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Sums of Toeplitz products

with harmonic symbols

Boo Rim Choe, Hyungwoon Koo and Young Joo Lee

Abstract

On the Bergman space of the unit disk, we consider a class of
operators which contain sums of finitely many Toeplitz products with
harmonic symbols. We give characterizations of when an operator in
that class has finite rank or is compact. Our results provide a unified
way of treating several known results.

1. Introduction

Let D denote the unit disk of the complex plane C. The Bergman space L2
is the closed subspace of the usual Lebesgue space L? = L?(D, A) consisting
of all holomorphic functions on D where the measure dA is the normalized
area measure on . We let P be the Hilbert space orthogonal projection
from L? onto L2. For a bounded measurable function u on D, the Toeplitz
operator T,, with symbol u is defined by

T.f = P(uf)

for functions f € L2. Clearly, T, is a bounded linear operator on L2. In this
paper we are mainly concerned with harmonic symbols. So, we introduce
the notation A% for the space of all bounded harmonic functions on D. Also,
we let H* denote the space of all bounded holomorphic functions on D.
In a recent paper [11], Guo, Sun and Zheng characterized finite rank
(semi-) commutators of two Toeplitz operators with harmonic symbols. Mo-
tivated by such results, we consider in this paper a more general class of op-
erators which contain sums of finitely many Toeplitz products with harmonic
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symbols. More explicitly, we consider operators 1" of the form

N
(1.1) T=T\+>» T,T,

J=1

where uj,v; € h* for each j and A is a finite sum of finite products of
h>°-functions. We first investigate the problem of when an operator of this
type has finite rank. In addition, we also consider the problem of when
such an operator is compact on L2. Our results generalize several known
results concerning (semi-) commutators of Toeplitz operators with harmonic
symbols.

To state our results, we introduce some notation. Given f,g € L?, we
let f ® g be the rank one operator on L? defined by

(f®g)h={(hg)f he L?

where the notation ( , ) denotes the inner product in L?. We will often use
the letter z not only to denote points in D, but also to denote the identity
function on D.

Our first result is a characterization for operators of the form (1.1) to
have finite rank in terms of symbols and functions that generate their ranges.
In case A = 0, our result is as follows.

Theorem 1.1. Let uy,...,un,v1,...,UNE L™ and x1,....,Zn, Y1, Yn €

L2. Then
N n
ZT%‘T%‘ = ij ®Y;
j=1 j=1

if and only if the following two conditions hold:

N n
(a) > ujv;=(1- |Z|2)2Z%’y_j'
7j=1 7j=1

(b) Z[P—“_j—uj(o)] [ Pvj —v;(0)] =0.

This will be deduced as a special case of a more general result Theo-
rem 3.5. As an immediate consequence, we give a characterization of when
an operator 7' in (1.1) is the zero operator (Theorems 3.7 and 3.8). These
special cases are also new. We also apply Theorem 3.5 to recover theorems
concerning finite rank sums of finitely many (semi-)commutators (Corollar-
ies 3.9 and 3.10) and finite rank Toeplitz products (Corollary 3.11), which
have been (essentially) noticed in [11].
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Note that, although we have Theorem 1.1, whether or not there are
examples of functions satisfying conditions (a) and (b) above is another
separate problem in general. For example, the case N = 1 admits only
trivial examples by Corollary 3.11. When N > 1, however, it turns out that
there are nontrivial examples; see the examples at the end of Section 3.

Our next result is a characterization of compactness of operators under
consideration. To state it, we introduce more notation. Given a € D, we
let ¢, denote the standard Mdbius map on D. Namely,

a—z

1—az’

va(2) zeD.

Also, we let A denote the invariant Laplacian on D defined by
Ay = (1 |2*)°Ay
for C%-functions ¥ on D where A is the ordinary Laplacian. This invariant
Laplacian is easily seen to be Mobius invariant by a direct calculation. The
notation Cj stands for the class of all continuous functions ¥ on D such that
Y(a) — 0 as |a| — 1.
In case A = 0, our result concerning compactness is as follows.

Theorem 1.2. Let uy,...,uy,vq,...,on5 € h*. Then the following state-
ments are equivalent:

N
(a) ZTuijj is compact.

j=1
N N
(b) Z&[P—E]PU]] S Co and ZUjUj S CO.
=1 =1
(c) Zujvj e Cy and
j:l N
i, [ 5[ P - u@)] [ Plos o 0n) - via] [ 24 =o.
a|— D ]:1

This will also be deduced from a more general result Theorem 4.3. As
applications of Theorem 4.3, we also obtain compact versions of all the
results mentioned earlier; see Theorem 4.4, Corollaries 4.5 and 4.6 . These
corollaries generalize the main results in [15] and [16].

In Section 2 we collect some basic facts and known results that we use
later. In Section 3 we prove a more general version of Theorem 1.1 and
derive its applications. As a preliminary step, we give a characterization
for harmonicity of functions of certain type. At the end of the section we
construct examples related to Theorem 1.1. In Section 4 we prove compact
versions of all the results obtained in Section 3.
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2. Preliminaries

Throughout the section we let a € D denote an arbitrary point, unless
otherwise specified.

Since every point evaluation is a bounded linear functional on L2, there
corresponds to every a € D a unique function K, € L2 which has following

reproducing property:

(2.1) fla) = (f, Ka)

for f € L2 The function K, is the well-known Bergman kernel and its
explicit formula is given by

1
Ka(Z) = m, z € D.

We let k, denote the normalized kernel, namely,

1—|af?

—_— D.
(1—az)?’ Z€

ko(z) =

By the reproducing property (2.1) we see that the projection P can be
realized as an integral operator

Pu(a) = <u,Ka>

for w € L?. Moreover, this integral representation allows us to extend P
to L'. It is well known that

(2.2) Pf=f  P(fK,) = f(o)K,

for holomorphic functions f € L'. Here, L? = L?(D, A) denotes the usual
Lebesgue space. See [12, Chapter 1] for details of what have been mentioned
above and related facts.

We now recall the well-known Berezin transform, which is one of the
main tools in the theory of Toeplitz operators. Let £(L?) be the algebra of
bounded linear operators on L2. The Berezin transform of S € £(L?) is the
function B[S] on D defined by

BIS)(a) = (Skq, ko).

