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Comparison of the classical BMO with
the BMO spaces associated with

operators and applications

Donggao Deng, Xuan Thinh Duong, Adam Sikora and Lixin Yan

Abstract

Let L be a generator of a semigroup satisfying the Gaussian upper
bounds. A new BMOj, space associated with L was recently intro-
duced in [15] and [16]. We discuss applications of the new BMOy,
spaces in the theory of singular integration. For example we ob-
tain BMOy, estimates and interpolation results for fractional powers,
purely imaginary powers and spectral multipliers of self adjoint op-
erators. We also demonstrate that the space BMOj, might coincide
with or might be essentially different from the classical BMO space.

1. Introduction

The classical space of functions of bounded mean oscillation (BMO) plays
a crucial role in modern harmonic analysis. See for examples [19], [22], [28]
and [29]. In the case of the Euclidean space R", a function f is said to in
BMO(R") if

1
(L1) Ilowo =sup 1o /Q (@) — foldz < oo,

where fg denotes the average value of f on the cube ) and the supremum
is taken over all cubes @) in R".

An important application of the theory of BMO spaces is the following
interpolation result.
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Proposition 1.1 If T is a bounded sublinear operator from L*(R™) to
L*(R™), and T 1is bounded from L>®(R™) to BMO(R"™), then T is bounded
from LP(R™) to LP(R™) for all 2 < p < oc.

It is well known that Calderén-Zygmund operators (such as the Hilbert
transform on the real line, the Riesz transforms on R”, or the purely imag-
inary powers of the Laplacian on R™) do not map the space L> into L,
but the standard conditions on their kernels ensure that they map L> into
the BMO space boundedly, hence we can apply Proposition 1.1 to obtain L?
boundedness of these operators for p > 2. In this sense, the BMO space
is a natural substitute of the space L* in the theory of Calderén-Zygmund
singular integrals.

In this paper we are motivated by study of singular integral operators
corresponding to spectral multiplier of an operator L which generates a
semigroup with appropriate kernel bounds, see [15]. Such multipliers do
not always map L or appropriate LP spaces into the classical BMO space,
see Example 5.4 below. Hence the classical BMO space is not necessarily
a suitable space to study such singular integrals. To study these rough
operators, we introduced a new BMO space associated with an operator L.

To explain our approach to BMO,, space associated with an operator
let us recall that the space of BMO functions can be characterized by the
Carleson measure estimate as follows:

Proposition 1.2 A function f is in BMO if and only if f satisfies

J L

n 1+ |zt

and
odxdt

0
s, t) = Jte VA ()| =]

ot

18 a Carleson measure.

One can see from the characterization in Proposition 1.2 that the BMO
space is associated with the Laplace operator on R™ and it seems to be
natural idea to replace the Laplace operator A by more general operators
operator L, see also [19] and [29].

In this paper we use equivalent approach, see Definition 2.2 below. In this
definition the BMO/ space associated with L is defined by using the function
e '@k f to replace the average fq in Definition 1.1 of BMO where the value ¢g
is scaled to the length of the sides of Q. In this paper we discuss various
examples which shows that Definition 2.2 is an effective tool in study of
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singular integrals operators associated with the operator L. We refer the
reader to [2], [8] and [18] for other ideas related to generalization of the
BMO space and BMO spaces associated with an operator L.

Many important features of the classical BMO space are retained by
the new BMO,, spaces such as the John-Nirenberg inequality and duality
between the Hardy space and the BMO/, space. See [15] and [16]. One of
these important features is that the interpolation property in Proposition 1.1
is still valid if the classical space BMO is replaced by the BMO, space
associated with an operator L. Indeed, the following result is proved in [15]
(Theorem 6.1).

Proposition 1.3 Let X be a space of homogeneous type. If T is a bounded
sublinear operator from L*(X) to L*(X), and T is bounded from L>®(X) into
BMO(X), then T is bounded from LP(X) to LP(X) for all 2 < p < oc.

A natural question arising from Proposition 1.3 is to compare the classical
BMO space and the BMO/, space associated with an operator L. In Sections
3 and 4 we study this question systematically and we show that depending
on the choice of the operator L, all the following cases are possible

Case 1: BMO = BMOy;
Case 2: BMO C BMO; and BMO # BMOy;
Case 3: BMO;, € BMO and BMO,, # BMO;

Case 4: BMO ¢ BMO,, and BMO; ¢ BMO.

For other results related to Cases 1 and 2 we refer readers to Proposi-
tion 2.5 of [15], Section 6.2 of [16] and Proposition 3.1 of [23]. In Section 5
we show that if f € L™*(R") and L™®f < oo almost everywhere then
L=f eBMOp. We construct an example of a function f € LP(R) and an

operator L such that L_ﬁf € BMOy but L_ﬁf ¢ BMO. This shows that
the new BMO/ space does make a difference in estimates of singular inte-
grals. Finally in Sections 6 and 7, we obtain sharp estimates of the L* to
BMO/, norm of the purely imaginary powers L* of a self adjoint operator L.
We also obtain the BMO type estimates for spectral multipliers of a self
adjoint operator L and for maximal operators sup,.,|F(tL)| correspond-
ing to L and appropriate functions F'. LP boundedness of these operators,
2 < p < 00, then follows from Proposition 1.3.
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2. Preliminaries

2.1. BMO spaces on the half spaces

Let us begin by recalling the definitions of various BMO spaces on the usual
upper-half space in R™. For any subset A C R" and a function f: R* — C
by f|a we denote the restriction of f to the set A. Next we set

R} = {(x/,:cn) ER": o/ = (21,...,701) ER" 1, > 0}.
Definition 2.1 A function f on RY is said to be in BMO,(RY) if there
exists F' € BMO(R") such that Flgr = f. If f € BMO,(R%), we set

1£lsaro, ey = inf {||F||BM0(R”)3 Flgy = f} .

