue in the same way for φn−2(w). Iterating the same argument, it is not
difficult to conclude that

SE,n(w) ≤
√
λ

∞∑
k=0

( 1√
2

)k

=

√
2√

2 − 1

√
λ.

Since this argument works for any w ∈ Ω, we have proved our claim for E.
Arguing in a similar way, we obtain the same bound for F. Let us include
the details for the sake of completeness. Fix w ∈ Ω and set

SF,n(w) =
n∑

k=2

ψk(w) =
n∑

k=2

√
f ∗

k−1(w)χ{f∗
k−1≤λ}(w)χ{f∗

k≥2f∗
k−1}(w).



1024 J. Parcet

Again, it is clear that ψ2(w) ≤ √
λ so that we may proceed by induction

on n and assume that the inequality SF,n−1(w) ≤ √
2λ/(

√
2 − 1) holds.

If ψn(w) = 0 there is nothing to prove while for ψn(w) 
= 0 we deduce
that f ∗

n−1(w) ≤ λ. Going backwards, we seek for the next non-zero term
ψj(w) 
= 0. Such term implies

f ∗
j−1(w) ≤ 1

2
f ∗

j (w) ≤ 1

2
f ∗

n−1(w) ≤ λ/2.

Iterating one more time we conclude

SF,n(w) ≤
√
λ

∞∑
k=0

( 1√
2

)k

=

√
2√

2 − 1

√
λ.

This justifies our claim

max
(
E,F

) ≤
√

2√
2 − 1

√
λ

which implies (5) and (6). Thus, the proof of Theorem A is completed. �

Remark 2.1. As it was observed by the referee, the martingale decom-
position implicit in Theorem A can be adapted to the case of continuous
martingales, at least for the case 1 < p < 2. More precisely, if f = (f(ξ))ξ∈Λ

is a continuous martingale bounded in Lp(Ω), we may find a martingale
decomposition f = g + h such that

∥∥∥( n∑
k=1

Eξk−1

(∣∣g(ξk) − g(ξk−1)
∣∣2)) 1

2
∥∥∥

p
+

∥∥∥ n∑
k=1

∣∣h(ξk) − h(ξk−1)
∣∣∥∥∥

p
(7)

≤ cp ‖f‖p

holds for every partition π = {ξ0 < ξ1 < . . . < ξn} ⊂ Λ. Indeed, if fπ

denotes the restriction of f to π, inequality (7) holds for fπ = gπ + hπ by
Theorem A and the real interpolation method. The desired decomposition
then arises from a suitable weak∗ limit. More precisely, note that both
terms in (7) are self-improving in the following sense, if π is finer than π′

then (gπ, hπ) satisfy (7) for π′. Therefore, we may obtain g (resp. h) as
a cluster point of the family of gπ’s (resp. hπ’s) in the weak∗ topology.
Recall that the conditional Hardy space is reflexive (this is even true in the
noncommutative setting, see [12] for details) and Lp(Ω, �1) is a dual Banach
space. At the time of this writing we do not know whether this inequality
can be generalized to the weak L1,∞ situation.
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3. Proof of Theorem B

Our aim in this section is proving Theorem B. However, instead of giving
the simplest proof available (see Paragraph 3.4 for this), we present a more
general proof where the hypothesis of k-regularity is only needed in the very
last step. This somehow supports our comment in the Introduction on the
validity of Theorem B for non-regular martingales. Moreover, as we shall
see below, our proof goes a little further, see Corollary C below.

For now on and until the very end of the proof, we assume that f is a
bounded martingale in L1(Ω) adapted to a non-necessarily regular filtration.
Our martingale decomposition f = g + h is given one more time by Davis
decomposition

dgk = dfkχ{f∗
k <2f∗

k−1} − Ek−1

(
dfkχ{f∗

k <2f∗
k−1}

)
,

dhk = dfkχ{f∗
k≥2f∗

k−1} − Ek−1

(
dfkχ{f∗

k≥2f∗
k−1}

)
.