For v € L*®, we simply let Bu = B[T,]. Since |¢/(2)|?> = |ka(2)]* by a
straightforward calculation, we have

(2.3) Bu(a) = (ukq, ko) = /D(u 0 pg) dA.



SuMS OF TOEPLITZ PRODUCTS WITH HARMONIC SYMBOLS 47

The integral representation (2.3) allows us to extend the notion of the
Berezin transform to functions u € L!. Note that the mean value prop-
erty yields Bu = u for harmonic functions u € L'. Also, it is known that
the Berezin transform commutes with the invariant Laplacian:

(2.4) B[Au] = A(Bu)

when u € L' N C%(D) and Au € L'; see [2, Lemma 1].

The Berezin transform turns out to provide a compactness criterion for
certain classes of operators. Here, we consider operators S which are finite
sums of finite products of Toeplitz operators with bounded symbols. Thus,
such an operator S is of the form

(25) S = ZTuil o 'TuiNl-

where each u;; € L*°. The compactness of operators of this form is charac-
terized by the boundary vanishing property of the Berezin transform as in
the next theorem.

Theorem 2.1 ([5]). Let S be as in (2.5). Then S is compact if and only if
BI[S] € Cy.

In conjunction with Theorem 2.1 we record here the following identity
for easier reference later:

(2.6) B|T,T,) — uwv = Blgh] — gh

for u,v € h™ such that u = f +7, v = h+k where f, g, h, k are holomorphic
functions on D. This easily follows from (2.2).

Recall that the pseudohyperbolic distance between two points z,w € D
is defined by |¢,(w)|. Let &/ C L*> denote the algebra of all functions that
are uniformly continuous with respect to the pseudohyperbolic distance. It
is not hard to see that h*°-functions are Lipschitz continuous with respect
to the pseudohyperbolic distance. So, in particular, we have h* C <.
We remark in passing that Coburn [10] has recently proved a more general
result asserting that the Berezin transform B[S] of an arbitrary S € £(L?)
is Lipschitz continuous with respect to the pseudohyperbolic distance. For
Toeplitz operators with symbols in o7, the compactness has been recently
characterized by the boundary vanishing property of symbol functions as in
the next theorem.

Theorem 2.2 ([9]). Let 0 € o/. Then T, is compact if and only if o € Cy.
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Let U, denote the isometry on L? defined by

Udf = (fo()pa)ka

for f € L2. Tt is easily seen that U,U, = I and thus U, ! = U,. Now, being
an invertible linear isometry, U, is unitary. Thus, since k, = —¢/,, a direct
calculation yields

(2.7) B[U.SU,) = B[S] o ¢,

for S € £(L?) and

(2.8) Ua(Sy -+ Sn) Uy = (UgS1Uy) -+ - (UaSnU,)

for Si,..., Sy € £(L2%). Also, for u € L, it is well known that
(2.9) UsT Uy = Ty, ;

see, for example, [4] or [5] (where U, is defined with an extra factor —1).

The following theorem is taken from [11, Theorem 2].

Theorem 2.3 ([11]). Suppose that u € L™ andw =), f;g; for finitely many
holomorphic functions f; and g; on D. If T,, has finite rank, then u = 0.

3. Finite rank operators

In this section, we prove a more general version of Theorem 1.1, derive some
applications and construct some examples. In order to do so, we give a char-
acterization for harmonicity of functions which are finite sums of products of
an holomorphic function and a co-holomorphic function. For that purpose
we first make an observation that characterizes two holomorphic mappings
having mutually orthogonal ranges.

We start with the well-known “complexification” lemma; see, for exam-
ple, the proof of [7, Lemma 10] or the proof of [3, Theorem IIJ.

Lemma 3.1. Let €2 be a domain in C"* and assume that ® is holomorphic
on Q0 x Q* where O ={z:2¢€ Q}. If ®(2,2) =0 for all z € Q, then & =0
on €2 x QF.

Given a positive integer N, we let Iy denote the N x N identity matrix

and Sy denote the set of all permutations on {1,..., N}. Given vectors

a= (a,...,an),b = (by,...,by) € CN, welet a-b = Zj.v:lajb_j denote

the Hermitian inner product of a and b on CV. Also, we let a' denote the
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transpose of @ and put a, = (ag,, ..., as,) for o € Sy. In the exposition be-
low the dimension NNV in these notations might vary and dimensions involved
should be clear from the context.

Let €2 be a domain in C" and consider holomorphic mappings

FG:Q—-CV

such that the ranges are mutually orthogonal, i.e., F'-G = 0. One may easily
modify the proof of [3, Theorem II] to see that there exists an orthonormal
basis {1, ..., un} of CV such that F' and G are of the form

F:(F-m,...,F-m,O,...,O)
and

G:(07707GM77G:U’_N)

for some k relative to the orthonormal basis {1, ..., uyx}. Here, we provide
some more characterizations, which seem (to us) more concrete, as in the
next theorem.

Theorem 3.2. Given finitely many holomorphic functions fi,..., fy and
g1, gy on a domain Q@ C C", put F = (f;) and G = (g;). Then the
following statements are equivalent:

(a) F-G=0 on.

(b) There exist some positive integer k < N, some permutation o € Sy
and some (N — k) x k matriz A such that

E&z(ﬁ)(ﬁuuwﬁmy

and
_A* t
GZ— = (IN—k> (gak+1a s agJN)
where A* = At.
(c) There exist vectors puy, ..., un,T1,-..,7v € CV such that
N N
F=% pf;, G=) ng
j=1 i=1
and

pi-m =0, i,j=1...N.
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Proof. We first assume (a) and prove (b). Let Q* = {Z : z € Q} and
consider a holomorphic function ® on € x 2* defined by

O(z,w) = F(2) - G(@)

for (z,w) € Q x Q*. Then, since ®(z,z) = 0 for z € Q by assumption, we
see that @ identically vanishes on €2 x 2* by Lemma 3.1.

