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On the number of ovals of a symmetry
of a compact Riemann surface

Emilio Bujalance, Francisco Javier Cirre, José Manuel Gamboa
and Grzegorz Gromadzki

Abstract

Let X be a symmetric compact Riemann surface whose full group
of conformal automorphisms is cyclic. We derive a formula for count-
ing the number of ovals of the symmetries of X in terms of few data
of the monodromy of the covering X → X/G, where G = Aut±X is
the full group of conformal and anticonformal automorphisms of X.

Introduction

A symmetry on a compact Riemann surface X is an anticonformal involution
τ : X → X, and surfaces admitting some symmetry are called symmetric.
Under the well known equivalence between compact Riemann surfaces and
(smooth, projective) complex algebraic curves, the symmetries correspond
to real algebraic curves, that is, curves which may be defined over the field
of real numbers. The fixed point set of a symmetry is either empty or
consists of a disjoint union of simple closed curves, called ovals in Hilbert’s
terminology. These correspond to the connected components of the set of
R-rational points of the associated real algebraic curve.

The study of ovals on surfaces is a classical problem started at the end
of the XIX century by Harnack [6], Klein [7] and Weichold [15], among
others. Concerning the computation of the number of ovals, the seminal
result is Harnack’s bound, which states that the maximum number of ovals
of a symmetry on a genus g compact Riemann surface is g+1. More recently,
efforts have been directed to obtain bounds for the sum of the number of
ovals of all symmetries of a surface of genus g. Natanzon [12] showed, among
other things, that this sum does not exceed 42(g − 1), and in [4] this bound
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was improved to 12(g − 1) (for g �= 2, 3, 5, 7, 9) and proved to be sharp for
infinitely many values of g. Other bounds for the sum of the number of ovals
of k non-conjugate symmetries are due to Singerman [14] and the fourth
author [5]. Related results on ovals of symmetries appear in [9, 11].

On the other hand, there are few results concerning the difficult task
of computing the precise value of the number of ovals of symmetries. This
paper deals with this problem in the case of Riemann surfaces X whose full
group Aut+X of conformal automorphisms is cyclic (although our results
are valid in a more general context, see Remark 2.6). Let Aut±X be the
full group of conformal and anticonformal automorphisms of X. We derive a
formula in terms of surprisingly few data of the monodromy of the covering
X → X/Aut±X (see Theorem 2.1) which provides the precise value of the
sum of the number of ovals of the conjugacy classes of symmetries of X. The
main result in [2] can be seen as a particular case of this formula, see also [8].
In Section 3 we obtain sharp bounds for this sum in terms of the genus g and
of the nature of the 2-extension Aut±X of the cyclic group Aut+X. Some
applications to compute the number of ovals of a single symmetry are given
in Section 2. In the proofs we use the combinatorial theory of Riemann
surfaces and non-euclidean crystallographic groups.

1. Preliminaries

A non-Euclidean crystallographic (NEC) group is a discrete group of (ori-
entation preserving or reversing) isometries of the hyperbolic plane U with
compact quotient space. The signature σ(Λ) of an NEC group Λ is a collec-
tion of non-negative integers and symbols of the form

(1.1) σ(Λ) =
(
h;±; [m1, . . . , mr]; {(n11, . . . , n1s1), . . . , (nk1, . . . , nksk

)}),
which determines the algebraic structure of Λ and the geometric structure
of its quotient orbifold U/Λ. This has genus h, k ≥ 0 boundary components,
and it is orientable if the sign “+” occurs, and non-orientable otherwise. The
integers m1, . . . , mr are the proper periods of Λ, and represent the branching
over interior points of U/Λ in the natural projection U → U/Λ. The k brack-
ets (ni1, . . . , nisi

) are the period cycles and represent the branching over the
i-th boundary component. The integers nij are the link periods. An empty
period cycle corresponds to a boundary component with no ramification over
it, i.e., it has no link periods, and it will be represented by (−). For short,
we say that a period cycle of Λ is odd if it is non-empty and all its link
periods are odd. The signature also determines the algebraic structure of Λ.
It has generators



On the number of ovals of a symmetry of a compact Riemann surface 393

• x1, . . . , xr (elliptic isometries)

• c10, . . . , c1s1 , . . . , ck0, . . . , cksk
(reflections)

• e1, . . . , ek (orientation preserving isometries, which will be called con-
necting generators)

• a1, b1, . . . , ah, bh (hyperbolic isometries) if the sign of σ(Λ) is “+” or

d1, . . . , dh (glide reflections) otherwise.

and relations

• xmi
i = 1 for i = 1, . . . , r;

• c2
i,j−1 = c2

ij = (ci,j−1cij)
nij = 1, for i = 1, . . . , k, and j = 1, . . . , si;

• eici0e
−1
i cisi

= 1

• x1 · · ·xre1 · · · ek[a1, b1] · · · [ah, bh] = 1 if the sign “+” occurs, and

x1 · · ·xre1 · · · ekd
2
1 · · · d2

h otherwise.

