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Transformations between surfaces in R
4

with flat normal and/or tangent bundles

Angel Montesinos-Amilibia

Abstract

We exhibit several transformations of surfaces M in R
4 : a trans-

formation of flat surfaces that gives surfaces with flat normal bundle
(semiumbilical surfaces); and its inverse that from a semiumbilical
surface obtains a flat surface; then a one-parameter family of trans-
formations f on flat semiumbilical immersed surfaces (FSIS), such
that df(TpM) is totally orthogonal to TpM, and that give FSIS. This
family satisfies a Bianchi type of permutability property.

1. Introduction

Among surfaces in R
4, those of flat tangent bundle and those of flat normal

bundle have received considerable attention, especially those that have both
properties.

As a precedent, in [2] we know of a transformation that takes a hyper-
spherical surface (hence, of flat normal bundle), and gets a flat surface.
We present here a transformation that takes any surface with flat normal
bundle without inflection points (semiumbilical surface) and converts it to
its evolute, which results in a flat surface; the condition (no inflection points)
is meant to shun the possibility that the map go to infinity, as happens at a
point with zero curvature when defining the evolute of a plane curve.

Then there is a kind of inverse, that is a transformation that takes any
immersed flat surface in R

4 and gives (in the region where that transforma-
tion is an immersion) its envelope, which is a semiumbilical surface.

Thus, it seems that the differential equations that define semiumbilical
surfaces in R

4 are essentially the same as those that define flat surfaces.
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By combining both types of transformations we get a transformation,
ft : M → ft(M), which depends on a real parameter t (and on the choice
of a vector field that must satisfy a differential equation) and yields a flat
semiumbilical immersed surface (from now on, an FSIS) from another FSIS.
These transformations satisfy an analogous to the Bianchi permutability
theorem for Bäcklund transformations (see [3] for a detailed introduction
and [1] for a description in a modern context).

All the transformations f : M → f(M) so far described for FSIS in R
4

are “orthogonal” in the sense that the tangent plane of f(M) at f(p) is the
orthogonal complement of the tangent plane of M at p. The composition
of two such transformations gives a “parallel” transformation, that is one
such that the tangent plane of f(M) at f(p) is parallel to the tangent plane
of M at p. These transformations depend on two real parameters (and on
the choice of some vector field that must satisfy a differential equation).

2. Basic concepts and notation

In the following, M will be a surface immersed in R
n, n ≥ 4. However, since

all of our study will be local, one can without loss of rigor assume that M
is an embedded surface. On M we have the tangent bundle π : TM → M,
and the normal bundle given by

NM = ∪p∈M(TpM)⊥, πN : NM → M,

where (TpM)⊥ denotes the subspace of TpR
n orthogonal to TpM. Its fibre

upon p ∈ M will be denoted by NpM = (TpM)⊥. Usually we will consider
TpM and NpM as vector subspaces of R

n. We will use a dot to mean the
standard inner product. If X ∈ TpR

n, we will have X = X� + X⊥, with
X� ∈ TpM, X⊥ ∈ NpM.

The Lie algebra of vector fields on a manifold M will be denoted X(M),
and if E is the total space of a vector bundle over M , ΓE will stand for the
C∞(M)-module of its differentiable sections. Usually, if s is a section of a
fiber bundle, sp will be its value at p.

The ordinary directional derivative of functions on R
n will be written

as DX . But note that it may have a broader meaning of which we will have
a frequent use. In fact, if S is a submanifold of R

n, p ∈ S, Xp ∈ TpS and
f : S → R

m is a differentiable map, then DXpf ∈ R
m will be defined as

df(Xp) ∈ Tf(p)R
m ≈ R

m. This defines the map Df that sends X ∈ X(M)
to the map DXf : S → R

m. For vector fields on R
n, D is a metric (that

is Dg = 0, where g is the metric tensor field) linear connection with zero
torsion and curvature.
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There is another useful viewpoint of D. Let S be a submanifold of R
n,

X ∈ X(S) and u : S → R
n be a smooth map. Then u may be regarded

as a section of the R
n-fibred vector bundle induced over S by the inclusion

i : S → R
n. The directional derivative DXu is thus the covariant derivative

defined by the linear connection induced on this bundle by the standard
Levi-Civita connection on R

n. Since the curvature of the standard connection
vanishes, the same happens with the curvature of the induced connection.
In other words, if Y ∈ X(S), then

DXDY u − DY DXu − D[X,Y ]u = 0.

The second fundamental form of M, α, may be defined at p as the
symmetric bilinear form αp : TpM × TpM → NpM given by αp(Xp, Yp) =
(DXpY )⊥, where the value of Y ∈ X(M) at p is Yp. In fact, (DXpY )⊥ depends
only on the value of Y at p.

The map X(M)×Γ(NM)→ Γ(NM) given by ∇⊥
Xu = (DXu)⊥ is a metric

linear connection. If its curvature tensor field is zero everywhere, we say that
the normal bundle of M is flat. The map X(M) ×X(M) → X(M) given by
∇�

XY = (DXY )� is a torsionless metric linear connection. If its curvature
(that is Gauss curvature of M) is zero everywhere, we say that M is flat.

Let PTpM be the projective space of vector lines of TpM. The second
fundamental form defines a map ηp : PTpM → NpM, by

ηp([t]) = ηp(t) =
αp(t, t)

t · t , t ∈ TpM\{0}.

The image of ηp is an ellipse in NpM, that may be degenerate, called
the curvature ellipse at p. If the ellipse degenerates to a point at p, then we
say that p is umbilic. If the ellipse lies in an affine line (i.e. it degenerates
to a segment or to a point), we say that p is a semiumbilic point. If, in
addition, a line containing the ellipse passes by the origin of NpM, we say
that p is a point of inflection. If n = 4 and the origin of NpM lies out of the
curvature ellipse at p, the directions t of TpM such that ηp(t) determines a
line tangent to the ellipse, are called asymptotic directions. If n ≥ 4 and the
ellipse degenerates to a segment (not a point), the directions t of TpM such
that ηp(t) is and end of that segment are also called asymptotic directions;
they are mutually orthogonal.

