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A moduli approach to quadratic
Q-curves realizing projective mod p

Galois representations

Julio Fernández

Abstract

For a fixed odd prime p and a representation � of the absolute
Galois group of Q into the projective group PGL2(Fp), we provide the
twisted modular curves whose rational points supply the quadratic
Q-curves of degree N prime to p that realize � through the Galois ac-
tion on their p-torsion modules. The modular curve to twist is either
the fiber product of X0(N) and X(p) or a certain quotient of Atkin-
Lehner type, depending on the value of N mod p. For our purposes,
a special care must be taken in fixing rational models for these modu-
lar curves and in studying their automorphisms. By performing some
genus computations, we obtain as a by-product some finiteness results
on the number of quadratic Q-curves of a given degree N realizing �.

1. Introduction

This paper makes a moduli contribution to the elliptic realization of pro-
jective representations of the absolute Galois group of Q, which we denote
by GQ. The starting point comes from the well-known fact that, given a
prime p and an elliptic curve E defined over Q, the Galois action on the
p-torsion module E[p] produces a representation

ρE : GQ −→ GL2(Fp)

with cyclotomic determinant whose projectivization ρE is an invariant of the
isomorphism class of E unless its j-invariant is 0 or 1728. Understanding
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this kind of representations, along with their links to arithmetic-geometric
objects, has been among the most important issues in number theory for
the last decades; one of the first related works [17] shows that ρE is sur-
jective for all but a finite number of primes p whenever E has no complex
multiplication (CM).

The inverse problem may be formulated as follows: for a fixed odd
prime p and a Galois representation

� : GQ −→ PGL2(Fp),

find the (isomorphism classes of) elliptic curves, if any, that give rise to it.
This is handled in [12] for the octahedral cyclotomic case p = 3, whose
significance is strengthened by the role that this kind of representations
played in Wiles’ proof of Shimura-Taniyama-Weil conjecture. In that paper,
the elliptic curves solving the problem are parametrized by the rational
points on two conics; as suggested by a remark of J.-P. Serre, those conics
would turn out to be twists of the modular curve X(3). Here is one of
the direct origins of the PhD thesis [4], where the general problem for a
projective mod p Galois representation � with cyclotomic determinant is
addressed by means of the construction of two concrete twists of a certain
rational model for the modular curve X(p). This construction, together with
an explicit treatment of the genus-zero cases, can be found in [9] and [7].

Obviously, the representation � cannot be obtained from the p-torsion
of an elliptic curve defined over Q if its determinant is not a power of the
mod p cyclotomic character of GQ. Any such representation with odd irre-
ducible linear liftings should anyway arise from modular abelian varieties,
since Serre’s conjecture in [19], whose proof has recently been completed,
predicts the modularity of such liftings. Assuming this conjecture, K. Ribet
shows in [16] that the elliptic quotients of modular abelian varieties exhaust
up to isogeny all elliptic curves over number fields with the property of be-
ing isogenous to their Galois conjugates. These elliptic curves are known as
Q-curves. Without assuming Serre’s conjecture, [3] establishes the modu-
larity of a large class of Q-curves.

Although CM elliptic curves are the first classical example of Q-curves,
they constitute a specific case to which the known techniques for general
Q-curves do not apply; moreover, unlike in the generic non-CM case, they
do not produce surjective mod p Galois representations. Thus, in the ab-
sence of the cyclotomic hypothesis for �, and taking into account Ribet’s
result, one might attempt an elliptic realization from the p-torsion of non-
CM Q-curves. Stated in this way, the goal seems rather ambitious: a first
important simplification may consist of restricting to Q-curves defined over
quadratic fields. For those in which the isogeny has degree two, the octahe-
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dral representations of GQ that they realize are studied in [8]. This paper
tackles the general problem for quadratic Q-curves following the moduli
point of view in [4].

One should first of all formalize the concept of elliptic realization, which
is the aim in Section 2. For a (non-CM) Q-curve E, there happens to be a
natural extension

�E : GQ −→ PGL2(Fp)

of the usual p-torsion projective representation ρE whose conjugacy class is
also an invariant of the isomorphism class of E. In the particular case of
quadratic Q-curves, K.-Y. Shih points the way to this in [22], and the con-
struction of �E is reproduced in [20]. For the general case, this is explained
in [3]. By restricting ourselves to what we call p-admissible Q-curves, we
rewrite the procedure for a direct definition of �E convenient to the last
two sections of the paper, and include the computation of its determinant.
Regardless of this ad hoc presentation, the contents of Section 2, except
possibly Proposition 2.1, are not original to this paper.

The concept of p-admissible Q-curve generalizes the case of a cyclic
isogeny of degree N prime to p from a non-CM elliptic curve defined over a
quadratic field to its Galois conjugate; we refer to such an elliptic curve E
as a quadratic Q-curve of degree N . The determinant of �E draws off two
different cases, which we call cyclotomic and non-cyclotomic, and which
correspond to N being a square mod p or not, respectively. These two
cases rule most of the structure and contents of the rest of sections, whose
goal is to explain in detail how to produce the moduli spaces classifying the
quadratic Q-curves E of degree N for which �E = �. For p = 3, some ob-
structions to the existence of non-degenerate rational points are given in [5]
in terms of quaternion algebras over Q. Henceforth the term rational stands
for Q-rational.

The moduli spaces that we provide are either twists of the modular curve
X(N, p) obtained as the fiber product of the curves X0(N) and X(p) in the
non-cyclotomic case, or twists of a certain Atkin-Lehner quotient X+(N, p)
in the cyclotomic case. The choice is determined in each case by the differ-
ent structure of the subgroup W(N, p) generated by the automorphisms on
X(N, p) extending the Atkin-Lehner involution wN on X0(N). The analysis
of this structure is carried out in Section 3. Then, in Section 4 we fix a suit-
able rational model for X(N, p) and describe the Galois action on W(N, p).
In order to do this, we first need to compute the action of W(N, p) on the
non-cuspidal points of the curve. The study of W(N, p), including its Galois
structure, is essential for our purposes.

The last two sections of the paper explain how to obtain the above
twisted modular curves, whose non-cuspidal non-CM rational points yield
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the quadratic Q-curves of degree N realizing �. Section 5 is devoted to the
cyclotomic case, and Section 6 to the non-cyclotomic case. They also include
some finiteness results that follow from Faltings’ theorem along with some
genus computations performed in Section 3.

Our moduli approach turns out to be simpler in the non-cyclotomic case,
since the quadratic field of definition for the possible Q-curves realizing the
representation � is uniquely determined and, for every fixed degree N, we
just need one twist X(N, p)� . For an explicit application we refer to [6],
where a plane quartic model is provided for the genus-three case X(5, 3)�
and an example with rational points is given.

In the cyclotomic case, one must instead consider two twists X+(N, p)� ,
X+(N, p)′� whose rational points include the cyclic isogenies of degree N be-
tween elliptic curves over Q realizing �. One may also approach the problem
by adding a given quadratic field k as extra data: the quadratic Q-curves of
degree N defined over k realizing � are given by the non-cuspidal non-CM
rational points on two other twisted curves X(N, p)�, k , X(N, p)′�, k . For ex-
plicit examples corresponding to the genus-three case N = 7, p = 3, we refer
to [2], where Chabauty methods are applied to determine the set of rational
points on the twists.

2. Projective mod p Galois representations realized by
p-admissible Q-curves

Let E be a Q-curve. By this we mean a non-CM elliptic curve defined over
a number field L and with an isogeny

λσ : σE −→ E

for every σ in GQ. Without loss of generality, we always take λσ equal to λτ
whenever σ and τ restrict to the same embedding of L into Q, and one
might also assume the isogenies λσ to be cyclic. We suppose here that the
Q-curve E is p-admissible, namely that the isogenies λσ can be chosen so
that p does not divide the degree of any of them.