A set of generators as the above is called a set of canonical generators. Any
reflection in Λ is conjugate within Λ to a canonical one. Moreover, it follows
from the presentation that all the canonical reflections of an odd period
cycle are mutually conjugate, and that the number of conjugacy classes of
reflections of a period cycle with v > 0 even link periods is v.

The area of a fundamental domain for an NEC group Λ with signa-
ture (1.1) is

(1.2) µ(Λ) = 2π

(
ηh + k − 2 +

r∑
i=1

(
1 − 1

mi

)
+

1

2

k∑
i=1

si∑
j=1

(
1 − 1

nij

))
,

where η = 1 if the sign “−” occurs and η = 2 otherwise. If ∆ is a subgroup
of Λ of finite index then the Riemann-Hurwitz formula reads

(1.3) µ(∆) = [Λ : ∆] µ(Λ).

For each compact Riemann surface X of genus g ≥ 2 there exists a
surface Fuchsian group Γ i.e., a torsion free NEC group with sign “+”, such
that X is isomorphic to the quotient surface U/Γ. Each subgroup G of the
full group Aut±X of conformal and anticonformal automorphisms of X is
isomorphic to a quotient Λ/Γ for some NEC group Λ containing Γ as a
normal subgroup. Hence, there exists an epimorphism θ : Λ → G with
ker θ = Γ. Epimorphisms as the above whose kernel is a surface Fuchsian
group will be called smooth. The subgroup of Aut±X consisting of conformal
automorphisms will be denoted by Aut+X.
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Let τ be a symmetry on a compact Riemann surface X of genus g ≥ 2,
and let u be a conformal automorphism of X of order n such that τ normal-
izes 〈u〉, that is, τuτ ∈ 〈u〉. Then the group 〈u, τ〉 has a presentation of the
form

(1.4) Gα
n :=

〈
u, τ | un = τ 2 = 1, τuτ = uα

〉
,

where α2 ≡ 1 (mod n). For example, Gα
n is abelian if and only if α = 1, and

dihedral if and only if α = n − 1.
Notice that if Aut+X = 〈u〉 is cyclic then τ normalizes 〈u〉, and so

Aut±X = Gα
n for some α.

Viewing Gα
n as a group of automorphisms of X, those involutions in Gα

n

which can be written with an odd number of occurrences of the letter τ
are symmetries of X, and so we call them the symmetries of Gα

n. We will
represent by ‖s‖ the number of ovals of a symmetry s.

We fix the following notations. The cyclic group of order n will be
denoted by Cn. We set

d = gcd(n, α + 1) and f = gcd(n, α − 1),

where gcd stands for the greatest common divisor. Note that gcd(d, f) = 1
if n is odd and gcd(d, f) = 2 otherwise.

Let us state first a purely group theoretic lemma concerning the conju-
gacy classes of symmetries in Gα

n.

Lemma 1.1 A set of representatives of all the conjugacy classes of symme-
tries in Gα

n is the following:

• {τ} if n is odd or α2 �≡ 1 (mod 2n);

• {τ, un/dτ} if n is even and α2 ≡ 1 (mod 2n).

Proof . It is easy to check that the symmetries in Gα
n are of the form ujn/dτ

for j = 1, . . . , d. Conjugation by u gives ujn/dτ ∼ u(α−1)+jn/dτ ; hence, conju-
gation by u groups the d symmetries into sets of h := ord(uα−1) = n/f ele-
ments. We claim that h = d or d/2. First, h|d because h|n and also h|(α+1)
since (uα−1)α+1 = uα2−1 = 1. Now, d/h divides α + 1, and d/h also divides
n/h = f which in turn divides α−1; hence d/h divides gcd(α+1, α−1) = 1
or 2, proving our claim. If h = d then the d symmetries ujn/dτ are all con-
jugate (via powers of u) to τ , for instance. If, on the contrary, d = 2h then
all the symmetries ujn/dτ are conjugate via powers of u to either τ or un/dτ.
Since the other generator τ of Gα

n does not conjugate these two symmetries,
they are representatives of the two conjugacy classes of symmetries in Gα

n.
Finally, observe that d = 2h if and only if gcd(n, α + 1) gcd(n, α − 1) = 2n
and this happens if and only if n is even and 2n divides (α + 1)(α − 1). �
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Remark 1.2 We have just shown that n/f = d or n/f = d/2. In fact,

i) If n is odd or α2 �≡ 1 (mod 2n) then n = df and all of the d symmetries
in Gα

n are conjugate to τ .

ii) If n is even and α2 ≡ 1 (mod 2n) then 2n = df and d/2 symmetries in
Gα

n are conjugate to τ and the other d/2 to un/dτ.