The following facts are well known or easily proved (see for instance [5], [6]
and [4]). The point p is semiumbilic iff the curvature of ∇⊥ vanishes at p.
So, M is totally semiumbilic iff its normal bundle is flat.

Let a, b be the half-axes of the curvature ellipse at p; then the curvature
of ∇�, or equivalently its Gauss curvature K, vanishes at p iff the origin
of NpM belongs to the sphere in NpM of radius

√
a2 + b2 centered at the
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center of the ellipse. Thus, if p is semiumbilic, Kp = 0 iff ηp(t1) and ηp(t2)
are orthogonal, where t1 and t2 are the asymptotic directions at p. If, in
addition, p is not of inflection, ηp(t1) and ηp(t2) are linearly independent.

3. Some facts on semiumbilical surfaces

The following characterization of semiumbilic points will be crucial for our
results. It differs from the first one that I know, that of Wong [7]. The reason
is that for surfaces in R

n with n ≥ 5, Wong condition of being semiumbilic
is satisfied “almost everywhere”, that is, in addition to the points that are
semiumbilic for us, whenever the curvature ellipse does not degenerate and
the affine plane containing it does not pass by the origin.

Proposition 3.1. Let M be an immersed surface in R
n, n ≥ 4, p ∈ M be a

non umbilic point and g denote the first fundamental form of M. Then there
is a 2-dimensional vector subspace Ep of NpM that contains the curvature
ellipse at p and there is a vector cp ∈ Ep such that cp · αp = gp, iff p is a
non inflection semiumbilic point. Moreover if such a vector cp exists, it is
unique.

Proof. If such a plane Ep and vector cp exist, then for each unit vector
t ∈ TpM we will have cp · αp(t, t) = cp · ηp(t) = gp(t, t) = 1. Therefore, the
height of all points of the curvature ellipse at p over the hyperplane Hp of
NpM with normal cp is constant and equal to 1

|cp| . Therefore, the curvature

ellipse lies in the line of intersection of Ep with the affine hyperplane parallel
to Hp at that distance, so that p is semiumbilic and obviously it cannot be
of inflection without being umbilic.

Conversely, if p is a non inflection semiumbilic point, let np be the point
of the line containing the curvature ellipse at p (a segment) nearest to the
origin of NpM. Since p is not an inflection point, np �= 0. Let cp = np

np·np
.

Since np ·ηp(t) = np ·np, for all unit vectors t ∈ TpM, se will have cp ·ηp(t) =
1 = gp(t, t). Since cp · ηp is a quadratic form on TpM , we conclude that its
corresponding bilinear symmetric form cp ·αp is equal to gp. The uniqueness
of cp is obvious. �

Wong only requires the existence of a vector cp ∈ NpM such that cp ·αp =
gp. In R

4 we can dispense with the requirement of a plane Ep to contain cp

because NpM does the job. Thus

Corollary 3.2. Let M be an immersed surface in R
4, p ∈ M be a non

umbilic point and g denote the first fundamental form of M. Then there is
a unique vector cp ∈ NpM such that cp · αp = gp iff p is a non inflection
semiumbilic point.
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Note that if X, Y ∈ X(M) then Y ·X = c·α(X, Y ) = c·DXY = −Y ·DXc.
Hence

(DXc)� = −X.

We describe now the curvature ellipse in more concrete terms. If (t1, t2)
is a local orthonormal frame of TM, we put b1 = η(t1) = α(t1, t1), b2 =
η(t2) = α(t2, t2), b3 = α(t1, t2). If t ∈ X(M) is a unit vector field, we will
have t = t1 cos θ+t2 sin θ. Then, we have η(t) = b1 cos2 θ+b2 sin2 θ+b3 sin 2θ.
After an easy calculation we get

η(t) = H + B cos 2θ + C sin 2θ,

where

H =
1

2
(b1 + b2), B =

1

2
(b1 − b2), C = b3

are smooth local sections of NM .
H is called mean curvature vector (field) and it does not depend on the

choice of the orthonormal frame (t1, t2). The other two sections B and C do
depend on it. In a region where the ellipse does not degenerate to a point or
a circle, the frame (t1, t2) can be locally chosen so that the major half-axis
of the ellipse be B and the minor, C. That is |B| ≥ |C|, and B · C = 0.
If M is semiumbilical, let Ep be the plane passing by the origin of NpM that
contains the curvature ellipse at p. We denote by J : Ep → Ep any one of
the isometries of Ep such that Jup · up = 0, ∀u ∈ NM. Then J is defined up
to a sign.

Proposition 3.3. Let M be an immersed semiumbilical surface in R
n. Let

the local orthonormal frame (t1, t2) of TM satisfy b3 = α(t1, t2) = 0. Then
the section

c =
JB

H · JB
,

where B = 1
2
(α(t1, t1)−α(t2, t2)), H = 1

2
(α(t1, t1) + α(t2, t2)) is well defined

and satisfies c · α = g.

Proof. Since there are no inflection points in M, the curvature ellipse at
each point is a segment not collinear with the origin, that is b1 and b2 are
linearly independent. The frame (t1, t2) is simply a local frame of asymptotic
directions. We have first H · JB = 1

4
(b1 + b2) · (Jb1 − Jb2) = −1

2
b1 · Jb2 �= 0

because b1 and b2 are linearly independent. Therefore,

c · α(t1, t1) =
Jb1 − Jb2

−b1 · Jb2

· b1 = 1 = t1 · t1.