For an isogeny ϕ : E ′−→E, let us write ϕ−1 for the element (degϕ)−1⊗ϕ̂
in Q ⊗ Hom(E,E ′), where ϕ̂ is the dual isogeny of ϕ. Since E has no CM,
any isogeny E ′ −→ E differs from ϕ by a rational number. Thus, the
2-cocycle of GQ

cE : (σ, τ) �−→ λσ
σλτ λ

−1
στ

takes values in Q∗. As proved by J. Tate in Theorem 4 of [18], the cohomology
group H2(GQ,Q

∗
) is trivial when Q

∗
is regarded as a trivial GQ-module.
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So there exists a splitting map α for the 2-cocycle cE , that is, a continuous
map GQ−→Q

∗
satisfying

λσ
σλτ λ

−1
στ = α(σ)α(τ)α(στ)−1

for all σ, τ in GQ. By taking degrees, one deduces that the map

σ �−→ α(σ)2/ deg λσ

is a Galois character. In particular, the values taken by α are algebraic
integers prime to p. So there exist a finite extension Fα of Fp and a mod p
reduction map α̃ : GQ−→F ∗

α obtained from a fixed embedding of Q into a
fixed algebraic closure Qp of Qp.

Consider now the Fα–linear action of GQ on Fα⊗FpE[p] given by

(σ, 1⊗P ) �−→ α̃(σ)−1⊗λσ(σP ).

By means of the choice of a basis for the Fp–module E[p], this action produces
a linear representation

ρE,α : GQ −→ F ∗
α GL2(Fp)

defined up to conjugation by matrices in GL2(Fp). The corresponding pro-
jective Galois representation �E is actually given by the induced action

(σ, C) �−→ λσ(
σC)

on the projective line

P (E[p] ) =
{
C ⊂ E[p]

∣∣ C � Fp
}
.

This projective representation �E depends on neither the p-admissible sys-
tem of isogenies λσ nor the splitting map α. Further, the following proposi-
tion shows that �E is an invariant of the p-admissible isogeny class of E.

Proposition 2.1. Let E ′ be an elliptic curve over Q and ϕ : E ′ −→E be
an isogeny of degree prime to p. Then �E′ = �E.

Proof. Let ϕ̂ be the dual isogeny of ϕ and let λσ and α be as before.
Consider the 2-cocycle cE′ attached to the p-admissible system of isogenies
ϕ̂ λσ

σϕ for the Q-curve E ′. Then α degϕ is a splitting map for cE′ whose
reduction mod p takes values in the same finite field F as α̃. The isomor-
phism E ′[p] −→ E[p] induced by ϕ extends naturally to an isomorphism
F⊗ E ′[p] −→ F⊗ E[p] that is compatible with the corresponding F–linear
actions of GQ. So ρE,α and ρE′, αdegϕ are conjugated by a matrix in GL2(Fp),
and the result follows. �
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Remark 2.2. The (conjugacy class of the) representation ρE,α is the linear
mod p representation obtained from the Galois action on the abelian variety
of GL2-type attached in [16] to the Q-curve E and the splitting map α.
Moreover, any lifting of �E into GL2(Fp) is of the form ρE,α for some splitting
map α for cE.

Note that the restriction of �E to GL is the projective representation

ρE : GL −→ PGL2(Fp)

obtained from the usual Galois action on the p-torsion points of E. In terms
of number fields, this provides the fixed field of �E with the following prop-
erty: its composite with L is the splitting field of the modular polynomial
Φp(jE ; X) over L, where jE stands for the j-invariant of the elliptic curve E.
Whenever L is normal over Q and ρE is surjective, this property singles out
the fixed field of �E among all Galois extensions of Q with group PGL2(Fp).

We recall that the determinant of ρE is the restriction to GL of the
quadratic Galois character

ε : GQ −→ F ∗
p /F

∗
p

2 � {±1}
obtained from the mod p cyclotomic character χ. The fixed field of ε is
the only quadratic field kp=Q(

√±p ) inside the p-th cyclotomic extension
of Q.

Let us see how to compute the determinant of �E . To this end, one can
first obtain the determinant of a lifting ρE,α from the properties of the Weil
pairing.

Lemma 2.3. The determinant of ρE,α is the product of the mod p cyclotomic
character χ and the character GQ−→F ∗

α defined by σ �→ deg λσ/ α̃(σ)2.

Let now deg : GQ −→ Q∗/Q∗2 be the degree character induced by any
p-admissible system of isogenies λσ : σE −→ E. Then, consider the mod p
degree character

degp : GQ −→ F ∗
p /F

∗
p

2 � {±1}
obtained from deg by composition with the natural map Q∗/Q∗2→ Q∗

p/Q
∗
p
2.

The following statement is a straightforward consequence of Lemma 2.3 and
the definition of �E .

Proposition 2.4. The determinant of �E is the product ε degp.

Remark 2.5. If the map deg is not trivial, its fixed field Kdeg is a
polyquadratic number field Q(

√
a1 ), . . . ,Q(

√
am ) of degree 2m for some

positive integer m. For every l = 1, . . . , m , take σl in GQ restricting to the
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non-trivial automorphism of Kdeg that fixes
√
ah for h �= l. Then, the

map degp is the product of the quadratic Galois characters attached to the
extensions Q(

√
al ) for which deg λσl

is not a square mod p.

We say that a projective mod p Galois representation

� : GQ −→ PGL2(Fp)

is realized by a (p-admissible) Q-curve E if �E = �, where this equality makes
only sense up to conjugation in PGL2(Fp). The rest of sections are devoted
to the particular case of quadratic Q-curves. Assume � to be realized by a
p-admissible quadratic Q-curve of degree N, that is, by a non-CM elliptic
curve defined over a quadratic field and with a cyclic isogeny to its Galois
conjugate of degree N prime to p. From Proposition 2.4 and Remark 2.5,
� has determinant ε if and only if N is a square mod p, and otherwise any
quadratic Q-curves of degree N realizing � must be defined over the fixed
field of the quadratic character ε det �. We refer to the first case (N square
mod p) as the cyclotomic case, and to the second one (N non-square mod p)
as the non-cyclotomic case.

3. Automorphisms of the modular curve X(N, p)

Let N > 1 be an integer prime to p. Let X0(N), X(p) and X(1) be the mod-
ular curves attached to the congruence subgroups Γ0(N), Γ(p) and SL2(Z),
respectively. We denote by X(N, p) the modular curve attached to the con-
gruence subgroup Γ0(N) ∩ Γ(p), namely the fiber product of X0(N) and
X(p) over X(1) :

X(N, p)

�����������

��
X0(N)

�����������
X(p)

��
X(1)

The aim of this section is to study the structure of a certain subgroup
W(N, p) of automorphisms on X(N, p). We also compute the genus of
this curve.

As a complex curve, X(N, p) is a Galois covering of X0(N) with group
G(N, p) given by the quotient Γ0(N)/± Γ0(N) ∩ Γ(p). Since the mod p
reduction map SL2(Z)−→SL2(Fp) induces the exact sequence

1 −→ ±Γ0(N) ∩ Γ(p) −→ Γ0(N) −→ PSL2(Fp) −→ 1,
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there is a canonical isomorphism

G(N, p) � PSL2(Fp).