In order to compute the number of ovals of a symmetry we need a de-
scription of the centralizer of a reflection c in an NEC group. Singerman [13]
proved that this centralizer is C2 ⊕ C∞, if c corresponds to an empty or an
odd period cycle, and to C2 ⊕ (C2 ∗ C2) otherwise, where C∞ is the cyclic
group of infinite order, and ∗ stands for the free product. Going a bit more
into the details of Singerman’s proof, one can find explicitly the generators
of this group.

Lemma 1.3 Let e, c0, . . . , cs be a set of canonical generators associated to a
period cycle (n1, . . . , ns) of an NEC group Λ and let C(Λ, ci) be the centralizer
in Λ of ci.

(i) If s = 0 then C(Λ, c0) = 〈c0〉 ⊕ 〈e〉.

(ii) If s �=0 and all ni are odd then C(Λ, c0)=〈c0〉⊕
〈s−1∏

i=0

(ci+1ci)
(ni+1−1)/2e

〉
.

(iii) If ni, nj are even and ni+1, . . . , nj−1 are odd (i < j ≤ s) then

C(Λ, ci) = 〈ci〉 ⊕
(〈(ci−1ci)

ni/2〉 ∗ 〈x−1(cj−1cj)
nj/2x〉) ,

where x = (cj−2cj−1)
(nj−1−1)/2 · · · (cici+1)

(ni+1−1)/2.

(iv) If ni is even, ni+1, . . . , ns, n1, . . . , nj−1 are odd and nj is even with
1 ≤ j ≤ i then

C(Λ, ci) = 〈ci〉 ⊕
(〈(ci−1ci)

ni/2〉 ∗ 〈x−1(cj−1cj)
nj/2x〉),

where x =

j−1∏
t=1

(cj−1−tcj−t)
(nj−t−1)/2e−1

s−i−1∏
t=0

(cs−1−tcs−t)
(ns−t−1)/2.

Proof. Claim (i) is actually proved by Singerman in [13]. For (ii), observe
that β = e−1(cs−1cs)

(ns−1)/2 . . . (c1c2)
(n2−1)/2(c0c1)

(n1−1)/2 belongs to C(Λ, c0),
which gives one of the inclusions. For the converse, let F be a fundamental
region for Λ, and let γ0, γ1, . . . , γs be the part of the surface symbol for F
corresponding to the period cycle (n1, . . . ns). The axis 	 of c0 splits into
intervals being edges of the images of F abuting 	, each segment having
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a label from the surface symbol to which it belongs. Now for λ ∈ Λ, the
element λc0λ

−1 is a reflection with axis λ(	). So λ centralizes c0 if and only
if λ(	) = 	 while the last is true if and only if λ(F ) abuts 	 at an edge
labelled by γ0. Thus there is a bijective correspondence between segments
of 	 labelled by γ0 and elements of C(Λ, c0). Finally

(cici+1)
(ni+1−1)/2ci(cici+1)

−(ni+1−1)/2 = ci+1 and e−1cse = c0.

So the segment labelled by γi is followed by γi+1 for i = 0, . . . , s − 1 while
γs by γ0. Therefore γ0, γ1, . . . , γs, γ0 are the labels of consecutive segments
on 	 and this labelling repeats on 	 periodically. Hence c0 and β generate
C(Λ, c0) indeed.

Proofs of claims (iii) and (iv) are similar and we omit them. �

2. Main result

Let X = U/Γ be a symmetric Riemann surface whose full group of con-
formal automorphisms Aut+X is cyclic of order n, say Aut+X = 〈u〉.
Then Aut±X = Gα

n for some α, where Gα
n has presentation (1.4). Let

θ : Λ → Gα
n = 〈u, τ〉 be the associated smooth epimorphism with ker θ = Γ.

Let us write θ(ei) = uεi where e1, . . . , ek is a set of connecting generators
associated to the k period cycles of Λ. Recall that a non-empty period cycle
is said to be odd if all its link periods are odd. The next theorem shows the
close relation between the integers εi and the number of ovals of the sym-
metries of X. We stress that this result is stated for surfaces with Aut+X
cyclic, but it can be applied to a wider variety of Riemann surfaces, see
Remark 2.6.

Theorem 2.1 With the above notations, let us consider the following sub-
sets of {1, . . . , k} :

• T =
{
i | the ith period cycle of Λ is empty

}
;

• S1 =
{
i | the ith period cycle of Λ is odd and εi(α+1)

gcd(εi(α+1),n)
is odd

}
;

• S2 =
{
i | the ith period cycle of Λ is odd and εi(α+1)

gcd(εi(α+1),n)
is even

}
.