In particular, the weak type estimate

∥∥∥( ∞∑
k=1

Ek−1(|dgk|2)
) 1

2
∥∥∥

L1,∞(Ω)
≤ c ‖f‖1

holds with an absolute constant c by means of Theorem A.

In order to estimate the second term on the left of (WB2) we combine
one more time Davis and Gundy decompositions. More concretely, for fixed
λ > 0 and according to (2) we have

dhk = dαkχ{f∗
k≥2f∗

k−1} − Ek−1

(
dαkχ{f∗

k≥2f∗
k−1}

)
+ dβkχ{f∗

k≥2f∗
k−1} − Ek−1

(
dβkχ{f∗

k≥2f∗
k−1}

)
+ dγk χ{f∗

k≥2f∗
k−1} − Ek−1

(
dγkχ{f∗

k≥2f∗
k−1}

)
= dhαk + dhβk + dhγk.

As in Theorem A, the terms associated to γ are the simplest ones

∥∥∥ ∞∑
k=1

δk ⊗ dγk χ{f∗
k≥2f∗

k−1}
∥∥∥

L1,∞(Ω⊕∞)
≤

∞∑
k=1

‖dγk‖1 ≤ c ‖f‖1,

∥∥∥ ∞∑
k=1

δk ⊗ Ek−1

(
dγk χ{f∗

k≥2f∗
k−1}

)∥∥∥
L1,∞(Ω⊕∞)

≤
∞∑

k=1

‖dγk‖1 ≤ c ‖f‖1.

Therefore, it remains to estimate the terms associated to α and β.
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3.1. Step 1: Proof of the estimate

λ
∞∑

k=1

µ
{
|dhβk| > λ

}
≤ c ‖f‖1.

This estimate is similar to that of Theorem A. By Chebychev’s inequality

λ
∞∑

k=1

µ
{
|dβk|χ{f∗

k≥2f∗
k−1} > λ

}
≤ λ−2

∞∑
k=1

∥∥|dβk|χ{f∗
k≥2f∗

k−1}
∥∥3

3

= λ−2
∥∥∥ ∞∑

k=1

|dβk|3 χ{f∗
k≥2f∗

k−1}
∥∥∥

1

≤ λ−2
∥∥∥( ∞∑

k=1

|dβk|2
)

sup
k≥1

|dβk|χ{f∗
k≥2f∗

k−1}
∥∥∥

1
.

Now we observe that |dβk| ≤ 4λ for all integer k ≥ 1, since

|dβk| =
∣∣∣dfkχ{f∗

k≤λ} − Ek−1

(
dfkχ{f∗

k≤λ}
)∣∣∣

≤ 2 f ∗
kχ{f∗

k≤λ} + 2 Ek−1

(
f ∗

kχ{f∗
k≤λ}

) ≤ 4λ.

Therefore, using the quadratic estimate in Gundy’s decomposition

λ
∞∑

k=1

µ
{
|dβk|χ{f∗

k≥2f∗
k−1} > λ

}
≤ 4λ−1

∥∥∥ ∞∑
k=1

|dβk|2
∥∥∥

1
=

4

λ
‖β‖2

2 ≤ c ‖f‖1.

In a similar way, since the Ek−1’s are contractive in L3(Ω), we find

λ
∞∑

k=1

µ
{

Ek−1

(|dβk|χ{f∗
k≥2f∗

k−1}
)
> λ

}
≤ c ‖f‖1.

The assertion follows from these estimates and the quasi-triangle inequality.

3.2. Step 2: Proof of the estimate

λ
∞∑

k=1

µ
{
|dαk|χ{f∗

k≥2f∗
k−1} > λ

}
≤ c ‖f‖1.