We recall that G(N, p) consists of the automorphisms g on X(N, p) for
which the following diagram commutes:

X(N, p)

������������

g �� X(N, p)

������������

X0(N)

Let wN be the Atkin-Lehner involution on X0(N) and denote by X+(N)
the corresponding quotient. For any integers a, b, c, d with a dN − b c p2 = 1
and d ≡ ±1 (mod p), the action of the matrix(

aN b p
c pN dN

)
on the complex upper half-plane H defines an automorphism ϑ on X(N, p)
extending wN , namely making the following diagram commutative:

X(N, p)
ϑ ��

��

X(N, p)

��
X0(N)

wN �� X0(N)

Indeed, one can check that the above matrix belongs to the normalizer
of Γ0(N) ∩ Γ(p) inside PSL2(R). Hence, the covering X(N, p) −→X+(N)
has as many automorphisms as its degree, which means that it is a Galois
covering. Let W(N, p) denote its automorphism group:

X(N, p)

��
G(N, p)

W(N, p) X0(N)

��
X+(N)

The group W(N, p) contains G(N, p) as a subgroup of index two whose
complement consists of the automorphisms on X(N, p) extending wN .
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Proposition 3.1. The group G(N, p) is a direct factor of W(N, p) if and
only if N is a square mod p. More precisely, the structure of W(N, p) is as
follows:

· In the cyclotomic case, there is a unique involution w on X(N, p) such
that

W(N, p) = G(N, p) × 〈w〉.
· In the non-cyclotomic case,

W(N, p) � PGL2(Fp).

In the first case, the quotient curve X(N, p)/w is a Galois covering of X+(N)
with group G(N, p). In the second case, the quotient of X(N, p) by an invo-
lution in W(N, p) is never a Galois covering of X+(N).

Proof. Viewed as the quotient SL2(Fp)/{±1}, the group PSL2(Fp) is gen-
erated by the matrices

T =

(
1 1
0 1

)
, U =

(
1 0
1 1

)
.

On the other hand, the determinant GL2(Fp)−→ F ∗
p induces an exact se-

quence

1 −→ PSL2(Fp) −→ PGL2(Fp)
det−→ F ∗

p /F
∗
p

2 −→ 1,

so that PSL2(Fp) can be identified with a subgroup of PGL2(Fp) of index
two whose complementary subgroups are those generated by a conjugate of
the matrix

V =

(
0 −v
1 0

)
,

where v is a non-square in F ∗
p . Since one has the relations V T = U−v−1

V
and V U = T−v V, a system of generators for PGL2(Fp) is given by V and
either T or U. Now, G(N, p) is generated by the automorphisms defined by
the matrices

TN =

(
1 1
0 1

)
, UN =

(
1 0

Ñ N 1

)
in Γ0(N), where Ñ ∈ Z is any inverse of N mod p. To give a complementary
subgroup for G(N, p) inside W(N, p), let us consider separately the two
possibilities for N mod p :
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· If N is a square mod p, then it is also a square mod p2. Let a, b be
any integers satisfying a2N − b p2 = 1. Then, the matrix

ZN =

(
aN b p
pN aN

)
defines an involution w on X(N, p) extending wN . Moreover, w com-
mutes with the automorphisms defined by TN and UN , so it generates a
direct cofactor of G(N, p) inside W(N, p). The uniqueness of w comes
from the fact that PSL2(Fp) has trivial center.

· If N is not a square mod p, then neither is Ñ. Moreover, the matrix

VN =

(
0 −1
N 0

)
,

which defines an involution on X(N, p) extending wN , satisfies the

relations VN TN = U −N
N VN and VN UN = T −Ñ

N VN inside W(N, p).
These are precisely the relations that the matrix V, for v equal to Ñ
mod p, satisfies with the generators T, U of PSL2(Fp). Hence, the
group W(N, p) is isomorphic to PGL2(Fp).

The last assertion in the statement follows from the structure of the group
W(N, p) : in the first case, the subgroup 〈w〉 is normal, while in the second
case W(N, p) has no normal subgroups of order two because it has trivial
center. �

Remark 3.2. The matrices ZN and VN in the proof of Proposition 3.1 have
determinant N. Thus, in the same way as the automorphisms in G(N, p) are
defined by matrices in Γ0(N) acting on H, the automorphisms on X(N, p)
extending wN are defined by matrices in M2(Z) with determinant N and
hence lying in GL2(Fp) when reduced mod p. So we have a mod p reduction
map

W(N, p) −→ PGL2(Fp)

whose restriction to G(N, p) is the canonical isomorphism onto PSL2(Fp). In
the non-cyclotomic case, this map is the isomorphism W(N, p) � PGL2(Fp)
constructed in the proof of Proposition 3.1. We keep this canonical isomor-
phism throughout the rest of the paper.

Remark 3.3. In the non-cyclotomic case, all involutions on X(N, p) ex-
tending wN are conjugated inside W(N, p). Hence, their defining matrices
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in M2(Z) can be obtained conjugating the matrix VN in the proof of Propo-
sition 3.1 by matrices in Γ0(N). So they can be chosen to be of the form(

aN b
cN −aN

)
,

where a, b, c are integers satisfying a2N + b c = −1. This fact is used in the
proof of Proposition 4.3.

In the cyclotomic case, let us write X+(N, p) for the quotient of X(N, p)
by the only involution w in the center of the group W(N, p). To conclude
this section, we give a formula for the genus of X(N, p) and compute the
values of N and p for which the curves X(N, p) and X+(N, p) have genus
zero or one. In the proof of Proposition 3.4, we recall the description of the
cusps of X0(N). We refer to [10] for this, as well as for the action of the
Atkin-Lehner involutions on the set of cusps. Both things are used in the
proof of Proposition 3.7.

Proposition 3.4. The genus of the modular curve X(N, p) is

1 +
ψ(N) p (p2 − 1)

24
− p2 − 1

4

∑
0<n |N

ϕ ( (n,N/n) ) ,

where (a, b), ϕ(r) and ψ(N) are the usual notations for the greatest common
divisor of the integers a and b, the order of the group (Z/rZ)∗ and the index
of Γ0(N) in SL2(Z), respectively.

Proof. The number of cusps of X0(N) is
∑
ϕ(hn), where the sum is taken

over the positive divisors n of N, and hn stands for (n,N/n). For every divi-
sor n, there is exactly one cusp for each integer m in a system of representa-
tives in Z of the group (Z/hn Z)∗. We just take the integer m = 1 whenever
ϕ(hn) = 1. Any such integer m can be chosen prime to n, and the corre-
sponding cusp is then represented by the rational number m/n. The rami-
fication degree of this cusp over X(1) is N/(nhn). On the other hand, the
cusps of X(p) have ramification degree p over X(1). Thus, since N is prime
to p, the cusps of X(N, p) also have ramification degree p over X0(N). More-
over, X(p) has no elliptic points, so neither has X(N, p). Lastly, the degrees
of the coverings X(N, p)−→X0(N) and X0(N) −→X(1) are p (p2 − 1)/2
and ψ(N), respectively. Hence, the proposition follows from the Hurwitz
formula applied to the map X(N, p)−→X(1). �

Corollary 3.5. The modular curve X(N, p) has genus greater than one,
except for the genus-zero case X(2, 3) and the elliptic case X(4, 3).
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Proof. Since the genera of X(p) and X0(N) are greater than one for p > 5
and N > 49, respectively, one only has to check the values that Proposi-
tion 3.4 yields in the remaining cases. �

Lemma 3.6. Consider the Atkin-Lehner involution wN on the modular curve
X0(pN). The only pairs (N, p) for which the quotient curve X0(pN)/wN has
genus zero are (2, 3), (4, 3), (5, 3), (8, 3), (11, 3), (2, 5), (4, 5) and (3, 7).

Proof. For every integer D > 71, the modular curve X0(D) has positive
genus and is neither elliptic nor hyperelliptic [15]. For each odd prime p
and each integer N prime to p such that pN ≤ 71, one can then use the
formulae in [11] or the tables [23] to conclude the lemma. �

Proposition 3.7. The curve X+(N, p) has genus greater than one, except
for the genus-zero case X+(4, 3).

