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Abstract

This article studies strong A..-weights and Besov capacities as
well as their relationship to Hausdorff measures. It is shown that
in the Euclidean space R™ with n > 2, whenever n — 1 < s < n,
a function u yields a strong A.-weight of the form w = €™ if the
distributional gradient Vu has sufficiently small || - || zs,n—s (R™; R™)-
norm. Similarly, it is proved that if 2 < n < p < 0o, then w = e™ is
a strong A..-weight whenever the Besov Bj-seminorm [u] By(rn) Of u
is sufficiently small.

Lower estimates of the Besov B,-capacities are obtained in terms
of the Hausdorff content associated with gauge functions h satisfying

the condition fol h(t)P' ! % < 00.

1. Introduction

In this paper we study sufficient conditions under which one would get strong
Aso-weights in R™. We also study Besov capacity. We explore how Hausdorff
measures and this capacity are related.

A doubling measure p on R™ is a Radon measure for which there exists
a constant C' > 1 such that

0 < u(2B) < Cu(B)

for all balls B. Throughout this paper AB represents the ball concentric
with B with radius A times the radius of B for every A\ > 0. To every
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doubling measure p on R” with density w (that is, u(A) = [, w(z)dx for all
measurable sets A C R™), we can associate a quasidistance on R" defined by

(L.1) 0,(x,y) = j(Bay)™,

where B, , is the smallest closed ball which contains the points = and y.
To say that 6,(x,y) is a quasidistance means by definition that it is non-
negative and symmetric, that it vanishes if and only if + = y, and that it
satisfies

Op(2,2) < C(0u(®,y) +0u(y, 2))

for some C' > 1 and all z,y,2z € R™. If the above inequality was satisfied
with C = 1, then the quasidistance §,(x,y) would in fact be a distance
function.

A weight w is said to be an A -weight if there exist constants C' > 1
and ¢ > 1 such that

(3 )’ s

for all balls B C R™. Here |E| denotes the Lebesgue measure of £ C R”
whenever E is measurable. See for example [15, Chapter 4] for a discussion
about A.-weights.

To say that w is a strong A..-weight means, by definition, that w is an
A-weight and that the quasidistance d,, is comparable to a distance ¢,
namely there exists a distance function §,, on R™ and a constant C' > 0 such
that

(12) Ciléﬂ(‘rvy) S 6;(1:73/) S Céﬂ(‘rvy)

Here p is the measure on R™ with density w.

Strong A..-weights were introduced in the early 90’s by Semmes and
David [9], [30] when trying to identify the subclass of A -weights that
are comparable to the Jacobian determinants of quasiconformal mappings.
See [10], [19], and [31].

Strong A..-weights also provide examples of admissible weights in the
sense of [20]. In particular, our results give new such examples. See [3].

Bonk and Lang proved in [5] that if y is a signed Radon measure on R?
such that p*(R?) < 27 and p (R?) < oo, then (R? D,) is bi-Lipschitz
equivalent to R? endowed with the Euclidean metric, where

D,(x,y) = inf { / e"ds : a analytic curve connecting x, y},
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the function u is a solution of —Au = p with |Vu| € L2(R?), and pp = pt—pu~
is the Jordan decomposition of u. In particular, it is proved that w = e**
is comparable to the Jacobian of a quasiconformal mapping f : R? — R?,
which implies that w is a strong A..-weight.

Here we prove a weaker result in R",n > 2, related to the one from [5].
One of our results states that A,-weights of the form w = €™ are strong
Aso-weights if u is a locally integrable function with distributional gradient
Vu in the Morrey space £5"5(R™; R"™) with small || - || zs.n-s (R™; R™)-norm
for some s € (n —1,n].

We recall that for 1 < p < oo and 0 < X < n, the Morrey space LP*(R™)
is defined to be the linear space of measurable functions u € L;,.(R™) such
that

1/p

lullersey = supsup (- [ ) <o
z€R™ r>0 B(x,r)

In particular, £L*°(R") = L™"(R"). We refer to [17, p. 65] for more informa-

tion about Morrey spaces and their use in the theory of partial differential

equations. One notices that the weak Lebesgue space L™ (R™) is contained

in L7 %(R") for every s € [1,n). Indeed, it can be shown that for every

s € [1,n), there exists a constant C' = C(n, s) such that
(1.3) ||l

‘Cs,nfs(]Rn) S Cl |u| |Ln,oo(Rn) .

Similarly we can define the Morrey space L£PA(R™;R™) for vector-valued
measurable functions. It follows from the Poincaré inequality that for every
s € [1,n], there exists a constant C' = C(n, s) > 0 such that

(14) [U]BMO(Rn) S Cllquﬁs,nfs(Rn; Rn)7

where [U]BMO(RTL) is the bounded mean oscillation seminorm that measures
the oscillation of u on balls in R™, given by

1 /
U|BMO(RR) = SUP SUP ———— u(x) — up(ar)| dz.
[ ] = a€R™ r>0 |B(a7 T)| B(a,r) | ( ) ( )|

Here and throughout this paper ug denotes the average of v on the measur-
able set E C R"™ whenever 0 < |E| < oo.

As a consequence of our result, (see [18], [11]), we can obtain strong
As-weights of the form w = €™, where u is a distributional solution of

—div(|Vu|"2Vu) = p

whenever y is a signed Radon measure with small total variation. Indeed, it
follows from the results of [18] and [11] that every distributional solution u
of the previous equation has the property that the weak L™-norm of the
distributional gradient of u is controlled by (| u|(R”))ﬁ
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In [4, Theorem 3 1] the authors prove that if u belongs to the Bessel
potential space L%« (R"), 0 < a < n, then w = ™ is a strong A..-weight
with data depending only on «, n, and the L®a-norm of u. We prove a
result similar to [4, Theorem 3.1]. This result yields strong A..-weights of
the form w = €™ when u has small Besov B,-seminorm, 2 < n < p < o0.

We define

B,(R") = {u € L’(R") : ||u||Bp(Rn) < 00},
where
(1.5) |[ullB,@n) = ||ul|Lr@n) + [u] B, @)
with

| 1/p
( 6) BP(R </n /n |x_y|2n y)

It is known that L»P(R™) C B,(R") for every p € (n,0), so our result
generalizes [4, Theorem 3.1] to Besov B, spaces.

Besov spaces have recently been used in the study of quasiconformal
mappings in metric spaces and in geometric group theory. See [6] and [7].

Capacities associated with Besov spaces were studied by Netrusov in [26]
and [27] and by Adams and Hurri-Syrjénen in [2]. Bourdon in [6] studied
Besov B,-capacity in metric settings.

We develop a theory of Besov B,-capacity on R" and we prove that this
capacity is a Choquet set function. We also relate Hausdorff measure and
Besov capacity. Some of the ideas used here follow [22], [23], [7], and [6].

This is part of my PhD thesis at the University of Michigan under the
guidance of Professor Juha Heinonen.

2. Scaling invariant Besov spaces

In this section we prove some basic properties of the scaling invariant Besov
spaces B,(R") and their closed subspaces B,(2) and BJ(Q), where Q C R"
is an open set.

The expressions ||u||p,@») and [u]p, @®») from (1.5) and (1.6) are called
the Besov norm and the Besov seminorm of u respectively. We have

(2.1) [u] g,(rny = 0 if and only if u is constant a.e.

We know that B,(R") is a reflexive Banach space and moreover, S is dense
in B,(R™) where S = S(R") is the Schwartz class. See [1, Theorem 4.1.3]
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and [28, Chapter 3]. It is easy to see that every Lipschitz function with com-
pact support belongs to B,(R™). We also note that [u)]s,®») = [u]B,®"),
where () = u(aw) for a > 0.

If u € Lj,.(R") is such that [u]p g~ < 0o, then u € BMO(R"). Indeed,
it is easy to see that

(2.2) [U]BMO(Rn) < C(n,p) [“]Bp(lR”)'
For an open set {2 C R" we define
B,(Q2) ={u € B,(R") : u=0a.e. in R"\ Q}.

For a function u € B,(€2) we let ||ul|p, ) = ||u||B,®").

We notice that B, () is a closed subspace of B,(R") with respect to the
Besov norm, hence it is itself a reflexive space.

We define B)(Q) as the closure of C§°(Q) in B,(R"). Since C5°(Q2) C
B,(), it follows that B)(2) C B,(), so we can say that B)(Q) is the
closure of C§°(Q2) in B,(12).

Lemma 2.1. B,(Q) is closed under truncations. In particular, bounded
functions in B,(Q2) are dense in B,(€2).

Proof. It is easy to show that vy € B,(Q2) for every A > 0, where vy =
min(v, A). Indeed, we have ||v;||zr@r) < ||]|ze@n) and [va]B, ) < [V]B,@)-
To prove the second assertion, for positive integers k we define the func-
tion vg by vy = max(—Fk, min(v, k)). From the first assertion it follows that
vy, € B, () with ||vg]|s, @) <||v||B,)- Furthermore, we have |vg(x)| <|v(x)|
for every x € R™ and from the Lebesgue Dominated Convergence Theo-
rem it follows that ||vy — v||rr) — 0. We also notice that |vi(x) — vi(y)| <
|v(x)—v(y)| for every z,y € R™ and since |(vg(x)—v(y)) —(v(z)—v(y))| — 0
for almost every (z,y) € R" x R", it follows from the Lebesgue Dominated

Convergence Theorem that [vy — v]p, ) — 0 as k — oo. [ |
For a measurable function v : @ — R, we let v = max(u,0) and
u~ = min(u, 0).

Lemma 2.2. Ifu; — u in By(Q2) and v; — v in B,(S2), then

min(u;, v;) — min(u,v) n  B,(Q).

Proof. It suffices to show that if u; converges to u in B,(€2), then u] con-

verges to uT in B,(2). By Lemma 2.1, we have that u™ € B,(Q2) whenever
u € B,(2). We can assume without loss of generality that u; and u are 0
everywhere in R” \  and that u; — u pointwise a.e. in R™. Since

(2.3) Juf () = u™ ()] < Juy(2) — u()]

for every z € R", it is clear that v} — u™ in LP(Q).
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For every x,y € R™ we have

() () = u™ () = (u (y) = u ()] < |uj (@) = u(2)] + o] (y) — " (y)]

which, together with (2.3) and the fact that u; — w pointwise a.e. in R",
implies that

(2.4) (] () = u™ (@) = (u] (y) —u"(y))] = 0

for a.e. (z,y) € R" x R" as j — co. We also notice that

(] (z) = u"(2)) = (uj (y) =" W) < |uj (@) = uf ()] + e’ () — " (y)]
< fuy(@) = uy(y)] + u(z) = uly)]

for every x,y € R™ which implies, via the triangle inequality, that

() () = u™(2) = (uj (y) —u W) < Nuy(2) —ulz) = (u;(y) — u(y))l
+2u(z) = u(y)]

for every x,y € R™. We notice that the above inequality implies

(2.5) [uj —u'B, ) < [uj —ulp, @) + 2[ulp,©

for every integer j > 1. From (2.4) and the inequality preceding (2.5) it
follows, via a general version of Lebesgue Dominated Convergence Theorem
(see [14, p. 57, Exercise 20]) that

[uf —u”]

By(@) = 0
as j — oo. This, together with the fact that |[u)] —u™||Lp@n) — 0 as j — oo,

implies that ||u) — u*||,) — 0 as j — oo, which proves our claim. |

Next we show that the space B)(Q) is a lattice.

