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The algebro-geometric Toda hierarchy
initial value problem

for complex-valued initial data

Fritz Gesztesy, Helge Holden and Gerald Teschl

Abstract

We discuss the algebro-geometric initial value problem for the
Toda hierarchy with complex-valued initial data and prove unique
solvability globally in time for a set of initial (Dirichlet divisor) data of
full measure. To this effect we develop a new algorithm for construct-
ing stationary complex-valued algebro-geometric solutions of the Toda
hierarchy, which is of independent interest as it solves the inverse
algebro-geometric spectral problem for generally non-self-adjoint Ja-
cobi operators, starting from a suitably chosen set of initial divisors
of full measure. Combined with an appropriate first-order system of
differential equations with respect to time (a substitute for the well-
known Dubrovin equations), this yields the construction of global
algebro-geometric solutions of the time-dependent Toda hierarchy.

The inherent non-self-adjointness of the underlying Lax (i.e., Ja-
cobi) operator associated with complex-valued coefficients for the
Toda hierarchy poses a variety of difficulties that, to the best of our
knowledge, are successfully overcome here for the first time. Our ap-
proach is not confined to the Toda hierarchy but applies generally to
1 + 1–dimensional completely integrable discrete soliton equations.

1. Introduction

The principal aim of this paper is an explicit construction of unique global
solutions of the algebro-geometric initial value problem for the Toda hierar-
chy with complex-valued initial data. More precisely, we intend to describe
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a solution of the following problem: Given p ∈ N0, assume a(0), b(0) to be
complex-valued solutions of the pth stationary Toda system s-Tlp(a, b) = 0
associated with a prescribed nonsingular hyperelliptic curve Kp of genus p
and let r ∈ N0; we want to construct unique global solutions a = a(tr),
b = b(tr) of the rth Tl flow Tlr(a, b) = 0 with a(t0,r) = a(0), b(t0,r) = b(0) for
some t0,r ∈ R. Thus, we seek a unique global solution of the initial value
problem

Tlr(a, b) = 0,

(a, b)
∣∣
tr=t0,r

=
(
a(0), b(0)

)
,

(1.1)

s-Tlp
(
a(0), b(0)

)
= 0(1.2)

for some t0,r ∈ R, p, r ∈ N0, where a = a(n, tr), b = b(n, tr) satisfy

a : Z × R → C \ {0}, b : Z × R → C,

a( · , t), b( · , t) ∈ C
Z, t ∈ R, a(n, · ), b(n, · ) ∈ C1(R), n ∈ Z.

(1.3)

In the special case of a self-adjoint Lax (i.e., Jacobi) operator L, where
a and b are real-valued and bounded, the actual solution of this algebro-
geometric initial value problem consists of the following two-step procedure
discussed in detail in [6] (see also [14, Sect. 1.3], [32, Sect. 8.3]): 1

(i)An algorithm that constructs finite nonspecial divisors Dµ̂(n)∈Symp(Kp)
in real position for all n ∈ Z starting from an initial Dirichlet divisor Dµ̂(n0) ∈
Symp(Kp) in an appropriate real position (i.e., with Dirichlet eigenvalues
in appropriate spectral gaps of L). “Trace formulas” of the type (3.25)
and (3.26) then construct the stationary real-valued solutions a(0), b(0) of
s-Tlp(a, b) = 0.

(ii) The first-order Dubrovin-type system of differential equations (5.42),
augmented by the initial divisor Dµ̂(n0,t0,r) = Dµ̂(n0) together with the anal-
ogous “trace formulas” (5.40), (5.41) then yield unique global real-valued
solutions a = a(tr), b = b(tr) of the rth Tl flow Tlr(a, b) = 0 satisfying
a(t0,r) = a(0), b(t0,r) = b(0).

This approach works perfectly in the special self-adjoint case where the
Dirichlet divisors µ̂(n, tr) = (µ̂1(n, tr), . . . , µ̂p(n, tr)) ∈ Symp(Kp), (n, tr) ∈
Z×R, yield Dirichlet eigenvalues µ1(n, tr), . . . , µp(n, tr) of the Lax operator
L situated in p different spectral gaps of L on the real axis. In particular,
for fixed (n, tr) ∈ Z×R, the Dirichlet eigenvalues µj(n, tr), j = 1, . . . , p, are
pairwise distinct and formulas (5.41) for a and (5.42) for (d/dtr)µj(n, tr),
j = 1, . . . , p, are well-defined.

1We freely use the notation of divisors of degree p as introduced in Appendix A.
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This situation drastically changes if complex-valued initial data a(0), b(0)

or Dµ̂(n0,t0,r) are permitted. In this case the Dirichlet eigenvalues µj(n, tr),
j = 1, . . . , p, are no longer confined to well separated spectral gaps of L on
the real axis and, in particular, they are in general no longer pairwise distinct
and “collisions” between them can occur at certain values of (n, tr) ∈ Z×R.
Thus, the stationary algorithm in step (i) as well as the Dubrovin-type first-
order system of differential equations (5.42) in step (ii) above, breaks down
at such values of (n, tr). A priori, one has no control over such collisions,
especially, it is not possible to identify initial conditions Dµ̂(n0,t0,r) at some
(n0, t0,r) ∈ Z×R which avoid collisions for all (n, tr) ∈ Z×R. We solve this
problem head on by explicitly permitting collisions in the stationary as well
as time-dependent context from the outset. In the stationary context, we
properly modify the algorithm described above in step (i) in the self-adjoint
case by alluding to a more general interpolation formalism (cf. Appendix B)
for polynomials, going beyond the usual Lagrange interpolation formulas. In
the time-dependent context we replace the first-order system of Dubrovin-
type equations (5.42), augmented with the initial divisor Dµ̂(n0,t0,r), by a
different first-order system of differential equations (6.27) with initial condi-
tions (6.28) which focuses on symmetric functions of µ1(n, tr), . . . , µp(n, tr)
rather than individual Dirichlet eigenvalues µj(n, tr), j = 1, . . . , p. In this
manner it will be shown that collisions of Dirichlet eigenvalues no longer
pose a problem.

In addition, there is a second nontrivial complication in the non-self-
adjoint case: Since the Dirichlet eigenvalues µj(n, tr), j = 1, . . . , p, are no
longer confined to spectral gaps of L on the real axis as (n, tr) vary in Z×R,
it can no longer be guaranteed that µj(n, tr), j = 1, . . . , p, stay finite for
all (n, tr) ∈ Z × R. As discussed in Section 4 in the stationary case, this
phenomenon is related to certain deformations of the algebraic curve Kp

under which for some n0 ∈ Z, a(n0) → 0 and µj(n0 + 1) → ∞ for some
j ∈ {1, . . . , p}. We solve this particular problem in the stationary as well
as time-dependent case by properly restricting the initial Dirichlet divisors
Dµ̂(n0,t0,r) ∈ Symp(Kp) to a dense set of full measure.

Summing up, we offer a new algorithm to solve the inverse algebro-
geometric spectral problem for generally non-self-adjoint Jacobi operators,
starting from a properly chosen dense set of initial divisors of full measure.
Combined with an appropriate first-order system of differential equations
with respect to time (a substitute for the well-known Dubrovin equations),
this yields the construction of global algebro-geometric solutions of the time-
dependent Toda hierarchy.

We emphasize that the approach described in this paper is not limited to
the Toda hierarchy but applies universally to constructing algebro-geometric
solutions of 1 + 1-dimensional integrable discrete soliton equations. In par
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ticular, it applies to differential-difference (i.e., lattice) systems and we are
now in the process of applying it to the Ablowitz–Ladik hierarchy. More-
over, the principal idea of replacing Dubrovin-type equations by a first-order
system of the type (6.27) is also relevant in the context of general non-self-
adjoint Lax operators for continuous models in 1+1-dimensions. (In partic-
ular, the models studied in detail in [13] can be revisited from this point of
view.) We also note that while the periodic case with complex-valued a, b is
of course included in our analysis, we throughout consider the more general
algebro-geometric case (in which a, b need not even be quasi-periodic).

Finally we briefly describe the content of each section. Section 2 presents
a quick summary of the basics of the Toda hierarchy, its recursive con-
struction, Lax pairs, and zero-curvature equations. The stationary algebro-
geometric Toda hierarchy solutions, the underlying hyperelliptic curve, trace
formulas, etc., are the subject of Section 3. A new algorithm solving the
algebro-geometric inverse spectral problem for generally non-self-adjoint Ja-
cobi operators is presented in Section 4. In Section 5 we briefly summarize
the properties of algebro-geometric time-dependent solutions of the Toda hi-
erarchy and formulate the algebro-geometric initial value problem. Unique-
ness and existence of global solutions of the algebro-geometric initial value
problem as well as their explicit construction are then presented in our final
and principal Section 6. Appendix A reviews the basics of hyperelliptic Rie-
mann surfaces of the Toda-type and sets the stage of much of the notation
used in this paper. Various interpolation formulas of fundamental impor-
tance to our stationary inverse spectral algorithm developed in Section 4
are summarized in Appendix B. Finally, Appendix C summarizes asymp-
totic spectral parameter expansions of various quantities fundamental to the
polynomial recursion formalism presented in Section 2. These appendices
support our intention to make this paper reasonably self-contained.

2. The Toda hierarchy in a nutshell

In this section we briefly review the recursive construction of the Toda hi-
erarchy and associated Lax pairs and zero-curvature equations following [6],
[14, Sect. 1.2], and [32, Ch. 12].

Throughout this section we make the following assumption:

Hypothesis 2.1. Suppose

(2.1) a, b ∈ C
Z and a(n) �= 0 for all n ∈ Z.

Here CJ denotes the set of complex-valued sequences indexed by J ⊆ Z.
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We consider the second-order Jacobi difference expression

(2.2) L = aS+ + a−S− + b,

where S± denote the shift operators

(2.3) (S±f)(n) = f±(n) = f(n±1), n ∈ Z, f ∈ C
Z.

To construct the stationary Toda hierarchy we need a second difference
expression of order 2p + 2, p ∈ N0, defined recursively in the following. We
take the quickest route to the construction of P2p+2, and hence to the Toda
hierarchy, by starting from the recursion relations (2.4)–(2.6) below.

Define {f�}�∈N0 and {g�}�∈N0 recursively by

f0 = 1, g0 = −c1,(2.4)

2f�+1 + g� + g−� − 2bf� = 0, � ∈ N0,(2.5)

g�+1 − g−�+1 + 2
(
a2f+

� − (a−)2f−
�

)− b(g� − g−� ) = 0, � ∈ N0.(2.6)

Explicitly, one finds

f0 = 1,

f1 = b+ c1,

f2 = a2 + (a−)2 + b2 + c1b+ c2, etc.,(2.7)

g0 = −c1,
g1 = −2a2 − c2,

g2 = −2a2(b+ + b) + c1(−2a2) − c3, etc.

Here {c�}�∈N denote undetermined summation constants which naturally
arise when solving (2.4)–(2.6).

Subsequently, it will also be useful to work with the corresponding ho-
mogeneous coefficients f̂j and ĝj, defined by vanishing of the constants
ck, k ∈ N,

f̂0 = 1, f̂� = f�

∣∣
ck=0, k=1,...,�

, � ∈ N,

ĝ0 = 0, ĝ� = g�

∣∣
ck=0, k=1,...,�+1

, � ∈ N0.
(2.8)

Hence,

(2.9) f� =
�∑

k=0

c�−kf̂k, g� =
�∑

k=1

c�−kĝk − c�+1, � ∈ N0,

introducing

(2.10) c0 = 1.
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Next we define difference expressions P2p+2 of order 2p+ 2 by

(2.11) P2p+2 = −Lp+1 +

p∑
�=0

(
g� + 2af�S

+
)
Lp−� + fp+1, p ∈ N0.

Introducing the corresponding homogeneous difference expressions P̂2p+2 de-
fined by

(2.12) P̂2�+2 = P2�+2

∣∣
ck=0, k=1,...,�

, � ∈ N0,

one finds

(2.13) P2p+2 =

p∑
�=0

cp−�P̂2�+2.

Using the recursion relations (2.4)–(2.6), the commutator of P2p+2 and L
can be explicitly computed and one obtains

[P2p+2, L] = − a
(
g+

p + gp + f+
p+1 + fp+1 − 2b+f+

p

)
S+

+ 2
(− b(gp + fp+1) + a2f+

p − (a−)2f−
p + b2fp

)
− a−

(
gp + g−p + fp+1 + f−

p+1 − 2bfp

)
S−, p ∈ N0.(2.14)

In particular, (L, P2p+2) represents the celebrated Lax pair of the Toda hi-
erarchy. Varying p ∈ N0, the stationary Toda hierarchy is then defined in
terms of the vanishing of the commutator of P2p+2 and L in (2.14), that is,

(2.15) [P2p+2, L] = s-Tlp(a, b) = 0, p ∈ N0.

Thus one finds

gp + g−p + fp+1 + f−
p+1 − 2bfp = 0,(2.16)

−b(gp + fp+1) + a2f+
p − (a−)2f−

g + b2fp = 0.(2.17)

Using (2.5) with j = p one concludes that (2.16) reduces to

(2.18) fp+1 = f−
p+1,

that is, fp+1 is a lattice constant. Similarly, one infers by subtracting b
times (2.16) from twice (2.17) and using (2.6) with j = p, that gp+1 is a
lattice constant as well, that is,

(2.19) gp+1 = g−p+1.
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Equations (2.18) and (2.19) give rise to the stationary Toda hierarchy, which
is introduced as follows

(2.20) s-Tlp(a, b) =

(
f+

p+1 − fp+1

gp+1 − g−p+1

)
= 0, p ∈ N0.

Explicitly,

s-Tl0(a, b) =

(
b+ − b

2
(
(a−)2 − a2

)) = 0,

s-Tl1(a, b) =

(
(a+)2 − (a−)2 + (b+)2 − b2

2(a−)2(b+ b−) − 2a2(b+ + b)

)
(2.21)

+ c1

(
b+ − b

2
(
(a−)2 − a2

)) = 0, etc.,

represent the first few equations of the stationary Toda hierarchy. By defin-
ition, the set of solutions of (2.20), with p ranging in N0 and c� ∈ C, � ∈ N,
represents the class of algebro-geometric Toda solutions.

In the following we will frequently assume that a, b satisfy the pth sta-
tionary Toda system. By this we mean it satisfies one of the pth stationary
Toda equations after a particular choice of summation constants c� ∈ C,
� = 1, . . . , p, p ∈ N, has been made.

In accordance with our notation introduced in (2.8) and (2.12), the cor-
responding homogeneous stationary Toda equations are defined by

(2.22) s-T̂lp(a, b) = s-Tlp(a, b)
∣∣
c�=0, �=1,...,p

= 0, p ∈ N0.

Next, we introduce polynomials Fp and Gp+1 of degree p and p+ 1, with
respect to the spectral parameter z ∈ C by

Fp(z) =

p∑
�=0

fp−�z
� =

p∑
�=0

cp−�F̂�(z),(2.23)

Gp+1(z) = −zp+1 +

p∑
�=0

gp−�z
� + fp+1 =

p+1∑
�=1

cp+1−�Ĝ�(z)(2.24)

with F̂� and Ĝ� denoting the corresponding homogeneous polynomials de-
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fined by

F̂0(z) = F0(z) = 1,

F̂�(z) = F�(z)
∣∣
ck=0, k=1,...,�

=
�∑

k=0

f̂�−kz
k, � ∈ N0,

(2.25)

Ĝ0(z) = G0(z)
∣∣
c1=0

= 0, Ĝ1(z) = G1(z) = −z − b,

Ĝ�+1(z) = G�+1(z)
∣∣
ck=0, k=1,...,�

= −z�+1 +

�∑
k=0

ĝ�−kz
k + f̂�+1, � ∈ N.

(2.26)

Explicitly, one obtains

F0 = 1,

F1 = z + b+ c1,

F2 = z2 + bz + a2 + (a−)2 + b2 + c1(z + b) + c2, etc.,(2.27)

G1 = −z + b,

G2 = −z2 + (a−)2 − a2 + b2 + c1(−z + b), etc.

Next, we study the restriction of the difference expression P2p+2 to the
two-dimensional kernel (i.e., the formal null space in an algebraic sense as
opposed to the functional analytic one) of (L− z). More precisely, let

ker(L− z) = {ψ : Z → C ∪ {∞} | (L− z)ψ = 0}.(2.28)

Then (2.11) implies

(2.29) P2p+2 |ker(L−z)=
(
2aFp(z)S

+ +Gp+1(z)
)∣∣

ker(L−z)
.

Therefore, the Lax relation (2.15) becomes

2(z − b+)F+
p − 2(z − b)Fp +G+

p+1 −G−
p+1 = 0,(2.30)

2a2F+
p − 2(a−)2F−

p + (z − b)(Gp+1 −G−
p+1) = 0.(2.31)

Additional manipulations yield

2(z − b)Fp +Gp+1 +G−
p+1 = 0,(2.32)

(z − b)2Fp + (z − b)Gp+1 + a2F+
p − (a−)2F−

p = 0.(2.33)

Indeed, adding Gp+1 − Gp+1 to the left-hand side of (2.30) (neglecting a
trivial summation constant) yields (2.32) and inserting (2.30) into (2.31)
then implies (2.33). Varying p ∈ N0, equations (2.32), (2.33) provide an
alternative description of the stationary Toda hierarchy.
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Combining equations (2.31) and (2.32) one concludes that the quantity

(2.34) R2p+2(z) = Gp+1(z, n)2 − 4a(n)2Fp(z, n)F+
p (z, n)

is a lattice constant, and hence depends on z only. Thus, one can write

(2.35) R2p+2(z) =

2p+1∏
m=0

(z − Em), {Em}2p+1
m=0 ⊂ C.