Proof. The involution w, which is defined by the matrix ZN in the proof
of Proposition 3.1, restricts to the Atkin-Lehner involution wN on X0(pN),
so it induces a Galois covering X+(N, p) −→ X0(pN)/wN . On the other
hand, the cusps of X0(pN) that ramify on X(N, p) are those of the form
m/n with p dividing n, and the ramification degree is always p (cf. the
proof of Proposition 3.4). In particular, the Hurwitz formula implies that
X0(pN)/wN has genus zero whenever X+(N, p) has genus less than two. By
Lemma 3.6, the only pairs (N, p), with N prime to p and square mod p,
for which X0(pN)/wN has genus zero are (4, 3) and (4, 5). In the first case,
the involution w fixes the cusp 1/2, so X+(4, 3) is a genus-zero quotient of
the elliptic curve X(4, 3). Let us now study the second case, for which we
consider the following commutative diagram:

X(4, 5)

2

������������

10
��

X0(20)

2

������������
X+(4, 5)

10
��

X0(20)/w4

The only ramified points of the covering X(4, 5)−→X0(20) are cusps. More-
over, it can be checked that the points lying above the two cusps 1/2, 1/10
fixed by w4 are also fixed by the involution w. Thus, the only ramified cusps
of the covering X+(4, 5)−→X0(20)/w4 are the points above 1/5 and 1/10,
all of them with ramification degree 5. Then, the Hurwitz formula shows
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that there must be ten more ramified points, necessarily with ramification
degree 2 and lying above the two non-cuspidal points on X0(20) fixed by w4,
hence the genus of X+(4, 5) is four. Notice that there are no other ramified
points because the number of points on X0(20) fixed by w4 is exactly four
(cf. [11] or [23]). �

4. A rational model for the modular curve X(N, p)

This section deals with the rationality of the curve X(N, p) and the automor-
phism subgroup W(N, p) introduced in the previous section: we fix a certain
rational model for X(N, p) that makes the automorphisms in W(N, p) be
defined over kp. Recall that kp stands for the only quadratic field inside the
p-th cyclotomic extension of Q. We denote by ζp the root of unity e2πi/p.

Since X(N, p) is the fiber product of the modular curves X(p) andX0(N)
over X(1), a rational model for the first curve is determined by fixing rational
models for the other three curves. Recall that the function field of X(1) is
generated over Q by the elliptic modular function j. ForX0(N), consider the
canonical rational model given by the function field Q(j, jN), where jN is the
modular function defined by jN(z)=j(Nz) for z in the complex upper half-
plane H. As for X(p), the rational model that we fix satisfies the following
property: its extension to kp gives by specialization over an elliptic curve
E in X(1)(Q) the fixed field of the projective mod p Galois representation
ρE attached to the p-torsion points of E. This model for X(p) is obtained
as the next particular case of a general procedure that follows Section II.3
in [13] and Section 2 in [14].

Fix a non-square v in F ∗
p and take a matrix V in GL2(Fp) of order two in

PGL2(Fp) and with det(V ) = v. Without risk of confusion, we often identify
the matrix V, up to a sign, with its image in PGL2(Fp). Define HV as the
inverse image in GL2(Fp) of the subgroup generated by V in PGL2(Fp) :

HV = F ∗
p ∪ F ∗

p V.

Up to conjugation, HV is the only subgroup of GL2(Fp) containing the
center F ∗

p and reducing inside PGL2(Fp) to a complementary subgroup of
PSL2(Fp).

The group HV defines a rational model XV (p) for X(p) whose Q-isomor-
phism class does not depend on the choice of the matrix V . Its function
field is constructed as follows. In the diagram below, Q(ζp) (X(p)) stands
for the field of modular functions for Γ(p) whose Fourier expansions have
coefficients in Q(ζp). This is a Galois extension of Q (X(1)) with group
GL2(Fp)/{±1}. The fixed field by the subgroup HV /{±1} is the function
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field of XV (p) :

Q(ζp) (X(p))

F ∗
p /{±1}

HV /{±1}
kp (XV (p))

������������

PSL2(Fp)

PGL2(Fp)

Q (XV (p))

��
��

��
��

��
��

��
��

��
��

kp (X(1))

Q (X(1))

Although we should denote by XV (N, p) the rational model for X(N, p)
obtained from XV (p), we just write X(N, p) for simplicity. Without loss of
generality, we always take the above non-square v equal to N−1 mod p in
the non-cyclotomic case. Note that the map X(N, p)−→X0(N) is defined
over Q and that the function field kp (X(N, p)) is a Galois extension of
Q (X0(N)) with group PGL2(Fp). In particular, the Galois action on the
automorphism subgroup G(N, p) factors through Gal(kp/Q).

The non-cuspidal complex points on X(N, p) are in bijection with the
isomorphism classes of triples

(E, C, [T1, T2]V ),

where E is a complex elliptic curve, C is a cyclic subgroup of E(C) of
order N, [T1, T2] is a basis for E[p] and [T1, T2]V is the corresponding orbit
inside E[p]×E[p] by the action of HV . Here HV is viewed as a subgroup of
automorphisms of E[p] through the isomorphism GL2(Fp) � Aut(E[p]) fixed
by the basis [T1, T2], so that

[T1, T2]V =
{

[r T1, r T2], [r T1, r T2]V
∣∣ r ∈ F ∗

p

}
.

Two triples of the form (E, C, [T1, T2]V ) are isomorphic if there is an iso-
morphism between the corresponding elliptic curves interchanging the cyclic
subgroups and the HV –orbits.

This bijection is compatible with the usual Galois actions. Thus, a point
on X(N, p) given by a triple as above with jE �= 0, 1728 is defined over
a number field L if and only if the elliptic curve E is defined over L, the
subgroup C is GL-invariant and the image of the linear Galois representation

ρE : GL −→ GL2(Fp)

attached to E[p] lies inside a conjugate of the subgroup HV .
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We can always assume that the basis [T1, T2] in a triple (E, C, [T1, T2]V )
is, inside the corresponding HV –orbit, the only one up to a sign that is sent
to ζp by the Weil pairing. The Galois action on the non-cuspidal points
of X(N, p) should then be written accordingly: an automorphism σ of C

takes any such a triple to that given by the elliptic curve σE, the sub-
group σC and the HV –orbit of either the basis [r−1 σT1, r

−1 σT2] or the basis
[(v r)−1 σT1, (v r)

−1 σT2]V, depending on whether σζp = ζ r
2

p or σζp = ζ v r
2

p

for some r in F ∗
p , respectively.

The action of the automorphism group G(N, p) on the non-cuspidal
points of X(N, p), and then the Galois action on G(N, p), are stated in
Proposition 4.1 and Corollary 4.2, respectively. The symbol ˆ stands hence-
forth for the matrix (anti)involution given by

M̂ =

(
0 1
1 0

)
tM

(
0 1
1 0

)
,

where tM is the transpose of the matrix M . Alternatively, it can be defined
as follows:

M =

(
a b
c d

)
�−→ M̂ =

(
d c
b a

)
.

Proposition 4.1. An automorphism in G(N, p) represented through the
canonical isomorphism G(N, p) � PSL2(Fp) by a matrix γ in SL2(Fp) takes
a point (E, C, [T1, T2]V ) on X(N, p) to the point given by the elliptic curve E,
the subgroup C and the HV –orbit of the p-torsion basis [T1, T2] γ̂.

Proof. Take any matrix
(
a
c
b
d

)
in SL2(Z) reducing mod p to γ. The triple

(E, C, [T1, T2]V ) is isomorphic to one of the form(
Ez , 〈1/N〉, [ 1/p, z/p ]V

)
for some z in H, where Ez stands for the complex elliptic curve defined by
the lattice Z+z Z. The automorphism in the statement sends the pair given
by z to that given by

z′ =
a z + b

c z + d
.

Then, the endomorphism of C defined by multiplication by c z + d extends
to an isomorphism Ez′ −→Ez that preserves the subgroup 〈1/N〉 and sends
the basis [ 1/p, z′/p ] of Ez′ [p] to the basis

[ (d+ c z)/p, (b+ a z)/p ] = [ 1/p, z/p ] γ̂

of Ez[p], so the result follows. �
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Corollary 4.2. An automorphism in G(N, p) represented through the ca-
nonical isomorphism G(N, p) � PSL2(Fp) by a matrix γ in SL2(Fp) is sent
by the non-trivial element in Gal(kp/Q) to the automorphism in G(N, p)

corresponding to the matrix V̂ γ V̂ in PSL2(Fp).