Let v be the total number of even link periods in the signature of Λ. Then

‖τ‖ + ‖un/dτ‖ =
∑
i∈T

2 gcd(εi, n)

d
+
∑
i∈S1

gcd
(n
d
, εi

)
(2.1)

+ 2
∑
i∈S2

gcd
(n
d
, εi

)
+ v

n

d
.

If Λ has no period cycle then ‖τ‖ = 0 for each symmetry τ in X.
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Proof . Observe first that each θ(ei) is indeed of the form uεi since θ(ei)
belongs to 〈u〉, the orientation preserving subgroup of Gα

n. If Λ has no period
cycle then Λ contains no reflection and each symmetry τ in Gα

n is the image
of a glide reflection. It follows that the fixed point set of τ is empty. If Λ
has some period cycle then the image θ(c) of each canonical reflection c is a
symmetry s whose fixed point set is non-empty. In this case, Theorem 3.1
in [4] shows that ‖s‖ =

∑
i[C(Gα

n, θ(ci)) : θ(C(Λ, ci))] where C(G, g) denotes
the centralizer in the group G of the element g ∈ G and the sum is taken
over a set of representatives of conjugacy classes of canonical reflections in
Λ whose images under θ are conjugate within Gα

n to s.
Assume first that n is even and α2 ≡ 1 (mod 2n). Then each θ(ci) is

conjugate to either τ or un/dτ , and so

(2.2) ‖τ‖ + ‖un/dτ‖ =
∑

i

[
C(Gα

n, θ(ci)) : θ(C(Λ, ci))
]

where now the sum is taken over all representatives of conjugacy classes of
canonical reflections in Λ. There are t+ s+v of such classes, where t is the
number of empty period cycles, s is the number of odd period cycles, and v
is the total number of even link periods in the signature of Λ. So the sum
in (2.2) has terms of three types.

For those terms corresponding to reflections ci associated to empty period
cycles, part (i) in Lemma 1.3 yields |θ(C(Λ, ci))|= 2 ord(uεi) = 2n/ gcd(εi, n).

Let ci be a reflection such that the corresponding link period ni is even.
Parts (iii) and (iv) in Lemma 1.3 show that |θ(C(Λ, ci))| = 2|H| where H is
the image of the group 〈(ci−1ci)

ni/2〉 ∗ 〈x−1(cj−1cj)
nj/2x〉 for a certain x ∈ Λ.

In fact, x is an orientation preserving element and so the image of H lies
in the cyclic group 〈u〉; in addition, θ(ci−1ci)

ni/2 = θ(cj−1cj)
nj/2 = un/2. It

follows that |θ(C(Λ, ci))| = 4.
Let us consider now an odd period cycle (n1, . . . , ns) of Λ. Let c0, . . . , cs

be a set of canonical reflections associated to it, and e be its connecting
generator, with image θ(e) = uε. The image θ(ci) of each reflection ci is a
symmetry in Gα

n = 〈u, τ〉 and so it is of the form θ(ci) = uhin/dτ for some
hi ∈ {1, . . . , d}. In particular,

θ(ci+1ci) = u(hi+1+αhi)n/d = u(hi+1−hi)n/d,

and from the relation ec0 = cse we get ε(α − 1) ≡ (h0 − hs)n/d (mod n).
Part (ii) in Lemma 1.3 shows that the order of θ(C(Λ, c0)) is twice the
order of

∏s−1
i=0 θ(ci+1ci)

(ni+1−1)/2θ(e), which is an element of the form uh. It
is easier to compute the order of its square u2h. Indeed, θ(ci+1ci)

ni+1−1 =
θ(ci+1ci)

−1 = u(hi−hi+1)n/d and so

2h ≡
s−1∑
i=0

(hi − hi+1)n/d + 2ε ≡ (h0 − hs)n/d + 2ε ≡ ε(α + 1) (mod n).
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Comparing gcd(n, 2h) with gcd(n, h) yields that

ord(uh) =

{
n

gcd(ε(α+1),n)
if ε(α+1)

gcd(ε(α+1),n)
is even,

2n
gcd(ε(α+1),n)

otherwise.

Since (α + 1)/d and n/d are coprime, we may replace gcd(ε(α + 1), n) by
gcd(εd, n). Therefore

∣∣θ(C(Λ, c0))
∣∣ =

{
2n

gcd(εd,n)
if ε(α+1)

gcd(ε(α+1),n)
is even,

4n
gcd(εd,n)

otherwise.

Finally, since d/2 of the d symmetries of Gα
n are conjugate to θ(c0) we

get |C(Gα
n, θ(c0))| = |Gα

n|/(d/2) = 4n/d. Formula (2.1) follows easily.