We may assume that functions f;, g; are all nontrivial. Choose a maximal
collection of functions {f;,, ..., f;, } subject to the condition that {f;,, ..., f;.}
is linearly independent. Note that {fi,..., fy} is linearly dependent, be-
cause ® = 0. So, we have k < N. Put m = N — k for convenience. Now,
after permutation if necessary, we may assume that {fi,..., fx} is linearly
independent. Now, since {fi, ..., fk, f;} is linearly dependent for each j > k
by maximality, there exists some m x k matrix A such that

(frats - fN) = Alfr o fo)

which yields the desired representation of F. Put F= (fi,---, fx). Then,
inserting the above into the identity ® = (0, we have

0=F(z) - G(w) = F(z)(It, A)G(w)’
for z,w € Q. Since {fi,..., fx} is linearly independent, it follows that
(Ir, AHG' = 0,

or equivalently,
(915 90)" = —A" (g1, - 9n)'
which yields the desired representation of G.
Next, we assume (b) and prove (c). Put m = N — k. Let a; =
(a1, ..., ay) be the i-th row of A and b; = (a1, . .., ;)" be the j-th column
of A. Also, let ez be the j-th row of I,. Then we have by assumption

k m
Z ei, b; : and Gcr = Z(_a_ia dn)g%ﬂ'
= i=1
So, taking vectors
—f(e b)) it j<k
=0 if j>k

and

(—a@, et ) it >k

m

N {o it i<k
T — .
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we obtain
N N
F,. = Zﬁjfgj and G, = Zﬁ-ggi.
j=1 i=1
Note that
i mo=(eq) - (=@m) + (b)) - (ef,) = —ay; +ai; = 0

for all i > k and j < k. So, (c¢) holds.
Finally, the implication (c¢) = (a) is straightforward. The proof is com-
plete. |

Now, we give the following characterization, which will be a key tool in
proving Theorem 1.1.

Theorem 3.3. Let f1,..., fn and g1,...,gn be finitely many holomorphic
functions on D. If Z;VZI fi9; is harmonic on D, then

N
>_(fi = £0) (55— 9;(0)) =0

j=1
holds on D.
Proof. Let F' = (f;) and G = (g;). Assuming F(0) = G(0) = 0 without
loss of generality, we need to prove F'- G = 0 on D. Since Z;VZI fi9; is

harmonic on D, we have F’ -G’ = 0 on D. It follows from Theorem 3.2 that
there exist vectors jii, ..., fn,7i,-..,7nv € CV such that

N N
F'=% wfj, G=) mg
j=1 i=1

and
Wi -7 =0, ,7=1,...,N.

Now, since F'(0) = G(0) = 0, we have

N N
F=) wf;, G=) 7y
j=1 i=1

and thus
N

F.-G= Z(Ni'T_j)fig_jzo

ij=1
as desired. The proof is complete. |



52 B.R. CHOE, H. Koo aND Y. J. LEE

The Bloch space B is the space of all holomorphic functions f on D for
which

igg (1= 12 |f'(2)| < oe.

It is easily seen that Bloch functions are of logarithmic growth near the
boundary and thus B C L? for all 0 < p < co. In particular, we have

(3.1) fgeL? and A(fg) e L™

for functions f,g € B. Also, it is well known that, given a function u =
f + g € h*>® where f, g are holomorphic functions on D, we have f,g € B;
see, for example, [15].

In what follows, given u,v € h™, we let

Quol - a) = [P(@opa) — u(a)] [P(vop,) —v(a)]
for a € D and put
Riyw = Quu-
More explicitly, if w = f + g and v = h + k where f,g,h, k € B, then
Qual - a) = [75%. — g(a) | [ o pu — h(a)]
Run( - 1a) = [f 0 0 — f(a)] [Fo 7 — K@)

for a € D. Also, we let .% denote the class of all functions A of the form

(3.2)

M
33) =S
=1

where each u;; € h*°. We need the following simple fact.

Lemma 3.4. A\ € L™ for each \ € 7.

Proof. Let A € #. We may assume A\ = u; - - - uy where each u; € h*. Let
0= % and put

IAlle = sup (1= [=l) [loA()] + [9A(2)]]
Mo = sup (1= |2[?)*|90A())
z€D
for simplicity. It is clear that ||A|l. < oo and ||\l < oo in case N = 1.

Now, given u € h>, an elementary calculation yields inequalities

[[Aulls < flellool[Alls + [ Alool el
[Aullae < fleefloolIMas 4 [[A L[l

So, an induction on N shows that [|A||. < oo and thus ||l < oo for arbi-
trary N. The proof is complete. |
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Now, we are ready to prove the following more general version of Theo-
rem 1.1.

Theorem 3.5. Let uy,...,un,v1,...,08 € K, T, ..., Tp, Y1, Yo € L?
and A € F. Then

J=1

N n
(34) T\ + ZT’M]’T’U]' = Z T ®y;
j=1

if and only if the following two conditions hold:

N n
(a) A+ ujy = (1- |2’|2)22%y_j-
j=1 j=1

N
(b) X+ Z Pu; Pvj is harmonic.
j=1

The idea of the proof of the necessity below comes from the argument
n [11].

Proof. For each j =1,..., N, we write u; = f; +¢; and v; = h; + k: where
fj»9;,h; and k; are all in B Also, we write

n 3n
(1—1z%) Z%y] 1—222+22§2)Z$jgj :Zaﬁﬂ_ﬁ'
J=1 j=1

where «;, 3; are all in L2.
First suppose (3.4) holds. Note that we have by (2.6)

B[T,,T,;] = Blh;g;] + (fyh + gk ) + fJ
for each j. Also, note that
2
Blz; @ y;] = (1 - |2*) 2,75

for each j. Thus, taking the Berezin transforms of both sides of (3.4), we
obtain

N N
(35)  BA+ Y Blygil+ Y (fih;+ k) + Z fik; = Zayﬁ]
j=1 j=1
Let
o~ N ~
o=AN+ ) A(hg).

j=1
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Note that ¢ is bounded by (3.1) and Lemma 3.4. Now, applying the invariant
Laplacian to both sides of (3.5), we have by (2.4)

3n N 3n N
(3.6) Bo=> Ala;B;)— > Alfik;) = (1— |Z|2)2(Z YD fa/k_§>
j=1 Jj=1 j=1 j=1

Dividing by (1 — |z|?)?, we obtain

J, % AA(C) = D a5()F(2) = 3 (k)

j=1 j=1
for 2 € D. Now, by Lemma 3.1, we have

U(C) _Snalzﬁ_N (A (w
T 40 = S e - 3 e

for every z,w € D. Differentiate both sides of the above as many times as
needed with respect to w variable and then insert w = 0. The result is