Lemma 2.3. If u,v € B)(Q), then min(u,v) and max(u,v) are in B)(Q).
Moreover, if u € BS(Q) is nonnegative, then there exists a sequence of non-
negative functions @; € C§°(S)) converging to u in By(€).

Proof. It is enough to show, due to Lemma 2.2, that ut is in B)(Q)
whenever v is in C§°(2). Let n € C§°(B(0,1)), 0 < n < 1, be a mollifier.
For every € > 0, we define 7. by 7.(z) = e "n(%). We notice that 7. * u™ €
C5° () for e < g9 = dist(supp u, 9Q). We know that 7. *u™ — ut uniformly
on R™ as ¢ — 0. We also know that ||n. * u™||rmn) < ||u¥||rp@n) and that
M * ut]p,@ny < [ut]p,mny for every ¢ > 0. Then 7. x u™,0 < € < &
is a sequence of nonnegative functions in C§°(2), bounded in B)(f2), and
converging to u™ uniformly on R™ as ¢ — 0. The convexity and reflexivity of
BJ(Q) together with Mazur’s lemma [32, p. 120] imply that ™ € B)(Q2) and
that there exists a sequence of nonnegative functions ¢, in C§°(€2) converging
to w™ in B,(€2). This finishes the proof. |
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Proposition 2.4. C3°(R") is dense in B,(R").

Proof. Let u € B,(R"). Without loss of generality we can assume that
u is in &, and in particular bounded. For every integer k& > 2, we define
v R* = R,

1 if 0<|z| <k
ep(z) = ¢ (In %)/lnk if k< |z < k2
0 if |z] > k%

Then ¢, € B,(R") and moreover, [cpk]%p(w) < C(lnk)'"P. (See (3.4).) Let
n € C3°(B(0,1)) be a mollifier. Let @ = 1 * . Then ¢ € C5°(R™) and

[@r] By < [orlB,@e) < Clnk)' ™.

Moreover @p(x) =1 for |z| <k — 1 and @p(x) = 0 for |z| > k% + 1.
Let uy = u@g. Then uy € CP(R™) and

[lu = k]| rny < [luxem\Bok-—1)|lLr@En) — 0 as k — oo.

We also have

e </ / L E _lu?;(|22 L dy) "

+ [|ul| oo (mn) (PR B, R — O

as k — oo. This completes the proof. |

Lemma 2.5. Let ¢ be a Lipschitz function with compact support in R". If
u € By(R™), then up € B,(R"™) with
l[uel|B,@®ny < C|lullB,®n),

where C' depends on n,p, the Lipschitz constant of ¢, and the diameter of
supp ¢.

Proof. Let R be the diameter of supp ¢. We choose xq € supp ¢ such
that supp ¢ C B, where B = B(wg, R). Let L > 0 be a constant such that
|o(z) —p(y)| < L|x—y| for every x,y € R™. Then note that ||¢||pe@n) < LR.
We also notice that

[lugllo@ny < ([l @) [Jull Loy,

hence up € LP(R™). For every x,y € R™ we have

[u(z)p(x) — u(y)e(y)] < fu(z) = uly)] lp(@)] + lu(y)] le(z) = ey)l
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Therefore, if we denote

p p
1_/ / y)l |<p in(y)l dz dy.

(2.6) [, @) < |l Lo @) [ul B, @n) + TP

we have

We notice that I = I; + I, + I3, where

)P p
I - / / )l [z 2<p(y)| d dy
Ix —y[*
b [ [ bl e,
n\2B |z — y|2n
Y)I” () —ey)?
I3 = / / dx dy.
R"\2B |z — y|2n
From the definition of I; we have, since ¢ is Lipschitz with constant L,
LP |u(y
2.7 I, < dxd
27) 1_//B|$_ |2n—p Y

(28) - v [ ( [ 1e- y|p-2"das) dy

We have

(2.9) / & — yP~>de < C(n, p)RP™
2B

for every y € 2B, where we recall that R is the radius of B. From (2.7)
and (2.9) we get

(2.10) I, < C(n,p) L R~ ”/ [u(y) Pdy < C(n,p) L2 B [l e

Since ¢ is supported in B, it follows from the definition of I5 that in fact

p
I, = // y)l Wg i dz dy.
n\2B |$ —yl*

I < 116l i // el o gy
& R"\2B |$ - y|2”

Hence
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and since |z — y| > “r “l whenever z € R™\ 2B and y € B, we get

1
I < 2 [l / ()P dy / S,
L=@®) Jp Ri\2B |T — To|?"

Hence

(2.11) I

IN

C) ey B [ Iut) Py

< C) [lllLoe@ny B |l Lo @n-
We notice that

(212) I < <12+/Rn\23/ |x|i|<ﬂl(2n) s@(y)lpdxdy)

< 207 4 2P 1||<P||Loo(Rn [u ]Bp(R”)

From (2.6), (2.10), (2.11), (2.12), and the fact that I = I, + I + I3, we
get that up € B,(R") with

(2.13) [uel|B,@n) < Cllul|B,@n),

where the constant C' is as required. This finishes the proof. |

Lemma 2.6. Let ¢ be a Lipschitz function with compact support in R™.
Suppose uy, is a sequence in B,(R™) converging to u in B,(R"™). Then uxyp
converges to up in By(R™).

Proof. From Lemma 2.5, we have that uip € B,(R") for every k > 1 and
up € B,(R™). Moreover, Lemma 2.5 implies

(2.14) l|ure — uel|p,@ny < Cllur — ul|B,@n)

for every k£ > 1 and since uy — u in B,(R"), it follows that uxp — ug in
B,(R™). This finishes the proof. [ |

Remark 2.7. Let 2, Q) be bounded and open subsets of R" such that {2 CC Q.
Suppose that ¢ is a function in C§°(§2) satisfying

C(n)
2.15 0<p<1,o=1inQand ||Vyl||pomn) < ————.
( ) Vo] oo () dist (2, 99)
By doing an argument very similar to the one from Lemma 2.5, one can

show that up € B (Q) whenever v € B,(R") and ¢ € Ce°(Q) satisfies (2.15).
Moreover, in this case

||U<P||Bp(ﬁ) < Cllul|p,wn)

for all uw € B,(R™) and the constant C' > 0 can be chosen to depend only on
n, p, dist(€2,0Q) and diam €.
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Remark 2.8. It is easy to see that up € B,(R") whenever u, ¢ are bounded
functions in B,(R™). Moreover,

||U80||LP(Rn) < min(||U||L°°(Rn)||80||LP(Rn)a ||<P||L°°(Rn)||u||LP(Rn))

and
[USD]B,,(Rn) < ||U||Loo(Rn)[80]Bp(Rn) + ||80||L°°(Rn)[u]Bp(R”)-

Lemma 2.9. Let B = B(zo, R) C R". Letn € C§°(2B) such that0 <n <1,
that n = 1 on B, and that ||Vn||p=@p) < 5. Then there exists a constant
C = C(n,p) such that

(v —vB)]B,@&) < ClvlB,@n)

whenever v € Ly, (R™) with [v]p, &) < 0.

Proof. Let v € L},.(R") such that [v]p, @) < co. Then v € Lj (R") and
this implies, since n € C§°(2B), that n(v — vg) € LP(R™). We repeat to
some extent the argument of Lemma 2.5 with ¢ =7, and u = v — vg. We
can choose L = 2 and we notice that |[n|| e®») = 1. By repeating the

argument from Lemma 2.5, we get

216 ( / / [u(@)n(e) — ) dy) " oy + TV,

|z —y|>"

where

I / / [v(y) — vsl” In(z) — ()P .

|z —y[*
Like in Lemma 2.5, we notice that I = I1 + I, + I35, where

I / / Iv(y)—vBlpln(x)—n(y)lpdxdy

|z —y[*
_ p _ p
L = / / o(y) = esl? o) =) o
4B JRM\4B |z —y|>"
_ p — p
I = / / oly) = esl? [n(0) =)y o,
R\4B J4B |z —y|>"

As in (2.10), we get

@10 h=Cloup) (B) w7 [ Joto) = onltds < Clop) [

Since 7 is supported in 2B, it follows from the definition of I5 that in fact

— p p
b [ [ M-,
2B JRM\4B |z —y|*"
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_ p
I < / / o) —vel” g,
R"\4B |z —y[>"

and since |x — y| > “'B 20l whenever z € R™\ 4B and y € 2B, we get

1
I < 2™ / g, / lv(y) — vsl” dy.
R™\4B |z — o 2B

/ lv(y) — vp|Pdy

< C(n p) v} Bp(R")

Hence

Hence

(2.18) I

IN

We notice that

(219) I, < (]2+/Rn\43/ |p|n|(2n) n(y)lpd$dy>

< 27 1] + 27 1 ]B o (R7)

From (2.16), (2.17), (2.18), (2.19) and the fact that [ = I + Is + I3, we have
that n(v —vg) € B,(R") with

(2.20) (v —vg)lB,@&n < C(n,p) [ul,@n) = C(n,p) V]5,&n)-

Lemma 2.10. Let v € B,(Q2).
(i) Ifsupp v CC €, then v € B)().
(i) If w € B)(Q) and if 0 < v < w in R, then v € B)(Q).

Proof. For the proof of (i), let ¢» € C§°(£2) such that ¢» = 1 on the support
of v. If a sequence v; € C§°(R™) converges to v in B,(R"), then from
Lemma 2.6 we see that ¢v; € C3°(Q2) converges to v = v in B,(R"),
therefore v € B)(Q).

As to assertion (ii), let ¢; € C5°(Q2) be an approximating sequence for
u € Bg(Q). From Lemma 2.3 we can assume that the functions ¢; are
nonnegative. We can assume without loss of generality that v = u = 0
everywhere on R™ \ €. Then min(v, ;) has as support a compact subset

of Q and hence belongs to Bp(£2). Moreover, since min(v, ;) converges to
min(u, v) = v in B,(Q) (see Lemma 2.2), we have v € B)(€2). [ |
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Lemma 2.11. Suppose that Q C R™ is bounded. Letu € B,(2) be such that
u=0 onR"\ Q and lim,_yzcqou(z) =0 for ally € 0. Then u € B)(Q).