One can decouple (2.32) and (2.33) to obtain separate equations for Fp

and Gp+1. For instance, computing Gp+1 from (2.33) and inserting the result
into (2.32) yields the following linear difference equation for Fp

0 = (z − b)2(z − b−)Fp − (z − b−)2(z − b)F−
p +

+
(
(a−)2F−

p − a2F+
p

)
(z − b−) +

(
(a−−)2F−−

p − (a−)2Fp

)
(z − b).(2.36)

Similarly, insertion of (2.33) into (2.34) permits one to eliminate Gp+1 and
results in the following nonlinear difference equation for Fp,

(z − b)4F 2
p − 2a2(z − b)2FpF

+
p − 2(a−)2(z − b)2FpF

−
p + a4(F+

p )2

+ (a−)4(F−
p )2 − 2a2(a−)2F+

p F
−
p = (z − b)2R2p+2(z).(2.37)

On the other hand, computing Fp in terms of Gp+1 andG+
p+1 using (2.32) and

inserting the result into (2.33) yields the following linear difference equation
for Gp+1

a2(z − b−)(G+
p+1 +Gp+1) − (a−)2(z − b+)(G−

p+1 +G−−
p+1)

+ (z − b−)(z − b)(z − b+)(G−
p+1 −Gp+1) = 0.(2.38)

Finally, inserting the result for Fp into (2.34) yields the following nonlinear
difference equation for Gp+1

(z − b)(z − b+)G2
p+1 − a2(G−

p+1 +Gp+1)(Gp+1 +G+
p+1)

= (z − b)(z − b+)R2p+2.(2.39)

Equations (2.37) and (2.39) can be used to derive nonlinear recursion rela-
tions for the homogeneous coefficients f̂� and ĝ� (i.e., the ones satisfying (2.8)
in the case of vanishing summation constants) as proved in Theorem C.1 in
Appendix C. This has interesting applications to the asymptotic expansion
of the Green’s function of L with respect to the spectral parameter. In ad-
dition, as proven in Theorem C.1, (2.37) leads to an explicit determination
of the summation constants c1, . . . , cp in

(2.40) s-Tlp(a, b) = 0, p ∈ N0,

in terms of the zeros E0, ..., E2p+1 of the associated polynomialR2p+2 in (2.35).
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In fact, one can prove (cf. Theorem C.1) that

(2.41) ck = ck(E), k = 1, . . . , p,

where

ck(E) = −
k∑

j0,...,j2p+1=0
j0+···+j2p+1=k

(2j0)! · · · (2j2p+1)!

22k(j0!)2 · · · (j2p+1!)2(2j0 − 1) · · · (2j2p+1 − 1)

× Ej0
0 · · ·Ej2p+1

2p+1 , k = 1, . . . , p,(2.42)

are symmetric functions of E = (E0, . . . , E2p+1).

We emphasize that the result (2.29) is valid independently of whether or
not P2p+2 and L commute. However, the fact that the two difference expres-
sions P2p+2 and L commute implies the existence of an algebraic relationship
between them. This gives rise to the Burchnall–Chaundy polynomial for the
Toda hierarchy first discussed in the discrete context by Năıman [28], [29].

Theorem 2.2. Assume Hypothesis 2.1, fix p ∈ N0 and suppose that P2p+2

and L commute, [P2p+2, L] = 0, or equivalently, assume that s-Tlp(a, b) = 0.
Then L and P2p+2 satisfy an algebraic relationship of the type (cf. (2.35))

Fp(L, P2p+2) = P 2
2p+2 − R2p+2(L) = 0,

R2p+2(z) =

2p+1∏
m=0

(z −Em), z ∈ C.
(2.43)

The expression Fp(L, P2p+2) is called the Burchnall–Chaundy polynomial
of the Lax pair (L, P2p+2) and it will be used in Section 3 to introduce the
underlying hyperelliptic curve associated with the stationary Toda system
s-Tlp(a, b) = 0 (cf. (3.1)).

Next we turn to the time-dependent Toda hierarchy. For that purpose
the functions a and b are now considered as functions of both the lattice
point and time. For each equation in the hierarchy, that is, for each p, we
introduce a deformation (time) parameter tp ∈ R in a, b, replacing a(n), b(n)
by a(n, tp), b(n, tp). The second-order difference expression L (cf. (2.2)) now
reads

(2.44) L(tp) = a( · , tp)S+ + a−( · , tp)S− + b( · , tp).
The quantities {f�}�∈N0, {g�}�∈N0, and P2p+2, p ∈ N0 are still defined by
(2.4)–(2.6) and (2.11), respectively. The time-dependent Toda hierarchy is
then obtained by imposing the Lax commutator equations

(2.45) Ltp(tp) − [P2p+2(tp), L(tp)] = 0, tp ∈ R,
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varying p ∈ N0. Relation (2.45) implies(
atp + a(g+

p + gp + f+
p+1 + fp+1 − 2b+f+

p )
)
S+

− (−btp + 2
(− b(gp + fp+1) + a2f+

p − (a−)2f−
p + b2fp

))
(2.46)

+
(
atp + a(g+

p + gp + f+
p+1 + fp+1 − 2b+f+

p )
)−
S− = 0.

Applying the same method we used to derive (2.18) and (2.19) one concludes

0 = Ltp − [P2p+2, L]

=
(
atp − a(f+

p+1 − fp+1)
)
S+ − (−btp − gp+1 + g−p+1

)
+
(
atp − a(f+

p+1 − fp+1)
)−
S−.(2.47)

Varying p ∈ N0, the collection of evolution equations

(2.48) Tlp(a, b) =

(
atp − a(f+

p+1 − fp+1)
btp + gp+1 − g−p+1

)
= 0, (n, tp) ∈ Z × R, p ∈ N0 ,

then defines the time-dependent Toda hierarchy. Explicitly,

Tl0(a, b) =

(
at0 − a(b+ − b)

bt0 − 2
(
a2 − (a−)2

)) = 0,

Tl1(a, b) =

(
at1 − a

(
(a+)2 − (a−)2 + (b+)2 − b2

)
bt1 + 2(a−)2(b+ b−) − 2a2(b+ + b)

)
(2.49)

+ c1

( −a(b+ − b)
−2

(
a2 − (a−)2

)) = 0, etc.,

represent the first few equations of the time-dependent Toda hierarchy. The
system of equations, Tl0(a, b) = 0, is of course the Toda system.

The corresponding homogeneous Toda equations obtained by taking all
summation constants equal to zero, c� = 0, � = 1, . . . , p, are then denoted by

(2.50) T̂lp(a, b) = Tlp(a, b)
∣∣
c�=0, �=1,...,p

.

Restricting the Lax relation (2.45) to the kernel ker(L−z) one finds that

0 =
(
Ltp − [P2p+2, L]

)∣∣
ker(L−z)

=
(
Ltp + (L− z)P2p+2

)∣∣
ker(L−z)

(2.51)

=

(
a
(atp

a
− a−tp
a−

+ 2(z − b+)F+
p − 2(z − b)Fp +G+

p+1 −G−
p+1

)
S+

+
(
btp + (z − b)

a−tp
a−

+ 2(a−)2F−
p − 2a2F+

p

+ (z − b)(G−
p+1 −Gp+1)

))∣∣∣∣
ker(L−z)

.(2.52)
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Hence one obtains

atp

a
− a−tp
a−

= −2(z − b+)F+
p + 2(z − b)Fp +G−

p+1 −G+
p+1,(2.53)

btp = −(z − b)
a−tp
a−

− 2(a−)2F−
p + 2a2F+

p − (z − b)(G−
p+1 −Gp+1).(2.54)

Further manipulations then yield,

atp = −a(2(z − b+)F+
p +G+

p+1 +Gp+1

)
,(2.55)

btp = 2
(
(z − b)2Fp + (z − b)Gp+1 + a2F+

p − (a−)2F−
p

)
.(2.56)

Indeed, (2.55) follows by adding Gp+1 −Gp+1 to (2.53) (neglecting a trivial
summation constant), and an insertion of (2.55) into (2.54) implies (2.56).
Varying p ∈ N0, equations (2.55) and (2.56) provide an alternative descrip-
tion of the time-dependent Toda hierarchy.

Remark 2.3. From (2.4)–(2.6) and (2.23), (2.24) one concludes that the
coefficient a enters quadratically in Fp and Gp+1, and hence the Toda hier-
archy (2.48) (respectively (2.20)) is invariant under the substitution

(2.57) a→ aε =
{
ε(n)a(n)

}
n∈Z

, ε(n) ∈ {1,−1}, n ∈ Z.

We conclude this section by pointing out an alternative construction of
the Toda hierarchy using a zero-curvature approach instead of Lax pairs
(L, P2p+2). To this end one defines the 2 × 2 matrices

U(z) =

(
0 1

−a−/a (z − b)/a

)
,(2.58)

Vp+1(z) =

(
G−

p+1(z) 2a−F−
p (z)

−2a−Fp(z) 2(z − b)Fp(z) +Gp+1(z)

)
, p ∈ N0.(2.59)

Then the stationary part of this section can equivalently be based on the
zero-curvature equation

0 = UVp+1 − V +
p+1U(2.60)

=
2

a

⎛⎜⎝
0 0

a−
(
(z−b+)F+

p −(z−b)Fp a2F+
p −(a−)2F−

p

+2−1(G+
p+1−G−

p+1)
)

+2−1(z−b)(Gp+1−G+
p+1)

+(z−b)2Fp−(z−b+)(z−b)F+
p

⎞⎟⎠ .

Thus, one obtains (2.30) from the (2, 1)-entry in (2.60). Insertion of (2.30)
into the (2, 2)-entry of (2.60) then yields (2.31). Thus, one also obtains (2.32)
and hence the (2, 2)-entry of Vp+1 in (2.59) simplifies to

(2.61) Vp+1,2,2(z) = −G−
p+1(z)
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in the stationary case. Since det(U(z, n)) = a−(n)/a(n) �= 0, n ∈ Z, the
zero-curvature equation (2.60) yields that det(Vp+1(z, n)) is a lattice constant
(i.e., independent of n ∈ Z). The Burchnall–Chaundy polynomial Fp(y, z)
(cf. (2.43) and especially, the hyperelliptic curve (3.1)) is then obtained from
the characteristic equation of Vp+1(z) by

det
(
yI2 − Vp+1(z, n)

)
= y2 + det

(
Vp+1(z, n)

)
= y2 −G−

p−1(z, n)2 + 4a−(n)2F−
p (z, n)Fp(z, n)

= y2 − R2p+2(z) = 0,(2.62)

using (2.61). (Here I2 denotes the identity matrix in C2.) Similarly, the
time-dependent part (2.44)–(2.56) can equivalently be developed from the
zero-curvature equation

0 = Utp + UVp+1 − V +
p+1U(2.63)

=
1

a

⎛⎜⎜⎜⎝
0 0

a−((atp/a)−(a−
tp

/a−)) −btp−(z−b)(atp/a)

+a−
(
2(z−b+)F+

p −2(z−b)Fp +2a2F+
p −2(a−)2F−

p

+(G+
p+1−G−

p+1)
)

+(z−b)(Gp+1−G+
p+1)

+2(z−b)2Fp−2(z−b+)(z−b)F+
p

⎞⎟⎟⎟⎠ .

The (2, 1)-entry in (2.63) yields (2.53), and inserting (2.53) into the (2, 2)-
entry of (2.63) yields (2.54) and hence also the basic equations defining the
time-dependent Toda hierarchy in (2.55), (2.56).

3. Properties of stationary algebro-geometric solutions
of the Toda hierarchy

In this section we present a quick review of properties of algebro-geometric
solutions of the stationary Toda hierarchy. Since this material is standard
we omit all proofs and just refer to [6] (cf. also [14, Sect. 1.3], [32, Chs. 8, 9])
for detailed presentations and an extensive list of references to the literature.

For the notation employed in connection with elementary concepts in al-
gebraic geometry (more precisely, the theory of compact Riemann surfaces),
we refer to Appendix A.

Returning to Theorem 2.2, we note that (2.43) naturally leads to the
hyperelliptic curve Kp of genus p ∈ N0, where

Kp : Fp(z, y) = y2 − R2p+2(z) = 0,

R2p+2(z) =

2p+1∏
m=0

(z −Em),
{
Em

}2p+1

m=0
⊂ C.

(3.1)
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Throughout this section we make the following assumption:

Hypothesis 3.1. Suppose that

(3.2) a, b ∈ C
Z and a(n) �= 0 for all n ∈ Z.

In addition, assume that the hyperelliptic curve Kp in (3.1) is nonsingular,
that is, suppose that

(3.3) Em �= Em′ for m �= m′, m,m′ = 0, . . . , 2p+ 1.

The curve Kp is compactified by joining two points P∞±, P∞+ �= P∞−,
at infinity. For notational simplicity, the resulting curve is still denoted
by Kp. Points P on Kp \ {P∞+, P∞−} are represented as pairs P = (z, y),
where y( · ) is the meromorphic function on Kp satisfying Fp(z, y) = 0. The
complex structure on Kp is then defined in the usual way, see Appendix A.
Hence, Kp becomes a two-sheeted hyperelliptic Riemann surface of genus
p ∈ N0 in a standard manner.

We also emphasize that by fixing the curve Kp (i.e., by fixing E0, ..., E2p+1),
the summation constants c1, . . . , cp in the corresponding stationary s-Tlp
equation are uniquely determined as is clear from (2.41) and (2.42), which es-
tablish the summation constants ck as symmetric functions of E0, . . . , E2p+1.

For notational simplicity we will usually tacitly assume that p ∈ N. The
trivial case p = 0, which leads to a(n)2 = (E1−E0)

2/16, b(n) = (E0+E1)/2,
n ∈ Z, is of no interest to us in this paper.

In the following, the zeros2 of the polynomial Fp( · , n) (cf. (2.23)) will
play a special role. We denote them by {µj(n)}p

j=1 and write

(3.4) Fp(z, n) =

p∏
j=1

(z − µj(n)).

The next step is crucial; it permits us to “lift” the zeros µj of Fp from C to
the curve Kp. From (2.34) and (3.4) one infers

(3.5) R2p+2(z) −Gp+1(z)
2 = 0, z ∈ {

µj, µ
+
k

}
j,k=1,...,p

.

We now introduce {µ̂j(n)}j=1,...,p ⊂ Kp by

(3.6) µ̂j(n) =
(
µj(n),−Gp+1(µj(n), n)

) ∈ Kp, j = 1, ..., p, n ∈ Z.

2If a, b ∈ �∞(Z), these zeros are the Dirichlet eigenvalues of a bounded operator
on �2(Z) associated with the difference expression L and a Dirichlet boundary condition
at n ∈ Z.
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Next, we recall equation (2.34) and define the fundamental meromorphic
function φ( · , n) on Kp by

φ(P, n) =
y −Gp+1(z, n)

2a(n)Fp(z, n)
(3.7)

=
−2a(n)Fp(z, n + 1)

y +Gp+1(z, n)
,(3.8)

P = (z, y) ∈ Kp, n ∈ Z,

with divisor (φ( · , n)) of φ( · , n) given by

(3.9)
(
φ( · , n)

)
= DP∞+ µ̂(n+1) −DP∞− µ̂(n),

using (3.4) and (3.6). Here we abbreviated

(3.10) µ̂ = {µ̂1, . . . , µ̂p} ∈ Symp(Kp)

(cf. the notation introduced in Appendix A). We note that several µj(n) may
be equal for a given lattice point n ∈ Z. Moreover, since −Gp+1(µj(n), n)
takes on the same value for all coinciding zeros µj(n), no finite special divi-
sors Dµ̂(n) can ever arise in φ (cf. also Lemma 3.4).

The stationary Baker–Akhiezer function ψ( · , n, n0) on Kp \ {P∞±} is
then defined in terms of φ( · , n) by

ψ(P, n, n0) =

⎧⎪⎨⎪⎩
∏n−1

m=n0
φ(P,m) for n ≥ n0 + 1,

1 for n = n0,∏n0−1
m=n φ(P,m)−1 for n ≤ n0 − 1,

(3.11)

P ∈ Kp \ {P∞±}, (n, n0) ∈ Z
2,

with divisor
(
ψ( · , n, n0)

)
of ψ(P, n, n0) given by

(3.12)
(
ψ( · , n, n0)

)
= Dµ̂(n) −Dµ̂(n0) + (n− n0)(DP∞+

−DP∞− ).

For future purposes we also introduce the following Baker–Akhiezer vector,

(3.13) Ψ(P, n, n0) =

(
ψ−(P, n, n0)
ψ(P, n, n0)

)
, P ∈ Kp \ {P∞±}, (n, n0) ∈ Z

2.

Basic properties of φ, ψ, and Ψ are summarized in the following result.
We abbreviate by

(3.14) W (f, g) = a(fg+ − f+g)

the Wronskian of two complex-valued sequences f and g, and denote P ∗ =
(z,−y) for P = (z, y) ∈ Kp.
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Lemma 3.2. Assume Hypothesis 3.1 and suppose that a, b satisfy the pth
stationary Toda system (2.20). Moreover, let P = (z, y) ∈ Kp \ {P∞±} and
(n, n0) ∈ Z2. Then φ satisfies the Riccati-type equation

aφ(P ) + a−φ−(P )−1 = z − b,(3.15)

as well as

φ(P )φ(P ∗) =
F+

p (z)

Fp(z)
,(3.16)

φ(P ) + φ(P ∗) = −Gp+1(z)

aFp(z)
,(3.17)

φ(P ) − φ(P ∗) =
y(P )

aFp(z)
.(3.18)

Moreover, ψ and Ψ satisfy(
L− z(P )

)
ψ(P ) = 0,

(
P2p+2 − y(P )

)
ψ(P ) = 0,(3.19)

Ψ+(P ) = U(z)Ψ(P ), yΨ(P ) = Vp+1Ψ(P ),(3.20)

ψ(P, n, n0)ψ(P ∗, n, n0) =
Fp(z, n)

Fp(z, n0)
,(3.21)

a(n)
(
ψ(P, n, n0)ψ(P ∗, n+ 1, n0) + ψ(P ∗, n, n0)ψ(P, n+ 1, n0)

)
(3.22)

= −Gp+1(z, n)

Fp(z, n0)
,

W (ψ(P, · , n0), ψ(P ∗, · , n0)) = − y(P )

Fp(z, n0)
.(3.23)

Combining the polynomial recursion approach with (3.4) readily yields
trace formulas for the Toda invariants, which are expressions of a and b in
terms of the zeros µj of Fp. We introduce the abbreviation,

(3.24) b(k)(n) =
1

2

2p+1∑
m=0

Ek
m −

p∑
j=1

µk
j (n), k ∈ N.

Lemma 3.3. Assume Hypothesis 3.1 and suppose that a, b satisfy the pth
stationary Toda system (2.20). Then,

(3.25) b(n) =
1

2

2p+1∑
m=0

Em −
p∑

j=1

µj(n), n ∈ Z.
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In addition, if for all n ∈ Z, µj(n) �= µk(n) for j �= k, j, k = 1, . . . , p, then,

a(n)2 =
1

2

p∑
j=1

y(µ̂j(n))

p∏
k=1
k �=j

(µj(n) − µk(n))−1(3.26)

+
1

4

(
b(2)(n) − b(n)2

)
, n ∈ Z.

The case where some of the µj coincide in (3.26) requires a more elaborate
argument that will be presented in Section 4.

Since nonspecial Dirichlet divisors Dµ̂ and the linearization property of
the Abel map when applied to Dµ̂ will play a fundamental role later on, we
also recall the following facts.

Lemma 3.4. Assume Hypothesis 3.1 and suppose that a, b satisfy the pth
stationary Toda system (2.20). Let Dµ̂, µ̂ = {µ̂1, . . . , µ̂p} ∈ Symp(Kp), be the
Dirichlet divisor of degree p associated with a, b defined according to (3.6),
that is,

(3.27) µ̂j(n) =
(
µj(n),−Gp+1(µj(n), n)

) ∈ Kp, j = 1, . . . , p, n ∈ Z.