) = [ T aa)

3n N
:Zaﬂa;(z)—l—ZbﬂfJ’-(z), 0=0,1,2,...
7j=1 7j=1

for some coefficients a;, and b;,. Now, by the same argument as in the proof
of [11, Proposition 4], we see that 7}, has finite rank. Note that o can be
represented as a sum of finitely many products of a holomorphic function
and a co-holomorphic function, because A € .%#. So, Theorem 2.3 gives
o = 0. Namely, the function )\+Z;-V:1 h;g; is harmonic. Accordingly, noting
that

(3.7) Pv; =h;+k;(0) and Pu; = g; + f;(0),

we conclude (b). Also, it follows from (3.6) that the function

N 3n
Z fik; = Z a;0;
7j=1 7j=1

is harmonic. Since harmonic L'-functions are invariant under the Berezin
transform, it follows that

3n

N 3n N
> fiki =B => Blfik;) = > BlayBjl.
=1 j=1 j=1

j=1
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Combining this with (3.5), we obtain

B)\+ZBu]v] B)\+Z (fihi + gik; +ZBf]k;+h]g]}

- N - 3n 1]\7_1
= Z Blfik;] + Z ;3 ijkj
Jj=1 j=1 j=1
3n
= Z Bla; 3]
j=1

So, we conclude (a), because the Berezin transform is one-to-one (see, for
example, [12, Chapter 2]).

Now, suppose (a) and (b). Note that the set {K, : a € D} spans a dense
subset of L2. So, to prove (3.4), it is sufficient to show

n

(3.8) [T)\ + iv:Tuijj]Ka = Z(%‘ ® y;) Ka

J=1 J=1

for all a € D. Let a € D be an arbitrary point. First, note that we have
by (2.2)

T, T, Ko = P[(f; +75) (h; + kj(a)) Ko
= P[(f;h; + hyg; + g;(a)k; () Ko] + fik;(a) K,
= P[(fih; + hig; + g;k;) Ka) + fiki(a) K,

:P[(uﬂ’] fik;) K, } + fik;(a) Ko

for each j. Also, note that (z; ® y,;) K, = x;y;(a) for each j. So, by (a), in
order to prove (3.8), it is necessary and sufficient to show

(39) Y PloBiK = Y PlfkiK Z% Z

j=1

Since the function A + ZN,l h;g; is harmonic by (b) and (3.7), the function

A+ Zé\;l(ujv] f;k;) is also harmonic. Note that Z (ujv; — fik;) € L2,
because fik; € L? by (3.1) for each j. Thus, we have by (a)

3n N
Y B =Y fikj=F+G
j=1 j=1

for some holomorphic functions F, G € L2.
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Thus, multiplying by K, and then applying the projection P to both
sides of the above, we obtain by (2.2)

N

> PlagBia] = > Plfiks Ko] = [F + G(a) K.

=1

Meanwhile, we have by Lemma 3.1

F+m=Z%’M—ijwzKJIZ%M—ijkj(G)-

Combining these equalities, we obtain (3.9). The proof is complete. |

Taking A = 0 in Theorem 3.5, we obtain Theorem 1.1 which we restate
here for convenience.

Theorem 3.6. Let uy,...,un,v1,...,ox € h™ and 1, ..., Tn, Y1, -, Yo € L2,
Then
N n

(3.10) Y TuTy =) w2y,
j=1

J=1

if and only if the following two conditions hold:

N n
(a) > ujv;=(1- |Z|2)2Z%‘y_j-
P =1

N
(6) Y Quy(+,0)=0.
j=1
Proof. The theorem follows from Theorem 3.5 and the fact that
N
> P Py,
j=1

is harmonic if and only if (b) holds by Theorem 3.3. [ |

As another special case of Theorem 3.5, we have the following character-
izations for operators under consideration to be the zero operator.

Theorem 3.7. Let uy,--- ,un,vi, -, oy € h*™® and A € F. Then
N
T +Y T,7T, =0
7j=1

if and only if the following two conditions hold:
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N
(a) A+ g ujv; = 0.
J=1

(b) D By, (,0) = 0.

Proof. If A+ Zjvzl u;v; = 0, then it is easily seen that A\ + Zjvzl Pu; Poj is
harmonic if and only if Z;vzl Pu;Pv; is harmonic. Thus the theorem holds
by Theorems 3.5 and 3.3. The proof is complete. |

In case N =1 Theorem 3.7 is known to hold for general A\ € L> (see [1,
Corollary 1]) and we do not know whether such a general result holds for
arbitrary N.

Combining Theorems 3.6 and 3.7, we have the following characterization.

Theorem 3.8. Let uy,...,uyn,vq,...,vn € h*. Then the following state-
ments are equivalent:

N
(a) > T, T, =0.
7j=1
N
(b) Y T,T, =0.
j=1
N N
(c) ZQuj7Uj( - ,0) = Zujvj = 0.
7j=1 7j=1

N N
(d) ZRujvvj( . ,O)IZUJ"U]':O.
i=1 j=1

We now apply our theorems to recover results in [11] concerning sums
of finitely many (semi-)commutators. Given Toeplitz operators T, and T,
we let

[Tuu Tv] = TuTv - T’UT’lL7
(Tm Tv] = TuTv - Tuv

denote the commutator and the semi-commutator, respectively.

Theorem 3.5 also has some consequences for sums of finitely many (semi-)
commutators of Toeplitz operators with harmonic symbols as in the next
two corollaries. For semi-commutators, we have the following consequence,
which is a slightly different form of [11, Theorem 8].
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Corollary 3.9. Let uy,...,un,vq,...,vn € h*™. Then the following state-
ments are equivalent:

N
(a) > (T.,.T,] =0.
j;l
(b) Z (T, Ty,] has finite rank.
j=1

(C) ZRuj,vj( : ,0) =0.

Proof. The equivalence (a) <= (c) holds by Theorem 3.7 (with A\ =
— Z;\le u;v;). The implication (a) = (b) is trivial.