A function f on R’} belongs to BMO.(R") if the function F' defined by

x if x € RY;
1) Fay={ 1T
0 if x ¢ R

belongs to BMO(R"). If f€BMO,(RY), we set || f|lpmo.®n) = FllBmo. &n)-

Compare Section 4.5.1, page 221 of [32] and Section 5.4 of [4]. In order to
analyze the spaces BMO, (R"} ) and BMO.(RR"} ), let us introduce the following
notations, see [6]. For any z = (2/,z,) € R", we set & = (2/, —z,). If f is
any function defined on R, its even extension f, is defined on R" by

B flx) if x € RY;
ﬂ@y_{f@) if 2 € R,

and its odd extension f, is defined by

B f(x) if v € RY;
ﬂ@%_{—ﬂ@ itz eR",

where
R" = {(x/,:cn) cR": 2/ = (11,...,0,1) ER" 1 2, < 0}.
For any function f € L{ (R"), we define

||f||BMoe(R1) = ||fe||BMO(IR") and ||f||BMoo(1R1) = ||fo||BM0(Rn)

and we denote by BMO,.(R"}) and BMO,(R’) the corresponding Banach
spaces.
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We will see that BMO,(RR",) is suitable for the analysis of the Neumann
Laplacian on R”, whereas BMO,(R?" ) is suitable for the study of the Dirichlet
Laplacian on R’;. See Proposition 3.2 below.

In what follows, Q = Q[z¢,lg] denotes a cube of R™ centered at zg and

of the side length [g. Given any cube ), we denote the reflection of () across
OR"} by

(2.2) = {(x',xn) eR", (¢, —a,) € Q}.

Let Q; = QNR? and Q- = Q NR” where R* = {(x’,xn) eR": 2/ =
(1,...,2p1) € R™ 1z, <0}. If both Q_ and @, are not empty, we then
define

23 { CE_ ={(@,z,) : 2 € QNR", —lg <z, <0},
Qi ={(2,z,): ¥ €eQNR" 0<z, <y}
Obviously, we have the following properties:
(i) Q- CQ-, Q+ € Q4 and thus Q C (Q- UQy);
(i) 1Q = 1Q-| = 1Q+!.

These will be often used in the sequel.

2.2. Dirichlet and Neumann Laplacians

By A, n, (and A, y_) we denote the Neumann Laplacian on R, (and on R"
respectively). Similarly by A, p, (and A, p_) we denote the Dirichlet Lapla-
cian on R? (and on R” respectively).

The Dirichlet and Neumann Laplacian are positive definite self-adjoint
operators. By the spectral theorem one can define the semigroups generated
by these operators {exp (—tA, p,): t >0} and {exp(—tA,n,): t > 0}.
By pt, aup, (x,y) and py, N (z,y) we denote the heat kernels correspond-
ing to the semigroups generated by A, p, and A, n, respectively.

For n = 1 by the reflection method (see for example [30, (6) p. 57]) we
obtain

1
Pt asp, (,y) = (4mt)12 (6

_lz-w)? _ x1+y1|2)
at —e It .
Then for n > 2

Pt s, @9) = (P, @oo) (pes, @ 9)

2 72 En— n2 zn n2
(2.4) _ 1 n€_| ' (6_\ nll - lentunl >’
(4mt)z
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where py A, ,(2,y) is the heat kernel corresponding to the standard Laplace
operator acting on R"~!. Applying the reflection method also to the Neu-
mann Laplacian we obtain (see [30, (7) p. 57])

Pe s, @9) = (P, @nwm) (P s, @ 0)

1 _le'—y'12 /' lzn—ynl? _lzntynl?

(2.5) = (47rt)%€ at (e @ e 4t )

In the sequel we skip the index n and we denote the Dirichlet and Neumann
Laplacian by Ap, and Ay, . Note that by (2.4)

exp(—tAp, ) f(x) = /R Piap, (@ y)f(y)dy

1 _lz—y?
= W/}Rne i fo(y)dy
(2.6) = exp(—tA) fo(z)

for x € R? and all £ > 0. Similarly

exp(~tA)1@) = [ pusn, @iy
1 eyl
= W/Rne i fe(y)dy
2.7 = exp(~tA) ()

for x € R?} and all ¢ > 0.
Next for any function f on R", we set

f-=flen and  fi = flgn.

Now let Ay be the uniquely determined unbounded operator acting on
L?*(R") such that

(2.8) (Anf)+ =An f+ and (Anxf)-=Anx f-

for all f: R" — R such that f, € W'?(R?}) and f- € W'?(R™). Then, Ay
is a positive definite self-adjoint operator. By (2.8)
(exp(—tAN) f)+ = exp(—tAn,) f+

(2.9)
and (exp(—tAn)f)- = exp(—tAnx_ )f-.
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Let pt, ay(2,y) be the heat kernel of exp(—tAy). By (2.9) and (2.5) we
obtain

1 |In*yn|2 _|In+yn‘2

2 o2
W@_ 2 (6— b T)H(xnyn),

(2.10) piay(z,y) =

where H: R — {0, 1} is the Heaviside function given by
(2.11) H(t) = { 0 Hi<h;
1 if¢t>0.
Similarly we define the Dirichlet Laplacian on R™ by the formula
(2.12) (Apf)+ =Ap, fy and (Apf)-=Ap_f-

for all f: R" — R such that f; € Wy *(R") and f_ € Wy*(R"). Then, Ap
is a positive definite self-adjoint operator. By (2.12)

(exp(—tAp)f)+ = exp(—tAp,)f+
and (exp(—tAp)f)_ =exp(—tAp_ )f_.

Hence by (2.4) the kernel p; A, (z,y) of the operator exp(—tAp) is given by

(2.13)

2.14) peay(z,y) = 71 e"l‘/;z/l2 e’lmnztyn|2 _ernLynF H(xpyy,).
P (4mt)n/2

Finally we define the Dirichlet-Neumann Laplacian by the formula
(2.15) (Apnf)y = An,fy and (Apnf)-=Ap_f-
for all f: R™ — R such that f, € WH(R?) and f_ € W,*(R"). By (2.15)

(exp(—tApn)[f)+ = exp(—tAn, ) [+
and (exp(—tApn)f)- = exp(—tAp_)f-.