Proof. Denote by g the automorphism represented by the matrix γ. Take
any element σ in GQ such that σζp = ζ vp and let γσ be a matrix in SL2(Fp)
representing the automorphism σg in G(N, p). Take also any point P in
X(N, p)(Q) given by a triple (E, C, [T1, T2]V ) with jE �= 0, 1728. The defi-
nition of σg, namely

σ( g (P ) ) = σg (σP ),

leads, by means of Proposition 4.1, to an automorphism of the elliptic
curve σE interchanging the HV –orbits of the p-torsion bases

[v−1 σT1, v
−1 σT2] γ̂ V and [v−1 σT1, v

−1 σT2]V γ̂σ.

This implies the identity γ̂σ = V γ̂ V in PSL2(Fp). �
From now on, we fix as follows an involution w on X(N, p) extending

the Atkin-Lehner involution wN on X0(N). Recall that W(N, p) stands
for the group of the Galois covering X(N, p)−→X+(N), where X+(N) is
the quotient of X0(N) by wN . In the cyclotomic case, we take as w the
only involution in the center of W(N, p) (cf. Proposition 3.1) and denote
by

√
N a square root of N mod p. In the non-cyclotomic case, we take

as w the involution corresponding to the matrix V̂ through the canonical
isomorphism W(N, p) � PGL2(Fp) (cf. Remark 3.2). Recall that, in the
second case, v = det(V ) is taken to be N−1 mod p.

Proposition 4.3. The involution w sends a point (E, C, [T1, T2]V ) on
X(N, p) to the point given by the elliptic curve E/C, the subgroup E[N ]/C
and the HV –orbit of the image in E/C of the following p-torsion basis:

· [
√
N

−1
T1,

√
N

−1
T2] in the cyclotomic case;

· [T1, T2]V in the non-cyclotomic case.

Proof. According to Remark 3.3 and the proof of Proposition 3.1, the
involution w is always defined by the action on H of a matrix in M2(Z) of
the form (

aN b
cN dN

)
,

with a dN − b c = 1. Denote by γ the reduction mod p of this matrix.
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We now proceed as in the proof of Proposition 4.1 : the given triple is
isomorphic to one of the form(

Ez , 〈1/N〉, [ 1/p, z/p ]V
)

for some z in H, where Ez stands for the complex elliptic curve defined by
the lattice Z + z Z. The involution w sends the triple given by z to that
given by

z′ =
aN z + b

cN z + dN
.

Then, the endomorphism of C defined by multiplication by c z + d extends
to an isomorphism

Ez′ −→ Ez
/〈1/N〉.

This isomorphism sends the subgroup 〈1/N〉 of Ez′ to the image of Ez[N ]
under the isogeny Ez−→Ez

/〈1/N〉. Also, it sends the basis [ 1/p, z′/p ] of
Ez′[p] to the image of the basis

[ (d+ c z)/p, (N−1b+ a z)/p ] = [ 1/p, z/p ]N−1 γ̂

of Ez[p]. In the cyclotomic case, d = a, c = p and b is a multiple of p, so

that a2 equals N−1 mod p and the matrix
√
N

−1
γ̂ is trivial in PSL2(Fp).

In the non-cyclotomic case, we have γ = ±N V̂ . This completes the proof. �

Corollary 4.4. The involution w is defined over Q.

Proof. Take any automorphism σ in GQ. Since wN is defined over Q, σw
is still an involution in W(N, p) \ G(N, p). Let P be a non-CM point in
X(N, p)(Q) given by a triple (E, C, [T1, T2]V ). For a fixed model of the
elliptic curve E/C, an isogeny λ : E−→E/C with kernel C is determined
up to a sign. One has the conjugate isogeny σλ : σE −→ σ(E/C). Using
Proposition 4.3 and the isomorphism σE/σC −→ σ(E/C) induced by σλ, we
can verify case by case that σP has the same image by both w and σw.
Consider, for instance, the cyclotomic case and assume σζp = ζ r

2

p for some r
in F ∗

p . Then, the point σP is sent to the isomorphism class of the triple given
by the elliptic curve σ(E/C), the cyclic group σλ(σE[N ]) and the HV –orbit
of the basis [

(r
√
N )−1 σλ(σT1), (r

√
N )−1 σλ(σT2)

]
.

By Proposition 4.1, this means that the matrix in PSL2(Fp) corresponding
to the automorphism σww in G(N, p) is the identity, so the result follows. �
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Remark 4.5. We can conclude that the Galois coveringX(N, p)−→X+(N)
is defined over kp. In other words, the function field kp (X(N, p)) is a Galois
extension of kp (X+(N)), with group (anti)isomorphic to W(N, p). As a
matter of fact, kp (X(N, p)) is a Galois extension of Q (X+(N)).

Let us finish this section by reviewing the moduli interpretation of the
rational points on X+(N). The non-cuspidal points of X0(N)(C) are in
bijection with the isomorphism classes of pairs (E,C), where E is a complex
elliptic curve and C is a cyclic subgroup of E(C) of order N. Such a point
with jE �= 0, 1728 is defined over a number field L if and only if E and C
are defined over L, which means that σE = E and σC = C for all σ in GL.
A point on X(N, p) given by a triple (E, C, [T1, T2]V ) has image on X0(N)
given by the pair (E,C). In particular, the involution wN sends this pair
to (E/C, E[N ]/C).

Let E be an elliptic curve defined over L, and let E−→E ′ be an isogeny
with cyclic kernel C of order N. Assume that E has no CM, so that an
isogeny from E to E ′ is determined up to a sign by its degree. Then, the
subgroup C is defined over L if and only if E ′ admits a model over L.

Now, suppose that E and E ′ are defined over a quadratic field k, so
that the pair (E,C) defines a k-rational point P on X0(N). This point is
rational if and only if both E and E ′ have a model over Q. In this case, we
say that the couple {E,E ′} is a rational Q-curve of degree N . Otherwise, the
image of P on X+(N) is rational if and only if E ′ is isomorphic to the Galois
conjugate νE of E. Indeed, since E has no CM, an isogeny µ : E−→ νE with
kernel C sends E[N ] to νC, so the existence of such an isogeny µ amounts to
the equality wN(P ) = νP in X0(N)(k). Thus, every non-cuspidal non-CM
rational point on X+(N) comes from a pair (E,C) on X0(N) defined over
some quadratic field and yielding a (possibly rational) Q-curve of degree N.

5. The twisted curves in the cyclotomic case

Assume N to be a square mod p. The structure of this section is as follows.
We first obtain from a modular point of view the fixed field of the Galois
representation �E attached in Section 2 to a quadratic Q-curve E of degreeN.
Next, we produce the twisted modular curves whose non-cuspidal non-CM
rational points give the Q-curves of degree N realizing a fixed projective
mod p Galois representation with cyclotomic determinant. We also include
a result on the finiteness of the number of such Q-curves.

Recall that X+(N, p) denotes the quotient of X(N, p) by the involu-
tion w. The induced map X+(N, p)−→X+(N) is a Galois covering with
automorphism group G(N, p) and hence defined over kp (cf. Proposition 3.1
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and Remark 4.5). The function field kp (X+(N, p)) is in fact a Galois exten-
sion of Q (X+(N)) with group PGL2(Fp) :

kp (X(N, p))

G(N, p)

������������

PGL2(Fp)

kp (X+(N, p))

G(N, p)

PGL2(Fp)

kp (X0(N))

������������

kp (X+(N)) Q (X0(N))

�������������

Q (X+(N))

Proposition 5.1. The function field kp (X+(N, p)) produces, by specializa-
tion over a rational point on X+(N) corresponding to a quadratic Q-curve E,
the fixed field of the Galois representation �E.