Proof. Recalling that u = u™ — u~, we may assume that u is nonnegative.
The function u. = max(u — ¢,0) is in B,(€2) for ¢ > 0 and has compact
support in Q. Thus u. € Bp(Q), ||uc||p,) < |[ullp, ) for every e > 0
and u. — u both in LP(R") and pointwise as ¢ — 0. The convexity and
reflexivity of Bp(€2) together with Mazur’s lemma imply that u € B)(€2). B

3. Relative Besov capacity

In this section we establish a general theory of the relative Besov capacity
and study how this capacity is related to Hausdorff measures.
For E C Q we define

BA(E,Q) ={u e BS(Q) :u > 1 on a neighborhood of E}.

We call BA(E, ) the set of admissible functions for the condenser (E, Q).
The relative Besov p-capacity of the pair (£, Q) is denoted by

capp (E,Q) = inf{[u]%p(ﬂ) cu € BA(E,Q)}.

If BA(E,Q) =0, we set capp (E,Q) = oo.

Since B)(Q) is closed under truncations from below by 0 and from above
by 1 and since these truncations do not increase the Besov p-seminorm, we
may restrict ourselves to those admissible functions u for which 0 < u < 1.

3.1. Basic properties of the relative Besov capacity

A capacity is a monotone, subadditive set function. The following theorem
expresses, among other things, that this is true for the relative Besov p-
capacity.

Theorem 3.1. Let Q2 C R” be a bounded open set. The set function E +—
capg, (F,Q), E CQ, enjoys the following properties:

(i) If B\ C Es, then cappg, (Eq, Q) < capp, (E2, Q).
(ii) If Q1 C Qo are open and bounded and E C §y, then

Capo (E7 Q2) < Capo (E7 Ql)

(iii) capg (E,Q) = inf{capp (U,Q): E CU CQ, U open}.
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(iv) If K; is a decreasing sequence of compact subsets of Q1 with K =
Nz, Ki, then
capp (K, Q) = lim capg (K;, Q).

1—00

(v) IfEyCEyC...C E=;2, E; CQ, then

capp, (E,$) = lim capg (E;, Q).

(vi) If E=J;2, E; C Q, then

CaPB ) < anpB (Ei, Q).

=1

Proof. Properties (i), (i) and (iii) are immediate consequences of the defi-
nition.
The proof of (iv), (v) and (vi) follows [22] and [23].

(iv) We notice that by monotonicity we have
capg, (I, Q) < lim capg, (K, Q).

On the other hand let U C 2 be an open set containing K. By the compact-
ness of the sets K; and K, we have that K; C U for all sufficiently large i.
Therefore

lim capg (K, () < capp (U, ),

1—00

and we obtain the claim from (iii) by taking the infimum over all such open
sets U.

(v) Monotonicity yields

lim capg (E;, Q) < capp (F, ).
To prove the opposite inequality, we may assume without loss of generality
that lim;_ . capo(Ei,Q) < oo. Let € > 0 be fixed. For every 1 = 1,2,...
we choose u; € BA(E;, ), 0 < u; <1, such that

(3.1) [u;]%, B, < Capg, (E;, Q) +e.

Since (2 is bounded, it follows that wu; is a bounded sequence in BS(Q)
and hence there exists a subsequence, which we denote again by u; such
that u; — u weakly in B)(€2) as i — co. Using Mazur’s lemma we obtain a
sequence v; of convex combinations of u; such that v; € BA(E;, ), v; — win
BI? (Q), v; — u a.e. This sequence can be found in the following way. Let i
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be fixed. Since every subsequence of u; converges to u weakly in Bg(Q), we
may use the Mazur lemma for the subsequence u;,7 > i5. We obtain a finite
convex combination of the functions wu;,7 > iy as close to u as we want in
BS(Q). For every i = ig, 79 + 1, ... there is an open neighborhood O; of E;,
such that u; = 1in O;. The intersection of finitely many open neighborhoods
of E;, is an open neighborhood of E;,. Therefore, v;, equals 1 in an open
neighborhood U, of E;,. Moreover, since for every ¢ = 1,2, ... we have

[wily ) < capp, (B, Q) +e < jlirgo capp, (Fj,Q) +¢,

we obtain from the convexity of the Bj,-seminorm and (3.1) that

(3.2) [vilg, @) < jlirrolo capp, (Fj,Q) +¢
for every ¢ = 1,2, .... Passing to subsequences if necessary, we may assume
that for every ¢ = 1,2,... we have
(3.3) Vi1 = villB,@) < 27
For j =1,2,... we set
w; = sup v;.
i>j
It is easy to see that w; = lim,_. w; pointwise a.e., where wj; is

defined for every k£ > j by

Wj = Sup v;.
k>i>j

We notice that w;, € BA(E;, ). Moreover,

o0
Wik < v+ E [Vip1 — v;
i=j

pointwise in R™ and

|wj () —win(y)] < Sup |vi(z) = vi(y)] < [v; (@) — v;(y)]
+ Z | (Vi1 () = vi2)) = (Vi (y) — vily))]

for all #,y € R™ and every k > j. The convexity and reflexivity of B)(2)
together with Mazur’s lemma and formula (3.3) imply that w; € B)(€2) with

o
w; < vy + Z |Vig1 — v
=
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pointwise a.e. in R™ and

|w; () —w;(y)] < Sup vi(z) = vi(y)] < |vj () = v;(y)]

+ Z (Vi1 (z) — v3(2)) — (vir1(y) — vi(y))]

for a.e. z,y € R". It is easy to see that w; = 1 in a neighborhood of E
and this shows, since w; € B)(€Q), that in fact w; € BA(E,Q) and hence
capp, (F, ) < [wj]%p(ﬂ)' We notice that

[wilB, @) < [vilB,@) + Z[UHI — i, < [v]By@) + 2771
i=j

for every j > 1. Therefore, for all sufficiently large 7 we have from (3.2) that

capp, (E,Q) < [w;lp o) < Zliglo capp, (Ei, ) + 2e.

By letting € — 0, we get the converse inequality so (v) is proved.

(vi) To prove the countable subadditivity, we need to prove the finite
subadditivity first. It is enough to prove this for two sets because then the
general finite case follows by induction. So let E; and Es be two subsets of (2.
We can assume without loss of generality that capp (E1,QH-cap g (E9,2)< co.
Let u; € BA(E;, Q) such that 0 < u; < 1 and [ui] ) < capp, (E;, Q) +¢
for i = 1,2. Then u = max(uy,us) belongs to BA(E; U E», ) and since
fu() — uly)| < max(ur(2) — ()], [ua(x) — ualy)]) for all v,y € R, it
follows that

capp, (B1 U Ey, Q) < [ull o) < [wlf, o) + [u2l,(0)
< capg, (E1,Q) + capp (Es, ) + 2¢.
Letting ¢ — 0 we complete the proof in the case of two sets, and hence the
general finite case.

The general case follows from the finite case together with (v). The the-
orem is proved. |

A set function that satisfies properties (i), (iv), (v) and (vi) is called
a Choquet capacity (relative to Q). We may thus invoke an important ca-
pacitability theorem of Choquet and state the following result. See [12,
Appendix II].
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Theorem 3.2. Suppose that ) is a bounded open set in R™. The set function
E — capo(E, Q), E C Q, is a Choquet capacity. In particular, all Borel
subsets (in fact, all analytic) subsets E of Q) are capacitable, i.e.,

capp (F, ) = sup{capp (K,Q) : K C E compact}
whenever E C Q is analytic.

Remark 3.3. If K is a compact subset of the bounded and open set {2 C R",
we get the same Besov B,-capacity for (K, (2) if we restrict ourselves to a
smaller set, namely

BW(K,Q) ={u € C5°(Q) : w =1 in a neighborhood of K}.

Indeed, let u € BA(K,Q); we may clearly assume that v = 1 in a neigh-
borhood U CC Q of K. Then we choose a cut-off function n € C*°(R"),
0 <n <1suchthat n=11in R"\ U and n = 0 in a neighborhood U of K,
U cc U. Now, if @; € C3°(Q) is a sequence converging to u in B)(€2), then
; =1 —n(1 — ¢;) is a sequence belonging to BW (K, §2) which converges
to 1 —n(1 —u) in B)(€). (See Lemma 2.6.) But 1 —7(1 —u) = u. This
establishes the assertion, since BW (K, Q) C BA(K, Q). In fact, it is easy
to see that if K C ) is compact we get the same Besov B,-capacity if we
consider

BW(K,Q)={ueC;°(Q):u=1o0n K}
or BWy(K,Q) ={uecCo(Q)NB)(Q) :u=1onK}.

It is also useful to observe that if ¢ € B)(Q) is such that if p—¢ € B)(Q\ K)
for some ¢ € BW, (K, ), then

capp, (K, Q) < W]%p(g) :

3.2. Upper estimates for the relative Besov capacity

For every x € R" we obviously have capp (F,(2) = capp (E+x, Q+x). Next
we derive some upper estimates for the relative Besov capacity. Similar esti-
mates have been obtained earlier by Bourdon in [6]. We follow his methods.

Theorem 3.4. There exists a constant C' = C(n,p) > 0 depending only on
n and p such that

(3.4) capo(B(xo,r),B(:co,R)) <(C (ln g) B

for every 0 < r < g and every xg € R".
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Proof. We use the function u : R" — R,

1 if 0 <|rx—mxo| <r
0 if |z —xo| > R.

Then u € B,(R™) because it is Lipschitz with compact support. Since u is
continuous on R™ and 0 outside B(zy, R), we have in fact from Lemma 2.11
that u € B)(B(xo, R)). In fact u € BA(B(zo,7), B(xo, R)) since u = 1 on
B(zo,7). Let v(z) = u(z) In £. We will get an upper bound for [v] By (Blao, )
Let & > 3 be the smallest mteger such that 2% > R. Fori = 1,...,k
we define B; = B(x,2'r) \ B(xg,2""!r). We also define By = B(xg,r) and
Byy1 = R™\ B(zg,2%r). We have

[o(z) — vyl
(9], (B(zo. ) = > ly= ) / / Ia: — y|2" drdy
0<14,j<k+1 0<14,j<k+1

Obviously we have I; ; = I;;. We majorize I;; by distinguishing a few
cases. For j < k and 0 < i < j — 2 we have from the definition of v that
|v(z) —v(y)| <j—1i+ 1 whenever x € B; and y € Bj;, hence

Li; < Co(§ — i+ 1)P(20r) 72 (2)™ (277)",

that is ;; < Ci(j — i)P20=9" For 0 < i < j < k we notice, since v is
s—-Lipschitz on | J i>; Bj that

L < (27'r) dx dy.
/1/B|x— B

Moreover, we have

1
/ —————dz < Cy(diam B;)P™"
B

7 |,’L' - y|2nfp

for every y € B(xg,2'r), where Cy depends only on p and n. Hence for
0 <i<j <k we have

Ii,j S 03(22‘717”)710(22‘7”>n(2j7’>p7n S 042(]'70(1;7”).