Hence by (2.4) and (2.5), the kernel p; a,, (z,y) of exp(—tApn) is given by

(2.16)

(2.17)

1 ' 12/ _lzn—ynl? _lzntynl?
pthDN(x,y):We it (e i +(2H(x,)—1)e 4t )H(xnyn)

Let us note that

() All the operators A, Ay, , Ap,, Ay, Ap_ and Ap, Ay, Apy are
self-adjoint and they generate bounded analytic positive semigroups acting
on all L? spaces for 1 < p < oo;
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(B) Suppose that p, (x,y) is the kernel corresponding to the semigroup
generated by L and that L is one of the operators listed in (a). Then the
kernel p, (x,y) satisfies Gaussian bounds, that is

_le=ul?
t

C
(2.18) Iper(z,y)| < 2 €
for all z,y € €, where 2 = R" for A, Ap, Ay, Apy; @ =R for Ay, , Ap,
and = R" for Ay_, Ap_.
() If L is one of the operators A, Ay, , Ay_ and Ay, then L conserves

probability, that is
exp(—tL)1 = 1.

This conservative property does not hold for Ap, Ap,, Ap_ and Apy.

2.3. BMO spaces associated with operators

Suppose that 2 C R™ is an open subset of R™. Suppose that L is a linear
operator on L2(2) which generates an analytic semigroup e =% with a kernel
pie(z,y) satisfying Gaussian upper bound (2.18).

We define

|/ (@)]”

_ 1 .
M(Q) = {f € L,.(Q):3d >0, /971 n |x|n+ddx < oo}

Note that in virtue of the Gaussian bounds (2.18) we can extend the action
of the semigroup operators exp(—tL) to the space M(Q), that is we can

define exp(—tL)f for all f € M(Q). By B(x,r) we denote the ball in 2
with respect to the Euclidean distance restricted to 2 that is

B(z,r)={yeQ: |z —y| <r}.

The following BMO/(£2) space associated with an operator L was intro-
duced in [15].

Definition 2.2 We say that f € M(Q) is of bounded mean oscillation
associated with an operator L (abbreviated as BMOL(Q2)) if

(2.19) [Ifllsmoy ) = sup 1 |f(x) — exp(=r°L) f(2)| dz < oo,

B(y,r) |B(y,7")| B(y,r)

where the supremum is taken over all balls B(y,r) in Q. The smallest bound
for which (2.19) is satisfied is then taken to be the norm of f in this space,
and is denoted by || f||Bmo, @)-
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Remarks. (i) Note that ( BMOL(S2), || - [[Bmoy()) is a semi-normed vector
space, with the semi-norm vanishing on the kernel space K defined by

KL= {f e M(Q): exp(—tL)f=f, Vt> 0}.

The class of functions of BMO[(Q2) (modulo K}) is a Banach space. We refer
the reader to Section 6 of [16] for a discussion on the dimension of the space
K of BMOg(R™) when L is a second order divergence form elliptic operator
or a Schrodinger operator. In the sequel By BMO[(£2) we always denote the
space BMO(€) (modulo K ) and we skip (modulo £Cr) to simplify notation.

(ii) Similarly to the classical BMO space, it is easy to check that L*>(Q2) C
BMO.(€) with [ fl[syo, @) < 2[[f]|z-

(iii) The classical BMO space (modulo all constant functions) and the
BMOAa (R™) space (modulo all harmonic functions) coincide, and their norms
are equivalent. See Theorem 2.15 of [15].

(iv) Note that the Euclidean distance in Definition 2.2 can be replaced by
any equivalent distance. That is if there exists ¢ > 0 such that ¢!z — y| <
d(x,y) < c|lx — y| then one can take in (2.19) the supremum over all balls
B?(x,r) with respect to the metric d. In particular if Q = R™, Q = R" or
) = R”, one can take the supremum over all cubes () such that @) C 2 in
(2.19), i.e., we can define equivalent norm in BMO/(2) by the formula

1
(2.20) | fllBMo, 7y = sup —/ |f(x) — exp(—léL)f(xﬂdx < 00,
e 1QlJg
where [g is the side length of () and the supremum is taken over all cubes
Q C .
The following proposition is essentially equivalent to Proposition 3.1

of [23].

Proposition 2.3 Assume that for every t > 0, e (1) = 1 almost every-
where, that is, [.p(z,y)dy = 1 for almost all x € R™. Then, we have
BMO(R™) € BMOL(R"), and there exists a positive constant ¢ > 0 such that

(2.21) 1 FlBmoy @y < ellflIBpoen)-
However, the converse inequality does not hold in general.
We remark that condition e **(1) = 1, is necessary for (2.21). In-

deed, (2.21) implies ||1||pmo, gy = 0. Hence e=*/(1) = 1 almost everywhere
for all ¢t > 0,
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3. BMO spaces on the half spaces and BMO spaces as-
sociated with the Dirichlet and Neumann Laplacian

In this section we describe the equivalence between the BMO spaces on the
half space and BMO spaces corresponding to the Neumann and Dirichlet
Laplacian.

Proposition 3.1 (i) The spaces BMO,(R") and BMO.(R") coincide, and
their norms are equivalent.

(ii) The spaces BMO,(R?) and BMO,(R?) coincide, and their norms
are equivalent.

Proof. Following [6], for any function f € L'(R") we set

(1) [ fllmen = fellmny and ([ fllrigs) = | foll m@n

and by H!(R?) and H}(R'}) we denote the corresponding Banach spaces.
It follows from Corollaries 1.6, 1.8 of [6] and Proposition 32 of [4] that the
dual space of H}(R") is the space BMO,(R".) and the dual space of H, (R")
is the space BMO,(R") . See also [3].

The inclusion BMO,(R") € BMO, (R"}) is obvious. Hence to prove (i)
it is enough to show that BMO,(R%?) € BMO.(R?). Let f € BMO,(R?%).
To see that f € BMO((RY), by the definition it reduces to proving f. €
BMO(RR") where f, is the even extension of f. For any g(r) € H'(R"), we
denote by g(z) = g(Z) where T = (2/, —z,,). Since (H}(R"}))’ = BMO,(R"),
we have

| de@gtyda =] | g+ | ggCeds]

=1 7@)(s@ + () )ds]

< c[[fllmo, @) I(G + @l H1rn) < cll fllBymo,®n) gl mrgn)-

This shows that BMO, (R"}) € BMO(R? ), and proves (i).