In case n is odd or α2 �≡ 1 (mod 2n), all the images of the canonical
reflections in Λ are conjugate to τ. So the sum in the right hand side in (2.2)
gives just ‖τ‖; but in this case |C(Gα

n, θ(ci))| = |Gα
n|/d = 2n/d, which is half

of the value obtained above. On the other hand, the value of |θ(C(Λ, ci))| is
the same as in the preceding case, and so

(2.3) ‖τ‖ =
∑
i∈T

gcd(εi, n)

d
+
∑
i∈S1

1

2
gcd

(n
d
, εi

)
+
∑
i∈S2

gcd
(n
d
, εi

)
+ v

n

2d
.

Therefore ‖τ‖+‖un/dτ‖ = 2‖τ‖ coincides with the right hand side in (2.1). �

Remark 2.2 Note that in order to count the number of ovals of symmetries
of X we do not require the complete knowledge of the monodromy of the
covering X → X/Gα

n. In fact, Formula (2.1) just involves the number of odd
and empty period cycles, the number of even link periods and the images
under θ of the connecting generators of Λ.

Formula (2.1) can be written in a much simpler way in case n is odd.

Corollary 2.3 With the above notations, if n is odd then

(2.4) ‖τ‖ =

k∑
i=1

gcd(εi, f).

Proof. If n is odd then n/d = f and v = 0. So, the k period cycles of Λ are
either empty or odd. Moreover, S1 is empty since εi(α + 1) = 2h is even for
each εi (see the proof of Theorem 2.1) and gcd(εi(α + 1), n) is odd. Now,
for each i ∈ T , we have gcd(εi, n)/d = gcd(εi/d, f) = gcd(εi, f), where in
the last equality we have used that d and f are coprime. �
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Remarks 2.4 (1) As particular cases of Corollary 2.3, if α = n − 1 (Gα
n

dihedral) then f = 1 and so ‖τ‖ = k, which coincides with [2, Theo-
rem 2(ii)]; if α = 1 (Gα

n cyclic) then f = n and so ‖τ‖ =
∑k

i=1 gcd(εi, n) =∑k
i=1 n/ord(θ(ei)), which coincides with [10, Theorem 1(e)].

(2) If n is even and α2 ≡ 1 (mod 2n) then τ and un/dτ are not conjugate.
Formula (2.1) provides the sum of the number of ovals of both symmetries,
but in this case, it does not give us the precise value of each summand. In
fact, the values of ‖τ‖ and ‖un/dτ‖ depend not only on the images θ(ei) but
also on the images of each canonical reflection. Indeed, it follows from the
proof of Theorem 2.1 that

(2.5) ‖τ‖ =
∑

i

2 gcd(εi, n)

d
+
∑

i

gcd
(n
d
, εi

)
+ 2

∑
i

gcd
(n
d
, εi

)
+ vτ

n

d

where the sums restrict to those period cycles (empty or odd) for which the
images of the associated canonical reflections are conjugate to τ , and vτ is
the number of even link periods nij in σ(Λ) such that the image θ(cij) of the
corresponding canonical reflection is conjugate to τ. An analogous formula
holds for ‖un/dτ‖.

(3) If n is even and Gα
n is dihedral (that is, d = n) then

‖τ‖ + ‖uτ‖ =
∑

2 gcd(εi, n)/d + card(S1) + 2 card(S2) + v.

This is the value which should be given in Theorem 2(i) in [2] to make it
correct. This mistake was pointed out in [8], where upper and lower bounds
for ‖τ‖ + ‖uτ‖ are given.

Example 2.5 Let us consider compact symmetric Riemann surfaces of ge-
nus g = 5 on which the cyclic group C8 acts as a group of conformal auto-
morphisms. Let τ be a symmetry on such a surface X. We claim that:

1. If C8 = Aut+X then ‖τ‖ ≤ 3. Conversely, for each k ≤ 3 there exist a
surface Xk of genus 5 such that C8 = Aut+Xk, and a symmetry τk on
Xk with ‖τk‖ = k.

2. If C8 ⊂ Aut+X and τ normalizes C8, then ‖τ‖ ≤ 5. Conversely, for
each k ≤ 5 there exist a surface Xk of genus 5 such that C8 ⊂ Aut+Xk,
and a symmetry τk on Xk with ‖τk‖ = k.