In particular, for j—1 <7 < j < k, the integral I; ; is bounded by a constant
that depends only on p and n. Now we have to bound /; ; when j =k + 1.
Since v is constant on By U By, we have I; 11 = 0 for ¢ E {k,k + 1}. For
0<i<k—1we have

1
L1 < (k—i+ 1)?/ / ——da dy.
1 Bk+1 |x - y| "
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But there exists C5 > 0 such that

1
/ L dr < Cy(@)
Brod 1T —Y[*"

for every y € R™ with |y — x| < 28~1r. Hence
Lig < Cs(k —i + 1)p20-F=bn,

Finally we have

W sy SCk+Cs Y (G — 29,

0<i<j<k+1
The last sum is equal to

k+1

> (k+2-nra

=1

But k+2 —1 < k+ 1 and there exists a > 1 such that P27!" < Cya~! for
{ > 1. Hence
V1B, (B(eory < Croln =
and A
—p
(], (B0 < 010<1n 7) :
The claim follows with C' = C}. |

Whenever () C R" is a cube with sides parallel to coordinate axes, we
denote its edge length by ¢(Q)) and then set

Q=0Qx[((Q),20(Q)] C R,

so that @ is the upper half of the (n + 1)-dimensional box Q x [0, 2¢(Q)].
For definiteness, we assume that the cubes are closed. We denote D, (R"),
r > 0, the countable collection of all r-dyadic cubes in R™. Thus, Q €D, (R")
if and only if the corners of @ lie in 2¥7Z" and ¢(Q) = 2*r for some k € Z.

Similarly, if @y C R™ is a r-dyadic cube, we denote by D,.(Qy) the
r-dyadic subcubes of ()y. Finally, we set

W, ={Q:Q € D,(R")}.

The members of W, will be referred as to as r-dyadic Whitney cubes of R+,

Two distinct r-dyadic Whitney cubes @, @’ are adjacent if there exists an
integer k such that either:
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(i) @,Q" are dyadic cubes in D,(R™) and both @ and @’ have side length

2%r and a common face, or

(ii) one of the cubes Q, Q' has side length 2%r, the other has side length
2+1r and the one with the bigger side length includes the other one.

Given a function f € B,(R"), we construct an extension ]?: W, — R.

For @ €W, we let )
a1 p
Q) |Ql/@f(ff)x

For two adjacent cubes @, @’ € W, we have
p

~ ~

~ e L -
F@-Faw = | [ e Q,f()

B ‘|@| Q] / )= sy

< wio ), Q,|f(x)—f(y)lpd:vdy
< O / F@) = FOF g
QJQ

|z —y|*"

p

For the following lemma see [7, Lemma 3.5].

Lemma 3.5. There ezists a constant C = C(n) depending only on n such
that we have

coy s Y Ml <oy - g
Q,Q'eW; adjacent
for a.e. n,¢ € R™.
We also have (see [7, Theorem 3.4]):
Lemma 3.6. There exists a constant C' = C(n,p) such that

ey € X GG /Q [ 11w - sty

0Q,0'eW, adjacent
< Clfl5 @
for every f € B,(R").
This implies (see [7, Lemma 3.5)):

Lemma 3.7. There exists a constant C' = C(n,p) such that

(3.5) Yoo @ = F@)P < ClYy,

@,@’EWT adjacent
for every f € B,(R").
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3.3. Hausdorff measure and relative Besov capacity

Now we examine the relationship between Hausdorff measures and the B,-
capacity. Let h be a real-valued, increasing function on [0, c0) with

2lfilrol h(t) = h(0) = 0.
Such a function A is called a measure function. Let 0 < § < oco. For E C R"

we define
AJ(E) =inf Y h(r;),

where the infimum is taken over all coverings of E by balls B; with diame-
ter r; not exceeding 0. The set function Aj° is called the h-Hausdorff content.
Clearly A9 is an outer measure for every § € (0, o0].
_ Moreover, for every E' C R", there exists a Borel set E such that E C
E C R" and AJ(E) = AJ(E). Clearly AJ(E) is a decreasing function of 4.
This allows us to define the h-Hausdorff measure of E C R™ by
An(E) =sup AY(E) = lim AS(E).
6>0 6—0

The measure Ay, is Borel regular; that is, it is an additive measure on
Borel sets of R™ and for each £ C R" there is a Borel set G such that £ C G
and Ay (F) = Ap(G). (See [13, p. 170] and [25, Chapter 4].) If h(t) = t*,
we write Ag for Ay, It is immediate from the definition that A (E) < oo
implies A, (E) = 0 for all u > s. The smallest s > 0 that satisfies A, (E) =0
for all u > s is called the Hausdorff dimension of E.

The set function Aj° satisfies the following three properties:

(i) If K; is a decreasing sequence of compact sets, then

A;O(ﬁfg) — lim A®(K,).

1—00
i=1
(ii) If E; is an increasing sequence of arbitrary sets, then

A (B = lim AR (E).
i=1
(ili) AP(E) = sup{AX(K): K C E compact} whenever £ C R" is a Borel
set. (See [1, p. 138] and [8, Theorem II.2].)

If h:]0,00) — [0,00) is a measure function, we know that A,(F) = 0 if
and only if A°(E) = 0. (See [1, Proposition 5.1.5].) If h(t) = 5,0 < s < o0,
we write A for A,
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We notice that for every 0 < s < oo, there exists a constant C' =
C(n,s) > 0 such that

(3.6) A®(B) = C (diam B)*

for every ball B C R"™.

Since Ap(E) = 0 for every E C R™ whenever h : [0,00) — [0,00) is a
measure function such that liminf, .o h(t)t™™ = 0, it is enough to assume
that h : [0,00) — [0,00) is an increasing homeomorphism such that ¢ —
h(t)t ™", 0 < t < oo is decreasing if we hope to get Ap(E) > 0 where
E C R™. (See [1, Proposition 5.1.8].)

Let Qo € D,(R"™) be a cube with side length 7.

Theorem 3.8. Suppose h : [0,00) — [0,00) is an increasing homeomor-
phism such that t — h(t)t™, 0 < t < oo is decreasing. There exists a
positive constant C7 = C{(n,p) such that

AZO(E N Qk,r)
—kp ’ p
(Js " iy 1)

for every E C R™, every k > 1,7 > 0, and for every Qx, € D,(Qo,) with
side length 2=%r and with one corner at the center of Q..

(3.7) < Ol eapy (BN Q. int(Qo,r))

Here and throughout the paper int(E) denotes the interior of a set F
whenever £/ C R™.

Proof. Fix r > 0, kK > 1, )y, a r-dyadic cube of side length r and Q, €
D,(Qo.) r-dyadic subcube of @, with side length 27%r and with one corner
at the center of ()y,. Let £ C R". From the fact that there exists a Borel

set I such that E C E C R™ and

Capo (E N Qk,ra int(QO,r)) = Capo(E N Qk,ra int(QO,T’))a

we can assume that E is a Borel set. Moreover, since
AP (E) = sup{A°(K) : K C E compact}

whenever I/ C R" is a Borel set and since capp (+,int(Qo,)) is a Choquet
capacity, we can assume that E is compact.
—k ,
There is nothing to prove if we have either f02 "h(t)P M = oo or

AP (ENQry) = 0. So we can assume without loss of generality that o =
AP (EN Q) > 0 and that forkr h(t)p’flﬂ < 00,

t
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For every ¢ € 0Q)y, there is an increasing sequence (Qs¢)s<o of r-dyadic
subcubes of )y, containing ¢ such that @), has side length 2°r for every
integer s < 0 and

() @sc = {3

s<0

We denote by sg the sequence (@574)330-

For every n € Q) there is a decreasing sequence (Qs4,,)s>0 of r-dyadic
subcubes of Q. containing 7 such that Qg4 has side length 2757%r for
every s > (0 and

m Qs+k K/ {"7}
s>0
We denote by 3717 the sequence (@s+k,n)820- Let I = {@E’r’ . "@/kf} be a
shortest sequence of pairwise adjacent cubes connecting Qo and Q.
For (¢,n) € 0Qo, X Qr, we define ¢, = (Qs ¢ n)sez, Where

@s,( if s S 0
Qs,g‘,n = Qsﬂn if 0 <s< k
Qs,n if s > k.

For Q,Q' € W, we define

C(@a @,) = {(gan) € aQO,rXQk,r : @ - @s,(m, Q\/ == @54_17{777 for some s - Z}

We notice that C(@, CA)/) =0 if @, @/ are not adjacent or if they are adjacent
but with the same side length.

Since the A°(0Qo,) = C(n)r and o = A°(ENQy,) > 0, from Frostman
lemma (see [1, Theorem 5.1.12]) there exists a constant C' > 0 and probab-
ility measures vy on @)y, and v, on ENQy, such that for every ball B(z,t)
of radius ¢ of R™ we have

(3.8) vo(B(a,1)) < c; and 1 (B(z, 1)) < ¢

For Q,Q' € W, we define
m(@a Q\/) =1y X Vl(c(@a @/))

We notice that m(Q Q) (@’ @) = 0 for every pair of cubes Q Q’ € W,.
Moreover, if m(Q Q ) # 0, then this implies that Q and Q’ are adjacent but
with different side length.
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For f € BW(E N Qy,r, int(Qo,)) let fbe its extension. Then, since f is
continuous, we have that

1
|Qv| Qv

for every y € R" for every nested sequence @), of r-dyadic cubes containing
y and converging to y. It follows that

1< f(n ) < Z Qs+1cn A(@s,c,n))

SEL

f@)de — f(y)

whenever n € EN @y, and ¢ € 0Qo.,-
We obtain with the definition of m (@, Q') and by Holder’s inequality that

| < / / F@uercn) = FQuc)) din() du(C)
0Qo,r EanTSEZ

< /w /Q SO 1P @errgm) = T @)l don () do(€)

k,r s€Z

VAN
/—\ @)
O
@)
;
&
o
3
=4
=)
O
|
)
Q)
=
N~
=
=
VRS
3
Q)
Q)
=
N~
=
’E\

where we used (3.5) for the last inequality. For a nonnegative integer s we let
={(@Q,Q)eW, xW,:Q=0Q_, 1¢, Q' = Q_, for some ¢ € dQy,,}
and similarly
= {(@7 @/) EW, X W, : @ = @erk,m @/ = @s+k+1,n for some 7 € Q. }-

We notice that we can break Y = Z@ dew, m(@, @’)p' into 3 parts,
namely

> = Z Yo m@QQY+ Y m@Q.Qy +Z > m@Q.Q).

5=0(Q,Q")€Eo,s Q.Qrerl 5=0(Q,0")eEx,s
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We recall that I = {@or, .. Q;M} is a shortest sequence of pairwise

adjacent cubes in W, connecting QO » and Qk »- Thus, the sum in the middle
is exactly k. We get upper bounds for the first and the third term in the
sum. We notice that for every s > 0 we have

> m@Q,Q) =
(Qvél)eEO,s

since 1y X vy is a probability measure. On the other hand, there exists a
constant C’ = C’(p,n) depending only on p and n such that

B2 )

m(Q,Q) < ' for every (Q, Q') € Ei,
s>

)
for every integer s > 0 and
m(Q, Q') < C'27° for every (Q, Q') € Ey.,

for every integer s > 0.