Let us fix λ > 0. Since dαk = dfkχ{f∗
k−1>λ}, we have

λ
∞∑

k=1

µ
{
|dαk|χ{f∗

k≥2f∗
k−1} > λ

}
≤ λ

∞∑
k=1

µ
{
f ∗

k ≥ 2f ∗
k−1 > 2λ

}
.
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Define A : Ω → N ∪ {∞ } as follows

A(w) =
∞∑

k=1

A(w, k) with A(w, k) =

{
1 if f ∗

k (w) ≥ 2f ∗
k−1(w) > 2λ,

0 if not.

According to Doob’s maximal inequality, the set of points w ∈ Ω with
A(w) = ∞ has zero µ-measure. On the other hand, given any integer
s ≥ 1, the set of w ∈ Ω such that A(w) = s is contained in the set where
f ∗ > 2sλ. Indeed, note that the condition f ∗

k ≥ 2f ∗
k−1 > 2λ is satisfied s

times. Therefore, by means of Doob’s maximal inequality, we deduce

λ
∞∑

k=1

µ
{
f ∗

k ≥ 2f ∗
k−1 > 2λ

}
= λ

∞∑
k=1

∫
Ω

A(w, k) dµ(w)

= λ

∫
Ω

A(w) dµ(w) = λ

∞∑
s=1

sµ
(A = s

)

≤ λ

∞∑
s=1

sµ
(
f ∗ > 2sλ

) ≤
( ∞∑

s=1

s/2s
)
‖f‖1.

This completes the proof since
∑∞

s=1 s/2
s = 2.

3.3. Step 3: Proof of the last estimate for k-regular martingales

(8) λ

∞∑
k=1

µ
{

Ek−1

(|dαk|χ{f∗
k≥2f∗

k−1}
)
> λ

}
≤ ck ‖f‖1.

This is the only estimate where we use the k-regularity of the filtration
A1,A2, . . . Let us introduce some notation. Let us consider a parameter
k > 1. We shall say that the filtration A1,A2, . . . is k-homogeneous if for
every n ≥ 1 and any measurable set A ∈ An we have

µ
{

supp En−1(χA)
}
≤ kµ(A).

We are not aware if this notion appears somewhere in the literature. We
now study the relation between k1-regularity and k2-homogeneity. Again we
ignore whether or not this result is already known.

Lemma 3.1. Given 1 < k1 < k2 <∞, we have

k1-regularity ⇒ k1-homogeneity ⇒ k2-regularity.
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Proof. Let us begin with the first implication. Given a positive integer
n ≥ 1 and a measurable set A ∈ An, we known from the assumption on
k1-regularity that the inequality below holds

(9) χA ≤ k1 En−1(χA).

Let us assume that

µ
{

supp En−1(χA)
}
> k1 µ(A).

By the main property of the conditional expectation, we have

k1 µ(A) = k1

∫
Ω

χA dµ = k1

∫
Ω

En−1(χA) dµ

≥ k1 µ
{

supp En−1(χA)
}

inf
{

En−1(χA)(w)
∣∣w ∈ supp En−1(χA)

}
.

In particular, we deduce that

inf
{

En−1(χA)(w)
∣∣w ∈ supp En−1(χA)

}
< 1/k1

so that the following set in An−1

B =
{

0 < En−1(χA) < 1/k1

}
has positive µ-measure. If we show µ

(
A ∩ B

)
> 0, we conclude since A ∩ B

is a subset of A where (9) fails. Assume that µ
(
A∩B

)
= 0. In that case we

have χAχB = 0 µ-a.e. and since B ∈ An−1 we conclude

En−1(χA)χB = En−1(χAχB) = 0 µ-a.e.

However, this contradicts the definition of B. The proof of the first implica-
tion is completed.

For the second implication, we have to show that the An-measurable
set A =

{
fn > k2fn−1

}
has zero µ-measure for any positive martingale

f = (fn)n≥1 adapted to our filtration. Let us assume that µ(A) > 0. Then
we consider a An-measurable function g of the form g =

∑
j αjχBj

, where
the sum might have infinitely many terms, the Bj ’s are in An and such that

g ≤ fn and ‖g − fn‖∞ < ε.