Then Dµ̂(n) is nonspecial for all n ∈ Z. Moreover, the Abel map linearizes
the auxiliary divisor Dµ̂ in the sense that

(3.28) αQ0
(Dµ̂(n)) = αQ0

(Dµ̂(n0)) − (n− n0)AP∞−
(P∞+),

where Q0 ∈ Kp is a given base point.

If in addition, a, b ∈ �∞(Z), then there exists a constant Cµ > 0 such that

(3.29) |µj(n)| ≤ Cµ, j = 1, . . . , p, n ∈ Z.

Remark 3.5. We note that by construction, the divisors Dµ̂(n), n ∈ Z, as
introduced in (3.6) are all finite and hence nonspecial by Lemma 3.4. On the
other hand, as we will see in the next Section 4, given a nonspecial divisor
Dµ̂(n0), the solution Dµ̂(n) of equation (3.28) may cease to be a finite divisor
at some n ∈ Z.

4. An algorithm for solving the inverse algebro-geome-
tric spectral problem for (non-self-adjoint) Jacobi
operators

The aim of this section is to derive an algorithm that enables one to construct
algebro-geometric solutions for the stationary Toda hierarchy for complex-
valued initial data. Equivalently, we offer a solution of the inverse algebro-
geometric spectral problem for general (non-self-adjoint) Jacobi operators,
starting with initial divisors in general complex position.
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Up to the end of Section 3 the material was standard (see [6] and [14,
Sect. 1.3], [32, Chs. 8, 9] for details) and based on the assumption that
a, b ∈ CZ satisfy the pth stationary Toda system (2.20). Now we embark
on the corresponding inverse problem consisting of constructing a solution
of (2.20) given certain initial data. More precisely, we seek to construct
solutions a, b ∈ C

Z satisfying the pth stationary Toda system (2.20) starting
from a properly restricted set M0 of finite nonspecial Dirichlet divisor initial
data Dµ̂(n0) at some fixed n0 ∈ Z,

µ̂(n0) = {µ̂1(n0), . . . , µ̂p(n0)} ∈ M0, M0 ⊂ Symp(Kp),

µ̂j(n0) =
(
µj(n0),−Gp+1(µj(n0), n0)

)
, j = 1, . . . , p.

(4.1)

Of course we would like to ensure that the sequences obtained via our
algorithm do not blow up. To investigate when this happens, we study the
image of our divisors under the Abel map. The key ingredient in our analysis
will be (3.28) which yields a linear discrete dynamical system on the Jacobi
variety J(Kp). In particular, we will be led to investigate solutions Dµ̂ of
the discrete initial value problem

αQ0
(Dµ̂(n)) = αQ0

(Dµ̂(n0)) − (n− n0)AP∞−
(P∞+),

µ̂(n0) = {µ̂1(n0), . . . , µ̂p(n0)} ∈ Symp(Kp),
(4.2)

where Q0 ∈ Kp is a given base point. Eventually, we will be interested in
solutions Dµ̂ of (4.2) with initial data Dµ̂(n0) satisfying (4.1) and M0 to be
specified as in (the proof of) Lemma 4.2.

Before proceeding to develop the stationary Toda algorithm, we briefly
analyze the dynamics of (4.2).

Lemma 4.1. Let Dµ̂(n) be defined via (4.2) for some divisor Dµ̂(n0)∈Symp(Kp).

(i) If Dµ̂(n) is finite and nonspecial and Dµ̂(n+1) is infinite, then Dµ̂(n+1)

contains P∞+ but not P∞−.

(ii) If Dµ̂(n) is nonspecial and Dµ̂(n+1) is special, then Dµ̂(n) contains P∞+ at
least twice.

Items (i) and (ii) hold if n+ 1 is replaced by n− 1 and P∞+ by P∞−.

Proof. (i) Suppose one point in Dµ̂(n+1) equals P∞− and denote the remain-
ing ones by Dµ̃(n+1). Then (4.2) tells us

αQ0
(Dµ̃(n+1)) + AQ0

(P∞+) = αQ0
(Dµ̂(n)).

Since we assumed Dµ̂(n) to be nonspecial, we have

Dµ̂(n) = Dµ̃(n+1) + DP∞+

contradicting finiteness of Dµ̂(n).
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(ii) We choose Q0 to be a branch point of Kp such that AQ0
(P ∗) = −AQ0

(P ).
In particular, if Dµ̂(n+1) is special, then it contains a pair of points (Q,Q∗)
whose contribution will cancel under the Abel map, that is, αQ0

(Dµ̂(n+1)) =

αQ0
(Dν̂(n+1)) for some Dν̂(n+1) ∈ Symp−2(Kp). But invoking (4.2) shows that

αQ0
(Dµ̂(n)) = αQ0

(Dν̂(n+1)) + 2AQ0
(P∞+).

As Dµ̂(n) was assumed nonspecial, this shows that Dµ̂(n) = Dν̂(n+1) +2DP∞+
,

as claimed. �
This yields the following behavior of Dµ̂(n) if we start with some non-

special finite initial divisor Dµ̂(n0): As n increases, Dµ̂(n) stays nonspecial as
long as it remains finite. If it becomes infinite, then it is still nonspecial
and contains P∞+ at least once (but not P∞−). Further increasing n, all in-
stances of P∞+ will be rendered into P∞− step by step, until we have again
a nonspecial divisor that has the same number of P∞− as the first infinite
one had P∞+ . Generically, we expect the subsequent divisor to be finite and
nonspecial again.

Next we show that most initial divisors are nice in the sense that their
iterates stay away from P∞±. Since we want to show that this set is of full
measure, it will be convenient for us to identify Symp(Kp) with the Jacobi
variety J(Kp) via the Abel map and take the Haar measure on J(Kp). Of
course, the Abel map is only injective when restricted to the set of nonspecial
divisors, but these are the only ones we are interested in.

Lemma 4.2. The set M0 ⊂ Symp(Kp) of initial divisors Dµ̂(n0) for which
Dµ̂(n), defined via (4.2), is finite and hence nonspecial for all n ∈ Z, forms
a dense set of full measure in the set Symp(Kp) of nonnegative divisors of
degree p.

Proof. Let M∞ be the set of divisors in Symp(Kp) for which (at least) one
point is equal to P∞+. The image αQ0

(M∞) of M∞ is given by

(4.3) αQ0
(M∞) = AQ0

(P∞+) + αQ0
(Symp−1(Kp)) ⊂ J(Kp).

Since the (complex) dimension of Symp−1(Kp) is p− 1, its image must be of
measure zero by Sard’s theorem (see, e.g., [1, Sect. 3.6]). Similarly, let Msp

be the set of special divisors, then its image is given by

(4.4) αQ0
(Msp) = αQ0

(Symp−2(Kp)),

assuming Q0 to be a branch point. In particular, we conclude that

αQ0
(Msp) ⊂ αQ0

(M∞)
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and thus αQ0
(Msing) = αQ0

(M∞) has measure zero, where

(4.5) Msing = M∞ ∪Msp.

Hence,

(4.6)
⋃
n∈Z

(
αQ0

(Msing) + nAP∞−
(P∞+)

)
is of measure zero as well. But this last set contains all initial divisors which
will hit P∞+ or become special at some n. We denote by M0 the inverse
image of the complement of the set (4.6) under the Abel map,

(4.7) M0 = α−1
Q0

(
Symp(Kp)

∖ ⋃
n∈Z

(
αQ0

(Msing) + nAP∞−
(P∞+)

))
.

Since M0 is of full measure, it is automatically dense in Symp(Kp). �
We briefly illustrate some aspects of this analysis in the special case p = 1

(i.e., the case where (3.1) represents an elliptic Riemann surface) in more
detail.

Example 4.3. The case p = 1.
In this case we have

F1(z, n) = z − µ1(n),

G2(z, n) = R4(µ̂1(n))1/2 + (z − b(n))F1(z, n),(4.8)

R4(z) =
3∏

m=0

(z − Em),

and hence a straightforward calculation shows that

G2(z, n)2 − R4(z) = 4a(n)2
(
z − µ1(n)

)(
z − µ1(n + 1)

)
=
(
z − µ1(n)

)(
4a(n)2z − 4a(n)2b(n) + Ẽ

)
,

(4.9)

where

(4.10) Ẽ =
1

8

(
E0 +E1 −E2 −E3

)(
E0−E1 +E2 −E3

)(
E0−E1 −E2 +E3

)
.

Solving for µ1(n + 1), one obtains

(4.11) µ1(n+ 1) = b(n) − Ẽ

4a(n)2
.
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This shows that µ1(n0+1)→∞, in fact, µ1(n0+1)=O(a(n0)
−2) as a(n0) → 0

during an appropriate deformation of the parameters Em, m = 0, . . . , 3. In
particular, as a(n0) → 0, one thus infers b(n0 + 1) → ∞ during such a
deformation since

(4.12) b(n) =
1

2

3∑
m=0

Em − µ1(n), n ∈ Z,

specializing to p = 1 in the trace formula (3.25). Next, we illustrate the
set M∞ in the case p = 1. (We recall that Msp = ∅ and hence Msing = M∞
if p = 1.) By (4.2) one infers

(4.13) AP∞+
(µ̂1(n)) = AP∞+

(µ̂1(n0)) + (n− n0)AP∞+
(P∞−), n, n0 ∈ Z.

We note that µ̂1 ∈ M∞ is equivalent to

(4.14) there is an n ∈ Z such that µ̂1(n) = P∞+ (or P∞−).

By (4.13), relation (4.14) is equivalent to

(4.15) AP∞+
(µ̂1(n0)) + AP∞+

(P∞−) Z = 0 (mod L1).

Thus, Dµ̂1(n0) ∈ M0 ⊂ K1 if and only if

(4.16) AP∞+
(µ̂1(n0)) + AP∞+

(P∞−) Z �= 0 (mod L1)

or equivalently, if and only if

(4.17) AP∞− (µ̂1(n0)) + AP∞− (P∞+) Z �= 0 (mod L1).

Next, we describe the stationary Toda algorithm. Since this is a some-
what lengthy affair, we will break it up into several steps.

The stationary (complex) Toda algorithm:

We prescribe the following data:

(i) The set

(4.18)
{
Em

}2p+1

m=0
⊂ C, Em �= Em′ for m �= m′, m,m′ = 0, . . . , 2p+ 1

for some fixed p ∈ N. Given
{
Em

}2p+1

m=0
, we introduce the function R2p+2 and

the (nonsingular) hyperelliptic curve Kp as in (3.1).
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(ii) The nonspecial divisor

(4.19) Dµ̂(n0) ∈ Symp(Kp),

where µ̂(n0) is of the form

µ̂(n0) =
{
µ̂1(n0), . . . , µ̂p(n0)

}
=
{
µ̂1(n0), . . . , µ̂1(n0)︸ ︷︷ ︸

p1(n0) times

, . . . , µ̂q(n0), . . . , µ̂q(n0)︸ ︷︷ ︸
pq(n0)(n0) times

}
(4.20)

with

µ̂k(n0) =
(
µk(n0), y(µ̂k(n0))

)
,

µk(n0) �= µk′(n0) for k �= k′, k, k′ = 1, . . . , q(n0),
(4.21)

and

(4.22) pk(n0) ∈ N, k = 1, . . . , q(n0),

q(n0)∑
k=1

pk(n0) = p.

With
{
Em

}2p+1

m=0
and Dµ̂(n0) prescribed, we next introduce the following

quantities (for z ∈ C):

Fp(z, n0) =

q(n0)∏
k=1

(z − µk(n0))
pk(n0),(4.23)

Tp−1(z, n0) = −Fp(z, n0)

q(n0)∑
k=1

pk(n0)−1∑
�=0

(
d�
(
R2p+2(ζ)

1/2
)
/dζ�

)∣∣
ζ=µk(n0)

�!(pk(n0) − �− 1)!

(4.24)

×
(
dpk(n0)−�−1

dζpk(n0)−�−1

(
(z − ζ)−1

q(n0)∏
k′=1, k′ �=k

(ζ − µk′(n0))
−pk′(n0)

))∣∣∣∣∣
ζ=µk(n0)

,

b(n0) =
1

2

2p+1∑
m=0

Em −
q(n0)∑
k=1

pk(n0)µk(n0),(4.25)

Gp+1(z, n0) = −(z − b(n0)
)
Fp(z, n0) + Tp−1(z, n0).(4.26)

Here the sign of the square root in (4.24) is chosen according to (4.21),

µ̂k(n0) =
(
µk(n0), y(µ̂k(n0))

)
=
(
µk(n0), R2p+2(µk(n0))

1/2
)
,

k = 1, . . . , q(n0).
(4.27)
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Next we record a series of facts:

(I) By construction (cf. Lemma B.1),

T
(�)
p−1(µk(n0), n0) = −d

�
(
R2p+2(z)

1/2
)

dz�

∣∣∣∣
z=µk(n0)

= G
(�)
p+1(µk(n0), n0),

� = 0, . . . , pk(n0) − 1, k = 1, . . . , q(n0),(4.28)

(here the superscript (�) denotes � derivatives w.r.t. z) and hence

(4.29) µ̂k(n0) = (µk(n0),−Gp+1(µk(n0), n0)), k = 1, . . . , q(n0).

(II) Since Dµ̂(n0) is nonspecial by hypothesis, one concludes that

(4.30) pk(n0) ≥ 2 implies R2p+2(µk(n0)) �= 0, k = 1, . . . , q(n0).

(III) By (I) and (II) one computes

d�
(
Gp+1(z, n0)

2
)

dz�

∣∣∣∣
z=µk(n0)

=
d�R2p+2(z)

dz�

∣∣∣∣
z=µk(n0)

,

z ∈ C, � = 0, . . . , pk(n0) − 1, k = 1, . . . , q(n0).

(4.31)

(IV) By (4.26) and (4.31) one infers that Fp divides R2p+2 −G2
p+1.

(V) By (4.25) and (4.26) one verifies that

(4.32) R2p+2(z) −Gp+1(z, n0)
2 =

z→∞
O(z2p).

By (IV) and (4.32) we may write

(4.33) R2p+2(z) −Gp+1(z, n0)
2 = Fp(z, n0)F̌p−r(z, n0 + 1), z ∈ C,

for some r ∈ {0, . . . , p}, where the polynomial F̌p−r has degree p − r. If in
fact F̌0 = 0, then R2p+2(z) = Gp+1(z, n0)

2 would yield double zeros of R2p+2,
contradicting our basic hypothesis (4.18). Thus we conclude that in the case
r = p, F̌0 cannot vanish identically and hence we may break up (4.33) in the
following manner

(4.34) φ̌(P, n0) =
y −Gp+1(z, n0)

Fp(z, n0)
=
F̌p−r(z, n0 + 1)

y +Gp+1(z, n0)
, P = (z, y) ∈ Kp.

Next we decompose

(4.35) F̌p−r(z, n0 + 1) = Č

p−r∏
j=1

(
z − µj(n0 + 1)

)
, z ∈ C,
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where Č ∈ C \ {0} and
{
µj(n0 + 1)

}p−r

j=1
⊂ C (if r = p we follow the usual

convention and replace the product in (4.35) by 1). By inspection of the local
zeros and poles as well as the behavior near P∞± of the function φ̌( · , n0),
its divisor,

(
φ̌( · , n0)

)
, is given by

(4.36)
(
φ̌( · , n0)

)
= DP∞+ µ̂(n0+1) −DP∞− µ̂(n0),

where

(4.37) µ̂(n0 + 1) =
{
µ̂1(n0 + 1), . . . , µ̂p−r(n0 + 1), P∞+, . . . , P∞+︸ ︷︷ ︸

r times

}
.

In particular,

(4.38) Dµ̂(n0+1) is a finite divisor if and only if r = 0.

We note that

(4.39) αQ0
(Dµ̂(n0+1)) = αQ0

(Dµ̂(n0)) − AP∞−
(P∞+),

in accordance with (4.2).

(VI) Assuming that (4.32) is precisely of order z2p as z → ∞, that is,
assuming r = 0 in (4.33), we rewrite (4.33) in the more appropriate manner

(4.40) R2p+2(z) −Gp+1(z, n0)
2 = −4a(n0)

2Fp(z, n0)Fp(z, n0 + 1), z ∈ C,

where we introduced the coefficient a(n0)
2 to make Fp( · , n0 + 1) a monic

polynomial of degree p. (We will later discuss conditions which indeed guar-
antee that r = 0, cf. (4.38) and the discussion in step (XI) below.) By
construction, Fp( · , n0 + 1) is then of the type

Fp(z, n0 + 1) =

q(n0+1)∏
k=1

(
z − µk(n0 + 1)

)pk(n0+1)
,

q(n0+1)∑
k=1

pk(n0 + 1) = p,

µk(n0 + 1) �= µk′(n0 + 1) for k �= k′, k, k′ = 1, . . . , q(n0 + 1), z ∈ C,

(4.41)

and we define

(4.42) µ̂k(n0+1) =
(
µk(n0+1), Gp+1(µk(n0+1), n0)

)
, k = 1, . . . , q(n0+1).

Moreover, we introduce the divisor

(4.43) Dµ̂(n0+1) ∈ Symp(Kp)



The Toda Hierarchy Initial Value Problem 141

by

µ̂(n0 + 1) =
{
µ̂1(n0 + 1), . . . , µ̂p(n0 + 1)

}
=
{
µ̂1(n0 + 1), . . . , µ̂1(n0 + 1)︸ ︷︷ ︸

p1(n0+1) times

, . . . , µ̂q(n0+1), . . . , µ̂q(n0+1)︸ ︷︷ ︸
pq(n0+1)(n0+1) times

}
.(4.44)

In particular, because of the definition (4.42), Dµ̂(n0+1) is nonspecial and
hence

(4.45) pk(n0+1) ≥ 2 implies R2p+2

(
µk(n0+1)

) �= 0, k = 1, . . . , q(n0+1).

Again we note that

(4.46) αQ0
(Dµ̂(n0+1)) = αQ0

(Dµ̂(n0)) − AP∞−
(P∞+),

in accordance with (4.2).

(VII) Introducing

(4.47) b(n0 + 1) =
1

2

2p+1∑
m=0

Em −
q(n0+1)∑

k=1

pk(n0 + 1)µk(n0 + 1),

and interpolating Gp+1( · , n0) with Fp( · , n0 +1) rather than Fp( · , n0) yields

(4.48) Gp+1(z, n0) = −(z−b(n0+1)
)
Fp(z, n0+1)−Tp−1(z, n0+1), z ∈ C,

where

Tp−1(z, n0 + 1) = Fp(z, n0 + 1)

×
q(n0+1)∑

k=1

pk(n0+1)−1∑
�=0

(
d�
(
R2p+2(ζ)

1/2
)
/dζ�

)∣∣
ζ=µk(n0+1)

�!(pk(n0 + 1) − �− 1)!
(4.49)

×
(
dpk(n0+1)−�−1

dζpk(n0+1)−�−1

(
(z − ζ)−1

×
q(n0+1)∏

k′=1, k′ �=k

(ζ − µk′(n0 + 1))−pk′(n0+1)

))∣∣∣∣∣
ζ=µk(n0+1)

.