We now prove (ii). The inclusion BMO,(R%) € BMO,(RR?}) is obvious.
Let f € BMO,(R%) and thus f, € BMO(R"). To see that f € BMO.(R?%),
it reduces to proving f € (H}(R%))" since BMO,(R%}) = (HX(R%)). If
g € H(R"), then g, € H'(R™). Hence

[ t@@as] = 5| [ p@a@a

< | follBmo@mlgoll mrrny < |l fllmmomn) gl i @n)-
This shows that BMO,(R”) € BMO,(R?.), and proves (ii). [ |
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We use Proposition 3.1 to obtain the following result.

Proposition 3.2 (i) The spaces BMOa,,, (R), BMO.(RY) and BMO,(RY)
coincide, and their norms are equivalent.

(ii) The spaces BMOa,, (R}), BMO,(R’}) and BMO.(RY}) coincide, and
their norms are equivalent.

Proof. We first prove (i). Let f € BMO,(RR}). By Proposition 3.1 we have
that f € BMO,(R") and then f, € BMO(R"). To prove f € BMOa,, (RY),
it suffices to show that for any cube ) C R,

(3.2) /Q [f(2) = e7@% f()|dx < Q| fllsyo.(en)-
By (2.21) and Propositions 3.1

o /Q ) = e B0 e = oo /Q (@) — e 23 fy ()] da

< c|lfollBmo@n) < C||f||BMoo(1R1)
< c[lfllsmo.@n)-

This proves (3.2).

Next assume that f€BMO,,, (R’). By Proposition 3.1, f € BMO.(R%)
or equivalently f, € BMO(RR"™). Note that by (2.6) it is enough to prove that
for any cube @) C R",

(3.3) /Q @) = 85 @)ldy < 0| Q| Fllavion, @)

We now verify (3.3). Let us examine the cubes Q).
Case 1: If @ CR”, then for any x € Q),

—exp(~13Ap, ) (@) = exp(~13A) ()

andZ € Q C R (here Q is a cube defined in (2.2)). Note also that |Q| = |Q|.
Hence

/ fol2) — B2 (a)de = / (@) — ¢ 527 £(3)da
Q Q

< @l flIpmos,, @)-
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Case 2: If QNR™ # () and Q@ NRY # 0, then let Q_ and Q. be the two
cubes as in (2.3). By (2.6) and Proposition 3.1,

[1ste) = saido = [ |ffo) - B2 (o)lda
Q Q-UQ+
<2 [ |f(a) - ¥4 (@)l de < QI oo, )
Q+
Case 3: If @ C R, then e_%Afo(x) = ¢ lalny f(zx) for any = € (). Hence

2
1) = € B @)l < QU oo, 52
The estimate (3.3) follows readily. This shows that f, € BMO(R") so f €
BMO, (R™).
The proof of (ii) is similar to the proof of (i) so we skip it. [ |
In a similar way as for the upper-half space, we can define the space

BMO,, (R") and BMO,, (R") associated with the Dirichlet and Neu-
mann Laplacian Ap_, Ay_ on the lower-half space R™.

The same argument as in Proposition 3.2 gives the following proposition.
We leave the proof to the reader.

Proposition 3.3 (i) The spaces BMO,, (R™), BMO,(R™) and BMO,(R")
coincide, and their norms are equivalent.

(ii) The spaces BMOa, (R™), BMO,(R") and BMO.(R") coincide, and
their norms are equivalent.

4. Comparison between the classical BMO and the new
BMO spaces associated with operators

In the introduction we mention that all cases of relation between the classical
BMO and the new BMO spaces are possible. The following theorem provides
simple example to prove this statement.

Theorem 4.1 In the notation described above the following inclusions hold
(4.1) BMOa, (R") & BMO(R™) & BMO4 (R™).

That is, the classical BMO space is a proper subspace of BMOa, (R"), and
BMOnx, (R™) is a proper subspace of BMO.

Moreover, we have

(4.2) BMO(R™) € BMOa,,(R") and BMOa,, (R") ¢ BMO(R™).
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The proof of Theorem 4.1 is based on the following proposition.

Proposition 4.2 The BMO spaces corresponding to the operators Ayn, Ap
and Anp can be described in the following way:

BMO, (R") = { f € M(R") : f, € BMO,(R") and f_ € BMO,(R" )};
BMOa,(R") ={f € M(R"): f, € BMO.(RY) and /- € BMO,(R") };
BMO,,, (R") = { f € M(R) : f, € BMO,(R") and f_ € BMO,(R" )}.

Proof. In the following proof L is one of the operators Ay, Ap or Apy.
If L = Ay, then we denote by L, = Ay, and L_ = Ay_. Similarly if
L = Ap then Ly = Ap, and L_ = Ap_. Finally for L = Apy we let
L+ = AN7L and L_ = AD,-

By (2.9), (2.13) and (2.16)

(43) (exp(—tL)f)s = exp(—tLy)f; and (exp(—tL)f)- = exp(—tL_)f-

for any of the three considered operators. Hence for any cube () C R" we
have

R AT A AT
Q QNR™
(1.4) s [ g @)l

QNR?
In virtue of Propositions 3.2 and 3.3 it is enough to show that
BMO(R") = { fE€M®R": f, € BMO, (R") and f_ € BMO,_(R" )}.
Assume now that f € M(R™) such that f- € BMO, (R") and f, €
BMOy, (R%). In order to prove f € BMOy(R™), it suffices to prove that for
any cube () C R",

15 = @iy < QI (15-lowos_se + Wl ).

As in the proof of Proposition 3.2, we consider the following three cases of ().
Case 1: If @ C R™, then by (4.4)

/Q @) — e BEf(a)dr = /Q (@) — e f_(2)|de

< |Q[|lf-llsmo, (®n)-
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Case 2: If Q NR™ # () and Q@ NRY # (), then let Q_ and Q. be the
cubes as in (2.3). By (4.4)

L@t = [ ) e s

Q-UQ+

< [ 1@ @t [ 1) e @l
< dQI(If-Imvo,_ @) + £+ llbnion, e )-

Case 3: If @ C R”, then by (4.4)

[1#@ =@l = [ |fu() - B fo)lde
Q Q
< QI+ lmvon,, w):

Hence f € BMOL(R™).
We now assume that f € BMOL(R"). By (4.4), we have that

f-€BMO,_(RZ) and f; € BMOa, (R}).