In the same manner we get c · α(t2, t2) = t2 · t2 = 1. Since α(t1, t2) = 0, we
have finally c · α = g. �
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The following result will be used afterwards, in the context of surfaces
with both bundles, normal and tangent, flat.

Lemma 3.4. Let M be a semiumbilical immersed surface in R
n. Let the

local orthonormal frame (t1, t2) of TM satisfy b3 = α(t1, t2) = 0 and put
b1 = α(t1, t1), b2 = α(t2, t2). Then

b1 · ∇⊥
t2
c = b2 · ∇⊥

t1
c = 0.

Proof. We have 0 = α(t1, t2) = (Dt1t2)
⊥ = (Dt2t1)

⊥. Therefore, Dt1t2,
Dt2t1 ∈ X(M). Now,

b1 · ∇⊥
t2
c = b1 · Dt2c = α(t1, t1) · Dt2c = (Dt1t1)

⊥ · Dt2c

= Dt2((Dt1t1)
⊥ · c) − c · Dt2(Dt1t1)

⊥

= Dt2(c · α(t1, t1)) − c · Dt2(Dt1t1 − (Dt1t1)
�)

= Dt2(1) − c · Dt2Dt1t1 + c · α(t2, (Dt1t1)
�)

= −c · (Dt1Dt2t1 + D[t2,t1]t1) + t2 · Dt1t1.

Now we observe that [t2, t1], Dt2t1 ∈ X(M), whence

b1 · ∇⊥
t2
c = −t1 · Dt2t1 − [t2, t1] · t1 − t1 · Dt1t2 = 0,

because t1 · Dt2t1 = 0 and [t2, t1] = Dt2t1 − Dt1t2. In the same manner we
get b2 · ∇⊥

t1
c = 0. �

Let M be an immersed surface in R
n and p ∈ M. Then it is clear that

dim α(TpM × TpM) < 2 iff p is an inflection point.

Proposition 3.5. 1. Let M be an immersed surface in R
n, p ∈ M and

µ : TpM → Hom(TpM, NpM) be the map given by

µ(A)(X) = αp(A, X) .

Then, there is some non-vanishing vector A∈TpM such that µ(A) = 0,
iff the ellipse at p is a segment, one of whose ends is the origin of NpM .

2. Let M be an immersed surface in R
n and p ∈ M. There is some vector

A ∈ TpM such that µ(A) is one-to-one iff p is not an inflection point.

3. Let M ⊂ R
4 be an FSIS and p ∈ M. Then, for the vector A ∈ TpM

there exist a non-vanishing vector X ∈ TpM such that αp(A, X) = 0
iff A is parallel to an asymptotic direction at p.
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Proof. (1) Let t2 ∈ TpM be a unit vector such that µ(t2) = 0 and let (t1, t2)
be an orthonormal basis of TpM. Then b2 = b3 = 0. Therefore the curvature
ellipse at p is given by 1

2
b1(1 + cos 2θ) and this proves our claim.

(2) If p an inflection point, it is clear the space generated by αp is a
subspace of the line containing the curvature ellipse. Hence µ(A) can never
be one-to-one.

Reciprocally, assume that for any non-vanishing A ∈ TpM, there is a non-
vanishing X ∈ TpM such that α(A, X) = 0. In particular, with the above
notation, there is some linear combination rt1+st2 such that α(t1, rt1+st2) =
rb1 + sb3 = 0. Therefore b1 and b3, and by the same reason b2 and b3, are
linearly dependent. If b3 �= 0, then b1 and b2 are multiples of b3 and this
proves our claim. Let us denote by t� the 1-form defined by any vector field
t ∈ X(M) as t�(X) = t · X, X ∈ X(M). If b3 = 0, then for any r, s ∈ R

we have that µ(rt1 + st2) = rb1 ⊗ t�1 + sb2 ⊗ t�2 cannot be one-to-one. But
this obviously implies that b1 and b2 are linearly dependent, so that p is an
inflection point.

(3) Now if the orthonormal basis (t1, t2) is given by asymptotic directions
we have b3 = 0, b1 ·b2 = 0, and b1, b2 are linearly independent. If X = X1t1+
X2t2, we have αp(A, X) = A1X1b1 + A2X2b2. If X1 �= 0 then αp(X, A) = 0
implies A1 = 0, whence A is parallel to the asymptotic direction t2. And if
X2 �= 0 then A is parallel to the asymptotic direction t1. �

4. Transformations between surfaces with flat tangent
bundle and surfaces with flat normal bundle in R

4

Let M be an immersed submanifold on R
n. We put d⊥, d� to denote the

covariant differentials. That is, d⊥ acts upon a 0-form u with values in NM ,
that is a section of NM , by

(d⊥u)(X) = ∇⊥
Xu = (DXu)⊥.

It acts upon any 1-form β on M with values in NM by giving a 2-form d⊥β
with values in NM as follows

d⊥β(X, Y ) = ∇⊥
X(β(Y )) −∇⊥

Y (β(X)) − β([X, Y ])

= (DXβ(Y ))⊥ − (DY β(X))⊥ − β([X, Y ]),

and so on.

The definition of d�, that acts upon forms on M with values in TM , is
similar. The following Lemma is probably well known:
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Lemma 4.1. Let M be an immersed k-dimensional submanifold of R
n dif-

feomorphic to an open k-ball.

1. If the normal bundle NM is flat and β is an 1-form on M with values
in NM then d⊥β = 0 iff β = d⊥u for some u ∈ Γ(NM) that is
determined up to the addition of a parallel section of NM ;

2. If M is flat and β is an 1-form on M with values in TM then d�β = 0
iff β = d�X for some X ∈ X(M) that is determined up to the addition
of a parallel vector field on M.