Proof. Let E be a quadratic Q-curve of degree N defined over a quadratic
field k. Fix an automorphism ν in GQ\Gk and an isogeny µ : E −→ νE of
degree N. If we let C be the kernel of µ, the pair (E,C) defines a k-rational
point on X0(N) with rational image on X+(N). The preimages on X+(N, p)
of this rational point are given by the couples {P,w(P )} for all points P on
X(N, p) represented by a triple of the form (E, C, [T1, T2]V ). If we denote
by H the subgroup of Gkp fixing those couples, what the proposition asserts
is that H equals the kernel of �E . This kernel is indeed a subgroup of Gkp

because the fixed field of det �E is kp (cf. Proposition 2.4). For a point P

as above, w(P ) is given by the triple (νE, νC, [
√
N

−1
µ(T1),

√
N

−1
µ(T2)]V ).

Take now any σ in Gkp, so that σζp = ζ r
2

p for some r in F ∗
p . If σ ∈ Gk,

then σ ∈ H if and only if σP = P, namely if and only if σT = ±r T for all
points T in E[p]. If σ �∈ Gk, then σ ∈ H if and only if σP = w(P ), namely

if and only if σT = ±r√N −1
µ(T ) for all points T in E[p]. Therefore, the

result follows from the definition of �E . �
Suppose that we are now given a Galois representation

� : GQ −→ PGL2(Fp)

with cyclotomic determinant, which means that the fixed field of det � is kp.
For the moduli problem of classifying the Q-curves of degree N realizing �,
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we twist the curve X+(N, p) by certain elements in the cohomology set
H1(GQ,G(N, p)). Recall that the twists of a curve defined over Q, up to
Q-isomorphism, are in bijection with the elements in the first cohomology
set of GQ with values in the automorphism group of the curve.

The Galois action on G(N, p) is given in Corollary 4.2. Now, the ac-
tion by conjugation of PGL2(Fp) makes this group isomorphic to the auto-
morphism group of PSL2(Fp). Hence, the canonical isomorphism between
G(N, p) and PSL2(Fp) induces an isomorphism Aut (G(N, p)) � PGL2(Fp)
through which the Galois action on G(N, p) can be described by the mor-
phism

η : GQ −→ Gal(kp/Q) � 〈V̂ 〉 ↪→ PGL2(Fp).

Consider then the cocycles ξ = �∗η and ξ′ = �′∗η, where �∗(σ) = t�(σ−1)
and �′∗(σ) = V̂ �∗(σ) V̂ for all σ in GQ. The cyclotomic hypothesis allows
us to regard them, through the above canonical isomorphism, as cocycles
with values in G(N, p). The cocycle condition for ξ, namely ξστ = ξσ

σξτ
for all σ, τ in GQ, can be easily checked case by case, depending on whether
σ and τ belong to Gkp or not. The same holds for ξ′. The cocycle ξ defines a
rational model X+(N, p)� for the corresponding twist of X+(N, p), together
with an isomorphism

ψ+ : X+(N, p)� −→ X+(N, p)

satisfying ψ+ = ξσ
σψ+ for every σ in GQ. Let us denote by X+(N, p)′�

and ψ′
+ the analogous twist and isomorphism defined by the cocycle ξ′.

Theorem 5.2. There is a (possibly rational) Q-curve of degree N realizing �
if and only if the set of non-cuspidal non-CM rational points on the curves
X+(N, p)� and X+(N, p)′� is not empty. In this case, the compositions

X+(N, p)�
ψ+−→ X+(N, p) −→ X+(N)

X+(N, p)′�
ψ′

+−→ X+(N, p) −→ X+(N)

define a surjective map from this set of points to the set of isomorphism
classes of :

· quadratic Q-curves of degree N up to Galois conjugation realizing �,

· rational Q-curves of degree N realizing �.

This map is bijective if and only if the centralizer in PGL2(Fp) of the image
of � is trivial.

Proof. The rational points on X+(N, p)� correspond via ψ+ to the couples
of the form {P,w(P )}, where P is an algebraic point on X(N, p) such that,
for each given automorphism σ in GQ, either ξσ(

σP ) = P or ξσ(
σP ) = w(P ).
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Let P be a non-CM point inX(N, p)(Q) given by a triple (E,C, [T1, T2]V ).
We use the basis [T1, T2] of E[p] to fix the isomorphism Aut (E[p])�GL2(Fp).
By virtue of Proposition 4.1, the condition σP = ξ−1

σ (P ) for all σ in GQ

amounts to saying that {E,E/C} is a rational Q-curve of degree N such
that the equality

(5.1) �E(σ) =

(
0 1
1 0

)
�(σ)

(
0 1
1 0

)
holds in PGL2(Fp) for every σ in GQ. Here, we extend the notation �E to
the case of elliptic curves over Q by putting �E = ρE .

If, on the other hand, there exists ν in GQ for which ξν(
νP ) = w(P ),

then E must be a quadratic Q-curve for the point ψ−1
+ ({P,w(P )}) on

X+(N, p)� to be rational. Indeed, in this case the subgroup of GQ con-
sisting of those automorphisms σ that satisfy ξσ(

σP ) = P has index two,
so it is of the form Gk for some quadratic field k, and then the condition
σP = ξ−1

σ (P ) for all σ in Gk forces the elliptic curve E and the subgroup C
to be defined over k, while the condition w(νP ) = ξ−1

ν (P ) gives an isogeny
λ : νE−→E with kernel νC.

So assume now E and C to be defined over a quadratic field k and let λ
be an isogeny as above. Then, for σ �∈ Gk, the point w(σP ) is represented by
the triple given by the elliptic curve E, the cyclic group C and the HV –orbit
of the basis[

(r
√
N )−1 λ(σT1), (r

√
N )−1 λ(σT2)

]
if σζp = ζ r

2

p[
(v r

√
N )−1 λ(σT1), (v r

√
N )−1 λ(σT2)

]
V if σζp = ζ v r

2

p

This comes from Proposition 4.3 and the isomorphism νE/νC−→E induced
by the isogeny λ. Notice that the second case does not occur if k = kp.

On the other hand, the automorphism ξ−1
σ is given by t�(σ), if σ ∈ Gkp,

or by V̂ t�(σ), if σ �∈ Gkp. Then, by applying Proposition 4.1 to each case,
we obtain that the point ψ−1

+ ({P,w(P )}) on X+(N, p)� is rational if and
only if condition (5.1) holds for every σ in GQ.

Similarly, consider a point on X+(N, p)′� corresponding via ψ′
+ to a point

on X+(N, p) obtained from a triple (E, C, [T1, T2]V ). By the same reasoning
as above, this point is rational if and only if the pair (E,C) represents a
(possibly rational) Q-curve of degree N such that, for every σ in GQ,

(5.2) �E(σ) = V

(
0 1
1 0

)
�(σ)

(
0 1
1 0

)
V.
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Let us now consider a (possibly rational) Q-curve of degree N given by
some point (E,C) on X0(N) and assume �E = �. Since this is an equality
up to conjugation in PGL2(Fp), it amounts to the existence of a basis [T1, T2]
of E[p] for which condition (5.1) holds for every σ in GQ. Moreover, we can
suppose that such a basis is sent to either ζp or ζv

−1

p by the Weil pairing. In
the first case, the image on X+(N, p) of the triple (E, C, [T1, T2]V ) defines
through ψ+ a rational point on X+(N, p)�. In the second case, let us take
[T ′

1, T
′
2] = [T1, T2]V . For this new basis, which is sent to ζp under the Weil

pairing, condition (5.2) is satisfied for every σ in GQ. So the image on
X+(N, p) of the triple (E, C, [T ′

1, T
′
2]V ) defines through ψ′

+ a rational point
on X+(N, p)′�.