If w ∈ A, we have

g(w) > fn(w) − ε > k2fn−1(w) − ε ≥ k2En−1(g)(w) − ε.
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Therefore it turns out that

A ⊂
{∑

j
αjχBj

> k2

∑
j
αjEn−1(χBj

) − ε
}

⊂
⋃
j≥1

{
χBj

> k2En−1(χBj
) − ε

}
.

Recalling that µ(A) > 0, there must exist some j0 ≥ 1 such that

µ
{
χBj0

> k2En−1(χBj0
) − ε

}
> 0.

We shall denote this set in An by Dj0. Given w ∈ Dj0, we clearly have

k2En−1(χDj0
)(w) < 1 + ε.

On the other hand, by k1-homogeneity

µ
{

supp En−1(χDj0
)
}
≤ k1 µ(Dj0) = k1

∫
Ω

En−1(χDj0
) dµ

≤ k1 µ
{

supp En−1(χDj0
)
}∥∥En−1(χDj0

)
∥∥
∞.

This means that
∥∥En−1(χDj0

)
∥∥
∞ ≥ 1/k1, hence

µ(Rδ) > 0 with Rδ =
{

En−1(χDj0
) > 1/k1 − δ

}
for every δ > 0.

Now we observe that for any w ∈ Dj0 ∩ Rδ we obtain

k2

k1
− δk2 < k2En−1(χDj0

)(w) < 1 + ε.

Therefore, since we are assuming that k1 < k2, we may take δ and ε small
enough so that the relation above provides the desired contradiction as far
as we show that µ(Dj0 ∩ Rδ) > 0. However, this follows as in the first part
of the proof. Indeed, if not we would have χDj0

χRδ
= 0 µ-a.e. Thus since

Rδ ∈ An−1 we should conclude that En−1(χDj0
)χRδ

= 0 µ-a.e., which contra-
dicts the definition of Rδ. �

Now it is straightforward to finish the proof of Theorem B. Namely, it
remains to prove inequality (8). However, since we assume that f is a posi-
tive martingale, we have by k-regularity that dfk ≤ (k − 1)fk−1. Therefore,
assuming k-regularity and according to the first half of Lemma 3.1 we obtain

λ

∞∑
k=1

µ
{

Ek−1

(|dαk|χ{f∗
k≥2f∗

k−1}
)
> λ

}
≤ λ

∞∑
k=1

µ
{

Ek−1

(
χ{f∗

k≥2f∗
k−1>2λ}

)
> 0

}

≤ kλ

∞∑
k=1

µ
{
f ∗

k ≥ 2f ∗
k−1 > 2λ

}
≤ 2k ‖f‖1,

where the last inequality follows by Step 2. Theorem B is proved. �
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3.4. Further remarks

We conclude this section by analyzing Theorem B in some detail.

If we do not care about its validity for non-regular martingales, a much
simpler proof is available. The idea is that regular martingales are previsible,
see e.g. Proposition 2.19 in [22]. This can be used to show that the only
relevant part in (WB2) for regular martingales is the term associated to the
conditional square function.

A simpler proof of Theorem B. Let f = (f1, f2, . . .) be a bounded
positive martingale in L1(Ω) adapted to a k-regular filtration. Then we may
consider the Davis type decomposition f = g+h with martingale differences
given by

dgk = dfkχ{fk≤kfk−1} − Ek−1

(
dfkχ{fk≤kfk−1}

)
,

dhk = dfkχ{fk>kfk−1} − Ek−1

(
dfkχ{fk>kfk−1}

)
.

By k-regularity, the only non-zero martingale difference in h is

dh1 = f1.

Thus, the second term in (WB2) is trivially controlled by ‖f‖1. On the other
hand, the first term in (WB2) can be estimated as in Step 1 of the proof of
Theorem A, with the only difference that we obtain the constant ck instead
of c. The proof is complete. �

Remark 3.2. The proof given above shows that in the k-regular case it
suffices to consider the conditional term and ignore the diagonal one. As it
was justified in Remark 8.3 of [2], this is only possible under the assumption
of regularity.