Here the sign of the square root in (4.49) is chosen in accordance with (4.42),
that is,

µ̂k(n0 + 1) =
(
µk(n0 + 1), y(µ̂k(n0 + 1))

)
=
(
µk(n0 + 1), Gp+1(µk(n0 + 1), n0)

)
=
(
µk(n0 + 1), R2p+2(µk(n0 + 1))1/2

)
,(4.50)

k = 1, . . . , q(n0 + 1).
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(VIII) An explicit computation of a(n0)
2 then yields

a(n0)
2 =

1

2

q(n0)∑
k=1

(
d�
(
R2p+2(z)

1/2
)
/dz�

)∣∣
z=µk(n0)

(pk(n0) − 1)!
(4.51)

×
q(n0)∏

k′=1, k′ �=k

(µk(n0) − µk′(n0))
−pk(n0) +

1

4

(
b(2)(n0) − b(n0)

2
)
.

Here and in the following we abbreviate

(4.52) b(2)(n) =
1

2

2p+1∑
m=0

E2
m −

q(n)∑
k=1

pk(n)µk(n)2

for an appropriate range of n ∈ N.
The result (4.51) is obtained as follows: One starts from the identity

(4.40), inserts the expressions (4.23) and (4.26) for Fp( · , n0) andGp+1( · , n0),
respectively, then inserts the explicit form (4.24) of Tp−1( · , n0), and finally
collects all terms of order z2p as z → ∞. An entirely elementary but fairly
tedious calculation then produces (4.51).

In the special case q(n0) = p, pk(n0) = 1, k = 1, . . . , p, (4.51) and (4.52)
reduce to (3.26) and (3.24) (for k = 2).

(IX) Introducing

(4.53) Gp+1(z, n0 + 1) = −(z − b(n0 + 1)
)
Fp(z, n0 + 1) + Tp−1(z, n0 + 1)

one then obtains

(4.54) Gp+1(z, n0 + 1) = −Gp+1(z, n0) − 2
(
z − b(n0 + 1)

)
Fp(z, n0 + 1).

(X) At this point one can iterate the procedure step by step to construct
Fp( · , n), Gp+1( · , n), Tp−1( · , n), a(n), b(n), µk(n), k = 1, . . . , q(n), etc., for
n ∈ [n0,∞) ∩ Z, subject to the following assumption (cf. (4.38)) at each
step:

Dµ̂(n+1) is a finite divisor (and hence a(n) �= 0)

for all n ∈ [n0,∞) ∩ Z.
(4.55)

The formalism is symmetric with respect to n0 and can equally well be
developed for n ∈ (−∞, n0] ∩ Z subject to the analogous assumption

Dµ̂(n−1) is a finite divisor (and hence a(n) �= 0)

for all n ∈ (−∞, n0] ∩ Z.
(4.56)
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Indeed, one first interpolates Gp+1( · , n0−1) with the help of Fp( · , n0), then
with Fp( · , n0 − 1), etc.

Moreover, we once again remark for consistency reasons that

(4.57) αQ0
(Dµ̂(n)) = αQ0

(Dµ̂(n0)) − (n− n0)AP∞−
(P∞+), n ∈ Z,

in agreement with our starting point (4.2).

(XI) Choosing the initial data Dµ̂(n0) such that

(4.58) Dµ̂(n0) ∈ M0,

where M0 ⊂ Symp(Kp) is the set of finite divisors introduced in Lemma 4.2,
then guarantees that assumptions (4.55) and (4.56) are satisfied for all n ∈ Z.

(XII) Performing these iterations for all n ∈ Z, one then arrives at the
following set of equations for Fp and Gp+1 after the following elementary
manipulations: Utilizing

(4.59) G2
p+1 − 4a2FpF

+
p = R2p+2 = (G−

p+1)
2 − 4(a−)2F−

p Fp,

and inserting

(4.60) G+
p+1 = −Gp+1 − 2(z − b+)F+

p

into

(4.61) G2
p+1 − (G−

p+1)
2 − 4a2FpF

+
p + 4(a−)2F−

p Fp = 0

then yields

(4.62) 2a2F+
p − 2(a−)2F−

p + (z − b)(Gp+1 −G−
p+1) = 0.

Subtracting (4.60) from its shifted version Gp+1 = −G−
p+1 − 2(z− b)Fp then

also yields

(4.63) 2(z − b+)F+
p − 2(z − b)Fp +G+

p+1 −G−
p+1 = 0.

As discussed in Section 2, (4.62) and (4.63) are equivalent to the stationary
Lax and zero-curvature equations (2.15) and (2.60). At this stage we have
verified the basic hypotheses of Section 3 (i.e., (3.2) and the assumption that
a, b satisfy the pth stationary Toda system (2.20)) and hence all results of
Section 3 apply.

Finally, we briefly summarize these considerations:
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Theorem 4.4. Suppose the set
{
Em

}2p+1

m=0
⊂ C satisfies Em �= Em′ for

m �= m′, m,m′ = 0, . . . , 2p + 1, and introduce the function R2p+2 and the
hyperelliptic curve Kp as in (3.1). Choose a nonspecial divisor Dµ̂(n0) ∈ M0,
where M0 ⊂ Symp(Kp) is the set of finite divisors introduced in Lemma 4.2.
Then the stationary (complex) Toda algorithm as outlined in steps (I)-(XII)
produces solutions a, b of the pth stationary Toda system,

(4.64) s-Tlp(a, b) =

(
f+

p+1 − fp+1

gp+1 − g−p+1

)
= 0, p ∈ N0,

satisfying (3.2) and

a(n)2 =
1

2

q(n)∑
k=1

(
d�
(
R2p+2(z)

1/2
)
/dz�

)∣∣
z=µk(n)

(pk(n) − 1)!

×
q(n)∏

k′=1, k′ �=k

(
µk(n) − µk′(n)

)−pk(n)
+

1

4

(
b(2)(n) − b(n)2

)
,(4.65)

b(n) =
1

2

2p+1∑
m=0

Em −
q(n)∑
k=1

pk(n)µk(n), n ∈ Z.(4.66)

Moreover, Lemmas 3.2–3.4 apply.

Remark 4.5. Suppose that the hypotheses of the previous theorem are sat-
isfied and that a(n0), b(n0), b(n0 + 1), Fp(z, n0), Fp(z, n0 + 1), Gp+1(z, n0),
and Gp+1(z, n0 +1) have already been computed using steps (I)–(IX). Then,
alternatively, one can use

(a−)2F−
p = a2F+

p + 2−1(z − b)(Gp+1 −G+
p+1) + (z − b)2Fp(4.67)

− (z − b+)(z − b)F+
p ,

G−
p+1 = 2((z − b+)F+

p − (z − b)Fp) +G+
p+1(4.68)

(derived from (2.60)) to compute a(n), b(n), Fp(z, n), Gp+1(z, n) for n < n0

and

a+F++
p = aFp − 2−1(z − b)(G+

p+1 −Gp+1),(4.69)

G++
p+1 = Gp+1 − 2((z − b++)F++

p − (z − b+)F+
p )(4.70)

to compute a(n− 1), b(n), Fp(z, n), Gp+1(z, n) for n > n0 + 1.

Theta function representations of a and b can now be derived in complete
analogy to the self-adjoint case. Since the final results are formally the same
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as in the self-adjoint case we just refer, for instance, to [6], [7], [9], [10], [14,
Sect. 1.3], [18], [19], [20], [21] (cf. also the appendix written in [8]), [25], [30,
Appendix, Sect. 9], [32, Sect. 9.2], [33, Sect. 4.5].

The stationary (complex) Toda algorithm as outlined in steps (I )–(XII ),
starting from a nonspecial divisor Dµ̂(n0) ∈ M0, represents a solution of
the inverse algebro-geometric spectral problem for generally non-self-adjoint
Jacobi operators. While we do not assume periodicity (or even quasi-
periodicity), let alone real-valuedness of the coefficients of the underlying
Jacobi operator, once can view this algorithm as a continuation of the in-
verse periodic spectral problem started around 1975 (in the self-adjoint con-
text) by Kac and van Moerbeke [15], [16] and Flaschka [12], continued in the
seminal papers by van Moerbeke [24], Date and Tanaka [7], and Dubrovin,
Matveev, and Novikov [10], and further developed by Krichever [18], McK-
ean [23], van Moerbeke and Mumford [25], Mumford [26], and others, in part
in the more general quasi-periodic algebro-geometric case.

We note that in general (i.e., unless one is, e.g., in the special periodic
or self-adjoint case), Dµ̂(n) will get arbitrarily close to P∞+ since straight
motions on the torus are generically dense (see e.g. [2, Sect. 51] or [17, Sects.
1.4, 1.5]). Thus, no uniform bound on the sequences a(n), b(n) exists as n
varies in Z. In particular, these complex-valued algebro-geometric solutions
of some of the equations of the stationary Toda hierarchy, generally, will not
be quasi-periodic (cf. the usual definition of quasi-periodic functions, e.g.,
in [31, p. 31]) with respect to n. For the special case of complex-valued and
quasi-periodic Jacobi matrices where all quasi-periods are real-valued, we
refer to [4] (cf. also [3]).

5. Properties of algebro-geometric solutions of the time-
dependent Toda hierarchy

In this section we present a quick review of properties of algebro-geometric
solutions of the time-dependent Toda hierarchy. Since this material is stan-
dard we omit all proofs and just refer to [6] (cf. also [14, Sect. 1.4], [32,
Chs. 12, 13]) for detailed presentations and an extensive list references to
the literature.

For most of this section we will make the following assumption:

Hypothesis 5.1. Suppose that a, b satisfy

a( · , t), b( · , t) ∈ C
Z, t ∈ R, a(n, · ), b(n, · ) ∈ C1(R), n ∈ Z,

a(n, t) �= 0, (n, t) ∈ Z × R
(5.1)

and assume that the hyperelliptic curve Kp, p ∈ N0, is nonsingular.
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In order to briefly analyze algebro-geometric solutions of the time-depen-
dent Toda hierarchy we proceed as follows. Given p∈N0, consider a complex-
valued solution a(0), b(0) of the pth stationary Toda system s-Tlp(a, b) = 0,
associated with Kp and a given set of summation constants {c�}�=1,...,p ⊂ C.
Next, let r ∈ N0; we intend to consider solutions a = a(tr), b = b(tr) of
the rth Tl flow Tlr(a, b) = 0 with a(t0,r) = a(0), b(t0,r) = b(0) for some
t0,r ∈ R. To emphasize that the summation constants in the definitions
of the stationary and the time-dependent Tl equations are independent of
each other, we indicate this by adding a tilde on all the time-dependent
quantities. Hence we shall employ the notation P̃2r+2, Ṽr+1, F̃r, G̃r+1, f̃s,
g̃s, c̃s, in order to distinguish them from P2p+2, Vp+1, Fp, Gp+1, f�, g�, c�, in
the following. In addition, we will follow a more elaborate notation inspired
by Hirota’s τ -function approach and indicate the individual rth Tl flow by
a separate time variable tr ∈ R. More precisely, we will review properties of
solutions a, b of the time-dependent algebro-geometric initial value problem

T̃lr(a, b) =

(
atr − a

(
f̃+

p+1(a, b) − f̃p+1(a, b)
)

btr + g̃p+1(a, b) − g̃−p+1(a, b)

)
= 0,

(a, b)
∣∣
tr=t0,r

=
(
a(0), b(0)

)
,

(5.2)

s-Tlp
(
a(0), b(0)

)
=

(−a(f+
p+1

(
p(0), q(0)

)− fp+1

(
p(0), q(0)

))
gp+1

(
a(0), b(0)

)− g−p+1

(
a(0), b(0)

) )
= 0(5.3)

for some t0,r ∈ R, p, r ∈ N0, where a = a(n, tr), b = b(n, tr) satisfy (5.1) and
a fixed curve Kp is associated with the stationary solutions a(0), b(0) in (5.3).
In terms of Lax pairs this amounts to solving

d

dtr
L(tr) − [P̃2r+2(tr), L(tr)] = 0, tr ∈ R,(5.4)

[P2p+2(t0,r), L(t0,r)] = 0.(5.5)

Anticipating that the Tl flows are isospectral deformations of L(t0,r), we are
going a step further replacing (5.5) by

(5.6) [P2p+2(tr), L(tr)] = 0, tr ∈ R.

This then implies

(5.7) P2p+2(tr)
2 = R2p+2(L(tr)) =

2p+1∏
m=0

(L(tr) − Em), tr ∈ R.

Actually, instead of working with (5.4), (5.5), and (5.6), one can equivalently
take the zero-curvature equations (2.63) as one’s point of departure, that is,
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one can also start from

Utr + UṼr+1 − Ṽ +
r+1U = 0,(5.8)

UVp+1 − V +
p+1U = 0,(5.9)

where (cf. (2.23), (2.24), (2.58), (2.59))

U(z) =

(
0 1

−a−/a (z − b)/a

)
,

Vp+1(z) =

(
G−

p+1(z) 2a−F−
p (z)

−2a−Fp(z) 2(z − b)Fp +Gp+1(z)

)
,(5.10)

Ṽr+1(z) =

(
G̃−

r+1(z) 2a−F̃−
r (z)

−2a−F̃r(z) 2(z − b)F̃r(z) + G̃r+1(z)

)
,

and

Fp(z) =

p∑
�=0

fp−�z
� =

p∏
j=1

(z − µj), f0 = 1,(5.11)

Gp+1(z) = −zp+1 +

p∑
�=0

gp−�z
� + fp+1, g0 = −c1,(5.12)

F̃r(z) =
r∑

s=0

f̃r−sz
s, f̃0 = 1,(5.13)

G̃r+1(z) = −zr+1 +
r∑

s=0

g̃r−sz
s + f̃r+1, g̃0 = −c̃1,(5.14)

for fixed p, r ∈ N0. Here f�, f̃s, g�, and g̃s, � = 0, . . . , p, s = 0, . . . , r, are
defined as in (2.4)–(2.6) with appropriate sets of summation constants c�,
� ∈ N, and c̃k, k ∈ N. Explicitly, (5.8) and (5.9) are equivalent to (cf. (2.55),
(2.56), (2.32), (2.33))

atr = −a(2(z − b+)F̃+
r + G̃+

r+1 + G̃r+1

)
,(5.15)

btr = 2
(
(z − b)2F̃r + (z − b)G̃r+1 + a2F̃+

r − (a−)2F̃−
r

)
,(5.16)

0 = 2(z − b+)F+
p +G+

p+1 +Gp+1,(5.17)

0 = (z − b)2Fp + (z − b)Gp+1 + a2F+
p − (a−)2F−

p ,(5.18)

respectively. In particular, (2.34) holds in the present tr-dependent setting,
that is,

(5.19) G2
p+1 − 4a2FpF

+
p = R2p+2.
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As in (3.6) one introduces

µ̂j(n, tr) =
(
µj(n, tr),−Gp+1(µj(n, tr), n, tr)

) ∈ Kp,(5.20)

j = 1, . . . , p, (n, tr) ∈ Z × R,

µ̂+
j (n, tr) =

(
µ+

j (n, tr), Gp+1(µ
+
j (n, tr), n, tr)

) ∈ Kp,(5.21)

j = 1, . . . , p, (n, tr) ∈ Z × R,

and notes that the regularity assumptions (5.1) on a, b imply continuity of µj

with respect to tr ∈ R (away from collisions of zeros, µj are of course C∞).

In analogy to (3.7), (3.8), one defines the meromorphic function φ(· , n, tr)
on Kp,

φ(P, n, tr) =
y −Gp+1(z, n, tr)

2a(n, tr)Fp(z, n, tr)
(5.22)

=
−2a(n, tr)Fp(z, n + 1, tr)

y +Gp+1(z, n, tr)
,(5.23)

P (z, y) ∈ Kp, (n, tr) ∈ Z × R,

with divisor
(
φ( · , n, tr)

)
of φ( · , n, tr) given by

(5.24)
(
φ( · , n, tr)

)
= DP∞+ µ̂(n+1,tr) −DP∞− µ̂(n,tr),

using (5.11) and (5.20).
The time-dependent Baker–Akhiezer function ψ(P, n, n0, tr, t0,r), mero-

morphic on Kp \ {P∞+, P∞−}, is then defined in terms of φ by

ψ(P, n, n0, tr, t0,r)

= exp

(∫ tr

t0,r

ds
(
2a(n0, s)F̃r(z, n0, s)φ(P, n0, s) + G̃r+1(z, n0, s)

))

×

⎧⎪⎨⎪⎩
∏n−1

m=n0
φ(P,m, tr) for n ≥ n0 + 1,

1 for n = n0,∏n0−1
m=n φ(P,m, tr)

−1 for n ≤ n0 − 1,

(5.25)

P ∈ Kp \ {P∞±}, (n, n0, tr, t0,r) ∈ Z
2 × R

2.

For subsequent purposes we also introduce the following Baker–Akhiezer
vector,

Ψ(P, n, n0, tr, t0,r) =

(
ψ−(P, n, n0, tr, t0,r)
ψ(P, n, n0, tr, t0,r)

)
,

P ∈ Kp \ {P∞±}, (n, n0, tr, t0,r) ∈ Z
2 × R

2.

(5.26)
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Basic properties of φ, ψ, and Ψ are summarized in the following lemma.