Now Proposition 4.2 is a straightforward consequence of Propositions 3.2

and 3.3. [ ]

The logarithmic function is a simple example that typifies some of the
essential properties of the classical space BMO. For example if we define
function log: R™ — R by the formula log®(z) = log|z,| for all z € R™ and
Log(z) = H(z,)log|z,|, where H is the Heaviside function then

log® € BMO(R™)

(4.5) Log ¢ BMO(R™).

See, for examples, Chapter IV of [29] and page 217 of [31] . We will use the
property (4.5) in the proof of Theorem 4.1

Proof of Theorem 4.1. It is a straightforward consequence of Defini-
tion 2.1 that if f, € BMO.(R%}) and f- € BMO,(R") then f € BMO. It
also follows from Definition 2.1 that if f € BMO then f, € BMO,(R%)
and f_ € BMO,(R™). Hence it follows from Theorem 4.1 and Proposi-
tions 3.2 and 3.3 that

BMO4,(R") € BMO(R™) C BMO,4,, (R™).
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To prove that the above inclusions are proper we note that by (4.5) and
Definition 2.1

log, ¢ BMO,(R}) and log, € BMO,(R%),

where log, is the restriction of log® to R"}. Next if log_ is the restriction of
log® to R™ then

log_ ¢ BMO,(R") and log_ € BMO,(R").

Hence
log® € BMO and log® ¢ BMOa, (R").

Similarly
Log ¢ BMO and Log e BMO,, (R™)

This ends the proof of (4.1). Finally to prove (4.2) we note that Log €
BMOa,,, (R") and log ¢ BMOx ,,, (R™). [ |

Remark. Suppose that L is a linear operator on L?(R") which generates an
analytic semigroup e~ with kernels p;(z, y) satisfying upper bound (2.18).
Under the additional condition that the kernel p;(z,y) of e7** has sufficient
regularities on space variables x,y and e (1) = et (1) = 1, it can be
proved that classical space BMO and the space BMO[(R™) spaces coincide,
and their norms are equivalent. See Section 6 of [16].

Next we discuss the duality of the Hardy and BMO spaces associated
with operators. Suppose that L is a linear operator on L?(R™) which gen-
erates an analytic semigroup e ' with kernels p,;(x,y) satisfying Gaussian
upper bound (2.18). For any (z,t) € R™ x (0, 00), we define

Qif(x) = —t%e_wf(x) = tLe "t f(x)

for any f € M. Following [2], given a function f € L'(R™), the area integral
function Sy (f) associated with an operator L is defined by

S f(z) = </07|y_x|<t Qe ()|’ %)m, v ER",

The following definition was introduced in [2]. We say that f € L'(R")
belongs to a Hardy space associated with L (abbreviated as H}(R™)) if
Spf € L'. If it is the case, we define its norm by

1 ez @y = [1SL Sl

Note that if L = A is the Laplacian on R", then the classical Hardy space
H' and H} coincide, and their norms are equivalent. See [2].
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Under the assumptions that L satisfies Gaussian upper bound (2.18) and
has a bounded H,.-calculus in L*(R"™), it was proved in [16] that the dual
space of the H} (R") space is the BMOp«(R™) space in which L* is the adjoint
operator of L.

Note that the operators Ap, Ay and Apy are self-adjoint operators,
hence each of them has a bounded H,-calculus in L?(R"). See [25]. We
thus have the following corollary.

Corollary 4.3 (i) The dual space of HX(R™) is the space BMOa(R™).

(ii) The dual spaces of H) (R™), Hy (R") or Hy, (R") are the spaces
BMOa, (R™), BMOa, (R") or BMOg,,, (R"), respectively.

(iii) For the Neumann Laplacian Ay on R", we have that Hy (R") G
HY(R") and HA, (R™) # 0. That is, H), (R") is a proper subspace of the
classical Hardy space H'(R™).

Remark. In [35], it was asked if a proper subspace of the classical Hardy
space exists in which the subspace is characterized by maximal functions.
This question was answered positively in [33]. Our result (iii) of Corollary 4.3
gives a proper subspace of the classical Hardy space where the subspace is
characterized by area integral functions.

5. Fractional powers L~%/2 and the space BMO/(R")

5.1. Boundedness of fractional powers L—°/2

For any 0 < a < n, the fractional powers L=%/? of L is defined by

1 o
/ /2= et f () dt.
0

['(a/2)

(5.1) L2 f(z) =

We assume that the semigroup e ** has a kernel p;(x,y) which satisfies the
upper bound (2.18) so |L™2f(x)| < ¢Z,(|f|)(x) for all x € R™, where

Iaj'“(:z:):/]R Ady, 0<a<n,

n |z =yl

is the classical fractional powers of the Laplacian A on R™.

Let us recall that the semigroup {exp(—tL): ¢ > 0} acting on LP(R")
is equicontinuous on LP(R™) if sup,. |le || »—r» < 0o. Note that all the
semigroups which we consider here are equicontinuous on all LP(R") for
1 < p < oo. In the sequel we need the following Hardy-Littlewood-Sobolev
theorem. See [34, Theorem I1.2.7, page 12].
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Proposition 5.1 Suppose that et is a semigroup which is equicontinuous

on L'(R") and L*(R"). Also suppose that
pe(z, ) <t

Then for 0 < a <mn,

a

=, we have

(i) f0r1<p<gandé:%—

172 flla < cpgll Fll o

(i) L=/? is of weak-type (1,q), that is, for any A > 0, we have

oL@ > 2| < (12"

where ¢ = (1 — 2)7L

n

Let us consider the limiting case ¢ = oo in Proposition 5.1. It is well-
known that for every f € L™*(R"™), either Z,f = oo or Z,f € BMO(R")
with

(5.2) | Zo fllBMO®RY < || ]l Lasas

see [31, page 221].
An example of 7, f = oo is given by f(x) = |2|"®log™"|@|X{s|e/>2}- The
following result generalizes estimates (5.2).