Proof. (1) Since NM is flat and M is diffeomorphic to an open ball, there is
a global parallel frame uk+1, . . . , un of NM. We can write β =

∑n
i=k+1 ui⊗βi,

where the βi are ordinary 1-forms on M. Then d⊥β =
∑n

i=k+1 ui ⊗ dβi.
Thus d⊥β = 0 iff dβi = 0, i = k + 1, . . . , n; that is iff there are functions
bi ∈ C∞(M) such that β =

∑n
i=k+1 ui ⊗ dbi. If we put u =

∑n
i=k+1 biui, we

have

β(X) =
n∑

i=k+1

X(bi)ui = ∇⊥
X(

n∑

i=k+1

biui) = ∇⊥
Xu = (d⊥u)(X),

as claimed. It is clear that the addition of a parallel normal section to u
preserves the condition.

The proof for the second claim is analogous. �

Corollary 4.2. Let M be an immersed k-dimensional submanifold of R
n,

with NM flat, and diffeomorphic to an open k-dimensional ball, and let
X ∈ X(M) denote any vector field. Then the following claims are true, and
also those obtained from them by interchanging TM by NM , � by ⊥, etc.

1. Let A ∈ X(M) and β be the 1-form on M with values in NM given
by β(X) = (DXA)⊥. Then, there is a section u ∈ Γ(NM) such that
(D(A − u))⊥ = 0 iff d⊥β = 0. The section u is determined up to a
parallel section of NM.

2. Let A ∈ X(M) be parallel. Then there is u ∈ Γ(NM) such that (D(A−
u))⊥ = 0. If in addition M is flat, then there is B ∈ X(M) such that
(D(u − B))� = 0.

3. Let S : M → R
n be C∞ and such that (DS)� = 0, and A ∈ X(M) be

such that (D(S−A))⊥ = 0. Then, there is some z ∈ Γ(NM) such that
(D(A − z))⊥ = 0.
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Proof. (1) is an immediate consequence of 4.1. (2) Let β(X) = (DXA)⊥.
Then

d⊥β(X, Y ) =
(
DX(DY A)⊥ − DY (DXA)⊥ − D[X,Y ]A

)⊥

=
(
DX(DY A) − DY (DXA) − D[X,Y ]A

)⊥
= 0,

because (DXA)⊥ = DXA − (DXA)� = (DXA), and because R
n is flat. Our

claim follows from (1).
Now, suppose that M is flat and let β be the 1-form on M with values in

TM given by β(X) = (DXu)�. We need only prove that d�β = 0. We have:

d�β(X, Y ) = (DXβ(Y ))� − (DY β(X))� − β([X, Y ])

=
(
DX(DY u)� − DY (DXu)� − D[X,Y ]u

)�

=
( − DX(DY u)⊥ + DY (DXu)⊥)�

=
( − DX(DY A)⊥ + DY (DXA)⊥)�

=
( − DX(DY A) + DY (DXA)

)�

= (−D[X,Y ]A)� = 0,

because A is parallel.

(3) Let us define β : X(M) → Γ(NM) by β(X) = (DXA)⊥. Then we have

d⊥β(X, Y ) =
(
DXβ(Y ) − DY β(X) − D[X,Y ]A

)⊥

=
(
DX(DY A)⊥ − DY (DXA)⊥ − D[X,Y ]A

)⊥

=
(
DX(DY S)⊥ − DY (DXS)⊥ − D[X,Y ]S

)⊥

=
(
DX(DY S) − DY (DXS) − D[X,Y ]S

)⊥
= 0,

because (DXS)⊥ = DXS − (DXS)� = DXS. �

A good part of our results are based in the following Lemma:

Lemma 4.3. Let U, V be two surfaces immersed in R
4 and let f : U → V

be a diffeomorphism such that for any p ∈ U we have TpU = NqV, where
q = f(p). Then,

1. A section Y of TU satisfies ∇�Y = 0 (is parallel) iff Ỹ = Y ◦ f−1,
which is a section of NV, satisfies ∇⊥Ỹ = 0 (is parallel). And a section
u of NU is parallel iff u ◦ f−1, which is a section of TV, is parallel.

2. Let us denote by α and α̃ the second fundamental forms of U and V,
respectively. Then, for any p ∈ U, Xp, Yp ∈ TpU, up ∈ NpU, we have

up · αp(Xp, Yp) = −Xp · α̃q(up, df(Yp)).
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Proof. In the following let us denote with the same letter, crowned by a
tilde, functions on f(U) that correspond to functions on U.

(1) Let us put φ = f−1. We have Ỹq = (Y ◦ φ)f(p) = Yp ∈ TpU = NqV ;

hence Ỹ is a section of NV. Let X ∈ TpU = NqV, u ∈ NpU = TqV. We will
have

X · ∇̃⊥
u Ỹ = X · DuỸ = X · dỸ (u) = X · dY (dφ(u))

= X · Ddφ(u)Y = X · ∇�
dφ(u)Y,

and now both claims are evident.

(2) Let u, v ∈ Γ(NU) and X ∈ X(U). Then u ◦ φ, v ◦ φ ∈ X(f(U)) and
X ◦ φ ∈ Γ(Nf(U)). Thus

(X ◦ φ) · α̃(u ◦ φ, v ◦ φ) = −(u ◦ φ) · Dv◦φ(X ◦ φ).

Now we evaluate this at q. We obtain

Xp · α̃q(up,vp) = −up · Dvp(X ◦ φ) = −up · d(X ◦ φ)(vp)

= −up · dX(dφ(vp)) = −up · Ddφ(vp)X = −up · αp(Xp, dφ(vp)).

Putting vp = df(Yp) we obtain our claim. �

For the previous Lemma we did need that the ambient space were R
4

because then

2 = dim(TpU) = dim(TqV ) = dim(NpU) = dim(NqV ),

so that the equality TpU = NqV could make sense at all. In the following
Lemma this condition is not necessary. The proof is similar.