We now assume (b) and prove (a). Since Z;V:l(Tuj, T,,] has finite rank,
we have Z;V:l(Tuj, T,,]= 2?21 x;®y; for some functions @1, ..., Tp, Y1, ..., Yn €
L2. We may assume that zy,...,z, are linearly independent. We have
> -1 7;g; = 0 by Theorem 3.5 and thus

Z zj(2)y;(w) =0

for all z,w € D by Lemma 3.1. Since zq,...,x, are linearly independent,
it follows that y; = 0 for all j and thus Z;.VZI(T%.,TUJ.] = 0. The proof is
complete. |

Since a commutator is the difference of associated semi-commutators,
Corollary 3.9 yields yet another corollary for commutators as follows. An-
other way of deriving this corollary is to take A\ = 0 in Theorem 3.5 (or
Theorem 3.7).

Corollary 3.10. Let uy,...,un,v1,...,vn € h*™. Then the following state-
ments are equivalent:

N
(a) > [T.,,T,] =0.
j=1
(b) Z [T.,,T,,] has finite rank.

v N
(C) ZQ%‘,UJ‘< ’ 70) = ZRUJ'WJ'( ’ 70)
j=1 j=1

Also, we can recover the result on finite rank Toeplitz products with
harmonic symbols, which is proved in [11, Theorem 7].

Corollary 3.11. Let u,v € h*. Then T, T, has finite rank if and only if
either u =0 orv = 0.
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Proof. The sufficiency is trivial. We prove the necessity. Suppose that T,T,
has finite rank. Let u = f+9¢ and v = h+k where f, g, h, k are holomorphic
functions. By Theorem 3.6 we have

n
6) wo= (1= PPy o7
(ii) hg is harmonic on D
for some finitely many functions zy, ..., T, y1,...,yn € L. Tt follows from
(i) that uv has a continuous extension on D and uv = 0 on 9D (see [14,
Theorem 7.2.5]). Being bounded harmonic functions, v and v have radial
limits almost everywhere on dD. So, there are two possibilities: one is that u
or v vanishes almost everywhere on dD and the other is that v and v vanish
on some sets of positive measures on 0D. Note that u or ¥ is holomorphic
by (ii). Therefore, in either case, we conclude either u = 0 or v = 0 on D.
The proof is complete. |

In view of Theorem 3.6, one may ask whether (3.10) can actually hap-
pen. In other words, one may ask whether there are examples of functions
satisfying conditions (a) and (b) of Theorem 3.6. The answer is yes. For
example, given x1,...,%,, y1,...,y, € H*, put

Ujl = Tj, Ujo = —22T;, Ujz= Zij

v =T, V=%, Up=Z%7;
for j = 1,...,n. Then one can easily check that conditions (a) and (b) of
Theorem 3.6 are satisfied and thus

n 3 n
Z Z Ty 1oy = Z Tj & Yj-
j=1

j=1 i=1
In particular, the operator
I =21 T+ T-Te=1x®1

is simply the point evaluation at the origin, which one may also verify by a
direct calculation.

The above examples shows that, given an n-dimensional subspace X,
of L? generated by bounded holomorphic functions, we can find 3n pairs
of symbols u;,v; € h* such that the range of Z;’Zl T, T,,; is precisely X,.
In prescribing ranges like that, we do not know whether we can control
the number of pairs of symbols in general. However, as far as the rank
is concerned, the next example shows that just two pairs of symbols are
enough to produce arbitrary ranks. Note that at least two pairs of symbols
are required in prescribing ranks by Corollary 3.11.

Example 3.12. Given a positive integer n, there exist some uy, U, V1, Vg €
h*° such that Z?:l T, T, has rank n.
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Proof. Let a positive integer n be given and let p, be the polynomial of
degree (n — 1) such that

2 (n4 1)z +n=(2z—1)p,.

An elementary calculation yields

=
[y

Dn = (zj+zj_1+-~-+1): (n—j)zj.
J

n—

Il
o
Il
o

J
Choose real numbers a,b such that |a| + [b] < n and put

1
az" + bz +n

’y:

Note that y € H*, because |a| + [b] < n. We may choose a,b with the
additional property that the polynomials z"*! —a and (n + 1)z + b have no
common zeros and therefore we have

(3.11) 2" —al +[(n+1)z+b] >4, z€D

for some positive number . So, there exist some functions hq, ho € H* such
that

(3.12) (" —a)h — (n+ 1)z +b)hy =1

on D by the corona theorem.
Now, given a nontrivial function z € H*, take functions f;, k; € H* as
follows:

fi=(" —a)z, fo=—((n+1)z+0d)z,
ki = 2"y, ke = 2.

Using these functions, we put
Uj:fj, Uj:hj+k_j, ]21,2
Then we have by (3.7)

(3.13) Puj —u;(0) = f;(0) — f;(0) =0
for j = 1,2 and
UIV1 + UV = (flhl + f2h2) + fiki + foks
=z+ (2" —a)Z" a2y — ((n+ 1)z + b)zay
=ay[y '+ (" =) = ((n+ 1)z +b)Z]
= (1= 12P)pu(l2P)a7.
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Thus, setting A A
T = (n—j)z]x, y; =2
for 7 =0,...,n— 1, we obtain

(3.14) urvy + ugvy = (1 — [2[) Z%yg
on D. Now, having (3.13) and (3.14), we conclude
Tu Ty, + Tu, 1o, = ij ® yj

by Theorem 3.6. Since {z;} and {y;} are both linearly independent, this
shows that the operator Z?:l T, T,; has rank n. The proof is complete. B

4. Compact operators

In this section, we prove compact versions of results obtained in the previous
section. For that purpose, we first recall the notion of maximal ideal space.
The maximal ideal space 9t of H* is the space (endowed with the weak™
topology of the dual of H*) of all nonzero multiplicative linear functionals
on H*. As is well known, we have H* C C(9) via the Gelfand transform.
Moreover, it is known ([13, Lemma 4.4]) that h> C C'(90t). We will use the
same notation for a function v € h*> and its continuous extension u on the
whole 901. Identifying z € D with the multiplicative evaluation functional
f — f(z), we can freely regard D as a subset of 9. The corona theorem
says that D is dense in 9.

For each m € 9, K. Hoffman ([13]) constructed a canonical map L,
from D into 9. This map L,, is defined by taking a net {z,} in D such
that z, — m and defining

L. (2)(h) = li(gn hoy, (2)

for z € D and h € H*. The above limit exists and is independent of the
net {z,} provided that z, — m. For each f € H*, the map f o L, is in
H®. Moreover, if u is continuous on 9t and {z,} is a net converging to m
in M, then it is known ([15, Lemma 5]) that uwo ¢,, — wo L, uniformly on
compact subsets of D and thus

(4.1) (Au)o g, = A(uop,.) — A(uo Ly,).

