
Rev. Mat. Iberoamericana 24 (2008), no. 1, 297–351

Bound state solutions for a class of
nonlinear Schrödinger equations

Denis Bonheure and Jean Van Schaftingen

Abstract

We deal with the existence of positive bound state solutions for a
class of stationary nonlinear Schrödinger equations of the form

−ε2∆u + V (x)u = K(x)up, x ∈ R
N ,

where V, K are positive continuous functions and p > 1 is subcritical,
in a framework which may exclude the existence of ground states.
Namely, the potential V is allowed to vanish at infinity and the com-
peting function K does not have to be bounded. In the semi-classical
limit, i.e. for ε ∼ 0, we prove the existence of bound state solu-
tions localized around local minimum points of the auxiliary function
A = V θK− 2

p−1 , where θ = (p + 1)/(p− 1)−N/2. A special attention
is devoted to the qualitative properties of these solutions as ε goes
to zero.

1. Introduction

The nonlinear Schrödinger equation appears in many fields of physics as
nonlinear optics or plasma physics. It typically reads

(1.1) i�
∂ψ

∂t
+

�
2

2m
∆ψ −W (x)ψ + |ψ|p−1ψ = 0, (t, x) ∈ R × R

N ,

where � denotes the Plank constant and i is the imaginary unit. This equa-
tion models the non-relativistic evolution of a quantum particle. It is ex-
pected that classical mechanics can be recovered by letting � → 0 in (1.1)
and the limiting behaviour as � → 0 is then called semi-classical. The
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study of the dynamics of (1.1) leads naturally to standing wave solutions,
i.e. solutions of the form

ψ(t, x) = e−iEt/�u(x),

where E is the energy of the wave. For small �, these solutions are referred to
as semi-classical states. The function ψ is a standing wave solution of (1.1)
if and only if u solves the semilinear elliptic equation

(1.2) −ε2∆u+ V (x)u = |u|p−1u, x ∈ R
N ,

where ε2 = �
2/2m and V (x) = (W (x) −E).

The study of (1.2) goes back at least to Floer and Weinstein [18] who
investigated the special case where N = 1 and p = 3. Assuming that V is a
globally bounded potential having a nondegenerate critical point, say x = 0,
and infRN V > 0, they constructed a positive solution uε of (1.2) for small
ε > 0 via a Lyapunov-Schmidt reduction. Moreover, they proved that the so-
lution concentrates around the critical point of V , i.e. most of the mass of uε

is contained in a neighbourhood of 0 that shrinks to a single point as ε→ 0.
This result was then extended to higher dimensions by Oh [26, 28] who
also considered the possibility of simultaneous concentration around multi-
ple critical points leading to so-called multi-bump standing waves. Oh [27]
also investigated the stability of these solutions.

Since then, equation (1.2) has attracted the interest of many mathe-
maticians and the existence of positive solutions under various assumptions
has been proved using different methods. As the problem has generated
an impressive amount of publications, it is impossible to give a comprehen-
sive list of references here. Basically, two main routes have been pursued.
The Lyapunov-Schmidt reduction scheme proposed by Floer and Weinstein
has been further extended and combined with variational arguments by Am-
brosetti et al. [1, 7, 4, 5], see also for example [25, 30] for multibump solu-
tions. On the other hand, Rabinowitz [33] initiated a purely variational ap-
proach, then mainly relayed by del Pino and Felmer [14, 15, 16, 17]. We also
refer to P. L. Lions [23], Y. Li [24], Bahri and P. L. Lions [9] as well as to
their bibliographies for other works involving variational methods to treat
the existence of standing waves for nonlinear Schrödinger equations.

The Lyapunov-Schmidt reduction method introduced by Floer and
Weinstein uses in an essential way the nondegeneracy of the critical point
of V so that one can address the natural question whether alternative ar-
guments may be used to extend their result to a degenerate setting, that is
whether solutions concentrating around possibly degenerate critical points of
the potential can be obtained. Using a local variational approach, del Pino
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and Felmer [15, 17] constructed positive solutions concentrating around any
topologically nontrivial critical point of the potential V whereas an affirma-
tive answer to the above question has also been given using finite dimensional
reduction arguments by Ambrosetti, Badiale and Cingolani [1] for isolated
critical points of V with polynomial degeneracy and by Y.Y. Li [25] in the
case where V has stable critical points. Basically, the approach of Y.Y. Li
requires that small C1 perturbations of the potential still have a critical
point while that of del Pino and Felmer works fine with any critical point
having a minimax characterisation, the easiest situation being that of a lo-
cal minimum. Assume for instance that Λ ⊂ R

N is a bounded open set
such that

(1.3) V0 := inf
x∈Λ

V (x) < inf
x∈∂Λ

V (x).

Then, if infRN V > 0, there exists a positive solution concentrating in Λ.
More precisely, we have the following result which is by now classical.

Theorem (del Pino-Felmer [14]). Assume that V is a locally Hölder con-
tinuous potential bounded away from zero and Λ is a bounded open set sat-
isfying (1.3). Then, there exist ε0 > 0 and a family of positive solutions
{uε ∈ H1(RN) | 0 < ε < ε0} of (1.2) with the particularity that each uε pos-
sesses a single maximum point xε such that V (xε) → V0 as ε→ 0. Moreover,
there exist C, λ > 0 such that for every x ∈ R

N ,

uε(x) ≤ C e−λ|x−xε|/ε

and the limiting profile is given by

uε(x) = v
(x− xε

ε

)
+ wε(x),

where v is the unique positive radial solution of

−∆v + V0v = |v|p−1v

and wε → 0 in C2
loc(R

N) and in L∞(RN) as ε→ 0.

Formally, equation (1.2) is the Euler-Lagrange equation associated to the
action functional

(1.4) Iε(u) := Jε(u) − 1

p+ 1

∫
RN

|u|p+1,

where

Jε(u) :=
1

2

∫
RN

(
ε2|∇u|2 + V (x)|u|2) .
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Assuming that 1 < p < (N + 2)/(N − 2) if N ≥ 3 and V (x) → +∞
as |x| → ∞, it is easily seen that for any ε > 0, Jε achieves a minimum
constrained to the manifold

M :=
{
u ∈ H1(RN)

∣∣∣ ∫
RN

V (x)|u|2 <∞ and

∫
RN

|u|p+1 = 1
}
.

When infRN V > 0, this allows to obtain a positive ground-state, i.e. a
least energy mountain pass solution, of (1.2). In [33], still assuming that
infRN V > 0, Rabinowitz proved the existence of a positive ground state for
any ε > 0 under the condition

0 < a ≤ V (x) ≤ lim inf
|x|→∞

V (x), for all x ∈ R
N and some a > 0,

with strict inequality on a set of positive measure, while he observed that
for small ε, existence holds under the weaker assumption

(1.5) inf
x∈RN

V (x) < lim inf
|x|→∞

V (x).

In the meantime, Wang [37] proved under this last hypothesis that any posi-
tive ground state does concentrate at a global minimum point of V as ε→ 0.
These last results concern the case where V achieves a global minimum, i.e.
the case where we can choose any sufficiently large bounded set Λ in the del
Pino-Felmer Theorem. When V only achieves local minima, one requires,
from a variational point of view, local arguments to catch local mountain
passes. This is the spirit of the approach of del Pino and Felmer [14] which
relies on the study of a penalized functional. For instance, the modification
in the functional which basically corresponds to a penalization outside Λ,
permits to recover enough compactness to secure the existence of a mountain
pass critical point. This critical point is then shown to be a critical point of
the original functional when ε is small.

For various reasons, the penalization scheme developed by del Pino and
Felmer crucially depends on the assumption

inf
RN

V > 0.

The case where infRN V = 0 (this happens if the frequency E of the wave
is equal to infRN W which is referred to as the critical frequency [11]) has
been treated recently by Byeon and Wang in [11] concerning the existence
of ground states and in [12] concerning localized solutions. The results
contrast strikingly with the non-critical frequency case since the amplitude
of the solutions goes to 0 as ε → 0 and the limiting profiles depend on the
shape of the potential around the minimum points of V . It is worth pointing
out that even if the results of Byeon and Wang allow V to vanish in R

N , they
do require V to be bounded away from zero outside a compact set of R

N .
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The starting point of our work is a recent result of Ambrosetti, Felli and
Malchiodi [2] where the authors consider the model equation

(1.6) −ε2∆u+ V (x)u = K(x)|u|p−1u, x ∈ R
N ,

where K > 0 is an additional competing function, assumed to be posi-
tive. Such an equation has been previously treated by Wang and Zeng [38]
assuming that infRN V > 0 and K is bounded away from zero and bounded.
The novelty in [2] is the case where the potential V vanishes at infinity. This
situation differs drastically from that considered by Byeon and Wang [11]
since the fact that V achieves its infimum at infinity can clearly produce a
lack of compactness. Indeed, one easily observes for example that Iε, defined
by (1.4), cannot have a least energy mountain pass critical point in this case.
In order to recover the existence of a ground state, Ambrosetti, Felli and
Malchiodi consider (1.6) with K(x) → 0 as |x| → ∞ with a rate related
to that of V . More precisely, they assume that there exist A, a, α > 0
and B, β > 0 such that

(1.7)
a

1 + |x|α ≤ V (x) ≤ A and 0 < K(x) ≤ B

1 + |x|β .

Assuming further that N ≥ 3, 0 < α < 2, β > 0 and defining

σ :=

⎧⎨
⎩

N + 2

N − 2
− 4β

α(N − 2)
if β < α,

1 if α ≤ β,

they prove the existence of a positive ground state in H1(RN) provided

(1.8) σ < p <
N + 2

N − 2
.

This condition is sharp in the sense that for this range of p, the ground state
realizes the supremum

sup
Hε\{0}

∫
RN K(x)|u|p+1∫

RN (ε2|∇u|2 + V (x)|u|2) p+1
2

,

where Hε is the weighted Sobolev space defined by

Hε :=
{
u ∈ H1

loc(R
N)
∣∣∣ ∫

RN

(
ε2|∇u|2 + V (x)|u|2) <∞

}
,

while the supremum is +∞ if p < σ or p > (N + 2)/(N − 2). Notice that
in case V and K are radial, the range of admissible p’s given by (1.8) can
be enlarged when looking for radial ground states as shown recently by Su
et al. [35].
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In fact, under assumption (1.8), the Sobolev space Hε is compactly
imbedded in Lp+1(RN , K(x) dx) so that a positive ground state in Hε can
be obtained via a classical minimax procedure. At this point, it is worth
mentioning that (1.8) implies that the function

(1.9) A(x) := [V (x)]
p+1
p−1

−N
2 [K(x)]−

2
p−1

tends to +∞ as |x| → ∞ whereas one can check this last condition actu-
ally implies the compact imbedding of Hε into Lp+1(RN , K(x) dx) for any
ε > 0. The existence condition obtained in [2] can therefore be replaced by
just imposing the coercivity of A without any special decay condition on V
and K. However, one of the main issues of [2] is in fact to show that this
ground state is indeed in H1(RN). To this respect, the assumption α < 2
in (1.7) seems essential.

When V is bounded from below by a positive constant andK is bounded,
the auxiliary function A was shown by Wang and Zeng [38] to play in some
sense the role of the potential in Rabinowitz’s result, i.e. their extension of
Rabinowitz’s sufficient condition for the existence of a positive ground state
solution of (1.6) with ε small enough reads

(1.10) inf
x∈RN

A(x) <
lim inf |x|→∞ V (x)

p+1
p−1

−N
2

lim sup|x|→∞K(x)
2

p−1

.

Under the same conditions, Wang and Zeng also proved that A contains
the information about concentration, namely concentration occurs around
critical points of A. Therefore A is referred to as the concentration function
associated to (1.6). In particular, if V is bounded from below by a positive
constant and K is bounded, any positive ground state solution of (1.6)
concentrates at a global minimum point of A. In fact, one could also rewrite
del Pino-Felmer Theorem within the framework of equation (1.6), using the
function A instead of V to locate the peak of the solution. Therefore, the
result of [2] can be seen as a partial extension of that theorem in the case of
equation (1.6) with both V and K decaying to 0 at infinity and A having a
global minimum.

In this paper, we consider (1.6) in situations where

lim inf
|x|→∞

A(x) = 0

and
A(x) > 0 for all x ∈ R

N .