In fact, if C8 acts on a genus 5 surface X = U/Γ then C8 = ∆/Γ for
some Fuchsian group ∆ whose signature (by Riemann-Hurwitz formula) is
either σ1 = (0; +; [2, 4, 8, 8]; {−}) or σ2 = (1; +; [2, 2]; {−}). Theorem 4.1
in [1] on the extendability of cyclic group actions yields that if σ(∆) = σ2
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then Aut+X is strictly larger than C8. Let τ be a symmetry on X which
normalizes C8 = 〈u〉. Then Aut±X contains 〈u, τ〉 = Gα

8 for some α and so
there exist an NEC group Λ and a smooth epimorphism θ : Λ → Gα

8 with
ker θ = Γ. Observe that the canonical Fuchsian subgroup Λ+ of Λ equals ∆.
Using Corollary 2.2.5 in [3] we get that there exist two possible signatures
for Λ if σ(∆) = σ1 and six if σ(∆) = σ2. The “if” parts of statements 1
and 2 follow easily from formula (2.5) and a detailed analysis of the possible
epimorphisms θ : Λ → Gα

8 . For the converse parts, we also have to take into
account that σ1 is a maximal Fuchsian signature (see [3, Section 5.1] for the
definition of maximal signature). So if σ(∆) = σ1 then X can be chosen
such that Aut+X = C8.

The largest values (4 and 5) for the number of ovals of a symmetry, can
be attained by two symmetries of the same surface. Indeed, let us consider
an NEC group Λ with signature (0; +; [−]; {(2, 2), (−)}) and the smooth
epimorphism θ : Λ → G1

8 = 〈u〉 × 〈τ〉 given by

c10 �→ u4τ, c11 �→ τ, c12 �→ u4τ, e1 �→ u, c20 �→ τ, e2 �→ u−1.

Then X = U/ ker θ is a genus 5 Riemann surface which admits two symme-
tries τ and u4τ such that ‖τ‖ = 5 and ‖u4τ‖ = 4, as formula (2.5) easily
shows.

Remark 2.6 Theorem 2.1 may be seen as an approach to the solution of
the problem of counting the number of ovals of a symmetry τ on a compact
Riemann surface X. Although the theorem is stated for surfaces with cyclic
full conformal automorphism group, it can also be applied to a wider variety
of Riemann surfaces. Let τ be a symmetry of an arbitrary Riemann surface
X which admits a non-trivial conformal automorphism u such that τ nor-
malizes 〈u〉. Then 〈u, τ〉 is of the form Gα

n. In this situation, Theorem 2.1
and its proof as mentioned in Remark 2.4 (2) can be applied to obtain both
‖τ‖ and ‖un/dτ‖, provided the geometric action of 〈u, τ〉 on X, that is, the
corresponding smooth epimorphism θ : Λ → 〈u, τ〉, is known. Indeed, in the
proof of Theorem 2.1, we make no use of the fact that Gα

n is the full auto-
morphism group of X (but just a group acting on it), except when applying
Theorem 3.1 in [4]. This theorem is proved there for the full group Aut±X,
but the proof actually works for any group containing τ.

It is worth mentioning that the existence of a non-trivial conformal au-
tomophism u such that τ normalizes 〈u〉 is guaranteed, for example, if the
group Aut+X contains a characteristic abelian subgroup (e.g., if Aut+X
itself is abelian), or if Aut+X contains an abelian normal Sylow p-subgroup
(e.g., if |Aut+X| is the product of two primes).
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3. Bounds

Let τ be a symmetry on a compact Riemann surface X which admits a non-
trivial conformal automorphism u of order n such that τ normalizes 〈u〉. In
this section we apply Theorem 2.1 to derive upper bounds for the sum of
the number of ovals of the conjugacy classes of symmetries of 〈u, τ〉 = Gα

n.
We also show that the bounds are attained constructing, for infinitely many
values of g, n and α, a compact Riemann surface of genus g on which Gα

n

acts as a group of automorphisms, and a symmetry τ in X whose number
of ovals reaches the proposed bound. Recall that d = gcd(α + 1, n) and
f = gcd(α − 1, n).

We begin with the case n odd.

Proposition 3.1 If 〈u, τ〉 = Gα
n with n odd then

‖τ‖ ≤ g − 1

d
+ 2,

and the bound is attained for every odd n and every g such that n|(g − 1).

Proof . We first show that the bound is attained provided that n|(g−1). In
this case, let us consider an NEC group Λ with signature

(
0; +; [−]; {(−)k})

where k = (g − 1)/n + 2. Let θ : Λ → Gα
n be the homomorphism given by

θ(e1) = ud, θ(e2) = u−d, θ(ei) = 1 for all i ≥ 3, θ(c1) = τ, θ(c2) = ufτ ,
θ(ci) = τ for all i ≥ 3. It is easy to see that it is a well defined smooth
epimorphism and so X = U/Γ, for Γ = ker θ, is a symmetric Riemann
surface of genus g on which Gα

n acts. Corollary 2.3 gives

‖τ‖ = 2 gcd(d, f) + f(k − 2) = 2 + f

(
g − 1

n

)
=

g − 1

d
+ 2.