Lemma 4.4. Let U, V be two surfaces immersed in R
n and let f : U → V

be a diffeomorphism such that for any p ∈ U we have TpU = TqV, where
q = f(p). Then,

1. A section Y of TU is parallel iff Ỹ = Y ◦ f−1, which is a section of
TV, is parallel. And a section u of NU is parallel iff u ◦ f−1, which is
a section of NV, is parallel.

2. Let us denote by α and α̃ the second fundamental forms of U and V,
respectively. Then, for any p ∈ U, Xp, Yp ∈ TpU, we have

αp(Xp, Yp) = α̃q(df(Xp), Yp).

Now we begin to study the conditions to have diffeomorphisms as those
used in the preceding Lemmas.
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Proposition 4.5. Let M be an immersed surface in R
n. Then the following

statements are equivalent:

1. M is flat;

2. Given any point p ∈ M, there is an open neighborhood U of p in M
and a vector field e ∈ X(U) such that ∇�

Xe = X for all X ∈ X(U);

3. Given any point p ∈ M, there is an open neighborhood U of p in
M and a vector field e ∈ X(U) such that for any q ∈ U we have
df(TqU) ⊂ NqU, where f : U → R

n is the map defined by f(q) = q−eq,
that is f = id−e.

Proof. (1) ⇔ (2). If M is flat, there are two orthonormal parallel vector
fields X, Y ∈ X(M) in an open neighborhood U of p. One sees easily that
the 1-forms X�, Y � given by X�(A) = X · A, Y �(A) = Y · A are closed.
Therefore in any neighborhood U of p diffeomorphic to a ball, there are
functions u, v ∈ C∞(U) such that X = gradu, Y = grad v. The vector field
e = uX + vY satisfies the required property. In fact (DZe)� = Z(u)X +
Z(v)Y = (gradu ·Z)X +(grad v ·Z)Y = (Z ·X)X +(Z ·Y )Y = Z, because
X, Y are parallel and orthonormal. This field e is determined up to the
addition of a parallel tangent vector field on U . Conversely, if e ∈ X(U)
satisfies the condition, then for any X, Y ∈ X(U) we have

R�(X, Y )e = ∇�
X∇�

Y e −∇�
Y ∇�

Xe −∇�
[X,Y ]e = ∇�

XY −∇�
Y X − [X, Y ] = 0,

because ∇� is torsionless. Since e can vanish only at isolated points and the
dimension of M is 2, we conclude that R� = 0.

(2) ⇔ (3). Let e : U → TU be a local section of TM and let X, Y ∈
TqM, q ∈ U. Then Y · df(X) = Y · (X − de(X)) = Y · (X − DXe) =
Y · (X −∇�

Xe) and now our claim is evident. �

Note that e is the image, by an isometric chart, of the radius vector field.
It shares with the radius vector in R

2 the property e = 1
2
grad(e · e). In fact,

if X ∈ X(M), we have 1
2
grad(e · e) · X = 1

2
X(e · e) = e · DXe = e · X,

whence that property follows. In the following we will call such a vector
field a radius vector.

For M flat, and assuming that the radius vector e is defined in all of M,
let f = id−e : M → R

n and assume that for some non vanishing X ∈ TpM
we have df(X) = 0. This would be equivalent to say that for any u ∈ NpM
we had 0 = u·df(X) = u·(X−DXe) = −u·DXe = −u·αp(ep, X) = 0, that is
αp(ep, X) = 0, and this is only possible if {0} �= ker αp(ep, ) : TpM → NpM.
If n = 4, df would generically not be one-to-one only along some curves; if
n > 4, f would be an immersion generically outside isolated points, and so
on. However, I shall not dwell on this point.
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Assume that in fact f be an immersion, and let φ = (f |U)−1 for some
open U ⊂ M such that f |U : U → V = f(U) is a diffeomorphism. Then
φ = idV +e ◦ φ, as it can be proved easily. Since TqV = df(TpU) ⊂ NpU,
we will have TpU ⊂ NqV. Hence, c = e ◦ φ is a section of NV and the map
φ = id +c satisfies dφ(TqV ) = TpU ⊂ NqV. This motivates the following
proposition.

Proposition 4.6. Let M be an immersed surface in R
n with normal bundle

NM and first and second fundamental forms g and α, respectively. Let
c ∈ Γ(NM) and put f = id +c : M → R

n. Then c ·α = g iff for each p ∈ M
we have df(TpM) ⊂ NpM.

Proof. Let p ∈ M, X, Y ∈ TpM. Then

Y · (df)p(X) = Y · (X + (dc)p(X)) = Y · (X + DXc)

= Y · X − c · DXY = g(X, Y ) − c · α(X, Y ),

and our claim is now evident. �
Assume now that c ∈ Γ(NM) satisfies c ·α = g, and let f = id +c : M →

R
n. If p ∈ M, let us study the condition for dfp not being one-to-one. This

happens iff there is some non vanishing vector X ∈ TpM such that, for all
u ∈ NpM the following holds: u ·dfp(X) = u ·(X+DXc) = u ·∇⊥

Xc = 0. That
is iff {0} �= ker (∇⊥c)p : X ∈ TpM �→ ∇⊥

Xc ∈ NpM. As before, we see that
for n = 4 it fails generically to be an immersion only on some curves, etc.

The condition cp · αp = gp says that the height of the curvature ellipse
with respect to the vector hyperplane of NpM orthogonal to cp is constant
and equal to 1

|cp| . If n = 4 this happens only if the ellipse degenerates to a

point, not the origin, or to an affine segment not collinear with the origin. If
n > 4 this may occur almost always, because it is equivalent to require only
that the least affine subspace of NpM that contains the curvature ellipse
does not pass by the origin.

The next two Theorems, that are part of our main results, explain why
from now on in this section we consider only surfaces in R

4. Roughly, they
establish a transformation of a surface with flat normal bundle to a flat
surface, and a transformation that takes a flat surface and converts it to a
surface with flat normal bundle.