This proves the first part of the statement, including the surjectivity of
the map whenever it is defined. To discuss its injectivity, consider a point
(E,C) onX0(N) yielding a (possibly rational) Q-curve of degree N. Suppose
that one can take two different rational points on the twists, corresponding
(via ψ+ or ψ′

+) to points on X+(N, p) obtained from two triples of the form
(E, C, [T1, T2]V ). Three different cases must be distinguished:

· Both rational points are on X+(N, p)� if and only if there is a non-
trivial element γ in PSL2(Fp), representing a basis change in E[p], such
that (

0 1
1 0

)
�(σ)

(
0 1
1 0

)
= γ

(
0 1
1 0

)
�(σ)

(
0 1
1 0

)
γ−1

for all σ in GQ. This amounts to the existence of a non-trivial element
in PSL2(Fp) commuting with all the elements in the image of �.

· The same characterization is obtained if both points lie on X+(N, p)′�.

· One of the points is on X+(N, p)� and the other on X+(N, p)′� if and
only if there exists γ in PSL2(Fp) such that

V

(
0 1
1 0

)
�(σ)

(
0 1
1 0

)
V = γ

(
0 1
1 0

)
�(σ)

(
0 1
1 0

)
γ−1

for every σ in GQ. This amounts to the existence of an element in
PGL2(Fp) not lying in PSL2(Fp) and commuting with all the elements
in the image of �.

This completes the proof of the statement. �
It is obvious from Faltings’ theorem that the set of points in Theorem 5.2

is always finite whenever the genus of X+(N) is greater than one. One can
assure this forN > 131 : indeed, the modular curveX0(N) has genus at least
two and is neither hyperelliptic [15] nor bielliptic [1] for any such integer N.
From Proposition 3.7, one actually gets the following improvement.
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Corollary 5.3. For N square mod p, the number of isomorphism classes of
quadratic Q-curves of degree N realizing � is finite, except possibly in the
case N = 4, p = 3.

A different moduli description that gets rid of rational Q-curves can be
given for every quadratic field of definition. In order to do that, we twist
X(N, p) by two certain elements in the cohomology set H1(GQ,W(N, p))
that are naturally obtained from the above cocycles ξ and ξ′ as follows. By
Proposition 3.1 and Corollary 4.4, the GQ-group W(N, p) equals the direct
product of GQ-groups G(N, p) × 〈w〉. Then, H1(GQ,W(N, p)) is also the
direct product of the corresponding cohomology sets. Fix now a quadratic
field k and take the Galois character

χk : GQ −→ Gal(k/Q) � 〈w〉.

We then consider the cocycle ξ χk and the rational model X(N, p)�, k for
the corresponding twist, along with the isomorphism

ψk : X(N, p)�, k −→ X(N, p)

satisfying ψk = (ξ χk)σ
σψk for every σ in GQ. Analogously, let us denote

by X(N, p)′�, k and ψ′
k the twist and the isomorphism defined by the cocy-

cle ξ′χk .

Theorem 5.4. There exists a quadratic Q-curve of degree N defined over k
realizing � if and only if the set of non-cuspidal non-CM rational points
on the curves X(N, p)�, k and X(N, p)′�, k is not empty. In this case, the
compositions

X(N, p)�, k
ψk−→ X(N, p) −→ X0(N)

X(N, p)′�, k
ψ′

k−→ X(N, p) −→ X0(N)

define a surjective map from this set of points to the set of isomorphism
classes of quadratic Q-curves of degree N defined over k realizing �. This
map is bijective if and only if the centralizer in PGL2(Fp) of the image of �
is trivial.

Proof. The rational points on X�, k(N, p) correspond via ψk to the algebraic
points P on X(N, p) such that

ξ−1
σ (P ) =

{
σP for σ ∈ Gk ,

w(σP ) for σ �∈ Gk .
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The proof runs then in a very similar way to that of Theorem 5.2, so we
omit the details. In the current case, a non-CM point on X(N, p)�, k corre-
sponding via ψk to a triple (E, C, [T1, T2]V ) is rational if and only if E is
defined over k, there exists an isogeny from E to its Galois conjugate with
kernel C and condition (5.1) holds for every σ in GQ whenever one uses
the basis [T1, T2] to fix the isomorphism Aut (E[p]) � GL2(Fp). The same
characterization is valid for the rational points on X(N, p)′�, k if we replace
ψk by ψ′

k and condition (5.1) by condition (5.2). �

Remark 5.5. One can check that ξ and ξ′ are cohomologous as cocycles
with values in G(N, p) if and only if the centralizer in PGL2(Fp) of the image
of � does not lie in PSL2(Fp). Thus, the twists X+(N, p)� and X+(N, p)′�
are not a priori isomorphic over Q. The same holds for the twisted curves
X(N, p)�, k and X(N, p)′�, k . Moreover, it can be shown that the involu-
tion w does not switch the rational points on X(N, p)�, k and X(N, p)′�, k ,
so finding the underlying Q-curves requires in general the rational points on
both twists.

6. The twisted curve in the non-cyclotomic case

Assume N to be a non-square mod p. This section is the analogue of the
previous one for the non-cyclotomic case. Unlike in the cyclotomic case, the
quadratic field of definition for the potential Q-curves of degree N realizing
a given projective mod p Galois representation is now fixed by the determi-
nant. Moreover, only one twist is needed for the moduli classification of such
Q-curves. We prove this in Theorem 6.4 below. As before, let us first give
the modular construction of the fixed field of the Galois representation �E
attached to a quadratic Q-curve E of degree N. The procedure is now more
intricate.

Recall that the group W(N, p) of the covering X(N, p) −→ X+(N) is
canonically isomorphic to PGL2(Fp). The action by conjugation of this
group makes it isomorphic to its automorphism group. Thus, by virtue of
Corollary 4.2 and Corollary 4.4, the Galois action on W(N, p) is given by
the morphism

η : GQ −→ Gal(kp/Q) � 〈w〉 ↪→ W(N, p),

where we identify W(N, p) with its (inner) automorphism group.

Let X̃(N, p) be the twist of X(N, p) defined by the cocycle η. Likewise,

denote by X̃0(N) the twist of X0(N) defined by the cocycle

GQ −→ Gal(kp/Q) � 〈wN〉.
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We write X̃+(N) for the quotient of X̃0(N) by the involution corresponding
to wN . Consider the following commutative diagram, where the morphisms
are the natural ones:

X̃(N, p)
� ��

��

X(N, p)

��
X̃0(N)

� ��

��

X0(N)

��
X̃+(N)

� �� X+(N)

As remarked in the proof of the next lemma, the lower isomorphism is ac-
tually defined over Q.

Lemma 6.1. The Galois covering X̃(N, p) −→ X+(N) is defined over Q.

Proof. Denote by

φ : X̃(N, p)−→X(N, p) and φ0 : X̃0(N)−→X0(N)

the upper isomorphisms in the above diagram. They are defined over kp
and satisfy

σφφ−1=w and σφ0 φ
−1
0 =wN for σ �∈ Gkp.

Then, the involution φ−1
0 wN φ0 on X̃0(N) is defined over Q. Hence, so is the

corresponding quotient map X̃0(N)−→X̃+(N). The isomorphism

φ+ : X+(N)−→X̃+(N)

induced by φ−1
0 sends a couple {P,wN(P )} to {φ−1

0 (P ), φ−1
0 wN(P )}. It is eas-

ily checked to satisfy σφ+ = φ+ for all σ in GQ. The same is true for the mor-

phism X̃(N, p)−→X̃0(N) induced from the natural map X(N, p)−→X0(N)
by the isomorphisms φ and φ0. Finally, the automorphisms of the covering
X̃(N, p)−→X+(N) are also defined over Q. Indeed, the relation

σ(φ−1 ϑ φ) = φ−1w (w ϑw)wφ = φ−1 ϑ φ

holds for ϑ ∈ W(N, p) and σ �∈ Gkp. For a different proof of the existence of
a rational PSL2(Fp)-covering of X0(N), we refer to [21]. �

Remark 6.2. The function field of X̃(N, p) over Q is identified, through the
isomorphism φ in the proof of Lemma 6.1, with a subfield of kp (X(N, p)).
As shown in the following diagram, it is a Galois extension of Q (X+(N))



26 J. Fernández

with group isomorphic to PGL2(Fp) :

kp (X(N, p))

������������

W(N, p)

������������������������

Q (X̃(N, p))

φ−1 W(N, p)φ

��
��

��
��

��
��

��
��

��
��

Q (X(N, p))

kp (X+(N))

															

Q (X+(N))

Proposition 6.3. The function field Q (X̃(N, p)) gives, by specialization
over a rational point on X+(N) corresponding to a quadratic Q-curve E,
the fixed field of the representation �E.