This means we consider either a critical frequency case infRN V = 0, assum-
ing further V (x) > 0 for all x ∈ R

N , or an unbounded competing functionK.
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Since in general ground states do not exist in such cases, we search for bound
state solutions localized around local minima of A. Our approach relies on
a suitable adaptation of the above discussed penalization method of del
Pino and Felmer. Our results also concern positive solutions for equations
like (1.6) in bounded or exterior domains with Dirichlet boundary condition.
In the latter, we assume that the domain has a bounded boundary, V > 0
in the interior of the domain while we allow V to vanish or K to explode on
the boundary.

From now on, Ω ⊂ R
N denotes a regular domain with bounded boundary.

Of course, this includes the case Ω = R
N . Let V, K ∈ C(Ω,R+) satisfy, if

∂Ω 	= ∅,

(G∂Ω) lim sup
x→∂Ω

d(x, ∂Ω)p−1K(x)

V (x)
<∞

and one of the three following growth conditions at infinity if Ω is unbounded:

(G1
∞) there exist α ∈ [0, 2[ and λ > 0 such that

lim inf
|x|→∞

V (x)|x|α > 0 and lim sup
|x|→∞

ψα,λ(x)
K(x)

V (x)
<∞ ,

where ψα,λ := exp(−λ|x|1−α/2) ;

(G2
∞) there exists λ > 0 such that

lim inf
|x|→∞

V (x)|x|2 > 0 and lim sup
|x|→∞

ψ2,λ(x)
K(x)

V (x)
<∞ ,

where ψ2,λ(x) := |x|−λ ;

(G3
∞) N > 2 and

lim sup
|x|→∞

|x|−νK(x)

V (x)
<∞ ,

where ν = (p− 1)(N − 2).

Theorem 1. Suppose Ω ⊂ R
N is a regular domain with bounded boundary

and p ∈ ]1, (N + 2)/(N − 2)[ if N ≥ 3 or p ∈ ]1,∞[ otherwise. Let V, K ∈
C(Ω,R+) satisfy (G∂Ω) if ∂Ω 	= ∅ and one set (Gi

∞) of growth conditions if
Ω is unbounded. Let Λ ⊂ R

N be open and bounded and assume

inf
x∈Λ

A(x) < inf
x∈∂Λ

A(x),

where A is defined by (1.9).
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Then there exists ε0 > 0 such that for every 0 < ε < ε0, the Dirichlet
problem

(1.11)
−ε2∆u+ V (x)u = K(x)|u|p−1u, x ∈ Ω,

u(x) = 0, x ∈ ∂Ω

has at least one positive solution uε.

We emphasize that the solution uε also satisfies∫
Ω

(
ε2|∇uε|2 + V (x)|uε|2

)
= O(εN),

but since V does not have a positive lower bound, ‖uε‖2
L2(Ω) does not need

to satisfy the same estimate, and might even not be finite. However, the
solution displays the following features.

Theorem 2. Under the assumptions of Theorem 1, let uε be the solution
of (1.11) obtained in that theorem and xε ∈ Ω be such that

uε(xε) = sup
x∈Ω

uε(x).

Then, we have
A(xε) → inf

x∈Λ
A(x), as ε→ 0,

for every r > 0 and ε sufficiently small, uε has no local maximum outside
the ball B(xε, εr) and satisfies

uε(x) ≤ C
d(x, ∂Ω)

1 + d(x, ∂Ω)

εN−2

(ε2 + |x− xε|2)N−2
2

.

If moreover,

lim inf
d(x,∂Ω)→0

V (x) > 0 and lim inf
|x|→∞

V (x)|x|2 > 0,

then, for every λ > 0, there is C > 0 and ε0 > 0 such that if 0 < ε < ε0,

uε(x) ≤ C
d(x, ∂Ω)

1 + d(x, ∂Ω)

ελ

(ε2 + |x− xε|2)λ
2

,

while if

lim inf
d(x,∂Ω)→0

V (x) > 0 and lim inf
|x|→∞

V (x)|x|α > 0 for some α ∈ ]0, 2[ ,

then for every λ > 0, there is C > 0 and ε0 > 0 such that if 0 < ε < ε0,

uε(x) ≤ C
d(x, ∂Ω)

1 + d(x, ∂Ω)
exp
(
−λ
∣∣∣x− xε

ε

∣∣∣1−α/2)
.

When Ω = R
N the preceding holds provided d(x, ∂Ω)/(1 + d(x, ∂Ω)) is re-

placed by 1.
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This theorem implies in particular that uε ∈ L2(Ω) and ‖uε‖2
2 = O(εN)

as soon as N > 4 or as lim inf |x|→∞ V (x)|x|2 and lim infd(x,∂Ω)→0 V (x) > 0.
Theorem 2 can be seen as a weak version of the concentration behaviour

described in del Pino-Felmer Theorem. If V and K are locally Hölder con-
tinuous, then the solution can be shown to achieve a unique (hence global)
maximum point. On the other hand, as discussed below, one cannot hope
to obtain better decay estimates since they do depend in an essential way
on the behaviour of V at infinity.

While completing our research, we heard about some recent preprints
dealing also with nonlinear Schrödinger equations with potentials vanishing
at infinity. The most related one, by Ambrosetti, Malchiodi and Ruiz [6],
concerns the model equation (1.6) in R

N under assumptions similar to ours.
Namely, the authors assume therein that V, K are smooth and positive, V ′,
K, K ′ are bounded and V decays to zero at infinity in such a way that

lim inf
|x|→∞

V (x)|x|2 > 0.

Under these assumptions, the authors are able to construct, for sufficiently
small ε, bound state solutions concentrating at any isolated stable stationary
point of the concentration function A. However, their assumptions on the
potentials V and K are more restrictive and they require K to be bounded.

Also, the method of [6] relies crucially on the homogeneity of the nonlin-
ear term K(x)up while we are able to deal with more general nonlinearities.
In [6], the authors point out the paper of Souplet and Zhang [34] where ra-
dial decaying potentials are considered under stronger growth restrictions at
infinity. Moreover, neither semiclassical states nor spikes are investigated.

In two other recent preprints by Ambrosetti and Ruiz [8] and Byeon
and Wang [13], the possibility of concentration on spheres in the framework
of decaying potentials has also been considered. It could be interesting to
see how far our method can be adapted to the search of such solutions.
Finally, we point out the note [3], where recent developments on nonlinear
Schrödinger equations are discussed. The results of this paper were partially
announced in [10].

Our paper is organized as follows. We deal in fact with (1.6) where the
nonlinear term up may be replaced by a more general superlinear term f(u).
It is not usually possible to give an explicit expression of the concentration
function, i.e. the energy associated the ground state solutions of the limiting
equation, see Section 3, which is given by A in the homogeneous case. Also,
the growth conditions (Gi

∞) have to be adapted according to the behaviour
of f(u)/u close to zero. We refer to Section 2 where we complete our general
assumptions. We investigate the qualitative properties of the concentration
function and those of the ground states of the limiting problem in Section 3.
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In Section 4, we discuss the penalization scheme of del Pino and Felmer
and we provide an adequate modification of their approach which works fine
within our framework. From the way our penalized functional is defined, it
might seem at first sight that the method of del Pino and Felmer extends
to our framework with only minor changes. Whereas this is true for some
arguments, the possibility of V to vanish at infinity brings a lot of troubles
and requires careful estimates. Firstly, our definition of the penalized func-
tional requires some preliminary technical adjustments in order to catch a
mountain-pass solution uε of the penalized equation.

Indeed, our assumptions on V do not imply the L2-boundedness of Palais-
Smale sequences as in [14], but Hardy’s inequality can still prevent losses of
mass at infinity in those sequences. Since Hardy’s inequality does not hold
in two dimensions, a special care is needed in that case and the compactness
of Palais-Smale sequences is derived from a Hardy type inequality with po-
tential which takes a growth restriction on V at infinity into account. This
is one of the reasons for which we require N > 2 when dealing with the
weaker growth condition in (G3

∞).
To recover a solution of the original equation, we argue as follows. As

in [14], for small ε, the solution uε is first shown to be small on the bound-
ary of Λ. This is done in Section 5. Then, using comparison arguments,
the estimate on the boundary is extended outside Λ. To this respect, the
situation here is much more delicate than in [14].

Indeed, we do require precise estimates on the decay of the solution at
infinity. Such estimates are worked out in Section 6 where the proof of Theor-
em 1 is completed. Theorem 2 concerning concentration is proved in Section 7.
Here again the approach and the results differ considerably due to both weak
regularity assumptions on the potentials and their behaviour at infinity.

In [14], when V is Hölder continuous, it is established that uε has a
unique local (and hence global) maximum. As we only assume that V and K
are continuous, the weakness of the regularity of the solution ruled out the
arguments used therein.

However, as stated in Theorem 2, the global maximum xε is shown to
be essentially unique in the sense that if yε is a local maxima of uε, then
d(xε, yε) = o(ε) as ε → 0. Observe also that when V is not bounded away
from zero, we do not recover an exponential decay as in del Pino-Felmer
Theorem.

In some sense, the solution inherits its decay properties from the be-
haviour of V . Decay estimates are delicate and depend on comparison argu-
ments uniform in ε. They are obtained by using families of barrier functions,
i.e. families of comparison functions having adequate properties. Finally,
Section 8 is devoted to some concluding remarks and possible extensions of
our results.
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2. Assumptions

For further references, we now introduce the main assumptions that will be
used throughout the paper. As already mentioned, we deal in fact with the
more general Dirichlet problem

(2.1)

{ −ε2∆u+ V (x)u = K(x)f(u) in Ω,

u = 0 on ∂Ω,

under the assumptions described hereafter.

2.1. The domain

We assume the domain Ω ⊂ R
N is a connected open set with bounded C1,α

boundary. In the sequel, such domains are referred to as bounded or exterior
domains and unless explicitely stated, a regular domain is understood as a
domain with C1,α boundary. This regularity assumption is sufficient for our
purpose but can be weakened for some pointwise statements.

The boundedness of the boundary is basically used in order to have a
uniform control on its geometry. Our arguments would thus also work for
some cylindrical domains.

2.2. The nonlinearity

We deal with a nonlinearity which is a continuous function f : R
+ → R

+

such that

(f1) f(s) = o(s) as s→ 0+;

(f2) there exists 1 < p <
N + 2

N − 2
if N ≥ 3 or 1 < p < +∞ if N = 1, 2,

such that

lim
s→∞

f(s)

sp
= 0 ;

(f3) there exists 2 < θ ≤ p+ 1 such that

0 < θF (s) ≤ f(s)s for s > 0 ,

where F (s) :=
∫ s

0
f(σ) dσ ;

(f4) the function s �→ f(s)/s is nondecreasing.

We extend f by zero for s < 0, so that every nonzero solution of (2.1) is by
the maximum principle a positive solution of (2.1).
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Combining (f1) and (f2), we infer that for every δ > 0, there exists
Cδ > 0 such that

f(u) ≤ δ|u| + Cδ|u|p.
Assumption (f3) implies that there is C > 0 such that F (s) ≥ C(|s|θ − 1),
i.e. F grows superquadratically fast. This condition could be weakened by
assuming only that (f3) holds for large s and for any a, b > 0, there exists
a positive least-energy solution (see below for a precise definition) of the
equation

(2.2) −∆u+ au = bf(u).

The hypothesis (f4) may also be weakened provided one can still obtain a
suitable minimax characterization of the infimum level on the Nehari man-
ifold, see Lemma 3 below. For instance, Wang and Zeng [38] treated a
superlinear term of the form up − uq, assuming q < p.

Our regularity assumption on the nonlinear term f is weaker than the
usual one, see e.g. [14]. Indeed, assuming f of class C1 provides quite useful
information about the ground states of (2.2): by the symmetry result of
Gidas, Ni and Nirenberg [20], any such solution is radial and radially de-
creasing. This analysis remains valid when f is Lipschitz in a neighbourhood
of 0, see [19]. In the general case, the fact that u ∈ H1(RN) is a ground
state and f is nondecreasing implies that u is radial and radialy decreasing,
see [36].