In particular we have uo L,, € h*> for u € h*°. Also, AoL,, € ¥ for A\ € ¥
recall that .# is the class introduced in (3.3).
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The following lemma is implicit in the proof of [6, Lemma 5.1].

Lemma 4.1. Suppose that {z,} is a net in D such that z, — m € M. Then

A[PuPv]o g, — A[P(uo Ly) P(vo Ly)]
(pointwise) on D for u,v € h*™.
Also, we need the following fact.

Lemma 4.2. Suppose that {z,} is a net in D such that z, — m € M. Let
)\1,...,)\]\/[ € .%. Then

TAMO@wa e T>\10<pw& - T>\M<>Lm o 'TA10Lm
in the weak operator topology.

Proof. Fix f € L2. Recall \;0¢p,,, — Aj 0L, uniformly on compact subsets
of D. So, since \; is bounded, the dominated convergence theorem yields

(Mo@u)f — (AoLy)f in L?

and thus
Pl(Mowu)f] = Pl(MoLy)f] in L

by continuity of P. This proves the lemma for M = 1. We now proceed
by induction on M. Assume M > 2 and suppose that the lemma holds for
M —1. Put

ha = TAMfflOSDwa U TAlo@wa [ oand g= Trps_yoLm " “ThjoLn |

for simplicity. Then we have by induction hypothesis h, — ¢ in L? and thus
uniformly on compact subsets of D. Now, since Ay o ¢, is bounded and
converges pointwise to Ay o L,,, we have

[(Aar © Pui)ha = (Aar © Lin )9 12
< [Aurllzeellha = gllze 4+ [[(Aar © pue)g = (Ans 0 Lin)gl2 — 0
by the dominated convergence theorem and thus

P[()‘M © (Pwa>ha] - P[()‘M © Lm)Q] in Li

by continuity of P. In other words, T, o0, e — Thyor,g in L2. This
completes the induction and the proof of the lemma. |

We are now ready to prove the compact version of Theorem 3.7.
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Theorem 4.3. Let uy,...,uyn,v1,...,uny € h*® and N\ € %. Then the
following statements are equivalent:

N
(a) Ty + Z T,,T,, is compact.
7j=1
N

(b) Tror,, + ZTujOL'mTUjOL'm =0 for eachm € M\ D.

=1

N N
(c) ﬁ)\—I—ZK[P—EjPUj} € Cy and )\‘I‘Zu]"l}j € Cp.

7j=1 7j=1

N N
(d) Z&[PU]P—@]} GC() and )\+ZUjUj GCO.

7j=1 7j=1

N N
(e) Z (Tuj,ij] is compact and X\ + Zujvj e Cy.

7j=1 7j=1

N N
(f) lim / ’Z Rujmj(z,a)’ dA(z) =0 and )\+Zujvj € Cy.
D 7j=1 7j=1

|a|—1

We will complete the proof by proving the following sequences of implications:
(b) < (),
(b) < (d),
(a) = (b) = (¢) = (a),
(b) = (f) = (e).
Since proofs are somewhat long, we will prove each case separately.

Proof of (b) <= (c). First we assume (b) and prove (c). It is sufficient to
show that, for a given net {w,} in D converging to some m € 9\ D, we have

(4.2) A [)\ + i P—u_ijj] (we) — 0

j=1

and
(4.3) [)\ + ﬁ ujvj] (wa) — 0.

So, fix a net {w,} in D such that w, — m for some m € M\ D. To
prove (4.2), note that we have

N
A [A o L + ; P(w; 0 L) P(v; o Lm)] —0
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by assumption (b) and Theorem 3.5. Thus, we have (4.2) by (4.1) and
Lemma 4.1 (with evaluation at the origin). Also, note that

N
[)\—FZUJ-U]} oL, =0
j=1

holds by assumption (b) and Theorem 3.5. Thus, we have (4.3) by a similar
argument.

Now, we assume (c) and prove (b). Let m € 9\ D and choose a net {w, }
in D such that w, — m. Fix an arbitrary point a € D. Put z, = ¢y, (a)
and m, = Ly,(a). Since h(zo) = h(puw,(a))— mq(h) for h € H*, we have
Zo — Mg in M.

By the Schwarz lemma there are rotations, say W, ,, such that

sza - 4Pwa © gpa o Wa,a-

Since the set of rotations is compact, we may assume W, , converges to some
rotation W,. Now, for a given function f € H®, since f o ¢,, — fo L,
uniformly on compact subsets of D, we see that fop, — folL,o0p,oW,
on D. Thus, L,,, = L, o p, o W,. It follows that

(44) A[P(wo L) P(voLy,)] = A[P(ao Ly) P(vo Ly)] 0 g0 W,

for u,v € h* by the Mobius invariance of A.

Note that m € M\ D implies |w,| — 1 and thus |z,| — 1. Now, since
|zo| — 1, we obtain by (4.1), (4.4) and Lemma 4.1 (with evaluation at the
origin)

N N

0 =lim A [\ PG Pu; | (20) = B[ Ao L+ Y Pl L) P(vj0 L) ()
j=1 j=1

Since a € D is arbitrary, this shows that )\oLm+Z§V:1 P(u; o Ly,) P(vjoL,,)

is harmonic. Also, since A + Zjvzl u;v; € Cy, we have Ao L, + Zj.v:l(ujvj) o
L,,= 0. Hence, by Theorem 3.5, we conclude (b). The proof is complete. B

Proof of (b) <= (d). By Theorems 3.7 and 3.3 we have (b) if and only if

N
[)\—ir ZUjUj:| oL, =0
j=1
and N
A [Z P(u; 0 Ly) P(v; 0 Ly, Lm)} —0
j=1

for each m € M\ D. Thus, following the proof of (b) <= (c), we see that
(b) and (d) are equivalent. The proof is complete. [ |
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Proof of (a) = (b) = (e) = (a). First, we assume (a) and prove (b).
Let m € M\ D. Since the set {k, : a € D} spans a dense subset of L2, it is
sufficient to show that

N

(45) |:T)\0Lm + Z TujoLmijoLm:| ka = 07 acD.

j=1
Fix a € D and choose a net {w,} in D such that w, — m. Then, since

N N
T)\ngwa + E Tujogpwaijogpwa E— T)\oLm + E TujoLmijoLm

Jj=1 Jj=1

in the weak operator topology by Lemma 4.2, we have

L2

N N
H |:T)\0Lm + Z Tuj oLm ij oLm:| ka 2 - h(gnH |:T)\0<Pwa + Z Tujogpwa ijogpwa:| ka
j=1 j=1

(by (2.8) and (2.9))

L2

N
= lim|[ U, [ T3+ 3T T3, [ U K
j=1

= lim
o

N
[TA +y TujT,,j] Un, k|

j=1
Note that |w,| — 1, because m € 9\ D. Thus, it is easily seen that U,_k,
converges to 0 weakly in Li. Hence, the compactness of T\ + Zjvzl Ty, Ty,
yields (4.5).