Proof. With the same notations as in the proof of Proposition 5.1, take
a cyclic isogeny µ : E −→ νE with kernel C of order N. Consider the iso-
morphism φ : X̃(N, p) −→X(N, p) in the proof of Lemma 6.1. Let H be

the subgroup of GQ fixing the points on X̃(N, p) that correspond through φ
to the points P on X(N, p) given by a triple of the form (E, C, [T1, T2]V )
and to their images by w. We must show that H is the kernel of �E . For
a point P as above, w(P ) is represented by the triple given by νE, νC and
the HV –orbit of the basis [µ(T1), µ(T2)]V. Using the definition of φ, we see
that the group H consists of those σ ∈ Gkp satisfying σP = P and those
σ �∈ Gkp satisfying σP = w(P ). Moreover, any such σ lies in Gk if and only

if it lies in Gkp. Take now any automorphism σ in GQ. If σζp = ζ r
2

p for some
r in F ∗

p , then σ ∈ H if and only if σP = P, namely if and only if σT = ±r T
for all points T in E[p]. If σζp = ζ r

2N−1

p for some r in F ∗
p , then σ ∈ H if and

only if σP = w(P ), namely if and only if σT = ±r N−1 µ(T ) for all points
T in E[p]. So the result follows from the definition of �E . �

Suppose that we have now a Galois representation

� : GQ −→ PGL2(Fp)

with non-cyclotomic determinant. Recall that any quadratic Q-curves of
degree N realizing � must be defined over the fixed field of ε det �, where ε
is the character attached to kp (cf. Proposition 2.4). Denote this quadratic
field by k. For the moduli classification of such Q-curves, we produce a twist
of X(N, p) from a certain element in the cohomology set H1(GQ,W(N, p)),
as follows. The canonical isomorphism W(N, p) � PGL2(Fp) allows us to



A moduli approach to quadratic Q-curves 27

regard the projective representation �∗ in Section 5 as a morphism taking
values in W(N, p). As above, let η stand for the morphism giving the
Galois action on W(N, p). Then, consider the cocycle ξ = �∗η. For the
twist of X(N, p) defined by ξ, we fix a rational model X(N, p)� along with
an isomorphism

ψ : X(N, p)� −→ X(N, p)

satisfying ψ = ξσ
σψ for every σ in GQ.

Theorem 6.4. There exists a quadratic Q-curve of degree N realizing �
if and only if the set of non-cuspidal non-CM rational points on the curve
X(N, p)� is not empty. In this case, the composition

X(N, p)�
ψ−→ X(N, p) −→ X+(N)

defines a surjective map from this set of points to the set of isomorphism
classes of quadratic Q-curves of degree N up to Galois conjugation realiz-
ing �. This map is bijective if and only if the centralizer in PGL2(Fp) of the
image of � is trivial.

Proof. The first part of the proof goes along the lines of those of Theo-
rem 5.2 and Theorem 5.4. Let us fix an automorphism ν in GQ\Gk. The
rational points on X�(N, p) correspond via ψ to the algebraic points P on
X(N, p) satisfying

�∗(σ)−1(P ) =

{
σP for σ ∈ Gkp ,

w(σP ) for σ �∈ Gkp .

Note that the automorphism �∗(σ)−1 belongs to G(N, p) if and only if σ
lies in either both Gk and Gkp or none of them. In particular, a non-CM
point P given by a triple (E, C, [T1, T2]V ) may satisfy the above condition
only if E and C are defined over k and there is an isogeny λ : νE −→ E
with kernel νC. With these hypotheses on E and C, and for σ �∈ Gk, the
point w(σP ) is represented by the triple given by E, C and the HV –orbit of
the basis [

r−1 λ(σT1), r
−1 λ(σT2)

]
V if σζp = ζ r

2

p[
r−1 λ(σT1), r

−1 λ(σT2)
]

if σζp = ζ r
2N−1

p

In the second case, and also for σ ∈ Gk ∩ Gkp, the automorphism �∗(σ)−1

is given by the matrix t�(σ) in PSL2(Fp). In the other case, and also for

σ ∈ Gk \Gkp, the automorphism w �∗(σ)−1 is given by the matrix V̂ t�(σ)
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in PSL2(Fp). So, taking as in the proof of Theorem 5.2 the basis [T1, T2] to
fix the isomorphism Aut (E[p]) � GL2(Fp), condition (5.1) is again seen to
characterize the rationality of the point ψ−1(P ).

Consider now a non-CM elliptic curve E defined over k and an isogeny
µ : E−→ νE with kernel C, and assume �E = �. This equality amounts to
the existence of a basis [T1, T2] of E[p] for which condition (5.1) holds for
every σ in GQ. We can further suppose that such a basis is sent to either ζp
or ζN

−1

p by the Weil pairing. In the first case, the point P onX(N, p) given by
the triple (E, C, [T1, T2]V ) defines through ψ a rational point on X(N, p)�.
In the second case, the triple (νE, νC, [µ(T1), µ(T2)]V ) represents a point
on X(N, p) lying above the same point on X+(N) as P and corresponding
through ψ to a rational point on X(N, p)�. Indeed, if we choose the basis
[µ(T1), µ(T2)] to fix the isomorphism Aut(νE[p]) � GL2(Fp), we obtain the
equality � νE(σ) = �E(σ) for all σ in GQ.

Lastly, let us consider two different rational points on X(N, p)� corre-
sponding via ψ to non-CM points P and Q on X(N, p) with the same image
on X+(N). Let the triple (E, C, [T1, T2]V ) represent the point P and fix an
isogeny µ : E−→ νE with kernel C. We must then distinguish two cases for
the point Q :

· It lies over the pair (E,C) on X0(N) if and only if there is a non-trivial
element γ in PSL2(Fp), representing a basis change in E[p], such that(

0 1
1 0

)
�(σ)

(
0 1
1 0

)
= γ

(
0 1
1 0

)
�(σ)

(
0 1
1 0

)
γ−1

for all σ in GQ. This amounts to the existence of a non-trivial element
in PSL2(Fp) commuting with all the elements in the image of �.

· Otherwise, a triple representing the point Q is given by the elliptic
curve νE, the subgroup νC and the HV –orbit of a basis obtained from
[µ(T1), µ(T2)]V by a basis change preserving the Weil pairing. Thus,
this case amounts to the existence of an element γ in PSL2(Fp) such
that

V

(
0 1
1 0

)
�(σ)

(
0 1
1 0

)
V = γ

(
0 1
1 0

)
�(σ)

(
0 1
1 0

)
γ−1

for all σ in GQ. This is in turn equivalent to the existence of an element
in PGL2(Fp)\PSL2(Fp) commuting with all the elements in the image
of �.

This completes the proof of the statement. �



A moduli approach to quadratic Q-curves 29

By the same reasoning as in Section 5, the set of points in Theorem 6.4
is always finite whenever N > 131. A stronger result can now be obtained
from Corollary 3.5.

Corollary 6.5. For N non-square mod p, the number of isomorphism cla-
sses of quadratic Q-curves of degree N realizing � is finite, unless N = 2
and p = 3.
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