2.3. The potentials

We next consider two potentials V, K ∈ C(Ω,R+) such that V (x) > 0.
Moreover, we assume K is not identically 0. If Ω is unbounded, we impose
one of the three following sets of growth conditions at infinity:

(G1
f,∞) there exist α ∈ [0, 2[ and λ > 0 such that

lim inf
|x|→∞

V (x)|x|α > 0 and lim sup
|x|→∞

f(exp(−λ|x|1−α/2))

exp(−λ|x|1−α/2)

K(x)

V (x)
< 1 ;

(G2
f,∞) there exists λ > 0 such that

lim inf
|x|→∞

V (x)|x|2 > 0 and lim sup
|x|→∞

f(|x|−λ)

|x|−λ

K(x)

V (x)
< 1 ;

(G3
f,∞) N > 2 and there exists λ > 0 such that

lim sup
|x|→∞

f(λ|x|2−N)

λ|x|2−N

K(x)

V (x)
< 1 .
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If the boundary Ω is not empty, then we also assume that V and K
satisfy a growth condition on the boundary:

(Gf,∂Ω) there exist µ > 0 such that

lim sup
d(x,∂Ω)→0

f(µd(x, ∂Ω))

µd(x, ∂Ω)

K(x)

V (x)
< 1.

Observe that all growth conditions depend on the behaviour of K and V
at infinity and around ∂Ω, and on the behaviour of f(s)/s around s = 0.
Notice also that only V is assumed to be strictly positive inside Λ.

3. Limit problem

In this section, we introduce the concentration function which is the coun-
terpart of the function A in the homogeneous case and we study some of its
properties. We also provide an independent decay estimate on the ground
states of the autonomous limiting problem. We first define the functional
Fa,b : H1(RN) → R by

(3.1) Fa,b(u) :=
1

2

(∫
RN

|∇u|2 + a

∫
RN

|u|2
)
− b

∫
RN

F (u).

A necessary condition for u ∈ H1(RN) to be a nontrivial critical point of
Fa,b is to belong to the Nehari manifold

Na,b := {u ∈ H1(RN) | u 	= 0, (F ′
a,b(u), u) = 0}.

We then say that u ∈ H1(RN ) is a least-energy solution of

(3.2) −∆u+ au = bf(u),

or equivalently that u is a least-energy critical point of Fa,b if

Fa,b(u) = inf
u∈Na,b

Fa,b(u).

We may now define the ground-energy function

E : R
+
0 × R

+
0 → R

+ : (a, b) �→ E(a, b) := inf
u∈Na,b

Fa,b(u)

as the action of any least-energy critical point of Fa,b and consequently we
introduce the concentration function C : R

N → R
+ ∪ {+∞} by

(3.3) C(ξ) :=

{ E(V (ξ), K(ξ)) if K(ξ) > 0,
+∞ otherwise.

In other words, if K(ξ) > 0, C(ξ) is the ground-energy associated to least-
energy solutions of

(3.4) −∆u + V (ξ)u = K(ξ)f(u).



310 D. Bonheure and J. Van Schaftingen

3.1. Energy of the ground state

The following lemma provides some basic properties of the ground-energy
function. We sketch the proof for completeness.

Lemma 3. Assume f : R
+ → R

+ is a continuous function that fulfils
assumptions (f1)–(f4). Then, for every (a, b) ∈ R

+
0 ×R

+
0 , E(a, b) is a critical

value of Fa,b and we have

E(a, b) = inf
u∈H1(RN )

u �=0

max
t≥0

Fa,b(tu).

If u ∈ Na,b and E(a, b) = E(u), then u ∈ C1 and up to a translation, u is a
radial function such that ∇u(x) · x < 0 for every x ∈ R

N \ {0}.
Moreover, the following properties hold:

(i) the ground-energy function is continuous in R
+
0 × R

+
0 ;

(ii) for every b∗ ∈ R
+
0 , a→ E(a, b∗) is strictly increasing;

(iii) for every a∗ ∈ R
+
0 , b→ E(a∗, b) is strictly decreasing;

(iv) for every λ > 0, E(λa, λb) = λ1−N/2E(a, b);

(v) if f(u) = up with 1 < p < (N + 2)/(N − 2) if N ≥ 3 or 1 < p < +∞
if N = 1, 2, then

E(a, b) = E(1, 1)a
p+1
p−1

−N
2 b−

2
p−1 .

Proof. The proof of the minimax characterization of E(a, b) is by now
classical, see e.g. [39]. The key ingredient in the proof is the monotonicity
assumption (f4). Once this characterization is established, it is also quite
easy to show that E(a, b) is a critical value.

These two facts have been essentially proved by Rabinowitz [33]. By
classical regularity estimates, u is continuously differentiable. If f is Lip-
schitz, by [20, 19], up to a translation u is radial and ∇u · x < 0. When f
is monotone, [36] implies that u is radial and ∇u · x < 0. For x ∈ R

N \ {0},
let H denote the halspace whose boundary is perpendicular to x and let v de-
note the reflection of u with respecto to ∂H . By assumption, u−v ≥ 0 in H
with equality on ∂H . By the monotonicity of f , −∆(u− v) + a(u− v) ≥ 0.
Since v is radial, u 	= v, so that by the strong maximum principle, ∇u·x < 0.

Let us now focus on the properties(i)-(v).

Property (i). Let (a, b) ∈ R
+ × R

+ be given. We first claim that E is
lower semi-continuous. Assume (an, bn) → (a, b) as n → ∞ and denote by
un ∈ Nan,bn a least-energy solution of

−∆u+ anu = bnf(u).
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We infer from assumption (f3) that there exist δ > 0 and C > 0 such that

δ‖un‖2
H1(RN ) ≤ θFan,bn(un) − (F ′

an,bn
(un), (un)) ≤ C.

Hence, there exists u ∈ H1(RN ) such that, passing to a subsequence if
necessary, un ⇀ u weakly in H1(RN ). It then follows from Strauss’ com-
pact imbeddings, see e.g. [39], that un converges strongly in Lp(RN) for any
p ∈ ]2, (N + 2)/(N − 2)[.

On the other hand, since un solves (3.2), assumption (f2) and Sobolev’s
inequality imply the existence of c > 0 such that

c ≤ ‖un‖H1(RN ).

We now conclude that u is a nontrivial solution of

−∆u+ au = bf(u),

so that u ∈ Na,b and we deduce from standard arguments that

E(a, b) ≤ Fa,b(u) ≤ lim inf
n→∞

Fan,bn(un).

Since Fan,bn(un) = E(an, bn), the claim follows.

We next prove E is upper semi-continuous. Let u ∈ Na,b be a least-energy
solution of (3.2). Consider the function g(t) = Fa,b(tu) on [0,∞[. It follows
from (f1) and (f3) that g(0) = 0, g(t) > 0 for small t > 0 and g(t) < 0 for
large t. Combining these facts with (f4), we deduce that t = 1 is the unique
maximum point of g. In particular, we have

Fa,b(u) = max
t≥0

Fa,b(tu).

Assume now (an, bn) → (a, b) as n → ∞. By the minimax characterization
of E(an, bn) and from what precedes, we infer that for each n ≥ 0, there
exists a unique tn such that

(3.5) E(an, bn) ≤ max
t≥0

Fan,bn(tu) = Fan,bn(tnu).

We now claim that tn → 1. Notice that the uniqueness of the maximum
point of g and the definition of the sequence (tn)n implies the claim follows as
soon as we prove that (tn)n is bounded and bounded away from 0. Observe
first that (tn)n is bounded. Indeed, we have an ≤ a, bn ≥ b and if tn → +∞
as n→ ∞, we deduce by (f3) that for n large enough,

Fan,bn(tnu) ≤ Fa,b(tnu) < 0,

which is absurd.
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We next prove that tn remains bounded away from zero. Indeed, this
follows from the superquadraticity of F which implies that for every ε > 0,
there exists Cε > 0 such that

Fan,bn(tnu) ≥ t2n(‖∇u‖2
L2(RN ) + (an − εbn)‖u‖2

L2(RN )) − Cεt
p
n‖u‖p

Lp(RN )
.

Hence, since ε is arbitrary and there exist a, b > 0 such that an ≥ a, bn ≤ b,
this last inequality shows that tn remains bounded away from zero. We are
now in a position to conclude the proof. Letting n go to infinity in (3.5), we
deduce that

lim sup
n→∞

E(an, bn) ≤ E(a, b).

Indeed, writing

Fan,bn(tnu) = (Fan,bn(tnu) − Fa,b(tnu)) + Fa,b(tnu),

we observe that the first term in the right hand side tends to 0 because
(tnu)n is bounded in H1(RN ) while taking into account that tnu → u in
H1(RN), we deduce that

Fa,b(tnu) → Fa,b(u).

Properties (ii) and (iii). Let b∗ ∈ R
+
0 be fixed and assume u ∈ H1(RN) is

a least energy critical point of Fa,b∗ . Assume a < a. Consider again the
function g(t) = Fa,b∗(tu) on [0,∞[. As in (i), we infer there exists t̄ > 0 such
that

Fa,b∗(t̄u) = max
t≥0

Fa,b∗(tu) ≥ E(a, b∗).

We now deduce that

E(a, b∗) ≤ Fa,b∗(t̄u) + (a− a)

∫
RN

t̄2|u|2

≤ max
t≥0

Fa,b∗(tu) + (a− a)

∫
RN

t̄2|u|2

< E(a, b∗),

so that (ii) follows. The property (iii) follows arguing in a similar way.

Property (iv). Let λ > 0 and for every u ∈ H1(RN ), write uλ(x) = u(λ1/2x).
Then, one has

Fλa,λb(uλ) = λ1−N/2Fa,b(u).

Since u �→ uλ is a bijection of H1(RN), this implies E(λa, λb)=λ1−N/2E(a, b).
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Property (v). Let µ > 0. For every u ∈ H1(RN), one has

Fa,µb(µ
−1/(p−1)u) = µ−2/(p−1)Fa,b(u),

so that E(a, µb) = µ−2/(p−1)E(a, b). Hence, the conclusion follows by com-
puting

E(a, b) = E(a.1, a.
b

a
.1) = a

p+1
p−1

−N
2 b−

2
p−1E(1, 1). �

It follows from that lemma and the continuity of V and K that C is
continuous from Ω → R

+ ∪ {∞}. When assuming more regularity on V
and K, the concentration function can be shown to be of class C1 on the set
where C is finite, see [38]. If we also assume that the positive radial ground
state of (3.4) is unique for every ξ such that K(ξ) > 0, then C(ξ) contains
all the information about possible concentration points. Indeed, Wang and
Zheng proved that in this case, bound state solutions concentrating on a
single point must have their peak converging to a critical points of C. We
refer to [38] for a precise statement and to [31] for a similar result in a more
general framework.

3.2. Decay of the ground state

We next derive a pointwise estimate for ground states of (3.2) which provides
information on the decay at infinity.

Proposition 4. Let u ∈ Na,b be such that

E(a, b) = Fa,b(u),

then, up to a translation, u is radial and radially decreasing. Moreover, for
every x ∈ R

N , we have

(3.6) |u(x)|2 ≤ C
2θ

θ − 2

E(a, b)

a1/2|x|(N−1)
,

where C is a positive constant that depends only on the dimension of the
space and θ is given in assumption (f3).

Proof. As u achieves the infimum on the Nehari manifold, it is a ground
state solution [39]. It is therefore radial and radially decreasing [19, 20, 36].
Then, by the inequality of Strauss, see e.g. [39], we infer that

|u(x)|2 ≤ C
‖∇u‖2 ‖u‖2

|x|N−1
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At last, since u ∈ Na,b, we deduce from (f3) that

(1
2
− 1

θ

) ∫
RN

|∇u|2 + a|u|2 ≤ Fa,b(u) = E(a, b)

so that the conclusion follows. �
As already noticed, it is well-known, at least when f is smooth, that

ground states decay exponentially at infinity, see Gidas, Ni and Niren-
berg [20]. The main point of Proposition 4 is that the inequality (3.6) does
only depend on the ground energy and holds uniformly for any ground state.
Using regularity theory, one can improve (3.6) and obtain usual exponential
decay estimates.

4. The penalization scheme

In this section, motivated by the paper of del Pino and Felmer [14], we
consider a modified problem which is the starting point for a local variational
analysis. We first focus on a suitable functional framework.

Formally, the elliptic equation in (2.1) is the Euler-Lagrange equation of
the functional

Iε(u) :=
1

2

∫
Ω

(
ε2|∇u|2 + V (x)|u|2)− ∫

RN

K(x)F (u).

It is quite natural to consider the functional Iε in the weighted Sobolev
space

Hε :=
{
u ∈ D1,2

0 (Ω)
∣∣∣ ∫

Ω

(
ε2|∇u|2 + V (x)|u|2) dx < +∞},

where we recall that D1,2
0 (Ω) is the closure of C∞

c (Ω) for the L2-norm of the
gradient. The space Hε is a Hilbert space with scalar product and norm
respectively defined by

(u|v)ε :=

∫
Ω

(
ε2∇u · ∇v + V (x)uv

)
dx,

‖u‖2
ε :=

∫
Ω

(
ε2|∇u|2 + V (x)|u|2) dx.