Theorem 5.2 Assume that the semigroup e 't has a kernel p,(x,y) which
satisfies the upper bound (2.18). If f € L™*(R") and L™*?f < oo almost
everywhere, then L=%/2f € BMOL(R") with

1= fllpsog ey < €l fllnja
for 0 < a < n, where the positive constant ¢ depends only on o and n.

Suppose that T is a bounded operator on L?(£2). We say that a measur-
able function K7: Q% — C is the (singular) kernel of T if

(5.3) @mmzéwm%mmzééﬁmemERMy

for all f1, fo € C.(Q) (for all fi, fo € C.(Q) such that supp f1N supp fo =0
respectively).

In order to prove Theorem 5.2, we need the following estimate on the
kernel K, (x,y) of the operator (I —e™*£)L=/2 (see also [17, Lemma 3.1]).
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Lemma 5.3 Assume that the semigroup e ** has a kernel p;(x,y) which
satisfies upper bound (2.18). Then for 0 < a < n, the difference operator
(I — et L=%/2 has an associated kernel K, (z,y) which satisfies

c t
5.4 Ko(z,y)| <
oAy Mol S

—tL ! d —rL ! —rL
I —e = e dr = Le " dr.
7’ 0

1 dsdr
v=r+s T + 8 S_a/2+1 '

for some constant ¢ > 0.

Proof. Note that

Hence by (5.1)

et = [ (e
d

By Lemma 2.5 of [9], the kernel of the operator v—ve*”L has Gaussian upper
bound (2.18). Hence, the operator (I —e~*)L~%/? has an associated kernel
K, +(z,y) which satisfies

bopee 1 ey 1 dsdr
a5y - -
IKm@wﬂfEC/ / +3wf3 A pp——s

/ / == 1 dsdr
< r+s J—
- r—l—s"/2 r+ s s-@/2+1

n / / e |x;y|2 1 dsdr
C S 6 T+S S —
o Jr (7‘—|—s)"/2 r 4 s s—a/2+1

= I+1IL

Let us estimate term I. Note that 0 < s < r. We have

/2o S le—vl® y| dsdr
re—a/2+1

t/le—yl?
/ (a—n—2)/2€—cgr dr < ¢ t ’
0 |z =yl o —yl?

|$-—1A”*a
where the last inequality follows from (@ =2/2e=er"" < ¢ for some positive
constant ¢. On the other hand, using the condition 0 < o < n we obtain

,le=yl® y| dsdr ct e
= - - (a n— 4)/
I < C/ / §—a/2+2 < |.§L’ _ y|n+2fa /O‘ dS

c t

|z —yle |z —y*

Therefore, condition (5.4) is satisfied and the proof of Lemma 5.3 is complete.
[ |
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Proof of Theorem 5.2. In virtue of the definition of BMO/(R"), it suffices
to prove there exists a constant C' > 0 such that that for any ball B(z,r)
with radius r centered at x

1 2
(5.5) Yo (1 =B L™ f(y)ldy < C||f|gse
|B(.§L’, T)' B(z,r) g
for all f € L™*(R"). Set fi(y) = f(y) if |[x —y| < 2r and fi(y) = 0
otherwise. Next, put fo = f — f1. Note that

1 e
] B( |(I—e YL f(y)|dy
1 - —a
<5 / PR+ g [ e )y
= 1+11,

where |B| = |B(z,r)|. To estimate the first term note that, by Hoélder’s
inequality || filz» < ¢|B(z,7)|[YP=/"|| f|| tnsa. for all 1 < p < n/a. Next, set
1/q=1/p— a/n. By Proposition 5.1

1
< Wnu -

[ fillze < ell Fll oo

I YL f | e < L™ f1| s

Ta7

<
< g
To estimate the second term note that if y € B(z,7), then by Lemma 5.3

R e O AL = R VCTEE

o0

1 r?
<> el e

=1 kp<|o—z|<2kt+lp |.§L’ - Z|n @ |I‘

o0

1
<y o [ e
2 | B, r2 )" Sz

k=1

o0

<Y 2 fllgwe < cll e

k=1
Combining the above estimates, we obtain (5.5). [ |

Remarks. (i) Under the extra assumption that for each ¢ > 0, the kernel
pe(z,y) of et is a Holder continuous function in x, it can be proved that
for f € L™*(R"), either L™/ f = 0o or L™%/2f € BMO(R") with

172 fllsto, gy < cllfll e
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We leave the details of the proof to the reader.

(ii) We now give a list of examples of operators L satisfying the assump-
tions in Proposition 5.1 and Theorem 5.2.

(o) The operator Ay, Ap or Apy as in Section 2.3;
(8) Let V € L (R") be a nonnegative function on R" (n > 3). The

loc

Schrodinger operator with potential V' is defined by
(5.6) L=—-A+V(x) onR"

From the Feynman-Kac formula, it is well-known that the kernels p;(z,y) of

the semigroup e ¥ satisfy the estimate
(5.7) 0 < pla,y) < L=t
. S p\,Y) > (47Tt)n/2

However, unless V' satisfies additional conditions, the heat kernel can be
a discontinuous function of the space variables and the Holder continuous
estimates may fail to hold. See, for example, [11].

We note that the corresponding result in Theorem 1 of [18] is a special
case of Theorem 5.2.

(v) Let A = (aij(x))1<ij<n be an n x n matrix with complex en-
tries a;; € L™®(R") satisfying A¢|> < Re ) a;;(x)&¢; for all z € R, € =
(&1,&9,...,&,) € C" and some A > 0. Let T be the divergence form operator

Lf = —div(AVf),

which we interpret in the usual weak sense via a sesquilinear form.

It is known that Gaussian bound (2.18) on the heat kernel e~ is true
when A has real entries, or when n = 1, 2 in the case of complex entries.
See, for example, [5].

5.2. Properties of fractional powers of Neumann Laplacian on R

The following example complements Theorems 4.1 and 5.2. It also provides
a convincing justification of introduction of the BMO spaces.