Next, we assume (b) and prove (e). The second part of assertion (e)

is contained in the implication (b) == (c), which is proved above. By

Theorem 2.2 we see that T\ + TEN w0, is compact. So, in order to prove
=

(e), we need to prove that Ty + Z;vzl T,,T,, is compact. By Theorem 2.1, it
is sufficient to prove

N
(4.6) B|Ty+ Y T,T,| € Co.
j=1
Suppose not. Then there is a net {w,} in D converging to some m € 9\ D
such that

> 0.

N
(4.7) limsup| B[ T3+ > 1,72, ] (wa)

=1
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Note that we have by Lemma 4.2

N N

B |:T)\0<Pwa + Z Tujocpwa ij0<ﬂwai| E— B [T)\oLm + Z TujoLmijoLm]

7j=1 7j=1
pointwise on D. It follows that

N

0=2RB |:T>\0Lm + Z TUjOLnLTUjOLnLi| (0)

j=1

-~ N
=1lim B TAOQDwa + Z Tu]ogow& ijowwa] <0>

:liCrVnB:Uwa<TA+§:Tuijj>Uwa}(0) (by (2.9))

J=1

—lim B|T+ > T, | (pu,(0)  (by (27))

j=1

i N
—lim B| Ty + > T, T, | (wa),

J=1

which contradicts (4.7). Hence we have (4.6), as desired.
Finally, the implication (¢) = (a) holds by Theorem 2.2. The proof is
complete. |

Before proceeding, we recall the well-known notion of Hankel operators.
For u € L, the Hankel operator H, with symbol u is the operator on L?
defined by H, f = (I — P)(uf). The relation between Toeplitz operators and
Hankel operators is given by the well-known identity: (7,,7T,] = HzH,. Us-
ing this identity, one can easily verify that the semi-commutator of Toeplitz
operators T, and T, with harmonic symbols are represented as an integral
operator:

R e O L C N

where

Auo(z,a) = [Pu(z) — Pu(a)][ Po(z) — Po(a)].
The kernel A, , is closely related with R, , in the sense that
Auﬂ) (gOa(Z), CL) - Ru,v(za (L),

which can be seen by a little manipulation.
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Proof of (b) = (f) = (e). First, we assume (b) and prove (f). We only
need to prove the first part of (f). Suppose that the first part of (f) fails to
hold. Then there is a net {w,} in D converging to some m € M \ D such
that

dA(z) > 0.

N
(4.8) limsup/’Z Ruj 0, (2, w0)
a b

Note that we have by Lemma 4.2
P(uo py,) —u(ws) — P(uo Ly,) —uo Ly (0) in L2

for each w € h*°. Thus, applying this to functions u; and v}, we obtain

in L'. Meanwhile, we have by (b) and Theorem 3.7

Z [P(ujo L) — tjo Ly(0)] [P(vj0 L) — v 0 Ly(0)] =0,

J=1

which, together with (4.9), is a contradiction to (4.8).

Next, we assume (f) and prove (e). For each r € (0, 1), define S, : L2 —
L? by
A(z,a)
Srfla) = xrp(a) /D mf(z) dA(z), a€D

for f € L? where A = Zjvzl Ay, v, and x,p denotes the usual characteristic
function of the set rD. Now, following the proof of of [8, Theorem 1] (or,
easily modifying the proof of [6, Theorem 1.3]), one can verify that each S,
is compact and that

<0 sup { /| |A(soa<z>,a>|dA<z>}l/l4

a€D\rD

N
HZ(Tuj-aij] - Sr
j=1

for some constant C' independent of r.
N N
Note that A(p.(2), a):ZjZIRqu(Z, a). So, the operator 3 ., (T,,,, T,,]
is approximated in the strong operator topology by compact operators, so
it is compact. The proof is complete. |
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In case N = 1 some characterizations in Theorem 4.3 are already known
for more general A. Namely, the conditions (a), (d) and (e) are known to
be equivalent for general A € &7, and a version for general A € L™ is also
known; see [9, Theorem 4.4]. We do not know whether such general results
hold for arbitrary N.

In case A = 0 in Theorem 4.3, note that we have

N N
E 7—11LJ'0L7,LT11)J-0Lm =0 < § ijoLmTujoLm =0
Jj=1

j=1

for m € 9\ D by Theorem 3.8. Thus we have the following consequence
of Theorem 4.3, which contains Theorem 1.2 and is the compact version of
Theorem 3.8.

Theorem 4.4. Let uy,...,uy,vq,...,on € h*. Then the following state-
ments are equivalent:

N
(a) ZTuijj is compact.

=1
N N N
(b) ZA[P—E]PU]] S Co and ZUjUj S CO.
=1 =1
! N ! N
(c) li|m1/ ‘Z Qu;; (2, a)) dA(z) =0 and Zujvj € Cp.
WD j=1

Moreover, each of the above conditions is equivalent to the similar condition
with w; and v; replaced by each other.

Remark. One may also directly prove the implication (¢) = (a) in the
above theorem as follows. Note that we have by (3.2), (2.3) and (2.6)

Z /D Quj; (2,a) dA(z) = Z (B[Tuijj] — ujvj) (a)

7j=1

for a € D. So, assuming (c), we have Z;\;l (B[T.,,T,,]—ujv;) € Cy. Combin-
ing this with the assumption Z;\il u;jv; € Cp, we have Zjvzl B [TuijJ e Cy.
So, (a) holds by Theorem 2.1.