However, the assumptions on V and K do not ensure that Hε is neither em-
bedded in H1

0 (Ω), when Ω is not bounded, nor in Lp+1(Ω, K(x) dx). In par-
ticular Iε does not need to be finite for every u∈Hε so that Iε(u)∈R∪{−∞}.
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Moreover, even if V and K are bounded and bounded away from zero,
in which case the above-mentioned embeddings hold and the functional is
well-defined in H1

0 (Ω), the Palais-Smale condition usually fails without a
global assumption like one of those proposed by Rabinowitz [33] and Wang
and Zheng [38].

As discussed in the introduction, for small values of ε, Wang and Zheng
proved the existence of a positive solution assuming that

inf
x∈RN

A(x) <
lim inf |x|→∞ V (x)

p+1
p−1

−N
2

lim sup|x|→∞K(x)
2

p−1

.

In fact this condition implies that the Palais-Smale condition holds at the
mountain pass level of Iε for small ε. Since our assumptions allow V to
vanish and K to explode as |x| → ∞, we cannot tackle the problem via a
global variational approach.

In order to bypass these difficulties, we follow the penalization method
introduced by del Pino and Felmer [14]. This approach which can be seen as
a local variational approach, is well adapted to catch positive bound-states
when assuming that V is bounded away from zero. In fact the method
requires this last assumption in an essential way. In the next subsection, we
improve the penalization scheme by using a different penalized functional.

4.1. The Penalized functional

Assume there exists Λ ⊂ Ω whose closure is compact in Ω such that

inf
x∈Λ

C(x) < inf
x∈∂Λ

C(x),

where C is the concentration function defined by (3.3). We also assume
that Λ is chosen in such a way that

sup
x∈Λ

C(x) <∞.

The penalization consists in modifying the superquadratic term in Iε out-
side Λ. To do so, we first define f̃ : Ω × R

+ → R by

(4.1) f̃(x, s) := min (κV (x)s,K(x)f(s)) ,

where 0 < κ < 1. Then, denoting the characteristic function of the set Λ
by χΛ, we define g : Ω × R

+ → R by

(4.2) g(x, s) := χΛ(x)K(x)f(s) + (1 − χΛ(x))f̃(x, s).
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From now on, we also use the notation G(x, s) :=
∫ s

0
g(x, σ) dσ. One may

easily check that according to (f1)-(f4) and the assumptions on V and K, g
is a Carathéodory function satisfying

(g1) g(x, s) = o(s) as s→ 0+ uniformly in compact subsets of Ω ;

(g2) there exists 1 < p <
N + 2

N − 2
if N ≥ 3 or 1 < p < +∞ if N = 1, 2, such

that

lim
s→∞

g(x, s)

sp
= 0 ;

(g3) there exist 2 < θ ≤ p+ 1 and κ ∈ (0, 1) such that

0 < θG(x, s) ≤ g(x, s)s for all x ∈ Λ and any s > 0,

and

0 ≤ 2G(x, s) ≤ g(x, s)s ≤ κV (x)s2 for all x 	∈ Λ and any s > 0 ;

(g4) the function

s �→ g(x, s)

s

is nondecreasing for all x ∈ Ω.

We are now in a position to introduce the penalized functional

Jε(u) :=
1

2

(∫
Ω

ε2|∇u|2 + V (x)|u|2
)
−
∫

Ω

G(x, u).

Using classical arguments, we can check that (g2) and (g3) imply that Jε

is well-defined and that Jε ∈ C1(Hε,R). Moreover its critical points are
weak solutions of the boundary value problem

(4.3)

{ −ε2∆u+ V (x)u = g(x, u) in Ω,
u = 0 on ∂Ω.

We next show that Jε has a mountain pass geometry in Hε. We first
observe that 0 is a local minimum.

Lemma 5. Let g : R
+ → R be a Carthéodory function. If g satisfies as-

sumptions (g1)-(g3) and V : Ω → R
+ is a continuous function. Then, the

functional Jε achieves a local minimum at 0 in Hε.
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Proof. The proof easily follows from the estimate

Jε(u) =
1

2

(∫
Ω

ε2|∇u|2 + V (x)|u|2
)
−
∫

Λ

G(x, u) −
∫

Ω\Λ
G(x, u)

≥ 1 − κ

2
‖u‖2

ε +

∫
Λ

(κ
2
V (x)|u|2 −G(x, u)

)
.

Now, as V is continuous and positive, by classical arguments, see e.g. [32],
(g1) and (g2) imply ∫

Λ

G(x, u) = o(‖u‖2
ε), as u→ 0.

Therefore, the conclusion follows from the above estimate. �
On the other hand, the infimum of Jε is −∞. Indeed, if 0 	= u ∈ Hε has

support in Λ, then

Jε(λu) → −∞, as λ→ +∞.

We then define the minimax level

(4.4) cε := inf
γ∈Γε

max
t∈[0,1]

Jε(γ(t)),

where Γε is the set of continuous paths

(4.5) Γε := {γ ∈ C([0, 1],Hε) | γ(0) = 0, Jε(γ(1)) < 0} .
Now that the minimax setting is established, our next step is to check that Jε

satisfies some compactness condition. This is the object of the next subsec-
tion.

4.2. Palais-Smale

We first recall that (un)n ⊂ Hε is a Palais-Smale sequence for Jε at level cε if

Jε(un) → cε and J ′
ε(un) → 0 as n→ ∞.

We say that Jε satisfies the Palais-Smale condition, (PS) in short, if any
sequence (un)n ⊂ Hε for which Jε(un) is bounded and J ′

ε(un) → 0 as
n→ ∞ possesses a convergent subsequence.

The existence of a Palais-Smale sequence at level cε follows from standard
deformation arguments, see for example [39]. Hence, if Jε satisfies (PS), the
minimax level cε is a critical value of Jε. In the next lemma, we set ε = 1,
H = H1 and J = J1 to simplify the notations.
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Lemma 6. Let g : R
+ → R be a Carathéodory function satisfying (g1)-(g3)

and V : Ω → R
+ be a continuous function. If N = 2 and Ω is unbounded,

assume furthermore that

lim inf
|x|→∞

V (x)|x|2 > 0.

Then, the functional J : H → R satisfies (PS).

A special care is required when Ω is an unbounded two-dimensional do-
main, due to the failure of Hardy’s inequality in that case. This problem
is circumvented thanks to the following preliminary lemma which provide a
Hardy type inequality in dimension 2.

Lemma 7. Let Ω ⊂ R
2 be a regular exterior domain and V ∈ C(Ω; R+). If

lim inf
|x|→∞

V (x)|x|2 > 0,

then there exists C > 0 such that for every u ∈ D(Ω),∫
Ω

|u|2
dΩ(x)2

≤ C

∫
Ω

|∇u|2 + V (x)|u|2,

where dΩ(x) = d(x, ∂Ω) if ∂Ω 	= ∅ and dΩ(x) = 1 + |x| in the case where
Ω = R

2.

Remark 8. When N 	= 2 or Ω is bounded, then one has the stronger classical
Hardy inequality ∫

Ω

|u|2
dΩ(x)2

≤ C

∫
Ω

|∇u|2,

Moreover, one can take dRN (x) = |x|, see e.g. [22].

Proof of Lemma 7. Let us choose R > 1 such that R
N \B(0, R) ⊂ Ω, and

c := inf
|x|>R

V (x)|x|2 > 0.

Then, the set Ω′ = Ω∩B(0, 3R) is a Lipschitz bounded domain and dΩ′ ≤ dΩ

(dΩ′ ≤ 3RdΩ if Ω = R
2). Therefore, we infer from the classical Hardy ineq-

uality on bounded Lipschitz domains, see e.g. [22], that for every u ∈ D(Ω′),∫
Ω′

|u|2
dΩ(x)2

≤
∫

Ω′

|u|2
dΩ′(x)2

≤ C1

∫
Ω′
|∇u|2,

where C1 > 0.
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On the other hand, if |x| > 2R, then dΩ(x) ≥ |x|/2, so that for every
u ∈ D(RN \B(0, 2R)), we obtain∫

RN\B(0,2R)

|u|2
dΩ(x)2

≤ 4

∫
RN\B(0,2R)

|u|2
|x|2 ≤ 4

c

∫
RN\B(0,2R)

V (x)|u|2.

We next choose a cut-off function η ∈ D(Ω) such that η(x) = 1 if x ∈
B(0, 2R), 0 ≤ η(x) ≤ 1 if x ∈ B(0, 3R) and η(x) = 0 outside B(0, 3R).
Combining these inequalities, we then get for every u ∈ D(Ω),

1

2

∫
Ω

|u|2
dΩ(x)2

≤
∫

Ω∩B(0,3R)

|ηu|2
dΩ(x)2

+

∫
RN\B(0,2R)

|(1 − η)u|2
dΩ(x)2

≤ C1

∫
Ω∩B(0,3R)

|∇(ηu)|2 +
4

c

∫
RN\B(0,2R)

V (x)|u|2

≤ 2C1

∫
Ω

|∇u|2 +

(
C2‖∇η‖2

∞ +
4

c

)∫
Ω

V (x)|u|2,

where C2 > 0 essentially depends on the lower bound of V in the annulus
B(0, 3R) \B(0, 2R). This concludes the proof. �

Proof of Lemma 6. Throughout the proof, C denotes a positive constant
that can change from line to line. Let (un)n ⊂ H be a Palais-Smale sequence,
that is J (un) is bounded and J ′(un) → 0 as n→ ∞.

Claim 1: the sequence (un)n is bounded in H. By assumption, we have∣∣∣∣12
∫

Ω

(|∇un|2 + V (x)|un|2
)− ∫

Ω

G(x, un)

∣∣∣∣ ≤ C

and for n large enough,

|(J ′(un), un)| =

∣∣∣∣
∫

Ω

(|∇un|2 + V (x)|un|2
)− ∫

Ω

g(x, un)un

∣∣∣∣
≤ ‖J ′(un)‖ ‖un‖ ≤ ‖un‖.

Combining these inequalities, we infer from (g3) that

θ − 2

2

∫
Ω

(|∇un|2 + V (x)|un|2
) ≤ κ

θ − 2

2

∫
Ω\Λ

V (x)|un|2 + C + ‖un‖.

Since κ < 1 in (4.1) it follows that∫
Ω

(|∇un|2 + V (x)|un|2
) ≤ C(1 + ‖un‖).

This proves the claim.



320 D. Bonheure and J. Van Schaftingen

Claim 2: for all δ > 0, there exists a compact set Z ⊂ Ω such that

(4.6) lim sup
n→∞

∫
Ω\Z

(|∇un|2 + V (x)|un|2
) ≤ δ.

Let δ > 0 be given. We define a cut-off function ηλ in the following way.
Assume that ζ ∈ C∞(R,R) is such that 0 ≤ ζ(s) ≤ 1 if |s| ∈ [1, 2] and

ζ(s) =

{
0 if |s| ≤ 1,

1 if |s| ≥ 2.

We then define ηλ ∈ C∞(Rn,R) by

(4.7) ηλ(x) := ζ

(
log dΩ(x)

λ

)
,

where again dΩ(x) = d(x, ∂Ω) if ∂Ω 	= ∅ while dΩ(x) = 1+ |x| when Ω = R
N .

Notice that the function dΩ is Lipschitz and |∇dΩ| ≤ 1 almost everywhere
so that ηλun ∈ H. Since (un) is bounded, we infer that

(J ′(un), ηλun) = o(1) as n→ ∞.

Assuming that λ has been chosen large enough so that ηλ ≡ 0 on Λ, we then
compute

(4.8)

∫
Ω

(|∇un|2 + V (x)|un|2
)
ηλ =

∫
Ω

g(x, un)unηλ−
∫

Ω

un∇un·∇ηλ+o(1).

For the first term in the right-hand side of the equality, we observe that
since ηλ(x) = 0 for any x ∈ Λ, we have

(4.9)

∫
Ω

g(x, un)unηλ ≤ κ

∫
Ω

V (x)|un|2ηλ.

The second term can be rewritten as∫
Ω

un∇un · ∇ηλ =

∫
Ω

un

dΩ(x)
∇un · (dΩ(x)∇ηλ).