Lemma 5.2. Assume Hypothesis 5.1 and suppose that a, b satisfy (5.15)–
(5.18). In addition, let P = (z, y) ∈ Kp \ {P∞±}, (n, n0, tr, t0,r) ∈ Z2 × R2,
and r ∈ N0. Then φ satisfies

aφ(P ) + a−(φ−(P ))−1 = z − b,(5.27)

φtr(P ) = −2a
(
F̃r(z)φ(P )2 + F̃+

r (z)
)

+ 2(z − b+)F̃+
r (z)φ(P )

+
(
G̃+

r+1(z) − G̃r+1(z)
)
φ(P ),(5.28)

φ(P )φ(P ∗) =
F+

p (z)

Fp(z)
,(5.29)

φ(P ) − φ(P ∗) =
y(P )

aFp(z)
,(5.30)

φ(P ) + φ(P ∗) = −Gp+1(z)

aFp(z)
.(5.31)

Moreover, ψ and Ψ satisfy(
L− z(P )

)
ψ(P ) = 0,

(
P2p+2 − y(P )

)
ψ(P ) = 0,(5.32)

ψtr(P ) = P̃2r+2ψ(P )(5.33)

= 2aF̃r(z)ψ
+(P ) + G̃r+1(z)ψ(P ),(5.34)

Ψ+(P ) = U(z)Ψ(P ), yΨ(P ) = Vp+1Ψ(P ),(5.35)

Ψtr(P ) = Ṽr+1(z)Ψ(P ),(5.36)

ψ(P, n, n0, tr, t0,r)ψ(P ∗, n, n0, tr, t0,r) =
Fp(z, n, tr)

Fp(z, n0, t0,r)
,(5.37)

a(n, tr)
(
ψ(P, n, n0, tr, t0,r)ψ(P ∗, n+ 1, n0, tr, t0,r)(5.38)

+ ψ(P ∗, n, n0, tr, t0,r)ψ(P, n+ 1, n0, tr, t0,r)
)

= −Gp+1(z, n, tr)

Fp(z, n0, t0,r)
,

W
(
ψ(P, · , n0, tr, t0,r), ψ(P ∗, · , n0, tr, t0,r)

)
= − y(P )

Fp(z, n0, t0,r)
.(5.39)

In complete analogy to the case of stationary trace formulas one obtains
trace formulas in the time-dependent setting (cf. the abbreviation (3.24)).

Lemma 5.3. Assume Hypothesis 5.1 and suppose that a, b satisfy (5.15)
and (5.16). Then,

(5.40) b =
1

2

2p+1∑
m=0

Em −
p∑

j=1

µj.
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In addition, if for all (n, tr) ∈ Z × R, µj(n, tr) �= µk(n, tr) for j �= k,
j, k = 1, . . . , p, then,

(5.41) a2 =
1

2

p∑
j=1

y(µ̂j)

p∏
k=1
k �=j

(µj − µk)
−1 +

1

4

(
b(2) − b2

)
.

For completeness we next mention the Dubrovin equations for the time
variation of the Dirichlet eigenvalues of the Toda lattice.

Lemma 5.4. Assume Hypothesis 5.1 and suppose that a, b satisfy (5.15)
and (5.16). In addition, assume that the zeros µj(n, tr), j = 1, ..., p, of
Fp( · , n, tr) remain distinct for all (n, tr) ∈ Z × R. Then,

d

dtr
µj(n, tr) = −2F̃r(µj(n, tr), n, tr)

y(µ̂j(n, tr))∏p
�=1
� �=j

(
µj(n, tr) − µ�(n, tr)

) ,
j = 1, . . . , p, (n, tr) ∈ Z × R.(5.42)

When attempting to solve the Dubrovin system (5.42), it must be aug-
mented with appropriate divisors Dµ̂(n0,t0,r) ∈ Symp Kp as initial conditions.

For the tr-dependence of Fp and Gp+1 one obtains the following result.

Lemma 5.5. Assume Hypothesis 5.1 and suppose that a, b satisfy (5.15)
and (5.16). In addition, let (z, n, tr) ∈ C × Z × R. Then,

Fp,tr = 2
(
FpG̃r+1 −Gp+1F̃r

)
,(5.43)

Gp+1,tr = 4a2
(
FpF̃

+
r − F+

p F̃r

)
.(5.44)

In particular, (5.43) and (5.44) are equivalent to

(5.45) Vp+1,tr = [Ṽr+1, Vp+1].

It will be shown in Section 6 that Lemma 5.5 in conjunction with the
fundamental identity (5.19) yields a first-order system of differential equa-
tions for f�, g�, � = 1, . . . , p, that serves as a pertinent substitute for the
Dubrovin equations (5.42) even (in fact, especially) when some of the µj

coincide.
As in the case of trace formulas, also Lemma 3.4 on nonspecial Dirichlet

divisors Dµ̂ and the linearization property of the Abel map when applied
to Dµ̂ extends to the present time-dependent setting. For the latter fact we

need to introduce a particular differential of the second kind, Ω̃
(2)
r , defined
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as follows. Let ω
(2)
P∞± ,q be the normalized Abelian differential of the second

kind (i.e., with vanishing a-periods) with a single pole at P∞± of the form

(5.46) ω
(2)
P∞± ,q =

(
ζ−2−q +O(1)

)
dζ near P∞±, q ∈ N0.

Given the summation constants c̃1, . . . , c̃r in F̃r (cf. (5.13)), we then define

(5.47) Ω̃(2)
r =

r∑
q=0

(q + 1)c̃r−q

(
ω

(2)
P∞+ ,q − ω

(2)
P∞− ,q

)
, c̃0 = 1.

Since the differentials ω
(2)
P∞± ,q were supposed to be normalized we have

(5.48)

∫
aj

Ω̃(2)
r = 0, j = 1, . . . , p.

Moreover, writing

(5.49) ωj =

( ∞∑
m=0

dj,m(P∞±)ζm

)
dζ = ±

( ∞∑
m=0

dj,m(P∞+)ζm

)
dζ near P∞±,

relation (A.20) yields for the vector of b-periods Ũ
(2)

r of Ω̃
(2)
r ,

Ũ
(2)

r =
(
Ũ

(2)
r,1 , . . . , Ũ

(2)
r,p

)
,(5.50)

Ũ
(2)
r,j =

1

2πi

∫
bj

Ω̃(2)
r = 2

r∑
q=0

c̃r−qdj,q(P∞+), j = 1, . . . , p.(5.51)

The time-dependent analog of Lemma 3.4 then reads as follows.

Lemma 5.6. Assume Hypothesis 5.1 and suppose that a, b satisfy (5.15)
and (5.16). Let Dµ̂, µ̂ = {µ̂1, . . . , µ̂p} ∈ Symp(Kp), be the Dirichlet divisor
of degree p associated with a, b, and φ defined according to (5.20), that is,

µ̂j(n, tr) = (µj(n, tr),−Gp+1(µj(n, tr), n, tr)) ∈ Kp,

j = 1, . . . , p, (n, tr) ∈ Z × R.
(5.52)

Then Dµ̂(n,tr) is nonspecial for all (n, tr) ∈ Z × R. Moreover, the Abel map
linearizes the auxiliary divisor Dµ̂ in the sense that

(5.53) αQ0
(Dµ̂(n,tr)) = αQ0

(Dµ̂(n0,t0,r))−(n−n0)AP∞−
(P∞+)−(tr−t0,r)Ũ

(2)

r ,

where Q0 ∈ Kp is a given base point and Ũ
(2)

r is the vector of b-periods of

the differential of the second kind Ω̃
(2)
r introduced in (5.51).
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In addition, if a, b ∈ L∞(Z × R), then there exists a constant Cµ > 0 such
that

(5.54) |µj(n, tr)| ≤ Cµ, j = 1, . . . , p, (n, tr) ∈ Z × R.

Proof. We will prove that

ψ(P, n, n0, tr, t0,r) = C(n, tr)
θ(z(P, n, tr))

θ(z(P, n0, t0,r))
(5.55)

× exp

(
(n− n0)

∫ P

Q0

ω
(3)
P∞+ ,P∞−

+ (tr − t0,r)

∫ P

Q0

Ω̃(2)
r

)
,

where

(5.56) z(P, n, tr) = AQ0
(P ) − αQ0

(Dµ̂(n,tr)) + ΞQ0
.

By Lemma 13.4 of [32] it suffices to show that the essential singularities at
P∞± are equal. That is, by (5.25) we need to show that

ψ(P, n0, n0, tr, t0,r)

= exp

(∫ tr

t0,r

ds
(
2a(n0, s)F̃r(z, n0, tr)φ(P, n0, t0,r) + G̃r+1(z, n0, s)

))

= exp

(
±(tr − t0,r)

r∑
k=0

cr−kζ
−k−1 +O(1)

)
for P near P∞±.(5.57)

Using (5.22) and (5.43) one obtains

(5.58) ψ(P, n0, n0, tr, t0,r) =

(
Fp(z, n0, tr)

Fp(z, n0, t0,r)

)1/2

exp

(
y

∫ tr

t0,r

ds
F̃r(z, n0, s)

Fp(z, n0, s)

)

and the desired asymptotics follow from Theorem C.1, which tells us that

(5.59)
y

Fp(z, n0, s)
F̂k(z, n0, s) = ±ζ−k−1 +O(1) for P near P∞±,

together with (2.23). �

Again the analog of Remark 3.5 applies in the present time-dependent
context.
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6. The algebro-geometric Toda hierarchy initial value
problem

In this section we consider the algebro-geometric Toda hierarchy initial value
problem (5.2), (5.3) with complex-valued initial data. For a generic set of
initial data we will prove unique solvability of the initial value problem
globally in time.

While it is natural in the special self-adjoint case to base the solution of
the algebro-geometric initial value problem on the Dubrovin equations (5.42)
(and the trace formula (5.40) for b and formula (5.41) for a2), this strategy
meets with difficulties in the non-self-adjoint case as Dirichlet eigenvalues µ̂j

may now collide on Kp and hence the denominator of (5.42) can blow up.
Hence, we will develop an alternative strategy based on the use of elementary
symmetric functions of the variables {µj}j=1,...,p in this section, which can
accommodate collisions of µ̂j. In short, our strategy will be as follows:

(i) Replace the first-order autonomous Dubrovin system (5.42) of dif-
ferential equations in tr for the Dirichlet eigenvalues µj(n, tr), j = 1, . . . , p,
augmented by appropriate initial conditions, by the first-order autonomous
system (6.27), (6.28) for the coefficients fj , j = 1, . . . , p, gj, j = 1, . . . , p−1,
and gp + fp+1 with respect to tr. (We note that fj , j = 1, . . . , p, are sym-
metric functions of µ1, . . . , µp.) Solve this first-order autonomous system in
some time interval (t0,r − T0, t0,r + T0) under appropriate initial conditions
at (n0, t0,r) derived from an initial (nonspecial) Dirichlet divisor Dµ̂(n0,t0,r).

(ii) Use the stationary algorithm derived in Section 4 to extend the
solution of step (i) from {n0}× (t0,r −T0, t0,r +T0) to Z× (t0,r −T0, t0,r +T0)
(cf. Lemma 6.2).

(iii) Prove consistency of this approach, that is, show that the dis-
crete algorithm of Section 4 is compatible with the time-dependent Lax and
zero-curvature equations in the sense that first solving the autonomous sys-
tem (6.27), (6.28) and then applying the discrete algorithm, or first applying
the discrete algorithm and then solving the autonomous system (6.27), (6.28)
yields the same result whenever the same endpoint (n, tr) is reached (cf. the
discussion following Lemma 6.2 and the subsequent Lemma 6.3 and Theo-
rem 6.4).

(iv) Prove that there is a dense set of initial conditions of full measure
for which this strategy yields global solutions of the algebro-geometric Toda
hierarchy initial value problem (cf. Lemma 6.5 and Theorem 6.6).

To set up this formalism we need some preparations. From the outset
we make the following assumption.
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Hypothesis 6.1. Suppose that

(6.1) a, b ∈ C
Z and a(n) �= 0 for all n ∈ Z,

and assume that a, b satisfy the pth stationary Toda system (2.20). In addi-
tion, suppose that the hyperelliptic curve Kp in (3.1) is nonsingular.

Assuming Hypothesis 6.1, we consider the polynomials Fp, Gp+1, F̃r,

and G̃r+1 given by (5.11)–(5.14) for fixed p, r ∈ N0. Here f�, f̃s, g�, and g̃s,
� = 0, . . . , p, s = 0, . . . , r, are defined as in (2.4)–(2.6) with appropriate sets
of summation constants.

Our aim will be to find an autonomous first-order system of ordinary dif-
ferential equations with respect to tr of f� and g� rather than µj. Indeed, we
will take the coupled system of differential equations (5.43), (5.44), properly
rewritten next, as our point of departure. In order to turn (5.43), (5.44) into
a system of first-order ordinary differential equations for f� and g�, we first
need to express f+

� , f̃s, g̃s, and f̃+
s in terms of f� and g� as follows.

Using (2.9), (2.23), (2.25), and Theorem C.1 one infers

F̃r(z) =

r∑
s=0

f̃r−sz
s =

r∑
s=0

c̃r−sF̂s(z),(6.2)

F̂�(z) =
�∑

k=0

f̂�−kz
k, f̂0 = 1, f̂� =

�∧p∑
k=0

ĉ�−k(E)fk, � ∈ N0,(6.3)

where m ∧ n = min{m,n} and ĉ�(E) has been introduced in (C.4). Hence
one obtains

(6.4) f̃0 = 1, f̃s = F1,s(f1, . . . , fp), s = 1, . . . , r,

where F1,s, s = 1, . . . , r, are polynomials in p variables.

Next, using (2.9), (2.24), (2.26), and Theorem C.1 one concludes

G̃r+1(z) = −zr+1 +
r∑

s=0

g̃r−sz
s + f̃r+1 =

r+1∑
s=1

c̃r+1−sĜs(z),

Ĝ0(z) = G0(z)
∣∣
c1=0

= 0, Ĝ1(z) = G1(z) = −z − b,(6.5)

Ĝ�+1(z) = G�+1(z)
∣∣
ck=0, k=1,...,�

= −z�+1 +
�∑

k=0

ĝ�−kz
k + f̂�+1, � ∈ N,

ĝ0 = 0, ĝ� =

�∧p∑
k=0

ĉ�−k(E)(gk + fp+1δp,k) − ĉ�+1(E), � ∈ N.(6.6)
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Hence one concludes

(6.7) g̃0 = −c̃1, g̃s = F2,s(f1, . . . , fp, g1, . . . , gp−1, (gp + fp+1)), s = 1, . . . , r,

where F2,s, s = 1, . . . , r, are polynomials in 2p variables. We also recall
(cf. (2.18)) that fp+1 is a lattice constant, that is,

(6.8) fp+1 = f−
p+1.

Next we invoke the fundamental identity (2.34) in the form

(6.9) −4a2F+
p =

R2p+2 −G2
p+1

Fp
.

While (6.9) at this point only holds in the stationary context, we will use it
later on also in the tr-dependent context and verify after the time-dependent
solutions of (5.2), (5.3) have been obtained that (6.9) indeed is valid for all
(n, tr) ∈ Z × R. A comparison of powers of z in (6.9) then yields

4a2f+
0 = −2g1 − 2c2,

4a2f+
� = F3,�(f1, . . . , fp, g1, . . . , gp−1, (gp + fp+1)), � = 1, . . . , p,

(6.10)

where F3,�, � = 1, . . . , p, are polynomials in 2p variables.

Finally, combining (6.2), (6.3), (6.9), and (6.10), one obtains

4a2f̃+
0 = −2g1 − 2c2,(6.11)

4a2f̃+
s = F4,s(f1, . . . , fp, g1, . . . , gp−1, (gp + fp+1)), s = 1, . . . , r,

where F4,s, s = 1, . . . , 3, are polynomials in 2p variables.
We emphasize that also the Dubrovin equations (5.42) require an anal-

ogous rewriting of F̃r in terms of (symmetric functions of) µj in order to
represent a first-order system of differential equations for µj, j = 1, . . . , p.

Next, we make the transition to the algebro-geometric initial value prob-
lem (5.2), (5.3). We introduce a deformation (time) parameter tr ∈ R in
a = a(tr) and b = b(tr) and hence obtain tr-dependent quantities f� = f�(tr),
g� = g�(tr), Fp(z) = Fp(z, tr), Gp+1(z) = Gp+1(z, tr), etc. At a fixed initial
time t0,r ∈ R we require that

(6.12) (a, b)|tr=t0,r =
(
a(0), b(0)

)
,

where a(0) = a( · , t0,r), b
(0) = b( · , t0,r) satisfy the pth stationary Toda equa-

tion (2.20) as in (6.1)–(6.11). As discussed in Section 4, in order to guaran-
tee that the stationary solutions (6.12) can be constructed for all n ∈ Z one
starts from a particular divisor

(6.13) Dµ̂(n0,t0,r) ∈ M0 ,
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where µ̂(n0, t0,r) is of the form

µ̂(n0, t0,r) =
{
µ̂1(n0, t0,r), . . . , µ̂p(n0, t0,r)

}
=
{
µ̂1(n0, t0,r), . . . , µ̂1(n0, t0,r)︸ ︷︷ ︸

p1(n0,t0,r) times

, . . . ,(6.14)

. . . , µ̂q(n0,t0,r)(n0, t0,r), . . . , µ̂q(n0,t0,r)(n0, t0,r)︸ ︷︷ ︸
pq(n0,t0,r)(n0,t0,r) times

}

with

µ̂k(n0, t0,r) =
(
µk(n0, t0,r), y(µ̂k(n0, t0,r))

)
,

µk(n0, t0,r) �= µk′(n0, t0,r) for k �= k′, k, k′ = 1, . . . , q(n0, t0,r),
(6.15)

and

(6.16) pk(n0, t0,r) ∈ N, k = 1, . . . , q(n0, t0,r),

q(n0,t0,r)∑
k=1

pk(n0, t0,r) = p.

Next we recall

Fp(z, n0, t0,r) =

p∑
�=0

fp−�(n0, t0,r)z
� =

q(n0,t0,r)∏
k=1

(
z − µk(n0, t0,r)

)pk(n0,t0,r)
,

(6.17)

Tp−1(z, n0, t0,r) = −Fp(z, n0, t0,r)

×
q(n0,t0,r)∑

k=1

pk(n0,t0,r)−1∑
�=0

(
d�
(
R2p+2(ζ)

1/2
)
/dζ�

)∣∣
ζ=µk(n0,t0,r)

�!(pk(n0, t0,r) − �− 1)!

×
(
dpk(n0,t0,r)−�−1

dζpk(n0,t0,r)−�−1

(
(z − ζ)−1(6.18)

×
q(n0,t0,r)∏
k′=1, k′ �=k

(ζ − µk′(n0, t0,r))
−pk′(n0,t0,r)

))∣∣∣∣∣
ζ=µk(n0,t0,r)

,

b(n0, t0,r) =
1

2

2p+1∑
m=0

Em −
q(n0,t0,r)∑

k=1

pk(n0, t0,r)µk(n0, t0,r),(6.19)

Gp+1(z, n0, t0,r) = −zp+1 +

p∑
�=0

gp−�(n0, t0,r)z
� + fp+1(t0,r),

= −(z − b(n0, t0,r)
)
Fp(z, n0, t0,r) + Tp−1(z, n0, t0,r).(6.20)
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Here the sign of the square root in (6.18) is chosen as usual by

µ̂k(n0, t0,r) =
(
µk(n0, t0,r), y(µ̂k(n0, t0,r))

)
=
(
µk(n0, t0,r), R2p+2(µk(n0, t0,r))

1/2
)

(6.21)

=
(
µk(n0, t0,r),−Gp+1(µk(n0, t0,r), n0, t0,r)

)
,

k = 1, . . . , q(n0, t0,r).