As we already mentioned in the Introduction, martingale inequalities
where a martingale decomposition is involved arise very naturally in the
noncommutative setting, mainly due to the row/column nature of the co-
rresponding martingale Hardy spaces.

Among many other papers, we refer the reader to [14, 16, 23] for some
illustrations of this phenomenon. However, not requiring the decomposi-
tions to be martingale decompositions, it is sometimes simpler to obtain the
corresponding inequality [19, 20].

Our first proof of Theorem B goes a little further and produces the
following result in this line.
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Corollary C. Let f = (f1, f2, . . .) be a bounded martingale in L1(Ω). Then,
we can decompose each fn as a sum fn = gn + hn of two functions (non-
necessarily martingales) adapted to the same filtration and satisfying the
following inequality with an absolute constant c

∥∥∥( ∞∑
k=1

Ek−1(|dgk|2)
) 1

2
∥∥∥

L1,∞(Ω)
+

∥∥∥ ∞∑
k=1

δk ⊗ dhk

∥∥∥
L1,∞(Ω⊕∞)

≤ c ‖f‖1.

Proof. If we consider the decomposition

dgk = dfkχ{f∗
k <2f∗

k−1},

dhk = dfkχ{f∗
k≥2f∗

k−1},

it follows from our first proof of Theorem B since (8) is not needed. �
Namely, we can drop the k-regularity assumption as far as we do not

require to have a decomposition of f into two martingales. We have proved
Theorem B under the assumption of k-regularity or avoiding martingale
decompositions as in Corollary C. However, it is still open to decide whether
Theorem B holds for arbitrary martingales. Let us state this problem for
the interested reader.

Problem 3.3. Let f = (f1, f2, . . .) be a bounded martingale in L1(Ω). Is
there a decomposition of f as a sum f = g + h of two martingales adapted
to the same filtration and satisfying the following inequality with an absolute
constant c?

∥∥∥( ∞∑
k=1

Ek−1(|dgk|2)
) 1

2
∥∥∥

L1,∞(Ω)
+

∥∥∥ ∞∑
k=1

δk ⊗ dhk

∥∥∥
L1,∞(Ω⊕∞)

≤ c ‖f‖1.

4. Applications and Comments

In this section, we obtain some applications of Theorems A and B. At the
very end, we analyze their relation to the theory of noncommutative mar-
tingales. The reader who is not familiar with the theory of noncommutative
martingales can skip this part, which is not related to the main purpose of
this paper. Let us begin by studying the implications of Theorem A in Davis
decomposition.

4.1. On the classical Davis decomposition

Besides its clear relation with Burkholder’s martingale inequality, Theorem
A can also be understood as a weak type estimate which generalizes the
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known properties of Davis decomposition. In other words, recalling the
second estimate in Davis decomposition (1)

∥∥∥ ∞∑
k=1

|dhk|
∥∥∥

p
≤ cp ‖f ∗‖p ≤ c

p2

p− 1
‖f‖p for 1 < p <∞,

the inequality ∥∥∥ ∞∑
k=1

|dhk|
∥∥∥

1,∞
≤ c ‖f‖1

can be regarded as the associated weak type inequality for p = 1. This
inequality was justified in Steps 2 and 3 of our proof of Theorem A. On the
other hand, in a less explicit way, the estimate for the first term in (WB1)
can also be understood as an extension of the known estimates for g in Davis
decomposition.

4.2. Real interpolation

One of the first applications of our results that comes to mind is reproving
Burkholder’s inequality by real interpolation and duality. This is even pos-
sible starting from Corollary C, as showed in [20]. This alternative proof
has given rise to the optimal constants for the noncommutative Burkholder
inequality [12]. It can be easily checked that the constants obtained in [20]
are still optimal in the commutative case as p→ 1 but not as p→ ∞, as it
follows from Hitczenko’s results [8].