Therefore
o>y m@QY =YY m@QQeyr'mQe.q)
(Q.Q)EE s 5=0(Q,Q")e kB,
<car Sty (3 wo.2)
520 (Q.Q")€Es

But there exists a constant Cy = Cy(n,p) > 1 such that

1t Lt y o dt
— h(t h(27%=¢r) 1<C/ 1=
00/0 1y~ Z(

for every r > 0, every integer k£ > 1 and every increasing homeomorphism
h:[0,00) — [0,00) such that ¢ — h(t)t™", 0 < t < oo, is decreasing. Hence

i Z m(@, @/)pl <Ca' /02 Th(t)p’l%.

s=0 (@7@/)6E1,s

From a similar computation we get

Z > m@.Q)

(Q.Q")€Eo,s s=0(Q,Q")eEo,s

I
=
S
Q
’.B\
I
4
S
Q)
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So we get

27 dt
Y <cC <a1p’ / Bk 1) .
0
It is easy to see that there exists a constant C' = C(n, p) such that
A?(Qk,r)
2= kp / p=
(J5 " ney )

for every r > 0, every integer k£ > 1 and every increasing homeomorphism
h:[0,00) — [0,00) such that ¢ — h(t)t™", 0 < t < oo, is decreasing. Hence

2 kp
/ / dt
E ngalp/ h(t)p*1?

0

<.

Therefore we obtain

c oA\
1 < C|f]s,@m <k‘ ol P / h(t)? _17)
0

for every integer k > 1 and for every f € BW(E N Qy.,int(Qo))-
This implies that there exists C] = C}(n,p) > 0 such that

/\Zo(l? r1c?kx)
2=k ’ p
(o ney—4)
This finishes the proof. |

— EP < C’{capBP(E N Qr, int(Qo1))-

Theorem 3.8 helps us formulate and prove the following theorem. We
leave the details to the reader.

Theorem 3.9. Suppose h : [0,00) — [0,00) is an increasing homeomor-
phism such that t — h(t)t™, 0 < t < oo is decreasing. There exists a
positive constant C; = Cy(n,p) such that

NAENQE@ 20 hrtcap,, (£0Q(r, 274, int(Q(r, 1)
(" nwr=12)

for every E C R", every integer k > 1, every x € R™, and every r > 0.

From Theorem 3.9 it follows easily that there exists a constant C' =
C(n, p) such that
A¥(E N B(a,3R))
R
whenever £ C R", R > 0, and a € R™.

(3.9)

< Ccapg, (F N B(a,3R), B(a,6R))
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As a corollary we have the following.

Corollary 3.10. There exists a positive constant Co = Co(n,p) such that

(3.10) Cy (ln E) : < capg (Q(x,r),int(Q(z, R)))

r

for every x € R™ and every pair of positive numbers r, R such that r < g.

Proof. We apply Theorem 3.9 for h(t) = t. We notice that there exists a
constant CY, = C4(n, p) such that

AR Q@2 )
()

for every x € R", every integer k > 2 and every r > 0. The rest is routine. ll

(3.11)

Theorem 3.4 and Corollary 3.10 easily yield the following theorem, (cf. [6]).
Theorem 3.11. There exists Cy = Cy(n,p) > 0 such that

12 Cio (1“ 5)1—17 < capp, (B(x, ), Bz, R)) < Gy (1n E)l_p

r r

n - ” R
Jor every x € R™ and every pair of positive numbers r, R such that r < 5.

A set E CR" is said to be of Besov B,-capacity zero if capp (ENQ, Q) =0
for all open and bounded © C R". In this case we write capp (F) = 0.

The following lemma is obvious.

Lemma 3.12. A countable union of sets of Besov B,-capacily zero has
Besov By-capacity zero.

The next lemma shows that, if £ is bounded, one needs to test only a
single bounded open set 2 containing £ in showing that E has zero Besov
B-capacity.

Lemma 3.13. Suppose that E is bounded and that there is a bounded neigh-
borhood ¥ of E with capp (E,§) = 0. Then capg (E) = 0.

Proof. Let (2 be an open set. Since there exists a Borel set E C Q such
that £ C E and capp (E,Q) = capp, (F, ) = 0, we may assume that E is
itself a Borel set.

Thus, by invoking Theorem 3.2, we may assume that £ N ¢ is compact.
Since capp (ENCY, ) = 0, there exists a sequence ¢; € BW (ENY, (1) such
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that [i|B, @) < 27 for every integer i > 1. We notice that the sequence
@i is bounded in B)(Q). Therefore, from the reflexivity of B)(Q2), there
exists 1 € BI? (©) and a subsequence denoted again by ; such that ¢; — 1)
weakly in B)(€2). From Mazur’s lemma, there exists a sequence @; of convex
combinations of ¢,

Ji Ji
oi = Z)\z‘,j%‘, Aij > 0, and Z)\Lj =1,
j=i Jj=i

such that @; — ¥ in Bg (©). Without loss of generality we can assume that
©; — 1 pointwise a.e. in R™ asi — oo. The convexity of the Besov seminorm
and the choice of the sequence ; imply, together with the closedness of
BW(E N, Q) under finite convex combinations, that @; is a sequence in
BW(ENQ, Q) and (@5, ) <2 for every integer ¢ > 1. Since [@;]p, ) <27
for every integer i > 1 and @; — 1 in B)(Q), it follows that [¢]p,) = 0.
Therefore, from (2.1) and the fact that ¢ € LP(R"), it follows that in fact
1 =0 a.e. in R™, which means that

(3.13) 124 B,(2) — 0

asi—o00. Let ne BW(ENQ, ). Then n ¢; is a sequence in BW(ENQ', QY),
hence

(3.14) capp, (E N, Q) <&l o
for every integer ¢ > 1. From Lemma 2.5, (3.13) and (3.14) we have
0 < capp, (ENQ.0) < il 5T ) < lim [ln G, o
< CH@H%Z,(Q) — 0,

where C' depends only on n, p, the Lipschitz constant of n and the diameter
of supp 7. Hence capp, (E'N ', Q') = 0. This finishes the proof. [ |

Corollary 3.14. Let E C R" be such that capp (F) = 0. Then Ap(E) =0
for every measure function h : [0,00) — [0,00) such that

1
(3.15) / h(t)p'l% < oo.
0

In particular, the Hausdorff dimension of E is zero.

Note that for every ¢ > 0 we can take h = h. : [0,00) — [0,00) in
Corollary 3.14, where h.(t) = | Int|*7~¢ for every t € (0,1/2).
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Proof. It is enough to assume, without loss of generality, that h : [0, 00) —
[0,00) is an increasing homeomorphism such that ¢t — h(t)t™, 0 < t < 0o
is decreasing. (See [1, Proposition 5.1.8].)

If capp (£) = 0, then there exists a Borel set E such that E C E and

capp (E) = 0, hence we can assume without loss of generality that E is
itself Borel.

Since Aj is a Borel regular measure and A,(E) = 0 if and only if
AP(E) =0, (see [1, Proposition 5.1.5]) it is enough to assume that E is
in fact compact.

For E compact the claim follows obviously from Theorem 3.9.

The second claim is a consequence of (i) because for every s € (0,n), the
function hy : [0, 00) — [0, 00) defined by hy(t) = t° has the property (3.15).

|

As another corollary, we have the following:

Corollary 3.15. Suppose E' C R™ is such that capg, (E) = 0. Then R"\ E
15 connected.

Proof. We fix s € (1,n). If capg (E) = 0, then in particular we have
A,—s(E) = 0 and this implies via [20, Theorem 2.27 and Corollary 2.39] that
Cap,(E) = 0. Here Cap, denotes the Sobolev s-capacity as in [20, p. 48].
An appeal to [20, Lemma 2.46] finishes the proof. [ |

We close this section with another sufficient condition to get sets of Besov
B,-capacity zero.

Theorem 3.16. Let h : [0,00) — [0,00) be an increasing homeomorphism
such that h(t) = (In3)'"7 for all t € (0,3). Then Ay(E) < oo implies
capp, (E) = 0 for every set E in R".

Before we prove Theorem 3.16, we state and prove the following propo-
sition.
Proposition 3.17. Let E be a compact set in R™. There exists a constant
C = C(n,p) such that capg (E,Q) < CAy(E) for every bounded and open

set £ containing E.

Proof. We can assume without loss of generality that A, (F) < co. Let 2 be
a bounded open set containing £.

We denote by 4 the distance from E to the complement of 2. Without
loss of generality we can assume that 0 <9 < 1.

We fix 0 < e < 1 such that 0 < e < %. Then r < ¢ implies

) 1 1
In{—1|>=In(-]).
() 50 ()
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We cover E by open balls B(z;,7;) such that r; < 5. Since we may
assume that the balls B(z;,r;) intersect E, we have B(z;,2) C Q. In fact,
since F is compact, F is covered by only finitely many of the balls B(x;, ;).

As in [20, p. 48] we obtain

o)

E Q < B i, Z7Q S B 7;7 Z7B i,
capo( Q) < zl:capo( (i, 1), ) zi:(?aPBp( (i, 1), B( 5

< ¢y (m %)Hﬂ,

7

In the last step we also used formula (3.12) for the Besov B,-capacity of
spherical condensers together with our choice of . Taking the infimum over
all such coverings and letting ¢ — 0, we conclude capg (E,€) < CA,(E).
This finishes the proof of the proposition. |

We prove now Theorem 3.16.

Proof. Since A, is a Borel regular measure, we may assume that F is a
Borel set and furthermore, in light of the Choquet capacitability theorem,
we may assume that F is compact. We let M = CA,(E), where C' is the
constant from Proposition 3.17. Since Ap(E) < oo, we have that |E| = 0,
while Proposition 3.17 implies that capp (F,(2) < M for every bounded and
open set 2 containing E. Let 2 C R" be a bounded open set containing E.
From Lemma 3.13 it is enough to show that capg (E,) = 0. We choose a
descending sequence of bounded open sets

Q=000 DD...2DNL =F

and a sequence ¢; € BW(E, ;) with [‘pi]%p(ﬂi) < M + 1. Then ¢; is a
bounded sequence in B,(2). Because ¢; converges pointwise to a function
¥ which is 0 in R™ \ E and 1 on E, we have from Mazur’s lemma and the
reflexivity of B)(Q2) that ¢ € B)(€). That is, there exists a subsequence
denoted again by ¢; such that ¢; — ¢ weakly in BS(Q) and a sequence @;
of convex combinations of ¢;,

Ji Ji
(Zi = Z )\Z'J'QD]', )‘i,j Z 0, and Z )‘i,j = 1,
j=i Jj=i

such that @; — 1 in Bg (©). Without loss of generality we can assume that
©; — 1 pointwise in R™ as i — o0o. The convexity of the Besov seminorm
and the choice of the sequence ¢; imply, together with the closedness of
BW (E, ;) under finite convex combinations, that ¢; € BW (E, §);) for every
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integer ¢ > 1. Since |E| =0, ¢ = 0 in R"\ E, and @; — ¢ in B)(Q), it
follows that ||¢||s,@) = 0. This implies ||@;||p,) — 0 as i — oo, hence

0 <capp (E,Q) < ililglo[@]%p(m =0.