By (6.17) one concludes that (6.14) uniquely determines Fp(z, n0, t0,r) and
hence

(6.22) f1(n0, t0,r), . . . , fp(n0, t0,r).

By (6.18)–(6.22) one concludes that also Gp+1(z, n0, t0,r) and hence

(6.23) g1(n0, t0,r), . . . , gp−1(n0, t0,r), gp(n0, t0,r) + fp+1(t0,r)

are uniquely determined by the initial divisor Dµ̂(n0,t0,r) in (6.13).
Summing up the discussion in (6.2)–(6.23), we can transform the differ-

ential equations

Fp,tr(z, n0, tr) = 2
(
Fp(z, n0, tr)G̃r+1(z, n0, tr)

−Gp+1(z, n0, tr)F̃r(z, n0, tr)
)
,(6.24)

Gp+1,tr(z, n0, tr) = 4a(n0, tr)
2
(
Fp(z, n0, tr)F̃

+
r (z, n0, tr)

− F+
p (z, n0, tr)F̃r(z, n0, tr)

)
(6.25)

subject to the constraint

(6.26) −4a2F+
p (z, n0, tr) =

R2p+2(z) −Gp+1(z, n0, tr)
2

Fp(z, n0, tr)
,

and associated with an initial divisor Dµ̂(n0,t0,r) in (6.13) into the follow-
ing autonomous first-order system of ordinary differential equations (for
fixed n = n0),

fj,tr = Fj(f1, . . . , fp, g1, . . . , gp−1, gp + fp+1), j = 1, . . . , p,

gj,tr = Gj(f1, . . . , fp, g1, . . . , gp−1, gp + fp+1), j = 1, . . . , p− 1,

(gp + fp+1)tr = Gp(f1, . . . , fp, g1, . . . , gp−1, gp + fp+1)(6.27)

with initial condition

fj(n0, t0,r), j = 1, . . . , p,

gj(n0, t0,r), j = 1, . . . , p− 1,(6.28)

gp(n0, t0,r) + fp+1(t0,r),
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where Fj, Gj , j = 1, . . . , p, are polynomials in 2p variables. As just discussed,
the initial conditions (6.28) are uniquely determined by the initial divisor
Dµ̂(n0,t0,r) in (6.13).

Being autonomous with polynomial right-hand sides, there exists a T0>0,
such that the first-order initial value problem (6.27), (6.28) has a unique
solution

fj = fj(n0, tr), j = 1, . . . , p,

gj = gj(n0, tr), j = 1, . . . , p− 1,

gp + fp+1 = gp(n0, tr) + fp+1(tr)

for all tr ∈ (t0,r − T0, t0,r + T0)

(6.29)

(cf., e.g., [35, Sect. III.10]). Given the solution (6.29), we next introduce the
following quantities (where tr ∈ (t0,r − T0, t0,r + T0)):

Fp(z, n0, tr) =

p∑
�=0

fp−�(n0, tr)z
� =

q(n0,tr)∏
k=1

(z − µk(n0, tr))
pk(n0,tr),(6.30)

Tp−1(z, n0, tr) = −Fp(z, n0, tr)

×
q(n0,tr)∑

k=1

pk(n0,tr)−1∑
�=0

(
d�
(
R2p+2(ζ)

1/2
)
/dζ�

)∣∣
ζ=µk(n0,tr)

�!(pk(n0, tr) − �− 1)!

×
(
dpk(n0,tr)−�−1

dζpk(n0,tr)−�−1

(
(z − ζ)−1(6.31)

×
q(n0,tr)∏

k′=1, k′ �=k

(ζ − µk′(n0, tr))
−pk′(n0,tr)

))∣∣∣∣∣
ζ=µk(n0,tr)

,

b(n0, tr) =
1

2

2p+1∑
m=0

Em −
q(n0,tr)∑

k=1

pk(n0, tr)µk(n0, tr),(6.32)

Gp+1(z, n0, tr) = −zp+1 +

p∑
�=0

gp−�(n0, tr)z
� + fp+1(tr)

= −(z − b(n0, tr)
)
Fp(z, n0, tr) + Tp−1(z, n0, tr).(6.33)

In particular, this leads to the divisor

(6.34) Dµ̂(n0,tr) ∈ Symp(Kp)

and the sign of the square root in (6.31) is chosen as usual by

µ̂k(n0, tr) =
(
µk(n0, tr),−Gp+1(µk(n0, tr), n0, tr)

)
(6.35)

=
(
µk(n0, tr), R2p+2(µk(n0, tr))

1/2
)
, k = 1, . . . , q(n0, tr) ,
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and

µ̂(n0, tr) = {µ1(n0, tr, . . . , µp(n0, tr)}(6.36)

= {µ1(n0, tr), . . . , µ1(n0, tr)︸ ︷︷ ︸
p1(n0,tr) times

, . . . , µq(n0,tr)(n0, tr), . . . , µq(n0,tr)(n0, tr)︸ ︷︷ ︸
pq(n0,tr)(n0,tr) times

}

with

(6.37) µk(n0, tr) �= µk′(n0, tr) for k �= k′, k, k′ = 1, . . . , q(n0, tr) ,

and

(6.38) pk(n0, tr) ∈ N, k = 1, . . . , q(n0, tr),

q(n0,tr)∑
k=1

pk(n0, tr) = p.

By construction (cf. (6.35)), the divisor Dµ̂(n0,tr) is nonspecial for all tr ∈
(t0,r − T0, t0,r + T0).

In exactly the same manner as in (4.28)–(4.31) one then infers that
Fp( · , n0, tr) divides R2p+2 − G2

p+1 (since tr is just a fixed additional pa-
rameter). Moreover, arguing as in (4.32)–(4.38) we now assume that the
polynomial

(6.39) R2p+2(z) −Gp+1(z, n0, tr)
2 =

z→∞
O(z2p)

is precisely of maximal order 2p for all tr ∈ (t0,r − T0, t0,r + T0). One then
obtains

R2p+2(z) −Gp+1(z, n0, tr)
2 = −4a(n0, tr)

2Fp(z, n0, tr)Fp(z, n0 + 1, tr),

(z, tr) ∈ C × (t0,r − T0, t0,r + T0),(6.40)

where we introduced the coefficient a(n0, tr)
2 to make Fp( · , n0+1, tr) a monic

polynomial of degree p. As in Section 4, the assumption that the polynomial
Fp( · , n0 + 1, tr) is precisely of order p is implied by the hypothesis that

(6.41) Dµ̂(n0,tr) ∈ M0 for all tr ∈ (t0,r − T0, t0,r + T0),

a point we will revisit later (cf. Lemma 6.5). Given (6.40), we obtain con-
sistency with (6.9) for n = n0 and tr ∈ (t0,r − T0, t0,r + T0).

The explicit formula for a(n0, tr)
2 then reads (for tr ∈ (t0,r−T0, t0,r +T0))

a(n0, tr)
2 =

1

2

q(n0,tr)∑
k=1

(
d�
(
R2p+2(z)

1/2
)
/dz�

)∣∣
z=µk(n0,tr)

(pk(n0, tr) − 1)!

×
q(n0,tr)∏

k′=1, k′ �=k

(µk(n0, tr) − µk′(n0, tr))
−pk(n0,tr)(6.42)

+
1

4

(
b(2)(n0, tr) − b(n0, tr)

2
)
.
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Here and in the following we use the abbreviation

(6.43) b(2)(n, tr) =
1

2

2p+1∑
m=0

E2
m −

q(n,tr)∑
k=1

pk(n, tr)µk(n, tr)
2

for appropriate ranges of (n, tr) ∈ N × R.
With (6.30)–(6.43) in place, we can now apply the stationary formalism

as summarized in Theorem 4.4, subject to the additional hypothesis (6.41),
for each fixed tr ∈ (t0,r−T0, t0,r+T0). This yields, in particular, the quantities

(6.44) Fp, Gp+1, a, b, and µ̂ for (n, tr) ∈ Z × (t0,r − T0, t0,r + T0),

which are of the form (6.30)–(6.43), replacing the fixed n0 ∈ Z by an ar-
bitrary n ∈ Z. In addition, one has the following fundamental identities
(cf. (4.54), (4.59), (4.62), and (4.63)), which we summarize in the following
result.

Lemma 6.2. Assume Hypothesis 6.1 and condition (6.41). Then the fol-
lowing relations are valid:

R2p+2 −G2
p+1 + 4a2FpF

+
p = 0,(6.45)

2(z − b+)F+
p +G+

p+1 +Gp+1 = 0,(6.46)

2a2F+
p − 2(a−)2F−

p + (z − b)(Gp+1 −G−
p+1) = 0,(6.47)

2(z − b+)F+
p − 2(z − b)Fp +G+

p+1 −G−
p+1 = 0(6.48)

on C × Z × (t0,r − T0, t0,r + T0)

and hence the stationary part, (5.9), of the algebro-geometric initial value
problem holds,

(6.49) UVp+1 − V +
p+1U = 0 on C × Z × (t0,r − T0, t0,r + T0).

In particular, Lemmas 3.2–3.4 apply.

Lemma 6.2 now raises the following important consistency issue: On one
hand, one can solve the initial value problem (6.27), (6.28) at n = n0 in some
interval tr ∈ (t0,r − T0, t0,r + T0), and then extend the quantities Fp, Gp+1 to
all C × Z × (t0,r − T0, t0,r + T0) using the stationary algorithm summarized
in Theorem 4.4 as just recorded in Lemma 6.2. On the other hand, one can
solve the initial value problem (6.27), (6.28) at n = n1, n1 �= n0, in some
interval tr ∈ (t0,r − T1, t0,r + T1) with the initial condition obtained by ap-
plying the discrete algorithm to the quantities Fp, Gp+1 starting at (n0, t0,r)
and ending at (n1, t0,r). Consistency then requires that the two approaches
yield the same result at n = n1 for tr in some open neighborhood of t0,r.
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Equivalently, and pictorially speaking, envisage a vertical tr-axis and a
horizontal n-axis. Then, consistency demands that first solving the initial
value problem (6.27), (6.28) at n = n0 in some tr-interval around t0,r and
using the stationary algorithm to extend Fp, Gp+1 horizontally to n = n1 and
the same tr-interval around t0,r, or first applying the stationary algorithm
starting at (n0, t0,r) to extend Fp, Gp+1 horizontally to (n1, t0,r) and then
solving the initial value problem (6.27), (6.28) at n = n1 in some tr-interval
around t0,r should produce the same result at n = n1 in a sufficiently small
open tr interval around t0,r.

To settle this consistency issue, we will prove the following result. To this
end we find it convenient to replace the initial value problem (6.27), (6.28)

by the original tr-dependent zero-curvature equation (5.8), Utr + UṼr+1 −
Ṽ +

r+1U = 0 on C × Z × (t0,r − T0, t0,r + T0).

Lemma 6.3. Assume Hypothesis 6.1 and condition (6.41). Moreover, sup-
pose that (6.24)–(6.26) hold on C × {n0} × (t0,r − T0, t0,r + T0).

Then (6.24)–(6.26) hold on C × Z × (t0,r − T0, t0,r + T0), that is,

Fp,tr(z, n, tr) = 2
(
Fp(z, n, tr)G̃r+1(z, n, tr)(6.50)

−Gp+1(z, n, tr)F̃r(z, n, tr)
)
,

Gp+1,tr(z, n, tr) = 4a(n, tr)
2
(
Fp(z, n, tr)F̃

+
r (z, n, tr)(6.51)

− F+
p (z, n, tr)F̃r(z, n, tr)

)
,

R2p+2(z) = Gp+1(z, n, tr)
2 − 4a(n, tr)

2Fp(z, n, tr)F
+
p (z, n, tr),(6.52)

(z, n, tr) ∈ C × Z × (t0,r − T0, t0,r + T0).

Moreover,

φtr(P, n, tr) = −2a(n, tr)
(
F̃r(z, n, tr)φ(P, n, tr)

2 + F̃+
r (z, n, tr)

)
(6.53)

+ 2
(
z − b+(n, tr)

)
F̃+

r (z, n, tr)φ(P, n, tr)

+
(
G̃+

r+1(z, n, tr) − G̃r+1(z, n, tr)
)
φ(P, n, tr),

atr(n, tr) = −a(n, tr)
(
2(z − b+(n, tr))F̃

+
r (z, n, tr)(6.54)

+ G̃+
r+1(z, n, tr) + G̃r+1(z, n, tr)

)
,

btr(n, tr) = 2
(
(z − b(n, tr))

2F̃r(z, n, tr) + (z − b(n, tr))G̃r+1(z, n, tr)(6.55)

+ a(n, tr)
2F̃+

r (z, n, tr) − (a−(n, tr))
2F̃−

r (z, n, tr)
)
,

(z, n, tr) ∈ C × Z × (t0,r − T0, t0,r + T0).
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Proof. By Lemma 6.2 we have (5.22), (5.23), (5.27), (5.29)–(5.31), and
(6.45)–(6.48) for (n, tr) ∈ Z × (t0,r − T0, t0,r + T0) at our disposal. Differ-
entiating (6.52) at n = n0 with respect to tr, inserting (6.50) and (6.51) at
n = n0, yields

2F+
p atr + aF+

p,tr = 2a
(
Gp+1F̃

+
r − F+

p G̃r+1

)
(6.56)

= 2F+
p a

(− 2(z − b+)F̃+
r − G̃+

r+1 − G̃r+1

)
+ 2a

(
F+

p G̃
+
r+1 −G+

p+1F̃
+
r

)
at n = n0. By inspection,

(6.57) F+
p (z)G̃+

r+1(z) −G+
p+1(z)F̃

+
r (z) =

|z|→∞
O(zp−1).

This can be shown directly using formulas such as (2.23)–(2.26), (6.2), (6.3),
(6.5), and (6.6). It also follows from (5.43) and the fact that Fp is a monic
polynomial of degree p. Thus one concludes that

(6.58) 2F+
p atr = 2F+

p a
(− 2(z − b+)F̃+

r − G̃+
r+1 − G̃r+1

)
at n = n0, and upon cancelling 2F+

p that (6.54) holds at n = n0. This
and (6.56) then also prove that (6.50) holds at n = n0 + 1.

Next, differentiating 2aFpφ = y −Gp+1 at n = n0 with respect to tr, in-
serting (6.50), (6.51), and (6.54) at n = n0, and using (5.23) to replace 2aF+

p

by −(y +Gp+1)φ and (5.22) to replace (Gp+1 − y) by −2aFpφ, yields (6.53)
at n = n0 upon cancelling the factor 2aFp.

Differentiating (6.46) with respect to tr (fixing n = n0), inserting (6.46)
(to replace G+

p+1), (6.51) at n = n0, and (6.50) at n = n0 + 1 yields

0 = −2F+
p

(
b+tr − 2(z − b+)2F̃+

r + 2a2F̃r − 2(z − b+)G̃+
r+1

)
+ 4(z − b+)2F+

p F̃
+
r + 4(z − b+)Gp+1F̃

+
r + 4(a)2FpF̃

+
r +G+

p+1,tr

= −2F+
p

(
b+tr − 2(z − b+)2F̃+

r − 2(z − b+)G̃+
r+1 + 2a2F̃r − 2(a+)2F̃++

r

)
− 4(a+)2F+

p F̃
++
r + 4(z − b+)2F+

p F̃
+
r + 4(z − b+)Gp+1F̃

+
r

+ 4a2FpF̃
+
r +G+

p+1,tr

= −2F+
p

(
b+tr − 2(z − b+)2F̃+

r − 2(z − b+)G̃+
r+1 + 2a2F̃r − 2(a+)2F̃++

r

)
+G+

p+1,tr − 4(a+)2F+
p F̃

++
r

(6.59)

+
(
4a2Fp + 4(z − b+)2F+

p + 4(z − b+)Gp+1

)
F̃+

r

at n = n0. Combining (6.46) and (6.47) at n = n0 one computes

(6.60) 4(a+)2F++
p = 4a2Fp + 4(z − b+)2F+

p + 4(z − b+)Gp+1
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at n = n0. Insertion of (6.60) into (6.59) then yields

0 = −2F+
p

(
b+tr − 2(z − b+)2F̃+

r − 2(z − b+)G̃+
r+1 + 2a2F̃r − 2(a+)2F̃++

r

)
+G+

p+1,tr − 4(a+)2F+
p F̃

++
r + 4(a+)2F++

p F̃+
r

(6.61)

at n = n0. In close analogy to (6.57) one observes that

(6.62) F+
p (z)F̃++

r (z) − F++
p (z)F̃+

r (z) =
|z|→∞

O(zp−1) for p ∈ N.

Thus, since F+
p is a monic polynomial of degree p, (6.61) proves that

(6.63) b+tr − 2(z − b+)2F̃+
r − 2(z − b+)G̃+

r+1 + 2a2F̃r − 2(a+)2F̃++
r = 0

at n = n0, upon cancelling F+
p . Thus, (6.55) holds at n = n0 + 1. Simulta-

neously, this proves (6.51) at n = n0 + 1.
Iterating the arguments just presented (and performing the analogous

considerations for n<n0) then extends these results to all lattice points n∈Z

and hence proves (6.50)–(6.55) for (z, n, tr) ∈ C × Z × (t0,r − T0, t0,r + T0).
�

We summarize Lemmas 6.2 and 6.3 next.

Theorem 6.4. Assume Hypothesis 6.1 and condition (6.41). Moreover,
suppose that

fj = fj(n0, tr), j = 1, . . . , p,

gj = gj(n0, tr), j = 1, . . . , p− 1,

gp + fp+1 = gp(n0, tr) + fp+1(tr)

for all tr ∈ (t0,r − T0, t0,r + T0),

(6.64)

satisfies the autonomous first-order system of ordinary differential equa-
tions (6.27) (for fixed n = n0),

fj,tr = Fj(f1, . . . , fp, g1, . . . , gp−1, gp + fp+1), j = 1, . . . , p,

gj,tr = Gj(f1, . . . , fp, g1, . . . , gp−1, gp + fp+1), j = 1, . . . , p− 1,(6.65)

(gp + fp+1)tr = Gp(f1, . . . , fp, g1, . . . , gp−1, gp + fp+1)

with initial condition

fj(n0, t0,r), j = 1, . . . , p,

gj(n0, t0,r), j = 1, . . . , p− 1,(6.66)

gp(n0, t0,r) + fp+1(t0,r).
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Then Fp and Gp+1 as constructed in (6.2)–(6.44) on C×Z×(t0,r−T0, t0,r+T0)
satisfy the zero-curvature equations (5.8), (5.9), and (5.45),

Utr + UṼr+1 − Ṽ +
r+1U = 0,(6.67)

UVp+1 − V +
p+1U = 0,(6.68)

Vp+1,tr − [Ṽr+1, Vp+1] = 0(6.69)

on C × Z × (t0,r − T0, t0,r + T0),

with U , Vp+1, and Ṽr+1 given by (5.10). In particular, a, b satisfy the algebro-
geometric initial value problem (5.2), (5.3) on Z × (t0,r − T0, t0,r + T0),

T̃lr(a, b) =

(
atr − a

(
f̃+

p+1(a, b) − f̃p+1(a, b)
)

btr + g̃p+1(a, b) − g̃−p+1(a, b)

)
= 0,

(a, b)
∣∣
tr=t0,r

=
(
a(0), b(0)

)
,

(6.70)

s-Tlp
(
a(0), b(0)

)
=

(−a(f+
p+1

(
p(0), q(0)

)− fp+1

(
p(0), q(0)

))
gp+1

(
a(0), b(0)

)− g−p+1

(
a(0), b(0)

) )
= 0 ,(6.71)

and are given by

a(n, tr)
2 =

1

2

q(n,tr)∑
k=1

(
d�
(
R2p+2(z)

1/2
)
/dz�

)∣∣
z=µk(n,tr)

(pk(n, tr) − 1)!
(6.72)

×
q(n,tr)∏

k′=1, k′ �=k

(µk(n, tr) − µk′(n, tr))
−pk(n,tr)

+
1

4

(
b(2)(n, tr) − b(n, tr)

2
)
,

b(n, tr) =
1

2

2p+1∑
m=0

Em −
q(n,tr)∑
k=1

pk(n, tr)µk(n, tr),(6.73)

(z, n, tr) ∈ Z × (t0,r − T0, t0,r + T0).