Example 5.4 Let Ayx be the Neumann Laplacian on R. Then, there exists
a function f € LY*(R) such that A;\,aﬂf(x) < oo for almost every x € R,

AV f € BMO,, (R) and
(5.8) AR Fllmnon s ) < ell |-

Howewver, A]_Va/Qf Z BMO(R).
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Proof. For any 0 < a < 1, we let

5.9 f0) = = e Xoest (@)
Then
/ |f ()| dy = /1/2 L - (1—a)a(log2)"* ™" < oo
R o Yy(ogy=1)t/e

This proves that f € LY*(R). It can be verified that Z,f(z) < oo a.e..
Also, we have that A a/2f < 0o a.e.. Hence,
(a) Zo.f € BMO(R) with ||Z, f|lsmom) < ¢/ f||gn/a. See [31, page 221].
(b) By Theorem 5.2, we have that A&amf € BMOx,, with estimate (5.8).
We now prove A_O‘/2f ¢ BMO(R). Denote by kY (z,y) the kernel of the
fractional powers Ay"? of Ay. By (2.10) and (5.1)
N | | 1
10 R = oy (g * ) )
where H is the Heaviside function (2.11). By (5.10)

0 if x <0;
Zo(fe)(x) if x>0,

where f, € LY*(R) is given by the formula f.(z) = —mx{|x|§1/g}(x).
For any k > 5, we denote Q = [—1/k,1/k]. Next if 0 <z <y < 1/2,
then |z —y| < |y|. Hence

(5.11) AP f(2) = {

/2 R 1
AN f(fl)) - ’7(05> /;1/2 |x_y|1,afe(y)dy

1 1/2 1 1
L L,
Y(a) ), |z —y|tmry>logy

1 2
y(a) J,  ylogy

%a) <log (logi) — log (10g2)) ,

v

v

v

which yields

mo (DY) = @% / AN f(y)dy

v

/ log log — log (logQ)) dy

v
N

fy(a) (10% (log k) — log (log2)) ,
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Therefore, from (5.11) we obtain

1 —a —a
o /Q AN () — mg, (A2 )|z

k Lk —a/2 —a/2 k 0 —a/2
= 3 [Ay (@) = mo (AN f)lde + 5 Ime(Ay " f)|da
2 0 2 —1/k

> Slma (A7)
|
> T (1og (log k) — log (log2)> .

Note that the last term in the above inequality tends to oo as k — oco. Hence
1 —a/2 —a/2
sup o | 1 a) = mo(A5"ldz = o
o 1QlJqg

where the supremum is taken over all cubes ) of R. Therefore A;VO‘/ ’f ¢
BMO(R). -

Remark. Example 5.4 shows that for the Neumann Laplacian Ay on the
real line R, the BMO,,, (R) space is considered as a natural substitute for
classical BMO space to study the end-point boundedness of the fractional
powers A]_Va/ ?

6. BMOj estimates of imaginary powers and maximal
functions.

In this section we apply the technique of BMO[ spaces to discuss optimal
L? estimates for the imaginary powers of the operator L. We refer readers
to [10, 20] for related results concerning imaginary powers of self-adjoint
operators.

Let us recall that if L is a self-adjoint positive definite operator on L*(R™).
Then L admits the spectral resolution:

L= / MEL (M),
0

where the EL(\) are spectral projectors. For any bounded Borel func-
tion F': [0,00) — C, we define the operator F'(L) by the formula

(6.1) F(L) = /O T FOAEL ().

In particular
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By spectral theory || L*|| ;272 = 1 for all s € R. In the following theorem
we obtain sharp estimates for the L>® — BMO,, norm of the operators L.

Theorem 6.1 Assume that the heat kernel p.(x,y) corresponding to the
self-adjoint operator L satisfies upper bound (2.18). Then

IL* fllpmon ey < e(1 + [s|)™2 [ f ]l
for all s € R.

Proof. It is enough to show that for any ball B(z, r) with radius r centered
at x, there exists a constant C' > 0 such that

1 —r2 5] n/2
(6.2) W/B“)W—e ML= y)ldy < e(L+ [s)™?] £l -

To prove (6.2), for any f € L®(R"), we set 0 = (1 + |s|)712, fi(y) = f(y)
if |z —y| < 07'r and fi(y) = 0 otherwise. Next, we put fo = f — f1. Note
that

1 —r 18 1 —r 18
o [Nty < o [ - et aw)ly
| | B(z,r) | | B(z,r)
1 —r s
— (1 — e ™)L fo(y)|dy
|B| B(z,r)
= I+11,

where |B| = |B(z,7)|. To estimate the term I we note that, by Holder’s
inequality

fillze < [B(a,07'0)[ 2| ]|

B, )]} .
< st Il = 1B+ 1)) £

Then
I<|BI7V2(I — e ) L= 1|2 < o B7V2| L™ £ 12
< e BI7 V2| fullre < e(X A+ [s))"2]] f ]| o

To estimate the term II we note that if y € B(z,r), then
(-eip| < [ KAl
B(z,0—1r)c

< || fllge sup / | Kisr2(, 2)|dz,
B(z,0—1r)c

z€eQ, r>0

where Kj,,2(y, z) is the kernel of the operator (I — e %)L, Hence the
proof of Theorem 6.1 reduces to the following Lemma. |
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Lemma 6.2 Assume that L is a self-adjoint operator and its heat kernel
pe(x,y) satisfies the Gaussian bound (2.18). Then the associated kernel
Kis,2(,2) of the operator (I — e ""L)L* satisfies

[ (el <1+ o)
B(z,0—1r)c

for all s € R and r > 0.

The proof of Lemma 6.2 is a minor modification of the proof of estimates
(17) of [27]. We leave the details to the reader.

Theorem 6.1 applied to the standard Laplace operator gives the following
estimates.

Corollary 6.3 If A is the standard Laplace operator acting on R™ then
(6.3) 1A™ Fllsyogeny < e(1+ [s)™2(| fl =
for all s € R.