Theorem 4.7. Let M be a semiumbilical surface immersed in R
4. Let S :

M → R
4 be a smooth map such that (DS)� = 0. Let c be the section of NM

described in 3.3 that satisfies c ·α = g, and assume that f = id +c+S : M →
R

4 is an immersion. Then f(M) is an immersed flat surface, and we say it
is an evolute of M. If, in addition, M is flat, then f(M) is semiumbilical.
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Proof. Let U be an open subset of M for which f : U → V = f(U) is a
diffeomorphism. Taking account of the dimensions, if p ∈ M and q = f(p),
we conclude that df(TpU) = NpU = TqV and df−1(TqV ) = TpU = NqV. Our
claims are now a consequence of 4.5 and 4.3. In fact, M is flat iff there is a
non-vanishing parallel vector field on M , and all its points are semiumbilic iff
its normal bundle is flat, that is iff it admits a non-vanishing parallel section.
In both cases, due to the dimension 2 of those bundles. The question whether
f(M) has inflection points when M is semiumbilical and flat may be settled
with the same technique that will be used in Theorem 5.3 under a more
general context. �

In the same manner we have

Theorem 4.8. Let M be a surface immersed in R
4. Let S : M → R

4 be a
smooth map such that (DS)� = 0. Let e ∈ X(M) be a radius vector (hence,
M is flat) and put f = id−e + S : M → R

4. Then, if f is an immersion,
the immersed surface f(M) is semiumbilical and we will say that it is an
envelope of M. If, in addition, M is semiumbilical, then f(M) is flat.

Note that any parallel vector field S ∈ X(M) does the job required in
the above statements. Also, by means of 4.2, one may find many maps S
with the required property and that are neither vertical nor horizontal.

The first of the following two results will be used later. For proving them,
we use transformations as described above, but the results in themselves do
not claim for those transformations; on the other hand, a direct proof would
seem to demand heavy calculations.

Proposition 4.9. Let M be a flat surface in R
4 without inflection points

and S : M → R
4 be a smooth map such that (DS)� = 0. Then, there is a

unique vector field A ∈ X(M) such that (D(S − A))⊥ = 0.

Proof. First we show the uniqueness of A. The condition may be read also
as (DXA)⊥ = α(A, X) = (DXS)⊥ for any X ∈ X(M). Now, if p ∈ M ,
the right hand of this equation defines an element β of Hom(TpM, NpM) by
β(Xp) = (DXpS)⊥, for Xp ∈ TpM. Since p is not an inflection point, 3.5(1)
assures us that Ap, if it exists, is unique.

Let ep ∈ TpM be such that µ(ep) is one to one (see 3.5(2)), and for some
open neighborhood U of p, let e ∈ X(U) be a radius vector such that its
value at p is ep.

Let 0 ≤ ε ∈ R. We define the map fε = id−e+εS : U → R
4. Assume that

0 �= X ∈ TpM. Then df0(X) = (df0(X))⊥ = −αp(ep, X) = −µ(ep)(X) �= 0.
Hence, f0 is an immersion in a neighborhood of p. Thus by taking ε > 0
sufficiently small, we see that fε is an immersion on a neighborhood of p
that we shall keep denoting by U.
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The immersed surface fε(U) is semiumbilical. Let us call c̃ ∈ Γ(Nfε(U))
the section such that c̃ · α̃ = g̃, where the tildes mean that we are referring to
fε(U). Let us define A ∈ X(U) by εA = −c̃◦fε+e. Thus c̃ = e◦f−1

ε −εA◦f−1
ε .

In the formula of Lemma 4.3(2) let p ∈ U be an arbitrary point and replace
c̃q by X. Then

u · dfε(Y ) = −u · αp(c̃q, Y ),

that is:

0 = α(c̃q, Y ) + dfε(Y ) = α(c̃q, Y ) + dfε(Y )⊥

= α(c̃q, Y ) − (DY e)⊥ + ε(DY S)⊥

= α(c̃q − ep, Y ) + ε(DY S)⊥

= α(−εAp, Y ) + ε(DY S)⊥

= ε(DY (S − A))⊥.

Since Y is arbitrary and p ∈ U is arbitrary, we see that (D(A − S))⊥ = 0
in U. The uniqueness of A allows us to extend its existence to all of M. �

Proposition 4.10. Let M be a semiumbilical surface in R
4 diffeomorphic

to an open ball, such that for any p ∈ M the map (Dc)⊥ : X ∈ TpM �→
(DXc)⊥ ∈ NpM is one-to-one, and let S : M → R

4 be a smooth map such
that (DS)� = 0. Then, there is a smooth section z ∈ Γ(NM) such that
(D(S − z))⊥ = 0; it is determined up to the addition of a parallel section.

Proof. Let us define fε : M → R
4 by means of fε = id +c + εS, for ε ∈ R.

Then, dfε(TpM) ⊂ NpM for any p ∈ M and as a consequence, if X ∈ TpM,
we have

dfε(X) = dfε(X)⊥ = (DXc)⊥ + ε(DXS)⊥.

Since (Dc)⊥ is one to one, there is some ε > 0 and some open neighborhood
U of p such that fε is an immersion on U. Then the surface fε(U) is flat
and we can take U so that there is some radius vector ẽ on fε(U). Let
φ = f−1

ε . We put φ = id−ẽ + B ◦ φ, where B : U → R
4 is some smooth

map. Then we have easily that (D̃(B ◦ φ))� = 0, that is (DB)⊥ = 0. Since
φ = id−c◦φ−εS◦φ = id−ẽ+B◦φ, we have ẽ = (c+εS+B)◦φ ∈ X(fε(U)).
Hence, c + εS + B ∈ Γ(NU). Since c ∈ Γ(NU), there is some z ∈ Γ(NU)
such that εS + B = εz. and we have (D(S − z))⊥ = −1

ε
(DB)⊥ = 0. It is

clear that the difference between two such sections z is a parallel section
of NU . One can now extend the solution to the whole M because M is
diffeomorphic to a ball. �
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5. Transformations of surfaces with tangent and normal
bundles both flat

In this section, M will be an FSIS and c will be defined as in 3.3.
As we have recalled, there is, in a neighborhood of any point of M ,

an orthonormal frame (t1, t2) of asymptotic directions, such that, if b1 =
α(t1, t1) = (Dt1t1)

⊥, b2 = α(t2, t2) = (Dt2t2)
⊥, b3 = α(t1, t2) = (Dt1t2)

⊥, we
have:

1. b1 and b2 are linearly independent at each point;

2. b1 · b2 = 0, b3 = 0.