From the classical Hardy inequality if N > 2 or Ω is bounded (see e.g. [22]),
or Lemma 7 when N = 2 and Ω is not bounded, one has∫

Ω

|un|2
dΩ(x)2

≤ C‖un‖2
H.
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On the other hand, we compute

‖dΩ∇ηλ‖∞ = sup
x∈Ω

∣∣∣∣ dΩ(x)ζ ′
(

log dΩ(x)

λ

)
1

λdΩ(x)
∇dΩ(x)

∣∣∣∣ ≤ C

λ
.

Combining these last estimates with Cauchy-Schwarz inequality, we infer
that

(4.10)

∣∣∣∣
∫

Ω

un∇un · ∇ηλ

∣∣∣∣ ≤ C

λ
‖un‖2

H.

Now, taking (4.9) and (4.10) into account, we deduce from (4.8) that

(1 − κ)

∫
Ω

(|∇un|2 + V (x)|un|2
)
ηλ ≤ C

λ
‖un‖H + o(1).

If λ > 0 is sufficiently large, (4.6) thus holds with

Z = {x ∈ Ω : e−2λ ≤ dΩ(x) ≤ e2λ}.
Conclusion. We deduce from Claim 1 that, up to a subsequence, (un)n

converges weakly in H to some function u ∈ H. Now, fix δ > 0 and let
Z ⊃ Λ be such that (4.6) holds and∫

Ω\Z
V (x)|u|2 ≤ δ.

Let us write

‖un − u‖2
H = (J ′(un) − J ′(u), un − u) +

∫
Ω

(g(x, un) − g(x, u))(un − u) dx.

Since J ′(un) → 0 and un converges weakly to u, (J ′(un)−J ′(u), un−u) → 0
as n→ ∞. By (g3), one has

lim sup
n→∞

∫
Ω\Z

|g(x, un) − g(x, u)| |un − u| dx

≤ lim sup
n→∞

2κ

∫
Ω\Z

V (x)(|un|2 + |u|2) ≤ 4κδ,

where the second inequality comes from (4.6) and Fatou’s Lemma. On the
other hand, by Rellich’s compactness theorem, un → u in Lp+1(Z) so that
by (g2), ∫

Z

(g(x, un) − g(x, u))(un − u) dx→ 0.

One thus concludes that for every δ > 0,

lim sup
n→∞

‖un − u‖2
H ≤ 4κδ

i.e. un → u strongly in H. �
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4.3. Solutions of the modified problem

Having proved that (PS) holds, we may state the following existence result
for the modified problem (4.3).

Proposition 9. Suppose that g : R
+ → R is a Carathéodory function sat-

isfying (g1)–(g3) and V ∈ C(Ω) is positive. If N = 2 and Ω is unbounded,
assume moreover that V satisfies

lim inf
|x|→∞

V (x)|x|2 > 0.

Then, the functional Jε has a critical point uε ∈ Hε which is a weak positive
solution of (4.3).

The proof being straightforward, we skip it. We next analyze the regu-
larity of the solution.

Proposition 10. Under the assumptions of Proposition 9, any solution
uε ∈ Hε of (4.3) satisfies uε ∈ W 2,q

loc (Ω) for every q < ∞. In particular,
u ∈ C1,α

loc (Ω) for every 0 < α < 1.

The proof follows from a classical bootstrap argument so that we omit it.

Remark 11. Observe that this result cannot be improved, even if we add
further regularity assumptions on Ω and V . Indeed, in general, one cannot
prove that u ∈ C2,α(Ω) or u ∈W 3,1

loc (Ω). This is due to the fact that even for
a smooth u, g(x, u) does not need to be neither in C0,α(Ω) nor in W 1,1

loc (Ω).

4.4. Estimate of the moutain pass level

We deduce from the preceding sections that the mountain pass level cε de-
fined by (4.4) is a critical level for Jε. In order to prove that this minimax
level yields a solution of the original problem for small values of ε, we need
a sharp energy estimate.

Let Λ ⊂⊂ Ω be such that

(4.11) inf
ξ∈Λ

C(ξ) < inf
ξ∈∂Λ

C(ξ)

and supξ∈Λ C(ξ) < ∞. As already mentioned, the continuity of V and K
implies that the concentration function C is continuous in Λ. We therefore
deduce the existence of ξ0 ∈ Λ such that

(4.12) C(ξ0) = min
Λ

C.
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To save notation, let us denote by F0 : H1(RN) → R the functional defined
by (3.1) with a = V (ξ0) and b = K(ξ0). We also define

(4.13) c0 := inf
γ∈Γ0

max
t∈[0,1]

F0(γ(t)),

where

Γ0 :=
{
γ ∈ C([0, 1], H1(RN)) | γ(0) = 0, F0(γ(1)) < 0

}
.

One of the key ingredients to prove Theorem 1 is a comparison between the
levels cε and c0 for ε small.

Lemma 12. Suppose that f : R
+ → R

+ is a continuous function satisfying
(f1)-(f3), V, K : Ω → R

+ are continuous functions and g : Ω × R
+ → R is

defined by (4.2). If N = 2 and Ω is unbounded, assume moreover that V
satisfies

lim inf
|x|→∞

V (x)|x|2 > 0.

Then, the functional Jε has a critical point uε ∈ Hε such that

Jε(uε) ≤ εNc0 + o(εN), as ε→ 0.

Moreover, there exists C > 0 such that

‖uε‖2
Hε

≤ CεN .

Proof. It follows from Proposition 9 that the mountain pass value cε is a
critical level for Jε. From the definition of c0, we infer that for every δ > 0,
there exists a continuous path γδ : [0, 1] → H1(RN) such that γδ(0) = 0,
F0(γδ(1)) < 0 and

c0 ≤ max
t∈[0,1]

F0(γδ(t)) ≤ c0 + δ.

Let η ∈ C∞(RN ,R) be a cut-off function, with support in Λ, such that
η(x) = 1 for x in a neighbourhood of ξ0 defined by (4.12). We then define
the path γ̄δ : [0, 1] → Hε by

γ̄δ(t) : x→ η(x)γδ(t)

(
x− ξ0
ε

)
.

Rescaling in the space variable leads to

Jε(γ̄δ(t)) =
εN

2

∫
Ωε

(|∇(η(εx+ ξ0)γδ(t))|2 + V (εx+ ξ0)|η(εx+ ξ0)γδ(t)|2
)

− εN

∫
Ωε

K(εx+ ξ0)F (η(εx+ ξ0)γδ(t)),
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where Ωε := {x ∈ R
N | εx + ξ0 ∈ Ω}. Hence, a straightforward but rather

tedious computation shows that

Jε(γ̄δ(t)) = εNF0(γδ(t)) + o(εN) as ε → 0.

It follows that for ε small enough, γ̄δ belongs to the class of paths Γε defined
by (4.5). We therefore conclude that

Jε(uε) = inf
γ∈Γε

max
t∈[0,1]

Jε(γ(t))

≤ max
t∈[0,1]

Jε(γ̄δ(t))

≤ εN(c0 + δ) + o(εN).

Since the last inequality holds for any δ > 0, the first statement is estab-
lished.

Consider now a critical point uε ∈ Hε at the mountain pass energy level.
To prove the estimate on the norm of uε, we observe, arguing as in the first
claim of Lemma 6, that

(1 − κ)
(1
2
− 1

θ

) ∫
Ω

(
ε2|∇uε|2 + V (x)|uε|2

) ≤ Jε(uε).

Hence the proof follows from the energy estimate. �

5. Asymptotics of solutions

We study in this section, the asymptotic behaviour of the mountain pass
solution of the modified problem (4.3) as ε → 0. In particular, we derive
a uniform estimate of uε on ∂Λ, see Proposition 21, which is a main step
in the proof of the existence of a solution of the original boundary value
problem (2.1).

5.1. Estimates on sequences of rescaled solutions

Since the Hε-norm of the solution uε of the modified problem is of the
order εN/2, it is natural to rescale uε as uε(xε + ε·) around a well-chosen
family of points xε.

We first observe that such sequences are relatively compact for the uni-
form C1-convergence over compact sets. Moreover, even if there is no a
priori guarantee that uε belongs to H1(Ω), any limit v of a subsequence of
rescaled solutions will be in H1(RN), i.e. the fact that uε ∈ H1

loc(R
N) yields

v ∈ H1(RN).
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Lemma 13. Suppose the assumptions of Lemma 12 are satisfied and assume
uε ∈ H1

loc(Ω) is the positive solution of (4.3) obtained in that lemma. Let
(εn)n ⊂ R

+ and (xn)n ⊂ Ω be sequences such that εn → 0 and xn → x̄ ∈ Ω as
n→ ∞ and denote by (vn)n the sequence defined by vn(x) = uεn(xn + εnx).
Then, there exists v ∈ H1(RN) such that, along a subsequence that we still
denote by (vn)n,

vn

C1
loc(R

N )−→ v .

Moreover, for every R > 0 and q > 0, we have

(5.1) sup
n∈N

‖vn‖W 2,q(BR) <∞,

and ∫
RN

|∇v|2 = lim
R→∞

lim
n→∞

ε−N
n

∫
Bn(R)

ε2
n|∇uεn|2 ,∫

RN

V (x̄)|v|2 = lim
R→∞

lim
n→∞

ε−N
n

∫
Bn(R)

V (x)|uεn|2 ,

where Bn(R) := B(xn, εnR). In particular, we have

(5.2) lim
R→∞

lim
n→∞

ε−N
n

∫
An(R)

ε2
n|∇uεn|2 + V (x)|uεn|2 = 0 ,

where An(R) := B(xn, εnR) \B(xn, εnR/2).

Proof. First observe that each vn solves the equation

(5.3)
−∆vn + V (xn + εnx) vn = χΛ(xn + εnx)K(xn + εnx)f(vn)

+(1 − χΛ(xn + εnx))f̃(xn + εnx, vn), x ∈ Ωn,

where Ωn := {x ∈ R
N | xn + εnx ∈ Ω}. We now infer from the estimates of

Lemma 12 that
Jεn(vn) ≤ c0 + o(1) as n→ ∞

and for all n ∈ N,

(5.4)

∫
Ωn

(|∇vn|2 + V (xn + εnx)|vn|2
)
< C,

with C > 0 independent of n.
Define again a cut-off function ηR ∈ C∞

c (RN) such that η(x) = 1 if
|x| ≤ R/2, η(x) = 0 if |x| ≥ R and ‖∇ηR‖∞ ≤ C/R for some C > 0.
Choose Rn such that Rn → ∞, εnRn → 0 and B(xn, 2εnRn) ⊂ Ω and define
wn ∈ H1

loc(R
N) by

wn(x) := ηRn(x)vn(x).
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We first observe that

(5.5)

∫
RN

|wn|2 ≤
∫

BRn

|vn|2 ≤ 1

infBn(R) V

∫
Ωn

V (xn + εnx)|vn|2.

Observe that V being positive in Ω, the convergence of xn to a point in Ω
implies there exists m > 0 such that V (x) ≥ m for every x ∈ B(xn, εnRn).
Hence we deduce from (5.5) the estimate

(5.6)

∫
RN

|wn|2 ≤ C

m
.

On the other hand, we compute

(5.7)

∫
RN

|∇wn|2 =

∫
RN

|∇ηRn|2|vn|2+
∫

RN

|∇vn|2|ηRn|2+2

∫
RN

∇vn·∇ηRnηRnvn.

For the first term on the right-hand side, we have the estimate

(5.8)

∣∣∣∣
∫

RN

|∇ηRn|2|vn|2
∣∣∣∣ ≤ C

Rn
‖vn‖L2(BRn ),

while for the last one, we infer from Cauchy-Schwarz inequality that

(5.9)

∣∣∣∣
∫

RN

∇vn · ∇ηRnηRnvn

∣∣∣∣ ≤ C

Rn
‖∇vn‖L2(BRn )‖vn‖L2(BRn ).

Since we have

‖vn‖H1(BRn ) ≤ 1

m

∫
Ωn

(|∇vn|2 + V (xn + εnx)|vn|2
) ≤ C

m
,

collecting the estimates (5.6), (5.7), (5.8) and (5.9), we infer that (wn)n

is bounded in H1(RN). Since wn solves (5.3) on BRn/2 for all n, classical
regularity estimates yield then (5.1).