Another special case A = — Z;VZI u;v; in Theorem 4.3 yields the following

corollary for sums of finitely many semi-commutators, which is the compact
version of Corollary 3.9.
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Corollary 4.5. Let uy,...,un,vq,...,0n € h*™. Then the following state-
ments are equivalent:

N
(a) Z (T, T,] is compact.

=1

(b) Y A[Pu;PT;] € Co.

=1

(c) lim /D)éRum(zaa)

dA(z) = 0.

la]—1

For sums of finitely many commutators, one can use Theorem 4.4 or
Corollary 4.5 to derive the following compact version of Corollary 3.10.

Corollary 4.6. Let uy,...,un,vq,...,on € h*™. Then the following state-
ments are equivalent:

N
(a) Z [T.,,T,,] is compact.
=1
]N )
(b) ZA[P—U_]P’U] —P'LL]‘P—’U_]'} S Co.

7j=1

References

[1] AHERN, P.: On the range of the Berezin transform. J. Funct. Anal. 215
(2004), no. 1, 206-216.

[2] AHERN, P. aAND CUCKOVIC, Z.: A theorem of Brown-Halmos type for
Bergman space Toeplitz operators. J. Funct. Anal. 187 (2001), no. 1, 200~
210.

[3] AHERN, P. AND RUDIN, W.: M-harmonic products. Indag. Math. (N.S.)
2 (1991), no. 2, 141-147.

[4] AXLER, S. AND CUCKOVIC, Z.: Commuting Toeplitz operators with har-
monic symbols. Integral Equations Operator Theory 14 (1991), 1-11.

[5] AXLER, S. AND ZHENG, D.: Compact operators via the Berezin transform.
Indiana Univ. Math. J. 47 (1998), no. 2, 387-400.

6] CHOE, B.R., Koo, H. AND LEE, Y.J.: Commuting Toeplitz operators
on the polydisk. Trans. Amer. Math. Soc. 356 (2004), no. 5, 1727-1749.



70 B.R. CuoE, H. Koo AND Y. J. LEE

[7]

CHoOE, B.R. AND LEE, Y.J.: Pluriharmonic symbols of commuting
Toeplitz operators. Illinois J. Math. 37 (1993), no. 3, 424-436.

CHOE, B.R. AND LEE, Y. J.: Pluriharmonic symbols of essentially com-
muting Toeplitz operators. Ilinois J. Math. 42 (1998), no. 2, 280-293.
CHOE, B., LEE, Y.J., NaMm, K. AND ZHENG, D.: Products of Bergman
space Toeplitz operators on the polydisk. Math. Ann. 337 (2007), 295-316.
COBURN, L.: A Lipschitz estimate for Berezin’s operator calculus. Proc.
Amer. Math. Soc. 133 (2005), no. 1, 127-131.

Guo, K., SuN, S. AND ZHENG, D.: Finite rank commutators and semi-
commutators of Toeplitz operators with harmonic symbols. Ilinois J. Math.
51 (2007), no. 2, 583-596.

HeEDpENMALM, H., KORENBLUM, B. AND ZHU, K.: Theory of Bergman
space. Graduate Text in Math. 199. Springer-Verlag, New York, 2000.
HorrFMAN, K.: Bounded analytic functions and Gleason parts. Ann. of
Math. (2) 86 (1967), 74-111.

RubpiN, W.: Function theory in the unit ball of C"*. Grundlehren der Math-
ematischen Wissenschaften 241. Springer-Verlag, New York-Berlin, 1980.
STROETHOFF, K.: Essentially commuting Toeplitz operators with har-
monic symbols. Can. J. Math. 45 (1993), no. 5, 1080-1093.

ZHENG, D.: Hankel operators and Toeplitz operators on the Bergman
space. J. Funct. Anal. 83 (1989), no. 1, 98-120.

Recibido: 21 de diciembre de 2005

Boo Rim Choe

Department of Mathematics
Korea University

Seoul 136-713, Korea
cbr@korea.ac.kr

Hyungwoon Koo
Department of Mathematics
Korea University

Seoul 136-713, Korea

koohw@korea.ac.kr

Young Joo Lee

Department of Mathematics
Chonnam National University
Gwangju 500-757, Korea
leeyj@chonnam.ac.kr

This research was supported by KOSEF(R01-2003-000-10243-0).




<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /All
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveEPSInfo true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile ()
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org)
  /PDFXTrapped /Unknown

  /Description <<
    /FRA <>
    /ENU (Use these settings to create PDF documents with higher image resolution for improved printing quality. The PDF documents can be opened with Acrobat and Reader 5.0 and later.)
    /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308000200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
    /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e0065002000760065007200620065007300730065007200740065002000420069006c0064007100750061006c0069007400e400740020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
    /PTB <>
    /DAN <>
    /NLD <>
    /SUO <>
    /ITA <>
    /NOR <>
    /SVE <>
    /KOR <FEFFd5a5c0c1b41c0020c778c1c40020d488c9c8c7440020c5bbae300020c704d5740020ace0d574c0c1b3c4c7580020c774bbf8c9c0b97c0020c0acc6a9d558c5ec00200050004400460020bb38c11cb97c0020b9ccb4e4b824ba740020c7740020c124c815c7440020c0acc6a9d558c2edc2dcc624002e0020c7740020c124c815c7440020c0acc6a9d558c5ec0020b9ccb4e000200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /CHS <FEFF4f7f75288fd94e9b8bbe7f6e521b5efa76840020005000440046002065876863ff0c5c065305542b66f49ad8768456fe50cf52068fa87387ff0c4ee563d09ad8625353708d2891cf30028be5002000500044004600206587686353ef4ee54f7f752800200020004100630072006f00620061007400204e0e002000520065006100640065007200200035002e00300020548c66f49ad87248672c62535f003002>
    /CHT <FEFF4f7f752890194e9b8a2d5b9a5efa7acb76840020005000440046002065874ef65305542b8f039ad876845f7150cf89e367905ea6ff0c4fbf65bc63d066075217537054c18cea3002005000440046002065874ef653ef4ee54f7f75280020004100630072006f0062006100740020548c002000520065006100640065007200200035002e0030002053ca66f465b07248672c4f86958b555f3002>
    /ESP <>
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [595.000 842.000]
>> setpagedevice