We should also point out that, in contrast with the previous paragraph
(where Theorem A came into scene), Theorem B is the right result to obtain
Burkholder’s inequality using real interpolation. Indeed, if we want to obtain
(B−

p ) from Theorem B, we just need the well-known isomorphism

[
L1,∞(Ω⊕∞), L2(Ω⊕∞)

]
θ,p

∼cp Lp(Ω⊕∞) with cp ∼ p/p− 1.

On the contrary, Theorem A would require something different.

Question 4.1. Is is true that[
L1,∞(Ω; �1), L2(Ω; �2)

]
θ,p

∼cp Lp(Ω; �p) ?

This question is reminiscent of other natural questions with regard to
extending Marcinkiewicz interpolation theorem to more general situations:
bilinear operators, changes of weights or, in our case, vector-valued function
spaces... This particular question seemed quite unclear and finally Michael
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Cwikel showed to me [4] that the result conjectured above is false. Let us
include Cwikel’s argument for completeness. Let us define

A0 = L1,∞(Ω; �1) and A1 = L2(Ω; �2).

It is clear that A0 contains L1(Ω⊕∞), so that the inclusion below holds

Lp(Ω; �p) = Lp(Ω⊕∞) ⊂ [A0,A1]θ,p.

However, the reverse inclusion fails. Following Cwikel’s argument we show
that the even smaller space A0 ∩ A1 is not contained in Lp(Ω; �p). To that
aim we take Ω to be the unit interval equipped with the Lebesgue measure.
We will represent elements of A0 ∩A1 as step functions f : [0, 1]×R+ → C

of two variables (w, z). Of course, we need to assume that for each constant
w, the function f(w, ·) is a constant function of z on the interval (n− 1, n]
for each positive integer n. Let us consider the following sets in the plane

S =
⋃
k≥1

Sk with Sk =
{

0 ≤ w ≤ 1/k and k − 1 < z ≤ k
}
.

The set S is a discretized version of the region where 0 < z ≤ 1/w. Let f1

be the characteristic function of S. We claim that, under the representation
considered above, f1 is an element of A0. Indeed, we have

‖f1‖A0 = sup
λ>0

λµ
{∑

k
|f1(w, k)| > λ

}
= 1 <∞.

Now, let α > 0 be a positive number and let

f2(w, k) =
χSk

(w)

(1 + log k)α
for k ≥ 1.

Since f2 ≤ f1, it follows that f2 ∈ A0. Moreover, we have

‖f2‖Lp(Ω;	p) =
(∑

k

∥∥∥ χSk
(w)

(1 + log k)α

∥∥∥p

p

) 1
p

=
(∑

k

1

k(1 + log k)pα

) 1
p
,

so that f2 ∈ Lp(Ω, �p) if and only if pα > 1. Therefore, given any 1 < p < 2
we may choose α so that pα < 1 < 2α. In this case we obtain that

f2 ∈ A0 ∩A1 \ Lp(Ω; �p).
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4.3. A noncommutative Davis type decomposition

In this paragraph we present a useful way to generalize the martingale differ-
ences dgk and dhk in Davis martingale decomposition to the noncommutative
setting. We shall assume certain familiarity with the theory of noncommu-
tative martingale inequalities. We begin with the trivial identity{

f ∗
k < 2f ∗

k−1

}
=

⋃
λ>0

{λ
2
< f ∗

k−1 ≤ λ
}
∩

{λ
2
< f ∗

k ≤ λ
}

=
⋃
λ>0

({
f ∗

k−1 ≤ λ
}
\

{
f ∗

k−1 ≤
λ

2

})
∩

({
f ∗

k ≤ λ
}
\

{
f ∗

k ≤ λ

2

})
.