To show that this value is an upper bound for ‖τ‖, observe that τ and
un/dτ generate a dihedral group of order 2d which acts on X. Then, Theo-
rem 3(ii) in [2] yields ‖τ‖ + ‖un/dτ‖ ≤ (2g − 2)/d + 4. Since d is odd, both
symmetries are conjugate and so ‖τ‖ = ‖un/dτ‖ ≤ (g − 1)/d + 2. �

Remark 3.2 In the conditions of the above proposition, a genus g Rie-
mann surface X admitting a symmetry with the maximal number (g− 1)/d
of ovals, can be chosen to have Gα

n as its full group Aut±X if and only
if n is a proper divisor of g − 1. Indeed, if this is so, then the signature
σ =

(
0; +; [−]; {(−)k}) with k = (g−1)/n+2 ≥ 4 used in the proof is max-

imal, and so we may choose a maximal NEC group Λ with this signature.
With this choice, the surface U/Γ constructed there has Gα

n as its full auto-
morphism group Aut±X. However, if n = g − 1 then σ is not maximal, and
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indeed, an NEC group Λ such that Aut±X = Λ/Γ cannot have signature σ;
otherwise Aut+X would act with Fuchsian signature (2;−), and it is shown
in [1] that in this case Aut+X would contain a dihedral group. But it is not
difficult to see that σ is the unique signature providing (g−1)/d+2 = f +2
ovals. So the number of period cycles of Λ is k ≤ 2 and it can be shown
that in this case ‖τ‖ ≤ (g − 1)/d = f.

Let us deal now with n even. An upper bound for ‖τ‖+ ‖un/dτ‖ in case
Gα

n is dihedral (i.e., α = n − 1) was given in Lemma 3.3 in [11] and also in
Theorems 3(i) and 4(i) in [2]. Namely, ‖τ‖ + ‖uτ‖ ≤ 4g/n + 2, and the
bound is attained for every n and every g such that n|4g. We now deal with
the remainder values of α.

Proposition 3.3 Assume that 〈u, τ〉 = Gα
n is not dihedral and n is even.

(1) If n/f is even then ‖τ‖ + ‖un/dτ‖ ≤ (4g + 2f − n)/d.

(1.1) If n/(2f) is even then the bound is attained for every g, n and α
such that n is a proper divisor of 4g + 2f.

(1.2) If n/(2f) is odd then the bound is attained for every g, n and α
such that n|(2g + f).

(2) Assume n/f is odd.

(2.1) If n/2 is even then ‖τ‖ + ‖un/dτ‖ ≤ (4g + f − n)/d, and the
bound is attained for every g, n and α such that (4g + f)/n is an
odd integer ≥ 3.

(2.2) If n/2 is odd then ‖τ‖ + ‖un/dτ‖ ≤ (4g + 4 + f − n)/d, and the
bound is attained for every g, n and α such that n is a proper
divisor of 4g + 4 + f.

Proof . If Λ has signature (1.1) then the Riemann-Hurwitz formula yields
k + ηh +

∑
(1 − 1/mi) +

∑
(1 − 1/nij)/2 = (g − 1)/n + 2 where η = 1 or 2

according to the sign of Λ. In order to maximize the right hand side of
formula (2.1) in Theorem 2.1 (keeping constant the area of Λ), it is clear
that we first have to deal with NEC groups with k = 1, h = 0 and the
maximum number of (even) link periods equal to 2. Observe that there must
exist an elliptic canonical generator x1 in Λ since the images of the canonical
reflections generate a subgroup of 〈un/d, τ〉, and we are not considering the
case d = n. So we first have to consider NEC groups Λ whose signature has
the form

σ =
(
0; +; [m]; {(2, v′. . ., 2, d′)})
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with d′ ≥ 2 (even) and m as small as possible but such that lcm(m, d′) = n
(to assure the surjectivity of θ : Λ → Gα

n). Here lcm stands for the least
common multiple. Observe that, up to an automorphism in Gα

n, the images
of the canonical reflections are of the form θ(c2i) = τ, θ(c2i+1) = un/2τ
for 2i + 1 ≤ v′, while θ(x1) = un/m. Since θ(cv′cv′+1) has order d′, we get
θ(cv′+1) = uhn/d′τ where h is prime with d′ or d′/2 according to the parity
of v′. But also θ(cv′+1) = θ(e1c0e

−1
1 ) = u(α−1)n/mτ and so

gcd
(
hn/d′, n

)
= gcd

(
(α − 1)n/m, n

)
.