We may now extract from (wn)n a subsequence, that we still denote
by (wn)n for simplicity, that converges weakly in H1(RN) to some function
v ∈ H1(RN). By (5.1), it is clear that wn converges to v uniformly in
C1(K), for every compact K ⊂ R

N . Moreover, for n large enough, wn = vn

in compact sets so that vn → v in C1
loc(R

N).
The remaining estimates follow from the continuity of V and the fact

that v ∈ H1(RN). �
A useful application of Lemma 13 consists in estimating the action of uε

in neighbourhoods of points. In particular, this will provide a lower bound of
the action depending on the number and on the location of the local maxima
of uε.
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Lemma 14. Suppose that the assumptions of Lemma 12 are satisfied and
assume moreover that (f4) holds. Let uε ∈ H1

loc(Ω) be the positive solution
of (4.3) obtained in Lemma 12 and the sequences (εn)n ⊂ R

+ and (xn)n ⊂ Ω
be such that εn → 0, xn → x̄ as n→ ∞ and

(5.10) lim inf
n→∞

uεn(xn) > 0.

Then, up to a subsequence, we have
(5.11)

lim inf
R→∞

lim inf
n→∞

ε−N
n

(∫
Bn(R)

1

2
(ε2

n|∇uεn|2 + V (x)|uεn|2) −G(x, uεn)

)
≥ C(x̄),

where Bn(R) := B(xn, εnR).

Proof. Passing to a subsequence if necessary, we may assume that there
exists v ∈ H1(RN) such if vn(y) = uεn(xn + εny), vn → v in C1

loc(R
N).

Since Λ is smooth, still going to a subsequence if required, the sequence of
characteristic functions χn(x) = χΛ(xn + εnx) converges almost everywhere
to a measurable function χ satisfying 0 ≤ χ(x) ≤ 1. We then deduce that v
solves the limiting equation

(5.12) −∆v + V (x̄)v = g̃(x, v), x ∈ R
N ,

where
g̃(x, v) := χ(x)K(x̄)f(v) + (1 − χ(x))f̃(x̄, v).

By (5.10), we know that v(0) = limn→∞ vn(0) > 0, so that v is not identically
zero.

As v is a nonzero solution of (5.12), it belongs to the Nehari manifold
associated to this equation, that is

N := {u ∈ H1(RN) | u 	= 0, (G′(u), u) = 0},
G : H1(RN) → R being the functional defined by

G(u) :=
1

2

(∫
RN

|∇u|2 + V (x̄)

∫
RN

|u|2
)
−
∫

RN

G̃(x, u),

where

G̃(x, u) :=

∫ u

0

g̃(x, s) ds.

Since g̃(x, v) ≤ K(x̄)f(v) in R
N × R

+, it follows that for all u ∈ H1(RN),

G(u) ≥ 1

2

(∫
RN

|∇u|2 + V (x̄)

∫
RN

|u|2
)
−K(x̄)

∫
RN

F (u).
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Therefore, as g̃ satisfies the condition (g4), we deduce that

G(v) = max
t>0

G(tv) ≥ inf
u∈H1(RN )

u �=0

sup
t>0

G(tu)

≥ inf
u∈H1(RN )

u �=0

sup
t>0

FV (x̄),K(x̄)(tu) = C(x̄).

Finally, we claim that

lim inf
R→∞

lim inf
n→∞

1

2

∫
BR

|∇vn|2 + V (x)|vn|2 −
∫

BR

G(x, vn) ≥ G(v).

Let us write for notational convenience

hn :=
1

2

(|∇vn|2 + V (xn + εnx)|vn|2
)−G(xn + εnx, vn).

Then, for every R > 0, the convergence of vn in C1
loc(R

N) implies that

lim
n→∞

∫
BR

hn =
1

2

∫
BR

(|∇v|2 + V (x̄)|v|2)− ∫
BR

G̃(x, v).

On the other hand, since v ∈ H1(RN), for any δ > 0, there exists R0 > 0
such that if R > R0

lim
n→∞

∫
BR

hn ≥ G(v) − δ.

This proves the claim and completes the proof. �

The estimate (5.11) only becomes useful once we can estimate what
happens outside small balls. That is the object of the next lemma.

Lemma 15. Let the assumptions of Lemma 12 be satisfied and assume uε ∈
H1

loc(Ω) is the positive solution of (4.3) obtained in that lemma. Let (εn)n ⊂
R

+ and (xi
n)n ⊂ Ω, 1 ≤ i ≤ K, be sequences such that εn → 0 and xi

n →
x̄i ∈ Λ̄ as n→ ∞. Then, up to a subsequence, we have

(5.13)

lim inf
R→∞

lim inf
n→∞

ε−N
n

(∫
Ω\Bn(R)

1

2
(ε2

n|∇uεn|2 + V (x)|uεn|2) −G(x, uεn)

)
≥ 0,

where Bn(R) :=

K⋃
i=1

B(xi
n, εnR).
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Proof. Let ηR,εn be a smooth cut-off function such that ηR,εn ≡ 0 in
Bn(R/2), ηR,εn ≡ 1 in Ω \ Bn(R) and |∇ηR,εn| ≤ 2/(εnR). As (g3) holds, we
have

(5.14)
1

2

∫
Ω\Bn(R)

ε2
n|∇uεn|2 + V (x)|uεn|2 −

∫
Ω\Bn(R)

G(x, uεn)

≥ 1

2

∫
Ω\Bn(R)

ε2
n|∇uεn|2 + V (x)|uεn|2 − g(x, uεn)uεn.

Taking uεnηR,εn as test function, one obtains∫
Ω

ε2
n∇uεn · ∇(ηR,εnuεn) + ηR,εnV (x)|uεn|2 − ηR,εng(x, uεn)uεn = 0.

Hence, the right-hand side of (5.14) can be written as

−1

2

∫
An(R)

ε2
nuεn∇uεn ·∇ηR,εn+

(
ε2

n|∇uεn|2 + V (x)|uεn|2 − g(x, uεn)uεn

)
ηR,εn ,

where An(R) := Bn(R)\Bn(R/2). For the first term in this expression, using
the estimate of Lemma 12, we infer that

(5.15)

∣∣∣∣lim inf
n→∞

ε−N
n

∫
An(R)

ε2
nuεn∇uεn · ∇ηR,εn

∣∣∣∣ ≤ C

R
sup

1≤i≤K

1

V (x̄i)1/2
.

For the second one, using the growth assumptions on g, we get∣∣∣∣lim inf
n→∞

ε−N
n

∫
An(R)

(ε2
n|∇uεn|2 + V (x)|uεn|2 − g(x, uεn)uεn)ηR,εn

∣∣∣∣
≤ lim inf

n→∞
ε−N

n

K∑
i=1

Ci(I
2
i,n,R + Ip+1

i,n,R),

where the constants Ci only depend on x̄i, and

Ii,n,R =

(∫
B(xi

n,εnR)\B(xi
n,εnR/2)

(
ε2

n|∇uεn|2 + V (x)|uεn|2
)
ηR,εn dx

)1/2

.

Hence, taking the estimates (5.14) and (5.15) into account, the conclusion
follows from Lemma 13. �

Proposition 16. Suppose that the assumptions of Lemma 12 are satisfied
and assume moreover that (f4) holds. Let uε ∈ H1

loc(Ω) be the positive solu-
tion of (4.3) obtained in Lemma 12, (εn)n ⊂ R

+ and (xi
n)n ⊂ Ω be sequences
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such that εn → 0 and for 1 ≤ i ≤ K, xi
n → x̄i ∈ Λ̄ as n → ∞. If for every

1 ≤ i < j ≤ K, we have

lim sup
n→∞

|xi
n − xj

n|
εn

= ∞

and if for every 1 ≤ i ≤ K,

lim inf
n→∞

uεn(xi
n) > 0,

then

lim inf
n→∞

ε−N
n J (uεn) ≥

K∑
i=1

C(x̄i).

Proof. First observe that going to a subsequence if necessary, we may
assume that for every 1 ≤ i < j ≤ K, we have

lim
n→∞

|xi
n − xj

n|
εn

= ∞.

We infer from Lemma 14 and Lemma 15 that up to a subsequence, for any
fixed δ > 0, we can choose R large enough so that

lim inf
n→∞

ε−N
n

(
1

2

∫
Ω\Bn(R)

ε2
n|∇uεn|2 + V (x)|uεn|2 −

∫
Ω\Bn(R)

G(x, uεn)

)
≥ −δ,

where Bn(R) :=

K⋃
i=1

B(xi
n, εnR) and for every 1 ≤ i ≤ K,

lim inf
n→∞

ε−N
n

(
1

2

∫
Bi

n(R)

ε2
n|∇uεn|2 + V (x)|uεn|2 −

∫
Bi

n(R)

G(x, uεn)

)
≥ C(x̄i)−δ,

where Bi
n(R) := B(xi

n, εnR). Now, as for n sufficiently large, the balls Bi
n(R)

are mutually disjoint, we may decompose J (uεn) as

J (uεn) =
K∑

i=1

(
1

2

∫
Bi

n(R)

ε2
n|∇uεn|2 + V (x)|uεn|2 −

∫
Bi

n(R)

G(x, uεn)

)

+
1

2

∫
Ω\∪K

i=1Bi
n(R)

ε2
n|∇uεn|2 + V (x)|uεn|2 −

∫
Ω\∪K

i=1Bi
n(R)

G(x, uεn),

concluding therefore that

lim inf
n→∞

ε−N
n J (uεn) ≥

K∑
i=1

C(x̄i) − (K + 1)δ.

Since this can be done for every subsequence, the conclusion holds for the
whole sequence. �
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In the case where the xn’s are local maxima of uεn and their cluster points
are all inside Λ, the estimates of Lemma 13 can be refined. In particular,
we obtain a common decay estimate for any converging subsequence, see
Proposition 20. We first consider the following preliminary lemma.

Lemma 17. Let f ∈ C(R), V ∈ C(Ω; R+) and K ∈ C(Ω; R+) be given and
assume g : Ω × R → R is defined by (4.2). Let uε ∈ H1

loc(Ω) be a positive
continuous solution of (4.3). If yε ∈ Ω is a local maximum point of uε such
that uε(yε) > 0, then

(5.16) f(uε(yε))/uε(yε) ≥ V (yε)/K(yε).

Proof. Suppose for the sake of contradiction that (5.16) does not hold.
Since uε, V and K are continuous, there exists ρ > 0 such that for every
x ∈ B(yε, ρ), we have

f(uε(x))/uε(x) < V (x)/K(x).

By definition of g, the function uε then satisfies the inequality

−ε2∆uε + V (x)uε < K(x)f(uε)

in B(yε, ρ). Consequently, there holds

−∆uε < 0

in B(yε, ρ). But, we then deduce, using the strong maximum principle for
subharmonic functions, that yε is not a local maximum of uε, which is a
contradiction. �

Proposition 18. Suppose the assumptions of Lemma 12 are satisfied and
assume uε ∈ H1

loc(Ω) is the positive solution of (4.3) obtained in that lemma.
Let (εn)n ⊂ R

+ and (xn)n ⊂ Ω be sequences such that εn → 0, xn is a local
maximum point of uεn and xn → x̄ ∈ Λ as n → ∞. Let (vn)n denote the
sequence defined by vn(x) = uεn(xn + εnx). Then, there exists a positive
function v ∈ H1(RN) ∩ C1(RN) such that

(5.17) −∆v + V (x̄)v = K(x̄)f(v),

v achieves a maximum at 0 and, along a subsequence,

vn

C1
loc(R

N )−→ v .
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Proof. By Lemma 13, we infer the existence of a cluster point v ∈ H1(RN)
of vn = uεn(xn + εn·) in C1

loc(R
N ). Since xn → x̄ in Λ, v solves (5.17) and

as vn attains a maximum at 0, v also achieves a maximum at 0. We now
deduce from Lemma 17 that

f(vn(0))/vn(0) ≥ V (xn)/K(xn)

so that
f(v(0))/v(0) ≥ V (x̄)/K(x̄),

and hence v(0) > 0. �
Remark 19. If moreover f ∈ Ck,1(R), V and K are of class Ck,α, for some
k ≥ 0 and α > 0, similar regularity estimates then yield the convergence
vn → v in Ck+2

loc (RN).

Proposition 20. Suppose the assumptions of Lemma 12 are satisfied and
assume uε ∈ H1

loc(Ω) is the positive solution of (4.3) obtained in that lemma.
Let xε denote a local maximum point of uε and assume moreover that all the
cluster points of the set {xε | 0 < ε ≤ ε0} are inside Λ. Then, there exists
C > 0 such that

uε(xε + εy) ≤ C

|y|(N−1)/2
+ o(1),

uniformly in y over compact subsets as ε→ 0.