4. Besov capacity and quasicontinuous functions

In this section we study a global Besov capacity and quasicontinuous func-
tions in Besov spaces.

4.1. Besov Capacity
Definition 4.1. For a set £ C R" define

Capp, (E) = inf{”“”ip(w) + [u]%p(Rn) tu € S(E)}
where u runs through the set
S(E) ={u € B,(R") : u=1 in a neighborhood of E}.

Since B,(R") is closed under truncations from below by 0 and from above
by 1 and since these truncations do not increase the norm, we may restrict
ourselves to those functions v € S(F) for which 0 < u < 1. We get the same
capacity if we consider the apparently larger set of admissible functions,
namely

S(E) ={u € B,(R"): w>1 ae. in a neighborhood of E}.
Moreover, we have the following lemma:

Lemma 4.2. If K is compact, then
Capg, (K) = ][0l g + [0]8 o 0 € So(K)}
where So(K) = S(K) N Ce(R™).

Proof. Let u € S(K). Since B,(R") = B)(R"), we may choose a sequence
of functions ¢p; € C§°(R") converging to w in B,(R™). Let U be a bounded
and open neighborhood of K such that u=11in U. Let ¢y e C*(R"), 0<¢ <1
be such that =1 in R"\U and =0 in Ucc U, an open neighborhood of K.
From Lemma 2.6 we see that the functions ¢, =1 —(1 — ¢;)9 converge to
1—(1—u)vy in B,(R™). This establishes the assertion since 1—(1—u)y = u. R

We can apply almost verbatim the proof of Theorem 3.1 to conclude:
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Theorem 4.3. The set function E +— Capp (E),E C R" is a Choquet
capacity. In particular

(i) If Ex C Es, then Capp,(E1) < Capp, (E).
(i) If E =, E;, then

Capg, (E) < ) Capg (E)).

We have introduced two different capacities, and it is next shown that
they have the same zero sets. _
Let €, Q be bounded and open subsets of R™ such that 2 CC €. Let

n € C§°(£2) be a cut-off function satisfying (2.15). Suppose K is a compact
subset of €. Then, if u € Sy(K), we have that un is admissible for the
condenser (K, 2). Therefore

(41) CapBP<K7 Q) < [un]%p(ﬁ) < ||'U,T]||po(ﬁ) < ¢ ||u||po(]R")

where C' depends only on n, p, diam  and dist(€2, 99). (See Remark 2.7.)
Since [[ull5, ey = |[ulls(an) + [u], ey, e have

(4.2) ||u||]133p(ugn) < 2p_1(||u||ip(ngn) + [U]%p(w))-
From (4.1) and (4.2) we get, by taking the infimum over all u € Sy(K), that
(4.3) capp, (K, Q) < 2v! C Capp, (K),

where C' is the constant from (4.1).

Since both capp, (-, 2) and Capp (-) are Choquet capacities, we obtain:

Theorem 4.4. There erists C > 0 depending only on n, p, diam Q and
dist (2, 02) such that

(4.4) capy, (E,Q) < C Capg, (E)

for every E C €.

Corollary 4.5. If Capy (E) = 0, then capg (E) = 0.
We also have a converse result, namely:

Theorem 4.6. If capp (E) =0, then Capg (E) = 0.
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Proof. Without loss of generality we can assume that £ is bounded. Since
we have capp (E) = 0, there exists a Borel set £ such that £ C E and

capg, (E) = 0. Since Capp (-) is a Choquet capacity, we can in fact assume
that £ is compact. Then we have capp (E,Q) = 0 for every € open and
bounded, 2 D E. We fix 2 C R" bounded and open such that £ C €.
Like in the proof of Lemma 3.13, we construct a sequence of functions ¢; in
BW (E, ) such that |||, — 0 as i — oo. This implies in particular
that the sequence @; is in Sp(E) with

0 < Capp,(E) < lim <||<5i||z£p(mn) + WA%AR“)) =0,

hence Capp (F) = 0. This proves the claim. [ |

Remark 4.7. For £ C R" compact we see from the proof of Lemma 3.13
and Theorem 4.6 that it is enough to have capp (£, ) = 0 for one bounded
open set  C R" with 2 C  in order to have Capy (E) = 0.

It is desirable to know when a set is negligible for a Besov space. If there
is an isometric isomorphism between two normed spaces X and Y we write
X =Y. In particular, if E is relatively closed subset of €2, then by

B,(Q\ E) = By()

we mean that each function u € Bg(Q) can be approximated in B,-norm by
functions from C§°(Q2\ E).

Theorem 4.8. Suppose that E is a relatively closed subset of Q). Then
0 0
B,(Q2\ E) = B,(Q)
if and only Capp (E) = 0.

Proof. Suppose that Capg (E) = 0. Let p € C§°(2) and choose a se-
quence u; of functions in B,(R") such that 0 < u; < 1, u; = 1 in a
neighborhood of £ and u; — 0 in B,(R"). For every j > 1 we define
w; = (1 —u;)p. Then from Remark 2.8 and the properties of the functions
¢ and u;, it follows that w; is a bounded sequence of functions in B,(R"),
compactly supported in © \ E. Lemma 2.10 implies that w; is a sequence
in B)(2\ E). Moreover, Lemma 2.6 implies, since ¢ — w; = u;p for every
J > 1 and since ||u;||p,®») — 0, that w; converges to ¢ in B,(R"). Since
wj is a sequence in BY(Q\ E), it follows that ¢ € B)(€2\ E). Hence

B)(Q) C BY(Q\ E)

and since the reverse inclusion is trivial, the sufficiency is established.
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For the only if part, let K C E be compact. It suffices to show that
Capp (K) = 0. Choose p € C§°(2) with ¢ = 1 in a neighborhood of K.
Since B)(Q\ E) = Bp(Q2), we may choose a sequence of functions ¢; €
C3°(©2\ K) such that p; — ¢ in B,(€2). Consequently

Capi, () < (1 [103 = #llen + 25 ~ ¥l ) =0
and the theorem follows. [ |

4.2. Quasicontinuous functions

We show that for each u € B,(R™) there is a function v such that u = v a.e.
and that v is B)-quasicontinuous, i.e. v is continuous when restricted to a set
whose complement has arbitrarily small Besov B,-capacity. Moreover, this
quasicontinuous representative is unique up to a set of Besov B,-capacity
ZEro.

Definition 4.9. A function v : R" — R is B,-quasicontinuous if for every
e > 0 there is an open set G C R"™ such that Capp (G) < ¢ and the
restriction of u to R™ \ G is continuous.

A sequence of functions ¢; : R* — R converges B,-quasiuniformly in
R"™ to a function ¢ if for every ¢ > 0 there is an open set GG such that
Capp, (G) < € and ¢; — ¢ uniformly in R™\ G.

We say that a property holds B,-quasieverywhere, or simply q.e., if it
holds except on a set of Besov B,-capacity zero.

Theorem 4.10. Let ¢; € C(R™)NB,(R™) be a Cauchy sequence in B,(R™).
Then there is a subsequence @y, which converges B, -quasiuniformly in R"™ to
a function u € B,(R™). In particular, u is By,-quasicontinuous and g — u

B,-quasieverywhere in R™.

Proof. The proof is similar to the proof of [20, Theorem 4.3] and omitted. B

Theorem 4.10 implies the following corollary.

Corollary 4.11. Suppose that u € B,(R"™). Then there ezists a Borel B,-
quasicontinuous function v € B,(R™) such that u = v a.e.

Proof. Since u € B,(R"), from Theorem 2.4 there exists a sequence of
functions ¢; in C§°(R™) converging to u in B,(R"). Passing to subsequences
if necessary, we can assume that ¢; — u pointwise a.e. in R" and that

2 (Il = @illn + 051 = 0318 @ny ) < 277
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for every j = 1,2,... Defining F; = {z € R" : |p;11(z) — p;(z)] > 277}
and letting E' = M2, U2, Ej, the proof of the previous theorem yields
the existence of a function v € B,(R"), such that ¢; — v in B,(R") and
pointwise in R™ \ E. Since E is a Borel set of Besov B,-capacity zero and
the functions ¢; are continuous, this finishes the proof. |

Theorem 4.12. Let u € B,(R™). Then u € B)(Q) if and only if there
exists a By-quasicontinuous function v in R™ such that w = v a.e. in ) and

v=0 ge inR"\ Q.

Proof. Fix u € B)(Q) and let ; € C5°(2) be a sequence converging to u in
B,(92). By Theorem 4.10 there is a subsequence of ¢; which converges B,-
quasieverywhere in R" to a Bj,-quasicontinuous function v in R" such that
u=wv ae. in Q@ and v =0 q.e. in R™\ Q. Hence v is the desired function.

To prove the converse, we assume first that € is bounded. Because the
truncations of v converge to v in B,(€2), we can assume that v is bounded.
Without loss of generality, since v is Bj,-quasicontinuous and v = 0 q.e.
outside §2 we can assume that in fact v = 0 everywhere in R™ \ Q.

Choose open sets G; such that v is continuous on R™ \ G and

Capo(Gj) — 0.

By passing to a subsequence, we may pick a sequence ¢; in B,(R") such
that 0 < ¢; <1, ¢; =1 everywhere in G}, ¢; — 0 a.e. in R”, and

||90j||z£p(]Rn) + [ij]z];p(R”) — 0.

Then from Remark 2.8 we have that w; = (1 — ¢;)v is a bounded sequence
in B,(€2). Moreover, for every j > 1, we have lim, ., ;eqw;(x) = 0 for all
y € 5.

Thus, from Lemma 2.11, we have that w; is a sequence in BS(Q). Clearly
w; — v in LP(R™) and pointwise a.e. in R™.

This, together with the boundedness of the sequence w; in BS(Q), implies
via Mazur’s lemma that v € Bp(€2). The proof is complete in case Q is
bounded.

Assume that  is unbounded. We can assume again, without loss of
generality, that v is bounded and that v = 0 everywhere in R" \ Q. For
every k > 2 let pp € C5°(B(0,k?)) be such that 0 < ¢, < 1, ¢, = 1 on
B(0,k) and [pk]p, @) <C(Ink)' 7. (See (3.4).) Then

v, = vy € BY(QN B(0,k%)) C BY(Q)
for every k > 2 and like in Theorem 2.4, we get
1o — vkl|B,®n) — 0,

which implies that v € B)(Q). [ |
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We denote by
Q% = Q™ (&)
the set of all functions u € B,(R") such that there exists a sequence ¢, €
C(R™) N B,(R™) converging to u both in B,(R") and B,-quasiuniformly.
It follows immediately from Theorem 4.10 that the functions in QP» are
B,-quasicontinuous and for each v € B,(R™) there is u € QP» such that

u = v a.e. We soon show that, conversely, each B,-quasicontinuous function
v of B,(R™) belongs to QPr.