This yields d′ = m/ gcd(α − 1, m) or d′ = 2m/ gcd(α − 1, m). In the first
case, d′|m and so n = lcm(m, d′) = m and d′ = n/f. In the second, m = n
and d′ = 2n/f if m is even, while m = n/2 and d′ = 2n/f if m is odd. This
leads us to consider the following three signatures:

• σ1 = (0; +; [n]; {(2, v′. . ., 2, n/f)}) with v′ = (4g + 2f)/n − 2;

• σ2 = (0; +; [n]; {(2, v′. . ., 2, 2n/f)}) with v′ = (4g + f)/n − 2;

• σ3 = (0; +; [n/2]; {(2, v′. . ., 2, 2n/f)}) with v′ = (4g + f + 4)/n − 2 and
n/2 odd.

If n/f is even then the largest number of ovals is given by σ1, namely
(v′ + 1)n/d = (4g + 2f − n)/d. Let us study whether this bound is attained.
Observe that θ(cv′+1) = uα−1τ and θ(x1) = u. If v′ is even then θ(cv′) = τ
and it is easy to see that θ is a well defined smooth epimorphism. However,
if v′ is odd, then θ(cv′) = un/2τ, and for θ(cv′cv′+1) to have order n/f , it has
to be gcd(α − 1 + n/2, n) = f ; this happens if and only if n/(2f) is even.
Therefore, if n/(2f) is even then the bound is attained independently of the
parity of v′, while if n/(2f) is odd, then v′ is required to be even. This
proves part (1) of the proposition.

If n/f is odd and n/2 is even then the largest number of ovals is given by
σ2, namely (4g + f −n)/d. If v′ is even then θ(cv′cv′+1) = u1−α, whose order
is not 2n/f . Hence there is no smooth epimorphism in this case. However,
if v′ is odd then θ(cv′cv′+1) = un/2+1−α, which has order 2n/f as is easy to
see. So the bound is attained only if v′ is odd. This proves (2.1).

If n/f and n/2 are odd then the largest number of ovals is given by σ3,
namely (4g + 4 + f − n)/d. Observe that v′ is odd. So θ(cv′) = un/2τ and it
is easy to see that θ(cv′cv′+1) has order 2n/f . Therefore, θ is a well defined
epimorphism and the bound is attained provided that v′ is a non-negative
integer. This proves (2.2). �

Remark 3.4 The symmetries τ and un/dτ generate a dihedral group of
order 2d, so Theorem 3(i) in [2] yields ‖τ‖+‖un/dτ‖ ≤ 4g/d+2. This bound
is less precise than ours.
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Gdańsk, Poland

greggrom@math.univ.gda.pl

E. Bujalance is partially supported by MTM2005-01637. F. J. Cirre is partially supported
by MTM2005-01637. J. M. Gamboa is partially supported by MTM2005-20865. G. Gro-
madzki is supported by the grant SAB2005-0049 of the Spanish Ministry of Education
and Sciences and by MTM2005-01637.



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /All
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveEPSInfo true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile ()
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org)
  /PDFXTrapped /Unknown

  /Description <<
    /FRA <>
    /ENU (Use these settings to create PDF documents with higher image resolution for improved printing quality. The PDF documents can be opened with Acrobat and Reader 5.0 and later.)
    /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308000200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
    /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e0065002000760065007200620065007300730065007200740065002000420069006c0064007100750061006c0069007400e400740020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
    /PTB <>
    /DAN <>
    /NLD <>
    /SUO <>
    /ITA <>
    /NOR <>
    /SVE <>
    /KOR <FEFFd5a5c0c1b41c0020c778c1c40020d488c9c8c7440020c5bbae300020c704d5740020ace0d574c0c1b3c4c7580020c774bbf8c9c0b97c0020c0acc6a9d558c5ec00200050004400460020bb38c11cb97c0020b9ccb4e4b824ba740020c7740020c124c815c7440020c0acc6a9d558c2edc2dcc624002e0020c7740020c124c815c7440020c0acc6a9d558c5ec0020b9ccb4e000200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /CHS <FEFF4f7f75288fd94e9b8bbe7f6e521b5efa76840020005000440046002065876863ff0c5c065305542b66f49ad8768456fe50cf52068fa87387ff0c4ee563d09ad8625353708d2891cf30028be5002000500044004600206587686353ef4ee54f7f752800200020004100630072006f00620061007400204e0e002000520065006100640065007200200035002e00300020548c66f49ad87248672c62535f003002>
    /CHT <FEFF4f7f752890194e9b8a2d5b9a5efa7acb76840020005000440046002065874ef65305542b8f039ad876845f7150cf89e367905ea6ff0c4fbf65bc63d066075217537054c18cea3002005000440046002065874ef653ef4ee54f7f75280020004100630072006f0062006100740020548c002000520065006100640065007200200035002e0030002053ca66f465b07248672c4f86958b555f3002>
    /ESP <>
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [595.000 842.000]
>> setpagedevice