Proof. The proof is a direct consequence of Proposition 4 and Proposi-
tion 18, taking also the boundedness of the concentration function C, defined
by (3.3), in Λ into account. �

5.2. Uniform convergence on ∂Λ

The main consequence of the previous analysis of sequences of rescaled solu-
tions is the following estimate on the boundary of Λ. As already discussed,
this estimate is crucial in our approach.

Proposition 21. Suppose that f : R
+ → R

+ is a continuous function
satisfying (f1)-(f4) and V, K : Ω → R

+ are continuous functions. Assume
that the open set Λ ⊂⊂ Ω satisfies (4.11) and g : Ω × R

+ → R is defined
by (4.2). If N = 2 and Ω is unbounded, assume moreover that V satisfies

lim inf
|x|→∞

V (x)|x|2 > 0.

Then, the family (uε)ε ⊂ H1
loc(Ω) of positive solutions of (4.3) obtained in

Lemma 12 satisfies
lim
ε→0

sup
x∈∂Λ

uε(x) = 0.
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Proof. Suppose by contradiction that there exist sequences (εn)n ⊂ R
+

and (xn)n ⊂ ∂Λ such that εn → 0 and

lim inf
n→∞

uεn(xn) > 0.

Then, going to a subsequence if necessary, xn → x̄ ∈ ∂Λ and we deduce
from Proposition 16 that

lim inf
n→∞

ε−N
n J (uεn) ≥ C(x̄),

contradicting the energy estimate of Lemma 12. �

6. Solutions of the initial problem

In this section, we prove that for ε small enough, the solutions of the modified
problem (4.3) do solve the initial problem (2.1). Theorem 1 stated in the
introduction is a particular case of the following more general result.

Theorem 22. Suppose Ω ⊂ R
N is a regular bounded or exterior domain.

Let V, K ∈ C(Ω,R+) satisfy (Gf,∂Ω) if ∂Ω 	= ∅ and one set (Gi
f,∞) of growth

conditions if Ω is unbounded. Let Λ ⊂⊂ Ω be open and bounded and assume

(6.1) inf
x∈Λ

C(x) < inf
x∈∂Λ

C(x),

where C is defined by (3.3). Then there exists ε0 > 0 such that for every
0 < ε < ε0, the Dirichlet problem (2.1) has at least one positive solution uε.

We already know from Lemma 12 that the modified problem (4.3) pos-
sesses a positive solution uε. We will prove that for ε small enough, this
solution actually solves (2.1). Our arguments rely on the construction of
suitable comparison functions in order to obtain good decay estimates on
the solution uε at infinity or close to ∂Ω. These are worked out in the next
subsections.

6.1. Maximum principle

As in the previous section, Ω ⊂ R
N is assumed to have a bounded C1,α

boundary. We first define a weak notion of upper and lower solutions for
the linear operator LW,ε defined formally by

(6.2) LW,εu = −ε2∆u+W (x)u,

where W is a continuous nonnegative function and ε > 0.
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Definition 23. Let Ω ⊂ R
N be a domain and W ∈ C(Ω) be nonnegative.

A function v ∈W 1,1
loc (Ω) is a lower solution of the linear operator LW,ε, for-

mally defined by (6.2) where ε > 0, if for every ϕ ∈ C∞
c (Ω) such that ϕ ≥ 0,

(6.3)

∫
Ω

(
ε2∇v · ∇ϕ+W (x)vϕ

) ≤ 0.

A function v ∈ H1
loc(Ω) is an upper solution of LW,ε if −v is a lower

solution.

The use of weak solutions is justified by Remark 11. We next state a
maximum principle associated to this class of weak solutions.

Proposition 24. Let Ω ⊂ R
N be a regular bounded or exterior domain

and LW,ε be the linear operator formally defined by (6.2) where ε > 0 and
W ∈ C(Ω; R) is nonnegative. Assume that

1. u ∈ H1
loc(Ω) is a lower solution of LW,ε ;

2. ∇u+ ∈ L2(Ω) ;

3. if N = 2 and Ω is unbounded,∫
Ω

u2
+

1 + |x|2 <∞.

Then, if u+ = 0 on ∂Ω, we have u+ = 0 in Ω.

Remark 25. The hypothesis u ∈ H1
loc together with the summability condi-

tion ∇u+ ∈ L2(Ω), imply that u+ ∈ H1(U) where U is a bounded neighbour-
hood of the boundary ∂Ω. Therefore, by the Sobolev trace embedding, u+ has
a trace on ∂Ω.

Remark 26. When N > 2 or Ω is bounded, the assumption (3) is indeed
unnecessary since in fact, it is a consequence of Hardy’s inequality.

Proof of Proposition 24. First notice that since u ∈ H1
loc(Ω), the varia-

tional inequality (6.3) holds in fact for every ϕ ∈ H1
c (Ω), that is the set

of compactly supported functions of H1(Ω). Let ηλ be the cut-off function
defined by (4.7) in the proof of Lemma 6. Taking (1−ηλ)u+ as test function
in (6.3), we get∫

Ω

(1 − ηλ)(ε
2|∇u+|2 +W (x)u2

+) ≤
∫

Ω

∇u+ · ∇ηλu+.
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Since u+ = 0 on ∂Ω, taking the assumptions (2) and (3) into account, we
may argue as in the proof of Lemma 6 to estimate the right-hand side of this
last inequality. We then infer this right-hand side is of order 1/λ as λ→ ∞.
On the other hand, it is clear that ηλ → 0 as λ → ∞. Therefore, as W is
nonnegative, Fatou’s Lemma yields∫

Ω

ε2|∇u+|2 +W (x)u2
+ ≤ lim inf

λ→∞

∫
Ω

∇u+ · ∇ηλu+ = 0.

Hence, we conclude that u+ = 0. �

6.2. Comparison functions

We first consider comparison functions close to the boundary. Along a
smooth boundary, it is possible to construct a harmonic function that decay
uniformly when approaching the boundary.

Proposition 27. Let Ω be a regular bounded or exterior domain in R
N with

N ≥ 2. Assume Λ ⊂ Ω is a regular subdomain such that Λ̄ ⊂ Ω. Then,
there exists a function ψb such that ∇ψb ∈ L2(Ω),

−∆ψb ≥ 0 and ψb(x) ≤ C
d(x, ∂Ω)

1 + d(x, ∂Ω)

on Ω \ Λ̄,
ψb = 1

on Λ and ψb(x) = 0 for x ∈ ∂Ω.

Proof. Choose U ⊂ Ω such that U ∩ Λ = ∅, U is bounded with a regular
boundary and ∂Ω ⊂ ∂U . Define ψb : Ω̄ \ Λ → R by

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

∆ψb = 0 in U ,

ψb = 0 on ∂Ω,

ψb = 1 on ∂U \ ∂Ω.

ψb = 1 on Ω \ U .

The function ψb is clearly subharmonic. The regularity hypothesis on Ω
and U imply that ψb ∈ C1,α(Ū). Therefore, we have

ψb(x) ≤ C
d(x, ∂Ω)

1 + d(x, ∂Ω)

for x ∈ Ω \ Λ and ∇ψb ∈ L2(Ω). �
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The next proposition deals with comparison functions at infinity.

Proposition 28. Let N ≥ 1, U ⊂ R
N be unbounded and W ∈ C(U ; R+).

Assume either

(i) lim inf
x→∂U

W (x) > 0 and there exists α < 2 such that

lim inf
|x|→∞

W (x)|x|α > 0,

and ψ∞(x) = exp(−λ(1 + |x|2)1/2−α/4), where λ > 0, or

(ii) lim inf
x→∂U

W (x) > 0,

lim inf
|x|→∞

W (x)|x|2 > 0,

and ψ∞(x) = (1 + |x|2)−λ/2, where λ > 0, or

(iii) W is nonnegative, N > 2 and ψ∞(x) = (1 + |x|2)1−N/2.

Then there exists ε0 > 0 such that if 0 < ε < ε0,

−ε2∆ψ∞ +W (x)ψ∞ ≥ 0

in U .

Proof. Consider the case (i). By assumption, there is c > 0 such that for
x ∈ U , W (x) ≥ c/(1+ |x|)α. An explicit computation of −ε2∆ψ∞ combined
with the previous inequality gives

− ε2∆ψ∞ +W (x)ψ∞

≥
(
ε2λ(1−α

2
)
(
−λ(1−α

2
)

|x|2
1 + |x|2 +

N + (N − 1 − α
2
)|x|2

2(1 + |x|2)3/2−α/4

)
+c

)
ψ∞

(1 + |x|2)α/2
.

Since α < 2, this last expression is positive for every x ∈ U when ε is
sufficiently small.

Under the assumptions (ii) and (iii), one computes

−∆
( 1

(1 + |x|2)λ/2

)
=

λ

(1 + |x|2)λ/2+1

(N − (λ−N + 2)|x|2
1 + |x|2

)
.

In case (ii), one concludes as in case (i), while in case (iii), one has even
−∆ψ∞ ≥ 0, so that in this case, the conclusion holds for any nonnegativeW .

�
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6.3. Proof of Theorem 22

To fix the ideas, we work out the proof for an exterior domain Ω such that
∂Ω 	= ∅ and (G1

f,∞) holds.
By (G1

f,∞) and (Gf,∂Ω), there exist λ > 0, α ∈ [0, 2[, µ > 0 and κ ∈ (0, 1)
such that

lim sup
|x|→∞

f(exp(−λ|x|1−α/2))

exp(−λ|x|1−α/2)

K(x)

V (x)
< κ,

and

lim sup
d(x,∂Ω)→0

f(µd(x, ∂Ω))

µd(x, ∂Ω)

K(x)

V (x)
< κ.

Define f̃ by (4.1) according to this choice of κ. We know from Lemma 12
that the modified problem (4.3) has a positive solution uε. If for every
x ∈ Ω \ Λ, we have

f(uε(x))

uε(x)

K(x)

V (x)
≤ κ,

then uε is a positive solution of the original Dirichlet problem (2.1).
From the assumptions (f1), (f4), (Gf,∂Ω) and (G1

f,∞), we deduce the exis-
tence of γ > 0 sufficiently small, such that, choosing

w(x) = γ exp(−λ|x|1−α/2)
d(x, ∂Ω)

1 + d(x, ∂Ω)
,

one has for all x ∈ Ω,

(6.4)
f(w(x))

w(x)

K(x)

V (x)
≤ κ.

Let us write mε = supx∈∂Λ uε(x) and define the auxiliary function wb by

wb(x) :=
uε(x)

mε
− ψb(x),

where ψb is defined in Proposition 27. We infer from the fact that uε

solves (4.3) and the definition of g(x, u) that

−∆wb ≤ 0 in Ω \ Λ.

Applying the maximum principle for subharmonics, i.e. Proposition 24 with
W ≡ 0, to wb in Ω \ Λ, we deduce from Proposition 27 the estimate

(6.5) uε(x) ≤ Cmε
d(x, ∂Ω)

1 + d(x, ∂Ω)
,

which is valid for every x ∈ Ω \ Λ.
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Now, choose U ⊂ Ω such that Ω \ U is bounded, Λ ∩ U = ∅, Ū ⊂ Ω and
∂U is compact and smooth. It follows from (6.5) that uε is bounded on ∂U
uniformly in ε.

To get a decay estimate at infinity, we define the auxiliary function w∞ by

w∞(x) :=
uε(x)

mε
− Cψ∞(x),

where ψ∞ is defined in Proposition 28 with λ > 0 as in assumption (G1
f,∞)

and C > 0. This time, we observe that for ε small enough, w∞ is a lower
solution of LW,ε in U , where W (x) := (1−κ)V (x). Choosing C large enough
to ensure that w∞ ≤ 0 on ∂U and applying again Proposition 24, we get

(6.6) uε(x) ≤ Cmεψ∞(x),

for x ∈ U .
As mε → 0 by Proposition 21 and Ω \ U is bounded, combining the

estimates (6.5) and (6.6), we finally deduce that for ε small enough,

uε(x) ≤ w(x),

for every x ∈ Ω \ Λ.
At last, we conclude from (f4) and (6.4) that for each x ∈ Ω \ Λ,

f(uε(x))

uε(x)

K(x)

V (x)
≤ f(w(x))

w(x)

K(x)

V (x)
≤ κ.