Theorem 4.13. Let u € QP». Ifu > 1 B,-quasieverywhere on E, then

CapB (B) < ||u||Lp(]Rn + [“]%p(w)'

Proof. The proof is similar to the proof of [20, Lemma 4.7] and omitted.l

This result has the following corollary.

Corollary 4.14. Suppose that §2 is open and bounded and let E CC §2. Let
u € QPr. Suppose that u > 1 quasieverywhere on E and that u has compact
support in 2. Then

capp, (£,Q) <[u ]B 5 (Q)°

We know that Capp is an outer capacity. We will show that it satisfies
the following compatibility condition (see [21]):

Theorem 4.15. Suppose that G is open and |E| = 0. Then
(4.5) Capo(G) = Capo(G \ E).

Proof. Obviously we have Capg (G \ E) < Capp (G). Conversely, we can
assume without loss of generality that Capg (G \ E) < co. We fix ¢ > 0.
There exists a function u. € B,(R™) and an open neighborhood W of G\ £
such that u. =1 on W and

0l gy + (018 gy < Capgs (G E) +

Since |E| = 0, we can assume without loss of generality that in fact u. = 1
on K. But then u. = 1 on W U G which is an open neighborhood of G,
hence

Capy, (G) < |l gy + 018 gy < Capys, (G E) +

Letting ¢ — 0 we get the desired conclusion. |

We state now the uniqueness of a B,-quasicontinuous representative.
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Theorem 4.16. Let f and g be B,-quasicontinuous functions on R™ such
that

{z: f(z) # g(x)} = 0.
Then f = g B,-quasieverywhere on R".

Proof. The proof is verbatim the proof from [21, p. 262]. [ |

Combining Theorem 4.13 and Theorem 4.16 we obtain the following
corollary.

Corollary 4.17. Suppose that E C R". Then
Capo(E) = inf{llu”]zp(w) + [U]I])gp(ugn)}a

where the infimum is taken over all By-quasicontinuous u € By(R™) such
that w =1 By-quasieverywhere on E.

Corollary 4.11 and Theorem 4.16 imply that each v € B,(R") has a
“unique” quasicontinuous Borel version.

Corollary 4.18. Suppose that u € B,(R"™). Then there ezists a Borel B,-
quasicontinuous function v such that u = v a.e. Moreover, if v is another
Borel B,-quasicontinuous function such that uw = v a.e., then v = v B,-
quasieverywhere.

We have a result similar to Corollary 4.18 for locally integrable functions
with finite B,-seminorm.

Corollary 4.19. Suppose that u € L;, (R™) such that [u]p,mn) < co. Then
there exists a B,-quasicontinuous Borel function v such that w = v a.e.
Moreover, if v is another B,-quasicontinuous Borel function such that u=v

a.e., then v ="v B,-quasieverywhere.

Proof. We prove the “uniqueness” first. Suppose v, v are two Borel B,-
quasicontinuous functions such that v = v a.e. and v = u a.e. Let w = v —7.
We notice that w is Bj,-quasicontinuous and belongs to B,(R™) because
w = 0a.e. in R". Hence from Corollary 4.18 we have that w = 0 B,-
quasieverywhere. The “uniqueness” is proved.

We prove now the existence. For every integer £ > 1 we choose a function
ne € Cg°(B(0,2)) such that n, = 1 on B(0,2%) and |Vng|pecmn) < 275
We have

(4.6) Mie+1Mk = Mk

for every integer k > 1. For a fixed integer k£ > 1, we define u; = nxu. Then
up € LP(R™) because v € LY (R™) and n, € Cg°(B(0,2%1)). Moreover,

loc
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from Lemma 2.9, it follows that [nu — mpupo2m B, @) < 0o. This, together
with the fact that n, € B,(R"™), imply that u, € B,(R"). Therefore, from
Corollary 4.11 it follows that there exists uy, € B,(R") a Bj,-quasicontinuous
Borel function such that u; = wuy a.e. in R™. In particular, since 7, = 1
in B(0,2%), this implies that u; = u a.e. in B(0,2%). So, for every integer
k > 1 we have that u;44 is a B)-quasicontinous Borel representative of ny.1u,
hence n;uk41 is a By-quasicontinuous Borel representative of ngni1u = g,
where the equality follows from the definition of u; and (4.6). This implies
that both 7,1 and uy are two B,-quasicontinuous Borel representatives
of uy € B,(R™), hence from Corollary 4.18 we can assume that uy, = mgUg41
in B(0,2%). Since n, = 1 on B(0,2%), this means in particular that we can
assume that @y (x) = U1 () for every x in B(0,2%).

So, we constructed a sequence of B,-quasicontinuous Borel functions wuy
in B,(R") satisfying the following properties:

up(r) =u(z) for a.e. x in B(0,2F)
w(z) =u(x) for every x in B(0,2F) and [ > k > 1.

We define 7 : R* — R by

u(z) = lim ug(x).
k—o0
Thus, u is a Bj-quasicontinuous Borel function and v = w a.e. This proves
the existence of a B,-quasicontinuous Borel representative of u. The claim
follows. u

5. Strong A.-weights

In this section we apply results from previous sections to study strong
Aso-weights, as promised in the introduction. We prove the following theo-
rems.

Theorem 5.1. Let s € (n — 1,n] and let u be in L}, .(R™) such that its
distributional gradient Vu is in the Morrey space L5 *(R"™;R"™). There
exists € = £(n,s) > 0 such that if ||[Vul||gsn—s@rrn) < €, then w = €™ is a
strong As-weight with data depending only on n and s.

Theorem 5.2. Let p€ (n,o0) and let u be in L} (R™) such that [u] 5, ny < 00
There exists € = (n,p) > 0 such that if [u]lp,mr) < €, then w = ™ is a

strong As-weight with data depending only on n and p.

A corollary to Theorem 5.1 is the following (see [11], [18] and (1.3)):
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Corollary 5.3. Let pu be a signed Radon measure on R™ of finite total mass
el = ||(R™) and let u be a distributional solution of the equation

—div(|Vu|"2Vu) = p

such that Vu € L™ (R™). There exists ¢(n) > 0 such that if ||p||m < e(n),
then w = €™ is a strong A -weight.

Corollary 5.3 was known (in a stronger form) for n = 2. (See [5].)
Theorem 5.1 yields another consequence that will be proved later:

Theorem 5.4. Let s € (n — 1,n] and let u be in L},.(R™) such that its
distributional gradient Vu is in the Morrey space L5 *(R™;R™). There
exists € = (n, s) > 0 such that if ||Vul|gsn—s@nrn) < €, then

(5.1) C’_léu(xl,@) < D,(x1,22) < C6,(x1,22) for all x1, 25 in R",

where C'= C(n,s) > 0,

(5.2)  D,(z,y) = inf { /eﬁds : v arectifiable curve connecting z, y}

o

and u is an s-quasicontinuous Borel representative of u.

For the definition of an s-quasicontinuous function, see [20, p. 87]. For a
discussion and definition of line integration, see [19, Chapter 7).
Theorem 5.2 has also a consequence that will be proved later:

(R™) such that [u] < 00.

Bp(R™)

Theorem 5.5. Let p€(n,00) and let u be in L}

loc

There exists € = €(n,p) > 0 such that if [u]p @~y < €, then
C7'0,(z1,22) < Dyu(21,12) < CO,(21,22) for all xy, x5 in R,

where C'= C(n,p) > 0,

(5.3)  D,(z,y) = inf { /eads : v arectifiable curve connecting z, y}

o

and u is a B,-quasicontinuous Borel representative of .

One should compare the metrics D, in Theorems 5.4 and 5.5 to those
studied in [5] and [29].

Before we start the proof of Theorems 5.1 and 5.2, we mention the fol-
lowing auxiliary results:
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Lemma 5.6. (See [4, Lemma 3.11].) Let z,y € R™ and let E C R™ be a
Borel set. Suppose that By, ..., By are open balls in R™ such that x € By,
y € Bg, and BiN By 1 # 0 fori=1,...,k—1. Then there exists a constant
¢1 = c¢1(n) > 0 with the following property: if

(5.4) AP (E) < ¢]z -y,
then
) 1
(5.5) Zdlam B; > slv —yl,
1€G
where
1

Lemma 5.7. (See [24, Theorem 3.1].) Suppose s € (n — 1,n]. There exists
a constant C' = C(n,s) > 0 such that

A(EN B(a,3R)) <C cap,(E'N B(a,3R), B(a,6R))

(5:7) R . (R

for every a € R™, every R > 0 and every Borel set E C R™.

Here cap, denotes the variational s-capacity as in [20, p. 27].
We will prove now the following lemma.

Lemma 5.8. Suppose s € (1,n]. Let B = B(xy,R) CR". Let n € C§°(2B)
such that 0 <n <1, n=1 on B, and that ||Vn||L~@p) < %. Then

v =n(u—up) € Hy*(2B)

whenever u € L}, .(R™) with ||Vul

loc

a constant C = C(n, s) such that

/ |VoulPdx < C(n, s)/ |Vul|*de.
2B 2B

Proof. Let u € Lj, (R™) be such that ||Vu||gsn—sgngn < 0o. Then from

loc
the Poincaré inequality it follows that

Lom—s(Rr;rny < 00. Moreover, there exists

u—up € H*(2B).

This, together with the fact that n € C5°(2B) implies via [20, p. 21] that
v=n(u—up) € Hy*(2B).
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Moreover,
| werds < [ (u—usl Vol + 0lVulyds
2B 2B

251 </ (lu —up|’|Vn|® + |Vu|5)dx>

2B

2371 <(%) / |U_UB|sdx+/ |vu|s>
2B 2B

< Cln,s) / Vulde,
2B

IN

IN

where for the last inequality we used the Poincaré inequality. The claim
follows. ]

We will prove Theorem 5.1 now.

Proof. Since Vu € £5"7*(R™; R"™), we can assume without loss of general-
ity due to [20, Theorem 4.4] that u is s-quasicontinuous and Borel. Since Vu
has small £5"*(R™; R")-norm, it follows from (1.4) that u is in BMO(R")
with small BMO-seminorm. Therefore, from John-Nirenberg lemma, it fol-
lows that w(z) = €@ is an A,-weight and doubling measure with data
depending on n and s. That is, (see [15, Theorem 1V.2.15]), there exists a
constant C' = C'(n, s) such that

1
(5.8) —/ M@)o < C and / w(z)dr < C’/ w(x)dx
1Bl J5 28 B

for every ball B C R™. We write du(z) = w(z)dz. We recall the definition of
d, from (1.1). We shall show that there exists a constant C' = C(n, s) € (0,1]
such that

(5.9) d, (21, 29) : 1an,u "> Cu( By, m)% = C6, (21, 22)

for all x1,x9 € R™, where the infimum is taken over finite chains of open
balls connecting x; and xo satisfying

(510) xr € Bl,ﬂfg € Bk and Bz‘ﬂBﬂ,l % (Z) for all i = 1,...,]{7— 1.