With this notation, we have:

Lemma 5.1. Let M be an FSIS in R
4. Then,

1. There is a unique vector field j ∈ X(M) such that for any X ∈ X(M)
we have α(j, X) = (DXj)⊥ = (DXc)⊥ = ∇⊥

Xc, and it is given by

j =
1

2
grad(c · c) =

b1 · Dt1c

b1 · b1

t1 +
b2 · Dt2c

b2 · b2

t2.

2. Let U ⊂ M be an open subset diffeomorphic to a ball, and assume that
e ∈ X(U) is a radius vector. Then there is a section k ∈ ΓNU such
that (D(e − k))⊥ = 0. It is determined up to the addition of a parallel
section of NU. Also, we have (D(c + e))� = 0.

Proof. (1) If such a vector field j exists, then

j · X = c · α(j, X) = c · ∇⊥
Xc = c · DXc =

1

2
DX(c · c) =

1

2
d(c · c)(X)

=
1

2
grad(c · c) · X.

Therefore, if it exists, j is unique and is given by 1
2
grad(c · c). Its existence

is not evident. We can write j = j1t1 + j2t2 and must have α(j, t1) = j1b1 =
∇⊥

t1
c. This reduces to the following two conditions

i) j1b1 · b1 = b1 · Dt1c, that is j1 =
b1·Dt1c

b1·b1 .

ii) j1b1 · b2 = b2 · Dt1c.

Condition i) determines j1. Since b1 · b2 = 0, condition ii) can be met iff
b2 · Dt1c = 0, but this is true by 3.4. The same happens to j2, and this
proves our claims.
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(2) We define an 1-form β on U with values in NU by β(X) = (DXe)⊥.
Let us prove that d⊥β = 0. We have

d⊥β(X, Y ) = (DXβ(Y ))⊥ − (DY β(X))⊥ − (D[X,Y ]e)
⊥

=
(
DX(DY e)⊥ − DY (DXe)⊥ − D[X,Y ]e

)⊥

=
(
DXDY e − DXY − DY DXe + DY X − D[X,Y ]e

)⊥

= (−[X, Y ])⊥ = 0,

because DXDY −DY DX −D[X,Y ] = 0 and DXY −DY X− [X, Y ] = 0. By 4.2
our first claim is true. As for the second, if X, Y ∈ X(M) we have

Y · (DX(c + e))� = Y · DXc + Y · X = −c · α(Y, X) + Y · X = 0.
�

Theorem 5.2. Let M be an FSIS in R
4, assume that the vector fields j

and k of 5.1 are defined in all of M and let the C∞ map S : M → R
4 satisfy

(DS)⊥ = 0. If the map f : M → R
4 is defined by

f = id +t1(e − k) + t2(c − j) + S, with t1, t2 ∈ R,

then df(TpM) ⊂ TpM, ∀p ∈ M. Moreover, if U is the open subset of M
where f is an immersion, then f(U) is an FSIS.

Proof. Let u ∈ NpM, X ∈ TpM. We will have

u·df(X) = u · (X + t1DX(e − k) + t2DX(c − j) + DXS)

= u · (t1(DX(e − k))⊥ + t2(DX(c − j))⊥ + (DXS)⊥
)

= 0.

Therefore, df(TpM) ⊂ TpM.

Now f(U) is flat and with flat normal bundle as a consequence of 4.4. In
fact, from a parallel local reference t1, t2 of TU and a parallel local reference
u3, u4 of NU we can obtain the parallel references ti ◦ f−1, i = 1, 2, and
ui ◦ f−1, i = 3, 4, of Tf(U) and Nf(U), respectively. We need still to prove
that there are no inflection points in f(U). Let p ∈ U, q = f(p), X, Y ∈ TpU.
Then, by Lemma 4.4,(2) we have

αp(X, Y ) = α̃q(df(X), Y ).

Therefore, the dimension of the subspaces generated by αp and α̃q must be
the same. Hence, f(M) is semiumbilical. �

We say that this transformation is of parallel type.

Now, we exhibit a transformation that sends each tangent space to its
orthogonal: this is another of our main results.
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Theorem 5.3. Let M be an FSIS in R
4. Let c be the section of NM such

that c ·α = g, e ∈ X(M) be a radius vector, and t ∈ R. Let S : M → R
4 be a

smooth map such that (DXS)� = 0 and A ∈ X(M) be the unique vector field
such that (D(S − A))⊥ = 0 (4.9). Put f = id +tc − (1 − t)e + S : M → R

4.
Then df(TpM) ⊂ NpM for any p ∈ M, the open subset U ⊂ M where f
is an immersion is the set of points where tj − (1 − t)e + A is not parallel
to an asymptotic direction, and f(U) is an FSIS. Also, if φ denotes a local
inverse of f , we have

1. c̃ = ((1 − t)e − tj − A) ◦ φ.

2. Let k be a (local) section of NU such that (DX(e− k))⊥ = 0. Then we
have that ẽ = (tc − (1 − t)k + z) ◦ φ ∈ X(f(U)), where z ∈ Γ(NM) is
such that (D(A − z))⊥ = 0 (see 4.2(3)), is a radius vector.