Moreover, Lemmas 3.2–3.4 and 5.2–5.6 apply.

As in the stationary case, the theta function representations of a and b
in the time-dependent context can be derived in complete analogy to the
self-adjoint case. Since the final results are formally the same as in the self-
adjoint case we again just refer, for instance, to [6], [7], [9], [10], [14, Sect.
1.4], [18] (cf. also the appendix written in [8]), [25], [30, Appendix, Sect. 9],
[32, Sect. 13.2], [33, Sect. 4.6], [34, Ch. 28].

As in Lemma 4.2 we now show that also in the time-dependent case, most
initial divisors are nice in the sense that the corresponding divisor trajectory
stays away from P∞± for all (n, tr) ∈ Z × R.
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Lemma 6.5. The set M1 of initial divisors Dµ̂(n0,t0,r) for which Dµ̂(n,tr),
defined via (5.53), is nonspecial and finite for all (n, tr) ∈ Z × R, forms
a dense set of full measure in the set Symp(Kp) of nonnegative divisors of
degree p.

Proof. Let Msing be as introduced in the proof of Lemma 4.2. Then⋃
tr∈R

(
αQ0

(Msing) + trŨ
(2)

r

)
(6.74)

=
⋃
tr∈R

(
AQ0

(P∞+) + αQ0
(Symp−1(Kp)) + trŨ

(2)

r

)
∪

⋃
tr∈R

(
AQ0

(P∞−) + αQ0
(Symp−1(Kp)) + trŨ

(2)

r

)
is of measure zero as well, since it is contained in the image of R×Symp−1(Kp)
which misses one real dimension in comparison to the 2p real dimensions
of J(Kp). But then

(6.75)
⋃

(n,tr)∈Z×R

(
αQ0

(Msing) + nAP∞−
(P∞+) + trŨ

(2)

r

)
is also of measure zero. Applying α−1

Q0
to the complement of the set in (6.75)

then yields a set M1 of full measure in Symp(Kp). In particular, M1 is
necessarily dense in Symp(Kp). �

Theorem 6.6. Let Dµ̂(n0,t0,r) ∈ M1 be an initial divisor as in Lemma 6.5.
Then the sequences a, b constructed from µ̂(n0, t0,r) as described in Theo-
rem 6.4 satisfy Hypothesis 5.1. In particular, the solution a, b of the algebro-
geometric initial value problem (6.70), (6.71) is global in (n, tr) ∈ Z × R.

Proof. Starting with Dµ̂(n0,t0,r) ∈ M1, the procedure outlined in this
section and summarized in Theorem 6.4 leads to Dµ̂(n,tr) for all (n, tr) ∈
Z × (t0,r − T0, t0,r + T0) such that (5.53)holds. But if a, b should blow up,
then Dµ̂(n,tr) must hit P∞+ or P∞− which is impossible by our choice of ini-
tial condition. �

Note, however, that in general (i.e., unless one is, e.g., in the special
periodic or self-adjoint case), Dµ̂(n,tr) will get arbitrarily close to P∞+ since
straight motions on the torus are generically dense (see e.g. [2, Sect. 51]
or [17, Sects. 1.4, 1.5]) and hence no uniform bound on the sequences
a(n, tr), b(n, tr) exists as (n, tr) vary in Z×R. In particular, these complex-
valued algebro-geometric solutions of the Toda hierarchy initial value prob-
lem, in general, will not be quasi-periodic (cf. the usual definition of quasi-
periodic functions, e.g., in [31, p. 31]) with respect to n or tr.
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A. Hyperelliptic curves of the Toda-type

We provide a brief summary of some of the fundamental notations needed
from the theory of hyperelliptic Riemann surfaces. More details can be found
in some of the standard textbooks [11] and [27] as well as in monographs
and surveys dedicated to integrable systems such as [5, Ch. 2], [8], [13, App.
A, B], [32, App. A].

Fix p ∈ N. We intend to describe the hyperelliptic Riemann surface Kp

of genus p of the Toda-type curve (2.43), associated with the polynomial

Fp(z, y) = y2 −R2p+2(z) = 0,

R2p+2(z) =

2p+1∏
m=0

(z − Em), {Em}2p+1
m=0 ⊂ C.

(A.1)

To simplify the discussion we will assume that the affine part of Kp is non-
singular, that is, we assume that

(A.2) Em �= Em′ for m �= m′, m,m′ = 0, . . . , 2p+ 1

throughout this appendix. Next we introduce an appropriate set of (nonin-
tersecting) cuts Cj joining Em(j) and Em′(j), j = 1, . . . , p+ 1, and denote

(A.3) C =

p+1⋃
j=1

Cj , Cj ∩ Ck = ∅, j �= k.

Define the cut plane

(A.4) Π = C \ C,

and introduce the holomorphic function

(A.5) R2p+2( · )1/2 : Π → C, z 
→
( 2p+1∏

m=0

(z − Em)

)1/2

on Π with an appropriate choice of the square root branch in (A.5). Next
we define the set

(A.6) Mp = {(z, σR2p+2(z)
1/2) | z ∈ C, σ ∈ {1,−1}} ∪ {P∞+ , P∞−}

by extending R2p+2( · )1/2 to C. The hyperelliptic curve Kp is then the set
Mp with its natural complex structure obtained upon gluing the two sheets
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of Mp crosswise along the cuts. Moreover, we introduce the set of branch
points

(A.7) B(Kp) = {(Em, 0)}2p+1
m=0 .

Points P ∈ Kp \ {P∞±} are denoted by

(A.8) P = (z, σR2p+2(z)
1/2) = (z, y),

where y denotes the meromorphic function on Kp satisfying Fp(z, y) = y2 −
R2p+2(z) = 0 and

(A.9) y(P ) =
ζ→0

∓
(

1 − 1

2

( 2p+1∑
m=0

Em

)
ζ +O(ζ2)

)
ζ−p−1 as P→P∞±, ζ = 1/z.

In addition, we introduce the holomorphic sheet exchange map (involu-
tion)

(A.10) ∗ : Kp → Kp, P = (z, y) 
→ P ∗ = (z,−y), P∞± 
→ P ∗
∞± = P∞∓

and the two meromorphic projection maps

(A.11) π̃ : Kp → C ∪ {∞}, P = (z, y) 
→ z, P∞± 
→ ∞

and

(A.12) y : Kp → C ∪ {∞}, P = (z, y) 
→ y, P∞± 
→ ∞.

Thus the map π̃ has a pole of order 1 at P∞± and y has a pole of order p+1
at P∞±. Moreover,

(A.13) π̃(P ∗) = π̃(P ), y(P ∗) = −y(P ), P ∈ Kp.

As a result, Kp is a two-sheeted branched covering of the Riemann sphere
CP1 (∼= C ∪ {∞}) branched at the 2p + 4 points {(Em, 0)}2p+1

m=0 , P∞±. Kp is
compact since π̃ is open and CP1 is compact. Therefore, the compact hyper-
elliptic Riemann surface resulting in this manner has topological genus p.

Next we introduce the upper and lower sheets Π± by

(A.14) Π± =
{
(z,±R2p+2(z)

1/2) ∈ Mp | z ∈ Π
}

and the associated charts

(A.15) ζ± : Π± → Π, P 
→ z.
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Let {aj , bj}p
j=1 be a homology basis for Kp with intersection matrix of

the cycles satisfying

(A.16) aj ◦ bk = δj,k, aj ◦ ak = 0, bj ◦ bk = 0, j, k = 1, . . . , p.

Associated with the homology basis {aj, bj}p
j=1 we also recall the canonical

dissection of Kp along its cycles yielding the simply connected interior K̂p of

the fundamental polygon ∂K̂p given by

(A.17) ∂K̂p = a1b1a
−1
1 b−1

1 a2b2a
−1
2 b−1

2 · · ·a−1
p b−1

p .

Let M(Kn) and M1(Kn) denote the set of meromorphic functions (0-
forms) and meromorphic differentials (1-forms) on Kn. The residue of a
meromorphic differential ν ∈ M1(Kn) at a point Q ∈ Kn is defined by

(A.18) resQ(ν) =
1

2πi

∫
γQ

ν,

where γQ is a counterclockwise oriented smooth simple closed contour en-
circling Q but no other pole of ν. Holomorphic differentials are also called
Abelian differentials of the first kind. Abelian differentials of the second kind
ω(2) ∈ M1(Kn) are characterized by the property that all their residues van-
ish. They will usually be normalized by demanding that all their a-periods
vanish, that is,

(A.19)

∫
aj

ω(2) = 0, j = 1, . . . , p.

If ω
(2)
P1,n is a differential of the second kind on Kn whose only pole is P1 ∈ K̂n

with principal part ζ−n−2 dζ , n ∈ N0 near P1 and ωj =
(∑∞

m=0 dj,m(P1)ζ
m
)
dζ

near P1, then

(A.20)
1

2πi

∫
bj

ω
(2)
P1,m =

dj,m(P1)

m+ 1
, m = 0, 1, . . .

Using local charts one infers that dz/y is a holomorphic differential on Kp

with zeros of order p− 1 at P∞± and hence

(A.21) ηj =
zj−1dz

y
, j = 1, . . . , p,

form a basis for the space of holomorphic differentials on Kp. Introducing
the invertible matrix C in Cp

C =
(
Cj,k

)
j,k=1,...,p

, Cj,k =

∫
ak

ηj,(A.22)

c(k) = (c1(k), . . . , cp(k)), cj(k) =
(
C−1

)
j,k
, j, k = 1, . . . , p,(A.23)
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the normalized differentials ωj for j = 1, . . . , p,

(A.24) ωj =

p∑
�=1

cj(�)η�,

∫
ak

ωj = δj,k, j, k = 1, . . . , p,

form a canonical basis for the space of holomorphic differentials on Kp.

In the chart (UP∞± , ζP∞±) induced by 1/π̃ near P∞± one infers,

ω = (ω1, . . . , ωp) = ∓
p∑

j=1

c(j)ζp−jdζ(∏2p+1
m=0 (1 − ζEm)

)1/2
(A.25)

= ±
(
c(p) + ζ

(
1

2
c(p)

2p+1∑
m=0

Em + c(p− 1)

)
+O(ζ2)

)
dζ as P→P∞±,

ζ = 1/z.

The matrix τ =
(
τj,�

)p

j,�=1
in Cp×p of b-periods defined by

(A.26) τj,� =

∫
bj

ω�, j, � = 1, . . . , p,

satisfies

(A.27) Im(τ) > 0 and τj,� = τ�,j, j, � = 1, . . . , p.

Associated with the matrix τ one introduces the period lattice

(A.28) Lp =
{
z ∈ C

p | z = m+ nτ, m, n ∈ Z
p
}

and the Riemann theta function associated with Kn and the given homology
basis {aj, bj}j=1,...,n,

(A.29) θ(z) =
∑
n∈Zn

exp
(
2πi(n, z) + πi(n, nτ)

)
, z ∈ C

n,

where (u, v) = u v� =
∑n

j=1 uj vj denotes the scalar product in Cn. It has
the fundamental properties

θ(z1, . . . , zj−1,−zj , zj+1, . . . , zn) = θ(z),(A.30)

θ(z +m+ nτ) = exp
(− 2πi(n, z) − πi(n, nτ)

)
θ(z), m, n ∈ Z

n.(A.31)

Next, fixing a base point Q0 ∈ Kp \ {P∞±}, one denotes by J(Kp) =
Cp/Lp the Jacobi variety of Kp, and defines the Abel map AQ0

by

AQ0
: Kn → J(Kp), AQ0

(P ) =

(∫ P

Q0

ω1, . . . ,

∫ P

Q0

ωp

)
(mod Lp),

P ∈ Kp.(A.32)
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Similarly, one introduces

(A.33) αQ0
: Div(Kp) → J(Kp), D 
→ αQ0

(D) =
∑

P∈Kp

D(P )AQ0
(P ),

where Div(Kp) denotes the set of divisors on Kp. Here a map D : Kp → Z

is called a divisor on Kp if D(P ) �= 0 for only finitely many P ∈ Kp. (In the
main body of this paper we will choose Q0 to be one of the branch points,
i.e., Q0 ∈ B(Kp), and for simplicity we will always choose the same path of
integration from Q0 to P in all Abelian integrals.)

In connection with divisors on Kp we will employ the following (additive)
notation,

DQ0Q = DQ0 + DQ, DQ = DQ1 + · · · + DQm,(A.34)

Q =
{
Q1, . . . , Qm

} ∈ Symm Kp, Q0 ∈ Kp, m ∈ N,

where for any Q ∈ Kp,

(A.35) DQ : Kp → N0, P 
→ DQ(P ) =

{
1 for P = Q,

0 for P ∈ Kp \ {Q},
and Symm Kp denotes the mth symmetric product of Kp. In particular,
Symm Kp can be identified with the set of nonnegative divisors 0 ≤ D ∈
Div(Kp) of degree m ∈ N. A divisor DQ = DQ1 + · · · + DQm will be called
finite if Qk ∈ Kp \ {P∞+, P∞−}, k = 1, . . . , m.

For f ∈ M(Kp) \ {0}, ω ∈ M1(Kp) \ {0} the divisors of f and ω are
denoted by (f) and (ω), respectively. Two divisors D, E ∈ Div(Kp) are
called equivalent, denoted by D ∼ E , if and only if D − E = (f) for some
f ∈ M(Kp) \ {0}. The divisor class [D] of D is then given by [D] =

{E ∈
Div(Kp) | E ∼ D}. We recall that

deg((f)) = 0, deg((ω)) = 2(p− 1),

f ∈ M(Kp) \ {0}, ω ∈ M1(Kp) \ {0},
(A.36)

where the degree deg(D) of D is given by deg(D) =
∑

P∈Kp
D(P ). It is

customary to call (f) (respectively, (ω)) a principal (respectively, canonical)
divisor.

Introducing the complex linear spaces

L(D) =
{
f ∈ M(Kp) | f = 0 or (f) ≥ D}, r(D) = dimC L(D),(A.37)

L1(D) =
{
ω ∈ M1(Kp) | ω = 0 or (ω) ≥ D}, i(D) = dimC L1(D)(A.38)

(with i(D) the index of specialty of D), one infers that deg(D), r(D), and
i(D) only depend on the divisor class [D] of D. Moreover, we recall the
following fundamental facts.
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Theorem A.1. Let D ∈ Div(Kp), ω ∈ M1(Kp) \ {0}. Then,

(A.39) i(D) = r(D − (ω)), p ∈ N0.

The Riemann-Roch theorem reads

(A.40) r(−D) = deg(D) + i(D) − p+ 1, n ∈ N0.

By Abel’s theorem, D ∈ Div(Kp), p ∈ N, is principal if and only if

(A.41) deg(D) = 0 and αQ0
(D) = 0.

Finally, assume p ∈ N. Then αQ0
: Div(Kp) → J(Kp) is surjective (Jacobi’s

inversion theorem).

Theorem A.2. Let DQ ∈ Symp Kp, Q =
{
Q1, . . . , Qp

}
. Then,

(A.42) 1 ≤ i(DQ) = s

if and only if there are s pairs of the type {P, P ∗} ⊆ {Q1, . . . , Qp} (this
includes, of course, branch points for which P = P ∗). Obviously, one has
s ≤ p/2.

Next, we denote by ΞQ0
=
(
ΞQ0,1 , . . . ,ΞQ0,p

)
the vector of Riemann con-

stants,

(A.43) ΞQ0,j
=

1

2
(1 + τj,j) −

p∑
�=1
� �=j

∫
a�

ω�(P )

∫ P

Q0

ωj, j = 1, . . . , p.

Theorem A.3. Let Q =
{
Q1, . . . , Qp

} ∈ Symp Kp and assume DQ to be
nonspecial, that is, i(DQ) = 0. Then,

(A.44) θ
(
ΞQ0

− AQ0
(P ) + αQ0(DQ)

)
= 0 if and only if P ∈ {

Q1, . . . , Qp

}
.

B. Some interpolation formulas

In this appendix we recall a useful interpolation formula which goes beyond
the standard Lagrange interpolation formula for polynomials in the sense
that the zeros of the interpolating polynomial need not be distinct.

Lemma B.1. Let p ∈ N and Sp−1 be a polynomial of degree p − 1. In
addition, let Fp be a monic polynomial of degree p of the form

(B.1) Fp(z) =

q∏
k=1

(z − µk)
pk , pj ∈ N, µj ∈ C, j = 1, . . . , q,

q∑
k=1

pk = p.



172 F. Gesztesy, H. Holden and G. Teschl

Then,

Sp−1(z) = Fp(z)

q∑
k=1

pk−1∑
�=0

S
(�)
p−1(µk)

�!(pk − �− 1)!
(B.2)

×
(
dpk−�−1

dζpk−�−1

(
(z − ζ)−1

q∏
k′=1, k′ �=k

(ζ − µk′)−pk′

))∣∣∣∣∣
ζ=µk

, z ∈ C.

In particular, Sp−1 is uniquely determined by prescribing the p values

(B.3) Sp−1(µk), S
′
p−1(µk), . . . , S

(pk−1)
p−1 (µk), k = 1, . . . , q,

at the given points µ1. . . . , µq.