Indeed, (5.9) implies both that d, is a distance and that is comparable
to 0, as required in (1.2). Towards this end, fix 1, 22 € R™, 1 # x4, and let

1+ T2
2

R = |zy — 23|, B = B(a, R).

a =
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Now let By, ..., Bx be an arbitrary chain of balls connecting z; and x5 as
n (5.10). Let n € C§°(6B) be such that 7 = 1 on 3B and || Vn)||pe@n) < 5%
Since u is s-quasicontinuous and Borel, it follows from Lemma 5.8 that
v(z) = n(z) |u(z) — usp| is an s-quasicontinuous Borel function in Hy*(6B)
compactly supported in 6B. Let E = {x € 3B : |u(x) — usg| > 1}.
We have that E is a Borel set since u is a Borel function. Since v is an
s-quasicontinuous function in HS *(6B) compactly supported in 6B, we have
from Lemma 5.8 that

(5.11) cap,(E,6B) < / |Vou(x)|*de < C(n, s)/ |Vu(z)|*dx
6B 6B
< Cn,s)(6R)"°[Vullzon—s@npn):
This implies that
cap,(E,6B) <
(512) W < C’(n, S)||VU| L= (RR")

which together with (5.7) yields

AF(E)
R

Caps(Eu 6B>
(6R)nfs

(5.13) < C(n,s) < O, )| [Vl

We choose € = €(n, s) > 0 such that C'(n, s)e® < ¢; where ¢; is the constant
from (5.4). We assume first that B; C 3B for all i = 1,...,k. Let G be
defined like in (5.6). We have

k
1 1
510 Y Bk > Y B2 3 (B B}
i=1 1€G 1€
— nu(:c)d )Z > </ n(ugB—l)d )Z
e T > e T
1 1
— uzp—1 B\ E % > uzp—1 (_ B, )n
o (T IBAER) = e T (318
i€g i€g

> (C(n)e"s|3B|w.

From (5.8) and (5.14) there exists C' = C(n, s) such that

3B iB

= C(?M(xl, 1'2).

k

(5.15) > u(B)

i=1

3
Vv
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Next, if the chain (B;) does not lie entirely in 3B, then there exists a smallest
number & with 1 < & < k such that By N92B # (. Let o € By N 92B.
Then By, ..., By is a chain of balls connecting x; and xy. We note that the
definition of £ and the fact that xy € B; N 2B implies

BiU...UBy_; C2B.

Let u = 2320 We let By, = B(u, |9 — 21]).

It is easy to see that 3B C 3B, 4,-

If By, C 3B, then the subchain By, ..., By is contained in 3B C 3B, 4,
and we can apply the preceding argument with xy in place of x5 to conclude
that (5.15) holds; in the opposite case, diam By > R. The doubling con-
dition for y then implies p(B) < Cu(By). Thus, (5.15) is true in all cases.
This finishes the proof. [ ]

We prove now Theorem 5.4.

Proof. We see that D, is independent of the choice of the s-quasicontinuous
Borel representative of u. Indeed, if u and v are two s-quasicontinuous Borel
representatives of u, then from an argument similar to [20, Theorem 4.14] we
have u = ¥ s-quasieverywhere, which implies via [20, Theorem 2.27], since

s € (n — 1,n], that
/eads:/egds
v v

for every rectifiable curve v in R".

It is easy to see that D, is indeed symmetric, nonnegative and satisfies
the triangle inequality. From (5.1) it would follow immediately that D, is
a distance comparable to J,. So fix z1,22 in R". We can assume without
loss of generality that xy # 5. Like before, let a = 8522 R = |11 — 5],
B = B(a, R). Like in the proof of Theorem 5.1, let v = n|u — uzp| and E=
{z € 3B : |u(z) — usp|>1}. Like before, we have that E is a Borel set and
v is an s-quasicontinuous function in Hé *(6B) compactly supported in 6B5.

Let 7 be a rectifiable curve connecting z; and x5 and let || be its image.
We assume first that |y| C 3B. We obviously have

(5.16) /e“ds 2/ e'ds.
gl YN(BB\E)

As in the proof of Theorem 5.1, we have

AP (E)
R

cap,(E, 6B)
(6R)™

<C(n,s) < C(n, )|Vl zon—s@ngn),
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hence

AF(WINBBNE)) = AF(v[N3B) = AF(y[ N E)

>
> R—AX(E)>(1-c)R

if € = €(n, s) is small enough, where ¢; is the constant from Lemma 5.6.

We get

(5.17) /e“ds 2/ e'ds 2/ e"s8~1ds
gl YN(BB\E) YN(BB\E)

> APy N (BB\ E)) e"*#~! > C(n) Re"»

= C(n) (/ e"(“wl)dz) ' > C(n,s) </ e"“dz) ' :
3B 3B

where the last inequality follows from (5.8). Hence we get

(5.18) /e“ds > C’(n,s)(/ e"“(x)dx>n
o] 3B

> C’(n,s)(/ e"“(l’)dx)n
ip

2

= C’(n, S)(;M(Ilfl, 1'2).

Now we assume that |y|\ 3B # . We assume that v is parametrized
by its arc length parametrization. Let ¢y = inf{t € [0,4(7)] : v(t) ¢ 2B.}.
Then, since v is a path with v(0), v(¢(v)) € 2B, it follows that 0 < ¢y < (%)
and moreover, v([0,%9]) C 2B. Let xg = (o) and let 4 be the restriction
of v to [0,tg]. Let u = B2 We let B,,,, = B(u, |to — x1]). It is easy
to see that 3B C 3By, .,, where we recall that B = B(a, |xr; — x25|) with
a= "”1;—“ We can apply (5.18) with z in place of x5 and 4 in place of 7 to
conclude that

1 1
/e“ds > /e“ds > C’(/ e”“(m)dx> >(C (/ e"“(z)dz) )
v ol SBaco,xl 3B

So we proved that there exists a constant C' = C(n, s) such that

/e“ds >(C </ e”“(m)d:c) ' > C’(/ e”“(m)d:c) t o Co, (a1, x2)
v 3B iB

for every x1, 29 € R™ and every rectifiable curve v connecting x; and x,.
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To prove the converse inequality, we need to find a path from z; to xs
whose length we can control. Let H denote the hyperplane through a
that is orthogonal to the line segment that joins x; and x,. For each
v e B(a,R)NH let 7, : [0, R] — R" be the path such that 7,(0) = x,
Yo(R) = xa, 7, (R/2) = v and v, is constant on (0, R/2) and on (R/2, R).

Obviously we have

1
5.19 D, (x1,19) < / / e"ds dv.
( ) ﬂ< ' 2> mnfl(B(aa R) N H) B(a,R)NH J,
We can bound this last expression by
where

I(z;, R) = / @z, — 2|'"dz
B(w:,2R)

for i = 1,2. (The iterated integral on the right side of (5.19) can be split
into two pieces corresponding to s in [0, R/2] and [R/2, R], each piece being
bounded by an integral in polar coordinates centered at 1 or z,. See [30,
Proposition 3.12].) Since w = €™ is an A,-weight, there exists a constant
Cy = Ci(n,s) >0 and ¢ = g(n,s) > 1 such that

() sy

(See [30, Proposition 3.5] and [16, Lemma 2].) Let r be the conjugate
exponent to ng. Using Holder inequality and (5 8) we get

1 1
](I‘l,R) < </ enqu(z)dz) 4 </ |$1 i z|rrndz)
B(z1,2R) B(z1,2R)

(5.22) < C(n,p)C? |B(xy, 2R)| 7+ ( / e"“(z)dz) "R
B

< C(n,s) </ e"“(z)dz)
B(a,3R)

< C(n, s)(/ e"“(z)dz> = C(n,s)0,(z1,z2).
B(a,:R)

(z1,2R)

3=

Similarly we get

S|=

I(z9, R) < C(n, s)(/ e"“(z)dz) = C(n, s)0,(x1,z2).
B(a,iR)
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Now we prove Theorem 5.2.

Proof. Since u € L}, (R")NB,(R"), with small B,-seminorm, it follows that
u € BMO(R™) with small BMO-seminorm. Therefore, by John-Nirenberg
lemma, there exists a constant C' = C(n,p) such that w = €™ is an Aw-
weight and a doubling measure satisfying (5.8) with C. We write du(z) =
w(x)dr. We recall the definition of 6, from (1.1). We shall show that there
exists a constant C' = C(n,p) € (0,1] such that

k
dy(@1,22) = inf > p(By)% > Cpi( By )7 = Cu(w1, 22)
=1

for all x1,x29 € R™, where the infimum is taken over finite chains of open
balls connecting z; and x9 satisfying (5.10). Indeed, (5.9) implies both that
d, is a distance and that is comparable to ¢, as required in (1.2). Towards
this end, fix z1,x9 € R". We can assume without loss of generality that

1 # x9. Let
T + 22

¢=—7 , R=|ry —xs|,B= Bl(a, R).
Now let By, ..., By be an arbitrary chain of balls connecting x; and x5 as
in (5.10). Let n € C§°(6B) be such that n = 1 on 3B and || V|| Lec@n) < 5%-

Since u € B,(R") is a B,-quasicontinuous Borel function, it follows that the
function v defined by v = n|u — usp| is a B,-quasicontinuous Borel function
supported in 6B. Hence v € B)(6B).

Let £ = {x € 3B : |u(z) —usg| > 1}. We have that E is a Borel
set since u is a Borel function. From Lemma 2.9, (3.9) and Corollary 4.14,
we get

AOO
1éE> S C(n’p) Capo(E, 6B) S C(”? p) [U]po(ﬁB)

< C(n,p) [u]%p(w),

where R is the radius of B. We choose e =¢(n, p) >0 such that C'(n, p) e? <¢;
where ¢; is the constant from (5.4) and C'(n, p) is the constant from the last
inequality in (5.23). We assume first that B; C 3B foralli =1,... k. Let G
be defined like in (5.6). The proof now continues like in Theorem 5.1, with
the only difference that the constants who depended on n and s will now
depend on n and p. [ |

(5.23)

Now we prove Theorem 5.5.

Proof. We see that D, is independent of the choice of the B,-quasiconti-
nuous Borel representative of u. Indeed, if u and v are two B,-quasiconti-
nuous Borel representatives of u, then from Corollary 4.19 we have u = v
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-quasieverywhere, which implies via Corollary 3.14 that

/ elds = / e’ds
il il

for every rectifiable curve v in R".
Like in the proof of Theorem 5.2, we have

A (E)
IR < C(n,p) capg, (E,6B) < C(n, p)[ul} gn)-
The proof now continues like in Theorem 5.4, with the only difference that
the constants who depended on n and s will now depend on n and p. |
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