One important lack in noncommutative martingales is the absence of stop-
ping times or maximal functions. In the case of maximal functions, there
exist two natural substitutes. Roughly speaking, we use a construction due
to Cuculescu [3] when dealing with weak type inequalities, while for strong
inequalities the right notion was formulated by Junge in [10]. We shall use
here Cuculescu’s construction. In other words, for any λ > 0 we can cons-
truct a sequence of projections q1(λ), q2(λ), . . . which play the role of the
sets {f ∗

k ≤ λ} for k = 1, 2, . . . Namely, the sequence of qk(λ)’s is adapted for
all λ > 0 and satisfies an analogue of the weak type (1, 1) Doob’s maximal
inequality, see [3, 15, 18] for more details. There is however one natural
property which is not satisfied by Cuculescu’s projections. In contrast with
the classical case, where we have {f ∗

k ≤ λ1} ⊂ {f ∗
k ≤ λ2} whenever λ1 < λ2,

it is no longer true that qk(λ1) is a subprojection of qk(λ2). This is solved
by defining the projections

πk(λ) =
∧
ξ≥λ

qk(ξ) ∼
⋂
ξ≥λ

{
f ∗

k ≤ ξ
}

=
{
f ∗

k ≤ λ
}
.

However, for some technical reasons like commuting properties of the
resulting projections, it is better to consider countable families of qk’s. More
concretely, we consider dyadic λ’s of the form λ = 2j and define

πk(λ) =

∞∧
s=0

qk(2
j+s) ∼

{
f ∗

k ≤ 2j
}
.

This gives rise to the following approximation{
f ∗

k < 2f ∗
k−1

}
∼

∞∨
j=0

(
πk−1(2

j) − πk−1(2
j−1)

)
∧

(
πk(2

j) − πk(2
j−1)

)

=

∞∑
j=0

(
πk−1(2

j) − πk−1(2
j−1)

)
∧

(
πk(2

j) − πk(2
j−1)

)
,
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where the last identity follows by pairwise orthogonality. Let us observe in
passing that the information lost in the process of taking only dyadic λ’s is
not relevant since our proofs of Theorems A and B still hold when replacing
the sets {f ∗

k < 2f ∗
k−1} by the smaller ones

∞⋃
j=0

{
2j−1 < f ∗

k−1 ≤ f ∗
k ≤ 2j

}
.

We have already rewritten the Davis sets {f ∗
k < 2f ∗

k−1} in a way that
works in the noncommutative setting. Of course, this gives rise to a Davis
type decomposition for noncommutative martingales. Although not men-
tioned by Randrianantoanina, this might be a good motivation for the de-
composition used in [20]. Indeed, although the decomposition in [20] is not
made of martingale differences, the same idea is used there in a very indirect
way. More concretely, the projections

pj,k =

∞∧
s=j

qk(2
s) −

∞∧
s=j−1

qk(2
s) = πk(2

j) − πk(2
j−1)

as well as pj,k−1pj,k are important key tools in [20]. Nevertheless, it is also
worthy of mention that the decomposition used there is not exactly the
translation (via the transformations described in this paragraph) of this
paper. Namely, an extra nonsymmetric row/column partition is needed in
the noncommutative case.

Finally, we observe that the noncommutative Davis decomposition pre-
sented here is constructed with the aim to interact with Cuculescu’s cons-
truction. In other words, according to the philosophy mentioned above, this
decomposition should be the right one when dealing with weak type inequa-
lities. For strong inequalities, we should work with Junge’s approach [10],
but we still do not know how to obtain the right maximal operators and
Davis decomposition is still unclear.

4.4. Related results

This paper is strongly motivated by problems and results from noncommu-
tative probability. We conclude by giving some references (not included in
the Introduction) related to this paper. The optimal growth of the relevant
constants in several noncommutative martingale inequalities can be found
in [13]. Gundy’s decomposition of noncommutative martingales was ob-
tained in the recent paper [15]. There also exists free analogs of generalized
Khintchine and Rosenthal inequalities, see [11] and the references therein.
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