Conversely, prescribing the p complex numbers

(B.4) α
(0)
k , α

(1)
k , . . . , α

(pk−1)
k , k = 1, . . . , q,

there exists a unique polynomial Tp−1 of degree p− 1,

Tp−1(z) = Fp(z)

q∑
k=1

pk−1∑
�=0

α
(�)
k

�!(pk − �− 1)!
(B.5)

×
(
dpk−�−1

dζpk−�−1

(
(z − ζ)−1

q∏
k′=1, k′ �=k

(ζ − µk′)−pk′

))∣∣∣∣∣
ζ=µk

, z ∈ C,

such that

Tp−1(µk) = α
(0)
k , T ′

p−1(µk) = α
(1)
k , . . . , T

(pk−1)
p−1 (µk) = α

(pk−1)
k ,

k = 1, . . . , q.
(B.6)

Proof. Our starting point for proving (B.2) is the following formula derived,
for instance, by Markushevich [22, Part 2, Sect. 2.11, p. 68],

(B.7) Sp−1(z) =
1

2πi

∮
Γ

dζ Sp−1(ζ)

Fp(ζ)

Fp(ζ) − Fp(z)

ζ − z
, z ∈ C,

where Γ is a simple, smooth, counterclockwise oriented curve encircling
µ1, . . . , µq. Since the integrand in (B.7) is analytic at the point ζ = z,
we may, without loss of generality, assume that Γ does not encircle z. With
this assumption one obtains

(B.8)
1

2πi

∮
Γ

dζ Sp−1(ζ)

ζ − z
= 0

and hence deforming Γ into sufficiently small counterclockwise oriented cir-
cles Γk with center at µk, k = 1, . . . , q, such that no µk′, k′ �= k, is encircled
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by Γk, one obtains

Sp−1(z) = −Fp(z)

2πi

∮
Γ

dζ Sp−1(ζ)

Fp(ζ)(ζ − z)

= −Fp(z)

2πi

q∑
k=1

∮
Γk

dζ Sp−1(ζ)

Fp(ζ)(ζ − z)

= −Fp(z)

2πi

q∑
k=1

p−1∑
�=0

S
(�)
p−1(µk)

�!

∮
Γk

dζ (ζ − µk)
�

Fp(ζ)(ζ − z)

= −Fp(z)

2πi

q∑
k=1

p−1∑
�=0

S
(�)
p−1(µk)

�!

∮
Γk

dζ (ζ − µk)
�

(ζ − z)
∏q

k′=1(ζ − µk′)pk′

= −Fp(z)

2πi

q∑
k=1

p−1∑
�=0

S
(�)
p−1(µk)

�!

∮
Γk

dζ (ζ − µk)
�−pk

(ζ − z)
∏q

k′=1
k′ �=k

(ζ − µk′)pk′

= −Fp(z)

2πi

q∑
k=1

pk−1∑
�=0

S
(�)
p−1(µk)

�!

∮
Γk

dζ (ζ − µk)
�−pk

(ζ − z)
∏q

k′=1
k′ �=k

(ζ − µk′)pk′
,(B.9)

where we used

(B.10)

∮
Γk

dζ (ζ − µk)
�−pkf(ζ) = 0 for � ≥ pk, � ∈ N,

for any function f analytic in a neighborhood of the disk Dk with boundary
Γk, k = 1, . . . , q, to arrive at the last line of (B.9). An application of
Cauchy’s formula for derivatives of analytic functions to (B.9) then yields

Sp−1(z) = −Fp(z)

q∑
k=1

pk−1∑
�=0

S
(�)
p−1(µk)

�!

× 1

2πi

∮
Γk

dζ
1

(ζ − µk)(pk−�−1)+1

1

(ζ − z)
∏q

k′=1, k′ �=k(ζ − µk′)pk′

= Fp(z)

q∑
k=1

pk−1∑
�=0

S
(�)
p−1(µk)

�!(pk − �− 1)!
(B.11)

×
(
dpk−�−1

dζpk−�−1

(
1

(z − ζ)
∏q

k′=1, k′ �=k(ζ − µk′)pk′

))∣∣∣∣∣
ζ=µk

, z ∈ C,

and hence (B.2). Conversely, a linear algebraic argument shows that any
polynomial Tp−1 of degree p− 1 is uniquely determined by data of the type

(B.12) Tp−1(µk), T
′
p−1(µk), . . . , T

(pk−1)
p−1 (µk), k = 1, . . . , q.

Uniqueness of the representation (B.2) then proves (B.5). �
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We briefly mention two special cases of (B.2). First, assume the generic
case where all zeros of Fp are distinct, that is,

(B.13) q = p, pk = 1, µk �= µk′ for k �= k′, k, k′ = 1, . . . , p.

In this case (B.2) reduces to the classical Lagrange interpolation formula

(B.14) Sp−1(z) = Fp(z)

p∑
k=1

Sp−1(µk)

((dFp(ζ)/dζ)|ζ=µk
)(z − µk)

, z ∈ C.

Second, we consider the other extreme case where all zeros of Fp coincide,
that is,

(B.15) q = 1, p1 = p, Fp(z) = (z − µ1)
p, z ∈ C.

In this case (B.2) reduces of course to the Taylor expansion of Sp−1 around
z = µ1,

(B.16) Sp−1(z) =

p−1∑
�=0

S
(�)
p−1(µ1)

�!
(z − µ1)

�, z ∈ C.

C. Asymptotic spectral parameter expansions and non-
linear recursion relations

In this appendix we discuss asymptotic spectral parameter expansions for
Fp/y and Gp+1/y as well as nonlinear recursion relations for the correspond-

ing homogeneous coefficients f̂� and ĝ� and analogous quantities fundamental
to the polynomial recursion formalism for the Toda hierarchy.

We start by recalling the following elementary results (which are conse-
quences of the binomial expansion). Let{

Em

}
m=0,...,2p+1

⊂ C for some p ∈ N0(C.1)

and η ∈ C such that |η| < min
{|E0|−1, . . . , |E2p+1|−1

}
.

Then

(C.2)

( 2p+1∏
m=0

(
1 − Emη

))−1/2

=
∞∑

k=0

ĉk(E)ηk,

where

ĉ0(E) = 1,

ĉk(E) =

k∑
j0,...,j2p+1=0

j0+···+j2p+1=k

(2j0)! · · · (2j2p+1)!

22k(j0!)2 · · · (j2p+1!)2
Ej0

0 · · ·Ej2p+1

2p+1 , k ∈ N.(C.3)
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The first few coefficients explicitly read

ĉ0(E) = 1,

ĉ1(E) =
1

2

2p+1∑
m=0

Em,(C.4)

ĉ2(E) =
1

4

2p+1∑
m1,m2=0
m1<m2

Em1Em2 +
3

8

2p+1∑
m=0

E2
m, etc.

Similarly,

(C.5)

( 2p+1∏
m=0

(
1 −Emη

))1/2

=
∞∑

k=0

ck(E)ηk,

where

c0(E) = 1,

ck(E) =
k∑

j0,...,j2p+1=0
j0+···+j2p+1=k

(2j0)! · · · (2j2p+1)!E
j0
0 · · ·Ej2p+1

2p+1

22k(j0!)2 · · · (j2p+1!)2(2j0 − 1) · · · (2j2p+1 − 1)
,(C.6)

k ∈ N.

The first few coefficients are given explicitly by

c0(E) = 1,

c1(E) = −1

2

2p+1∑
m=0

Em,(C.7)

c2(E) =
1

4

2p+1∑
m1,m2=0
m1<m2

Em1Em2 −
1

8

2p+1∑
m=0

E2
m, etc.

Theorem C.1. Assume (2.1), s-Tlp(a, b) = 0, and suppose P = (z, y) ∈
Kp \ {P∞+, P∞−}. Then Fp/y and Gp+1/y have the following convergent
expansions as P → P∞±,

(C.8)
Fp(z)

y
= ∓

∞∑
�=0

f̂�ζ
�+1,

Gp+1(z)

y
= ∓

∞∑
�=−1

ĝ�ζ
�+1,
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where ζ = 1/z is the local coordinate near P∞± and f̂� and ĝ� are the homoge-
neous versions of the coefficients f� and g� introduced in (2.8). In particular,
f̂� and ĝ� can be computed from the nonlinear recursion relations

f̂0 = 1,

f̂1 = −b,
f̂2 = a2 + (a−)2 + b2,

f̂�+2 = −1

2

�+1∑
k=1

f̂�+2−kf̂k − 2b

�+1∑
k=0

f̂�+1−kf̂k(C.9)

+
�∑

k=0

(− 3b2f̂�−kf̂k + a2f̂+
�−kf̂k + (a−)2f̂�−kf̂

−
k

)
+

�−1∑
k=0

(− 2b3f̂�−1−kf̂k + 2a2bf̂+
�−1−kf̂k + 2(a−)2bf̂�−1−kf̂

−
k

)
+

�−2∑
k=0

(
a2b2f̂+

�−2−kf̂k + (a−)2b2f̂�−2−kf̂
−
k + a2(a−)2f̂+

�−2−kf̂
−
k

− 1

2
a4f̂+

�−2−kf̂
+
k − 1

2
(a−)4f̂−

�−2−kf̂
−
k

)
, � ∈ N,

and

ĝ−1 = −1,

ĝ0 = 0,

ĝ1 = −2a2,

ĝ�+1 =
1

2

�∑
k=−1

(b+ b+)ĝ�−1−kĝk +
1

2

�∑
k=0

ĝ�−kĝk(C.10)

+
1

2

�−1∑
k=−1

(
bb+ĝ�−2−kĝk − a2(ĝ−�−2−k + ĝ�−2−k)(ĝk + ĝ+

k )
)
, �∈N.

Moreover, one infers for the Em-dependent summation constants c�, � =
0, . . . , p+ 1, in Fp and Gp+1 that

(C.11) c� = c�(E), � = 0, . . . , p+ 1
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and3

f� =
�∑

k=0

c�−k(E)f̂k, � = 0, . . . , p,(C.12)

g� + fp+1δp,� =

�∑
k=0

c�−k(E)ĝk − c�+1(E), � = 0, . . . , p,(C.13)

f̂� =

�∧p∑
k=0

ĉ�−k(E)fk, � ∈ N0,(C.14)

ĝ� =

�∧p∑
k=0

ĉ�−k(E)(gk + fp+1δp,k) − ĉ�+1(E), � ∈ N0.(C.15)

Proof. Dividing Fp and Gp+1 by R
1/2
2p+2 (temporarily fixing the branch of

R
1/2
2p+2 as zp+1 near infinity) one obtains

Fp(z)

R2p+2(z)1/2
=

|z|→∞

( ∞∑
k=0

ĉk(E)z−k

)( p∑
�=0

f�z
−�−1

)
=

∞∑
�=0

f̌�z
−�−1,(C.16)

Gp+1(z)

R2p+2(z)1/2
=

|z|→∞

( ∞∑
k=0

ĉk(E)z−k

)( p+1∑
�=0

g̃�z
−�

)
= z−1

∞∑
�=−1

ǧ�z
−�(C.17)

for some coefficients f̌� and ǧ� to be determined next. Here we have tem-
porarily introduced the notation

(C.18) Gp+1(z) = −zp+1 +

p∑
�=0

gp−�z
� + fp+1 =

p+1∑
�=0

g̃p−�z
�.

Dividing (2.37) and (2.39) by R2p+2 and inserting expansions (C.16) and
(C.17) into the resulting equations then yield the nonlinear recursion rela-
tions (C.9) and (C.10) (with f̂� and ĝ� replaced by f̌� and ǧ�, respectively).
More precisely, one first obtains |f̌0| = |ǧ−1| = 1 and upon choosing the
signs of f̌0 and ǧ−1 such that f̌0 = f̂0 = 1 and ǧ−1 = −1 one obtains (C.9)

and (C.10). Next, dividing (2.31) and (2.32) by R
1/2
2p+2, inserting the expan-

sions (C.16) and (C.17), and comparing powers of z−� as z → ∞, one infers
that f̌� and ǧ� satisfy the linear recursion relations (2.4)–(2.6). Hence one
concludes that

(C.19) f̌� = f�, ǧ� = g�, � ∈ N0

3m ∧ n = min{m, n}.
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for certain values of the summation constants c�. To show that f̌� = f̂�,
ǧ� = ĝ�, and hence all c�, � ∈ N, vanish, we recall the notion of degree
as used in the proof of Lemma 5.4, which serves as an efficient tool to
distinguish between homogeneous and nonhomogeneous quantities. To this
end we employ the notation

f (r) = S(r)f, f = {f(n)}n∈Z ⊂ C, S(r) =

{
(S+)r, r ≥ 0,

(S−)−r, r < 0,
r ∈ Z,

(C.20)

and introduce

(C.21) deg(a(r)) = deg(b(r)) = 1, r ∈ Z.

This results in

(C.22) deg(f̂�) = �, deg(ĝ�) = �+ 1, � ∈ N.

using induction in the linear recursion relations (2.4)–(2.6). Similarly, the
nonlinear recursion relations (C.9) and (C.10) yield inductively that

(C.23) deg(f̌�) = �, deg(ǧ�) = �+ 1, � ∈ N.

Hence one concludes that

(C.24) f̌� = f̂�, ǧ� = ĝ�, � ∈ N0.

A comparison of coefficients in (C.16) proves (C.14). Similarly, we use (C.17)
to establish (C.15). Next, multiplying (C.2) and (C.5), a comparison of
coefficients of ηk yields

(C.25)
k∑

�=0

ĉk−�(E)c�(E) = δk,0, k ∈ N0.

Thus, one computes

�∑
m=0

c�−m(E)f̂m =

�∑
m=0

m∑
k=0

c�−m(E)ĉm−k(E)fk

=
�∑

k=0

�∑
p=k

c�−p(E)ĉp−k(E)fk(C.26)

=
�∑

k=0

( �−k∑
m=0

c�−k−m(E)ĉm(E)

)
fk = f�, � = 0, . . . , p,

applying (C.25). Hence one obtains (C.12) and thus (C.11) (cf. (2.9)). The
corresponding proof of (C.13) is similar to that of f�. �



The Toda Hierarchy Initial Value Problem 179

Acknowledgments. We are indebted to Michael Gekhtman for discussions
on this subject. Fritz Gesztesy gratefully acknowledges the extraordinary
hospitality of Helge Holden and the Department of Mathematical Sciences
of the Norwegian University of Science and Technology, Trondheim, during
a two-month stay in the summer of 2005, where parts of this paper were
written. He also gratefully acknowledges a research leave for the academic
year 2005/06 granted by the Research Council and the Office of Research
of the University of Missouri-Columbia.Fritz Gesztesy and Helge Holden are
grateful for the hospitality of the Mittag-Leffler Institute, Sweden, creating
a great working environment for research, during the Fall of 2005. Gerald
Teschl gratefully acknowledges the hospitality of the Department of Mathe-
matics of the University of Missouri–Columbia and the Department of Math-
ematical Sciences of the Norwegian University of Science and Technology,
Trondheim, respectively, during two one-week stays in 2005.

References

[1] Abraham, R., Marsden, J. E. and Ratiu, T.: Manifolds, Tensor
Analysis, and Applications, 2nd ed. Applied Mathematics Sciences 75.
Springer-Verlag, New York, 1988.

[2] Arnold, V. I.: Mathematical Methods of Classical Mechanics, 2nd ed.
Graduate Text in Mathematics 60. Springer-Verlag, New York, 1989.

[3] Batchenko, V. and Gesztesy, F.: On the spectrum of Schrödinger
operators with quasi-periodic algebro-geometric KdV potentials. J. Anal.
Math. 95 (2005), 333–387.

[4] Batchenko, V. and Gesztesy, F.: On the spectrum of Jacobi operators
with quasi-periodic algebro-geometric coefficients. IMRP Int. Math. Res.
Pap. (2005), no. 10, 511–563.

[5] Belokolos, E.D., Bobenko, A. I., Enol’skii, V. Z., Its, A.R. and

Matveev, V.B.: Algebro-Geometric Approach to Nonlinear Integrable
Equations. Springer, Berlin, 1994.

[6] Bulla, W., Gesztesy, F., Holden, H. and Teschl, G.: Algebro-
geometric quasi-periodic finite-gap solutions of the Toda and Kac-van Mo-
erbeke hierarchies. Mem. Amer. Math. Soc. 135 (1998), no. 641, 1–79.

[7] Date, E. and Tanaka, S.: Analogue of inverse scattering theory for the
discrete Hill’s equation and exact solutions for the periodic Toda lattice.
Progr. Theoret. Phys. 55 (1976), no.2, 457–465.

[8] Dubrovin, B.A.: Theta functions and non-linear equations. Russian
Math. Surveys 36:2 (1981), 11–92.

[9] Dubrovin, B.A., Krichever, I.M. and Novikov, S. P.: Integrable
systems I. In Dynamical Systems IV, 173–332 (V. I. Arnold and S.P.
Novikov, eds.). Springer, Berlin, 1990.



180 F. Gesztesy, H. Holden and G. Teschl

[10] Dubrovin, B.A., Matveev, V.B. and Novikov, S. P.: Non-linear
equations of the Korteweg–de Vries type, finite-zone linear operators and
Abelian varieties. Russ. Math. Surveys 31 (1976), no. 1, 59–146.

[11] Farkas, H. and Kra, I.: Riemann Surfaces. Graduate Text in Mathe-
matics 71. Springer-Verlag, New York, 1992.

[12] Flaschka, H.: Discrete and periodic illustrations of some aspects of the
inverse method. In Dynamical Systems, Theory and Applications (Rencon-
tres, Batelle Res. Inst., Seattle, Wash., 1974), 441–466. Lecture Notes in
Physics 38. Springer, Berlin, 1975.

[13] Gesztesy, F. and Holden, H.: Soliton Equations and Their Algebro-
Geometric Solutions. Vol. I: (1+1)-Dimensional Continuous Models. Cam-
bridge Studies in Advanced Mathematics 79. Cambridge University Press,
Cambridge, 2003.

[14] Gesztesy, F., Holden, H., Michor, J. and Teschl, G.: Soliton Equa-
tions and Their Algebro-Geometric Solutions. Vol. II: (1 + 1)-Dimensional
Discrete Models. Cambridge Studies in Advanced Mathematics. Cambridge
Univ. Press, in press.

[15] Kac, M. and Van Moerbeke, P.: On some periodic Toda lattices. Proc.
Nat. Acad. Sci. USA 72 (1975), 1627–1629.

[16] Kac, M. and Van Moerbeke, P.: A complete solution of the periodic
Toda problem. Proc. Nat. Acad. Sci. USA 72 (1975), no. 8, 2879–2880.

[17] Katok, A. and Hasselblatt, B.: Introduction to the Modern Theory of
Dynamical Systems. Encyclopedia of Mathematics and its Applications 54.
Cambridge University Press, Cambridge, 1995.

[18] Krichever, I.M.: Algebraic curves and non-linear difference equations.
Russ. Math. Surveys 33 (1978), no.4, 255–256.
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