Proof. Corollary 6.3 is a straightforward consequence of Theorem 6.1 and
the equivalence of the classical BMO space and BMO,. |

Remark. For the standard Laplace operator one can explicitly compute
the kernel |K;s,2(z, 2)| and check that

/ Koo (2, 2)|dz > (1 + [s])"Tog(1 + |s]) -
B(z,r)e

See [27]. Hence one has to replace B(x,2r) by B(z,07'r)¢ to obtain esti-
mates without the additional logarithmic term. As in [27] (Theorem 1) one
can show that the norm of ||A™||zx_pmomn) > (1 + |s|)"/% Hence the
estimates in Theorem 6.1 and Corollary 6.3 are sharp. Even for the Laplace
operator, our estimate (6.3) is stronger than any other known estimates of
L*> — BMO norm of the imaginary powers of the Laplace operator.

Theorem 2 of [27] says that if L satisfies assumption of Theorem 6.1 then
the following estimates of the weak type (1, 1) norm of the imaginary powers

of L holds
(6.4) L 11 mpree < (1 + |s])/?

Note, however, that the week type (1,1) norm is not subadditive so
despite its name is not a norm. Whereas || - || L~—pmo, , the norm of linear
operators form L* to BMOy, is a proper norm. This difference is crucial
for the results which we discuss next.
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Suppose that F': R — C. Let us recall that the Mellin transform of the
function F' is defined by

1 [~ A
— / FOON UGN, u e R,

m(u) = 2m J

Moreover the inverse transform is given by the following formula
= /Rm(u))\i“du, A €0, 00).
Next we define the maximal operator F*(L) by the formula
FA(L)f(w) = sup [F(EL) f ()],

where f € LP(2) for some 1 < p < oc.

Corollary 6.4 Assume that L is a self-adjoint operator acting on L*(R™)
and that the heat kernel p,(z,y) of the operator L satisfies upper bound (2.18).
Suppose also that F': R — C is a bounded Borel function such that

/ m()[(1 + [u])"?du = Cip < 00
R

where m is the Mellin transform of F. Then F(L) and F*(L) are bounded
operators from L> to BMOy and

| F(L)||ze—nmo, < ||F*(L)||re—nmo, < cCpay.

Proof. Note that

F(tL) = / F(tN)dEL(A / /m YN du dEL(N)
= // )(tA “‘dEL du—/m t“‘Lwdu

sup [F(¢L) f ()] S/RIm(U)IIU“f(fB)Idu

t>0

Hence

and

1 F* (L) lonio,, < / m(@) 1l | L 1t de
< e fllo~ / () [(1 4 ]2

The inequality || F(L)| r=—pmo, < ||[F*(L)||L~—Bmo, is an obvious conse-
quence of the definition of F*(L). [ |
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7. BMOj estimates for spectral multipliers of self-ad-
joint operators

In this section we discuss an application of BMO[(2) technique to the theory
of Hormander spectral multipliers. In the sequel if F'(L) is the operator
defined by (6.1) then by Kp() we denote the kernel associated with F'(L).
See (5.3) of [15].

Theorem 7.1 Suppose that || F||p~ < C4, and that

(7.1) supsup/( ) K 1y —e—r22y (@, y) | < Ch.
B(y,r)¢

r>0 yef

Then

| F(L)]| L —B™Mo, < cCh.

Proof. We note again that it is enough to show that for any ball B(x,r)
with radius r centered at x, there exists a constant C' > 0 such that

1 ey
12 Fo / =PI )y < <Ol i

To prove (7.2) for any f € L>®(R") we set fi(y) = f(y) if |x —y| < 2r and
fi(y) = 0 otherwise. Next, we put fo = f — fi. Note that

1 R
B] /Bw'“ e HF(L) f(y)ldy <
1

< @=L fily)ldy
|B| B(z,r)
1 —r
+ = (I = e F)F(L) fo(y)|dy
|B| B(z,r)
141

where |B| = |B(z,7)|. To estimate the term I we note that, by Holder’s
inequality
Ifillze < (B, 20)[Y2]| fll = < el Bla, 20) V2] f] ==
Then
L< BT = e ") F(L) full 2

< o BI7V2| F(L) full e

< o BI"V2Ci| fill 2

< Ol flzoe-
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To estimate the term II we note that if y € B(z,r), then

R e A

< e s [ Ry 2
zeQ, r>0 B(y,r)c
< Cilflle-

In the standard theory of Hormander spectral multipliers one usually
begins with proving weak type (1, 1) estimates for a spectral multiplier F'(L).
Next F'(L) is bounded on L? by the spectral theorem so continuity of the
operator F'(L) on LP spaces for 1 < p < oo follows from the Marcinkiewicz
interpolation theorem. One can use Theorem 7.1 and Proposition 1.3 to
obtain an alternative proof of boundedness of F(L) on an LP space for
1 <p<oo. Of course continuity of F/(L) as an operator from L* to BMO,
is of independent interest even if we already know that F(L) is of weak
type (1,1).

The Hormander type spectral multipliers is a very broad subject. For
example such multipliers were studied in [1, 7, 13, 21, 24, 26]. One can use
Theorem 7.1 to show that all spectral multipliers of weak type (1,1) which
are discussed in [1, 7, 13, 21, 24, 26| are also bounded from L*> to BMOp. As
an example we discuss the following BMO/, versions of Theorem 3.1 of [13].
Let us recall that if F': R — C then

1E e = (1 + A)"2F| oy

Theorem 7.2 Suppose that L is a self-adjoint operator acting on L*(2),
Q C R" and that the heat kernel py(x,y) of L satisfies the Gaussian bound
(2.18) and that n € C*(Ry). Then for every s > n/2 and for all Borel
bounded function F' such that sup,. ||n6:F||we < oo the operator F(L) is
bounded on LP(S2) for all 1 < p < co. Moreover

(7.3) | F(L)| p~—BMmo, < C’s<stu13 I 5tFHWS°°> for all s > n/2.
>
Proof. Note that by [13] ((4.19) and Remark 1), we have

e

Hence Theorem 7.2 is a straightforward consequence of Theorem 7.1. |

r>0 yeQ

sup sup/ 1K p(ny(r—er2ey (@, y) [da < C ( sup ||n 6 F|
B(y.r)® t>0
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