Proof. Let X, Y ∈ TpM. Then:

X · df(Y ) = X · (Y + tDY c − (1 − t)DY e + DY S)

= X · Y − tX · Y − (1 − t)X · Y + X · (DY S)� = 0,

so that df(TpM) ⊂ NpM, as claimed.
Then,

df(Y ) = df(Y )⊥ = t(DY c)⊥ − (1 − t)(DY e)⊥ + (DY S)⊥

= α(Y, tj − (1 − t)e + A).

By 3.5(3), we see that f fails to be an immersion only at the points where
tj − (1 − t)e + A is parallel to an asymptotic direction.

f(U) is flat and with flat normal bundle. Now by 4.3(2) we have

u · αp(X, Y ) = −X · α̃q(u, df(Y )),

for any u ∈ NpM. If p ∈ U then the curvature ellipse at q = f(p) lies in an
affine line of Nqf(U). If q is an inflection point of f(U) (this includes the
case that it be umbilic) then that line passes by the origin (the ellipse itself
passes by it because f(U) is flat).

Hence, for any Y ∈ TpM and u ∈ NpM, α̃(df(Y ), u) lies in the vector
line containing the ellipse. If X is non zero and orthogonal to that line, then
u · α(X, Y ) = 0 for all Y, u. Hence µ(X) = 0 (see 3.5(1)) and p must be an
inflection point, against our hypotheses.

Since f(U) is an FSIS, there is c̃ ∈ Γ(Nf(U)) such that c̃ · α̃ = g̃. The
proof of the formula c̃ =

(
(1 − t)e − tj − A

) ◦ φ is almost the same as that
used in the last part of the proof of 4.9.
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(2) By 4.2(3) we know that there is locally some section z ∈ Γ(NU) such
that D(A − z)⊥ = 0. Let u, v ∈ Tqf(U) = NpU. Then

v·∇̃�
u ẽ = v · Du(tc − (1 − t)k + z) ◦ φ = v · Ddφ(u)(tc − (1 − t)k + z)

= v · Ddφ(u)(tj − (1 − t)e + A) = −v · Ddφ(u)(c̃ ◦ f) = −v · Duc̃

= v · u,

whence ∇̃�
u ẽ = u, as desired. �

Now we will see that the composition of two transformations of orthog-
onal type is one of parallel type, as we could expect, and also we want to
prove a permutability theorem in the same vein of the Bianchi permutability
theorem for Bäcklund transformations (see [1]). For this we need some more
notation. First we note that in the definition of the map f of the preceding
Theorem the ambiguity in the choice of e, that is the addition of a parallel
vector field on M, may be absorbed in the ambiguity of the choice of S.
Thus, we may consider that e is uniquely defined, so that we may describe
the map f as F (t, S) : M → R

4 and it is given by

F (t, S) = id +tc − (1 − t)e + S,

where t ∈ R, e ∈ X(M) is a radius vector and S : M → R
4 satisfies

(DXS)� = 0, ∀X ∈ X(M).

Theorem 5.4. With the above notation, assume that F (t1, S1) : M → R
4

and F (t2, S2) : M → R
4 are immersions and, for the sake of brevity, that

they are diffeomorphisms. Let us put Mi = F (ti, Si)(M), i = 1, 2. Then
there exists locally a transformation F (t2, S̃1) : M1 → R

4 and a transforma-
tion F (t1, S̃2) : M2 → R

4 such that

F (t2, S̃1) ◦ F (t1, S1) = F (t1, S̃2) ◦ F (t2, S2)

and this composition is one of the transformations of parallel type described
in 5.2.

Proof. Let us put φi = F (ti, Si)
−1, i = 1, 2. Then we have for Mi the fields

c̃i = ((1− ti)e− tij−Ai)◦φi, where Ai ∈ X(Mi) satisfies (D(Si−Ai))
⊥ = 0,

and ẽi = (tc − (1 − ti)ki + vi) ◦ φi, where (D(Ai − vi))
⊥ = 0. Now, let

si : M → R
4 be such that (Dsi)

⊥ = 0. Then, if we put S̃i = si ◦ φi we have
for any ui ∈ Tqi

Mi that (Dui
S̃i)

� = 0, as it is easily proved (here, ⊥ refers
to Mi). We shall compute the compositions

F (t2, S̃1) ◦ F (t1, S1), F (t1, S̃2) ◦ F (t2, S2),

and prove that by a convenient choice of si we can make those compositions
to be equal.
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Let p ∈ M and q = F (t1, S1)(p). We have that the first composition
maps p ∈ M to

F (t2,S̃1)(p + t1cp − (1 − t1)ep + S1p)

= p + t1cp − (1 − t1)ep + S1p + t2c̃1q − (1 − t2)ẽ1q + (s1 ◦ φ1)q

= p + t1cp − (1 − t1)ep + S1p + t2((1 − t1)ep − t1jp − A1p)

− (1 − t2)(t1cp − (1 − t1)k1p + v1p) + s1p

= p + t1t2(cp − jp) − (1 − t1)(1 − t2)(ep − k1p)

− t2A1p − (1 − t2)v1p + S1p + s1p.

Now

−t2A1 − (1 − t2)v1 + S1 + s1 = (1 − t2)(A1 − v1) + (S1 − A1) + s1,

and
(
D((1 − t2)(A1 − v1) + S1 − A1)

)⊥
= 0 by the hypotheses (on passing,

this proves also our last claim, that is that those compositions are of the
type described in 5.2). Hence, we can take s1 = −(1− t2)(A1−v1)+A1−S1

and s2 = −(1− t1)(A2 − v2) + A2 − S2, because then clearly (Dsi)
⊥ = 0, as

needed. Then both compositions are made equal to

id+t1t2(c − j) − (1 − t1)(1 − t2)(e − k) .
�
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