This completes the proof of this case. The arguments being similar when
dealing with the assumptions (G2

f,∞) or (G3
f,∞), we do not repeat them. �

Remark 29. The inequality (6.6) provides a decay estimate at infinity for
the solution uε. In particular, this estimate does hold even if α < 0 in
assumption (G1

f,∞). If α = 0, i.e. if V is bounded from below at infinity, we
infer the solution decay exponentially fast at infinity. If α < 0, this decay
rate at infinity can be improved. For example, if V grows quadratically fast
at infinity, then the solution decay like a Gaussian as |x| → ∞.

7. Concentration

We next investigate the behaviour of the solutions uε obtained in Theorem 22
when ε→ 0. Namely, we prove in this section that the solutions display the
features stated in the following theorem.
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Theorem 30. Suppose that the assumptions of Theorem 22 hold. Let uε be
the positive solution of (1.11) obtained in that theorem and xε ∈ Ω be such
that

uε(xε) = sup
x∈Ω

uε(x).

Then, we have
lim
ε→0

C(xε) = inf
x∈Λ

C(x),

and for every r > 0, there exist C > 0 and ε0 > 0 such that for 0 < ε < ε0,
uε has no local maximum outside the ball B(xε, εr) and

(7.1) uε(x) ≤ C
d(x, ∂Ω)

1 + d(x, ∂Ω)

εN−2

(ε2 + |x− xε|2)N−2
2

.

If we assume in addition that

lim inf
d(x,∂Ω)→0

V (x) > 0 and lim inf
|x|→∞

V (x)|x|2 > 0,

then for every λ > 0, there exist C > 0 and ε0 > 0 such that for 0 < ε < ε0,
one has

(7.2) uε(x) ≤ C
d(x, ∂Ω)

1 + d(x, ∂Ω)

ελ

(ε2 + |x− xε|2)λ/2
,

while if
lim inf

d(x,∂Ω)→0
V (x) > 0 and lim inf

|x|→∞
V (x)|x|α > 0

for some α ∈ ]0, 2[ , then for every λ > 0, there exist C > 0 and ε0 > 0 such
that for 0 < ε < ε0,

(7.3) uε(x) ≤ C
d(x, ∂Ω)

1 + d(x, ∂Ω)
exp
(
−λ
∣∣∣x− xε

ε

∣∣∣1−α/2)
.

When Ω = R
N the preceding holds provided d(x, ∂Ω)/(1 + d(x, ∂Ω)) is re-

placed by 1.

Theorem 2 stated in the introduction concerning the particular case
f(u) = up clearly follows from this more general result. The proof of The-
orem 30 is divided in two steps. We first investigate the behaviour of the
maxima of uε. Then, the second and main step is the construction of bar-
rier functions, see below for a precise definition, which basically consist in
families of comparison functions that provide uniform decay properties as
ε→ 0.

Observe that in contrast with del Pino-Felmer Theorem stated in the
introduction, we cannot ensure the uniqueness of the maximum of uε. This
is due to the lack of regularity of f , V and K. When stronger regularity
assumptions are made on those functions, one recovers solutions with a single
maximum as in the above cited theorem, see Remark 35 below.
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7.1. Local and global maxima

A first thing noteworthy in the study of maxima of uε is that the global
maximum is always attained in Λ̄.

Proposition 31. Suppose that f : R
+ → R

+, V, K : Ω → R
+ are con-

tinuous functions, Λ ⊂⊂ Ω and g : Ω × R
+ → R is defined by (4.2). Let

uε ∈ H1
loc(Ω) be a nonnegative solution of (4.3) such ∇uε ∈ L2(Ω). Then

there exists xε ∈ Λ̄ such that

uε(xε) = sup
x∈Ω

uε(x).

Proof. Since the solution uε ∈ C1,α(Ω) by Proposition 10 and Λ̄ ⊂ Ω is
compact, there exists xε ∈ Λ̄ such that

uε(xε) = max
x∈Λ̄

uε(x).

Now observe that by definition of g in (4.1), one has,

−ε2∆uε + (1 − κ)V (x)uε ≤ 0

in Ω \ Λ, where κ < 1. Hence, using the maximum principle which applies
because ∇uε ∈ L2(Ω), we infer that for every x ∈ Ω \ Λ̄,

uε(x) ≤ sup
x∈∂Ω∪∂Λ

uε(x) ≤ sup
x∈Λ̄

uε(x) = uε(xε).

�
In the sequel of this paragraph, we investigate the localization of the

maxima of uε in Ω. Our first observation is that the maximum points of the
solution obtained in Theorem 22 are all located in Λ.

Proposition 32. Suppose the assumptions of Theorem 22 hold. Let uε be
the positive solution of (1.11) obtained in that theorem and xε ∈ Ω be a local
maximum point of uε. Then xε ∈ Λ.

Proof. The proof follows from the penalization procedure and Lemma 17.
Indeed, if xε ∈ Ω is a local maximum point of uε, then, as uε is strictly
positive, Lemma 17 implies

f(uε(xε))

uε(xε)

K(xε)

V (xε)
≥ 1.

But on the other hand, since uε solves both (4.3) and (1.11), we have for
every x ∈ Ω \ Λ,

f(uε(x))

uε(x)

K(x)

V (x)
≤ κ,

with κ < 1. �
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Our second fact is that any converging sequence of maximum points of
uε does converge to a minimum point of C in Λ. This obviously implies that
as ε→ 0, the maxima of uε occur close to minima of C.

Proposition 33. Suppose that Λ ⊂⊂ Ω and the assumptions of Lemma 12
are satisfied. Let (εn)n ⊂ R

+ be such that εn → 0 as n → ∞ and (uεn)n ⊂
H1

loc(Ω) be the corresponding sequence of positive solutions of (4.3) obtained
in Lemma 12. If (yn)n ⊂ Λ is a sequence of local maximum points of uεn,
then

lim
n→∞

C(yn) = inf
x∈Λ

C(x).

Proof. Assume by contradiction that the conclusion is false. Hence, by
compactness, we infer that, up to a subsequence, (yn)n converges to ȳ ∈ Λ̄
such that

(7.4) C(ȳ) > inf
x∈Λ

C(x).

On the one hand, we deduce from Proposition 16 and Lemma 17 that

lim inf
n→∞

ε−N
n Jεn(uεn) ≥ C(ȳ).

On the other hand, by Lemma 12, uεn does satisfy

lim sup
n→∞

ε−N
n Jεn(uεn) ≤ inf

x∈Λ
C(x).

This contradicts (7.4) and concludes the proof. �
We next prove that local maxima are essentially unique in the sense that

they get closer and closer to the global one as ε → 0. Therefore, even if uε

can have more than one local maximum, the solution is a perturbation of a
solution with a single local (hence global) maximum.

Proposition 34. Suppose the assumptions of Theorem 22 hold. Let uε be
the positive solution of (1.11) obtained in that theorem and xε ∈ Ω be such
that

uε(xε) = sup
x∈Ω

uε(x).

Then, for every r > 0, there exists ε0 > 0 such that for every 0 < ε < ε0, uε

has no local maxima in Λ \B(xε, εr).

Proof. Let (xε)ε ⊂ Ω be global maximum points of uε. We argue by con-
tradiction, assuming the existence of sequences (yn)n ⊂ Ω and (εn)n ⊂ R

+

such that uεn attains a local maximum at yn, εn → 0 as n→ ∞ and

(7.5) lim inf
n→∞

| xεn − yn|
εn

> 0.
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By Proposition 32, we may assume without loss of generality that (xεn)n ⊂Λ,
(yεn)n ⊂ Λ,

lim inf
n→∞

uεn(xεn) > 0 and lim inf
n→∞

uεn(yεn) > 0.

Since Λ̄ is compact, going to a subsequence if necessary, we may also assume
that xεn → x̄ and yn → ȳ. Now, if

lim sup
n→∞

| xεn − yεn|
εn

= ∞,

Proposition 16 applies. We therefore conclude that

lim inf
n→∞

ε−N
n Jεn(uεn) ≥ C(x̄) + C(ȳ) ≥ 2 inf

x∈Λ
C(x),

while by Lemma 12, we know that

lim sup
n→∞

ε−N
n Jεn(uεn) ≤ inf

x∈Λ
C(x).

Since infΛ C > 0, this brings a contradiction. Therefore,

(7.6) lim sup
n→∞

| xεn − yn|
εn

<∞.

Consider now the sequences (vn)n and (zn)n defined by vn(z) = uεn(xεn−εnz)
and zn = (xεn − yn)/εn. Since zn is a local maximum of vn, ∇vn(zn) = 0.
By Proposition 18 and (7.6), up to subsequences, we have ∇vn → ∇v uni-
formly on compact subsets, where v is a solution of (5.17), and zn → z ∈ R

N .
Therefore ∇v(z) = limn→∞∇vn(zn) = 0, so that by Lemma 3, z = 0, i.e.

lim
n→∞

|xεn − yn|
εn

= 0,

in contradiction with (7.5). �

Remark 35. We may state a stronger conclusion in Proposition 34 when f
is locally Lipschitz continuous and V and K are both Hölder continuous
inside Λ. Indeed, in this case, the sequence (vn)n of rescaled solutions defined
by vn(x) = uεn(xεn + εnx) converges for the C2

loc topology, see Remark 19,
and the limit function v has a nondegenerate maximum at 0. Hence there
exists ε0 > 0 such that xε is the unique local maximum of uε in Ω.
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7.2. Elliptic inequation outside small balls

All the previous results allow to prove the following inequality which will be
useful to get concentration estimates.

Proposition 36. Suppose the assumptions of Theorem 22 hold. Let uε be the
positive solution of (1.11) obtained in that theorem and xε ∈ Ω be such that

uε(xε) = sup
x∈Ω

uε(x).

Then there exists r0 > 0 such that for every r > r0, there exists εr > 0 such
that for every ε ∈ ]0, εr[ ,

−ε2∆uε + (1 − κ)V (x)uε ≤ 0

in Ω \B(xε, εr), where κ < 1 is defined in (4.1).

Proof. First, notice that by the compactness of Λ̄ ⊂ Ω, the continuity of V
and K and the assumption (f1), we infer there exists a > 0 such that

(7.7)
f(a)

a
≤ κ

V (x)

K(x)

for every x ∈ Λ. On the other hand, by Proposition 20 and Proposition 34,
we may take r > 0 large enough such that for ε→ 0,

uε(xε + εy) ≤ a

for |y| = r and uε has no local maximum in Λ \ B(xε, εr). Moreover, we
know from Proposition 21 that

max
x∈∂Λ

uε(x) → 0 as ε→ 0.

Hence, one can assume that for small ε, uε(x) ≤ a for every x ∈ Λ\B(xε, εr).
Taking (7.7) into account, we now infer from (f4) that

g(x, uε(x)) = K(x)f(uε(x)) ≤ κV (x)uε(x)

for x ∈ Λ\B(xε, εr). On the other hand, by the definition of the penalization,
we have

g(x, uε(x)) ≤ κV (x)uε(x)

for x ∈ Ω \ Λ.
Therefore uε satisfies the desired inequality for ε small enough. �
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7.3. Barrier functions

Proposition 36 implies that for r large and ε small enough, (uε)ε is a family
of lower solutions of −ε2∆ + W in Ω \ B(xε, rε), where W = (1 − κ)V
and xε is a global maximum point of uε. Then, arguing as in the proof of
Theorem 22, one can easily obtain estimates for uε in Ω\B(xε, rε) if we can
compare uε with a convenient upper solution in this set. This motivates the
following definition.

Definition 37. Let Ω ⊂ R
N be a regular bounded or exterior domain and

LW,ε be the linear operator formally defined by (6.2) where ε > 0 and W ∈
C(Ω; R) is nonnegative. We say that the set (wε)ε ⊂ H1

loc(Ω \ B(xε, rε)),
where r > 0 and (xε)ε ⊂ Ω, is a family of barrier functions for W if there
exists ε0 > 0 such that for every 0 < ε < ε0,

1. B(xε, rε) ⊂ Ω ;

2. wε is an upper solution of LW,ε in Ω \B(xε, rε) ;

3. ∇wε ∈ L2(Ω \B(xε, rε)) ;

4. wε ≥ 1 on ∂B(xε, rε).

As a basic example, the constant functions wε ≡ 1 form a family of
barrier functions for any nonnegative potential W .

Remark 38. One easily checks that if (wε)ε is a family of barrier functions
for W ∈ C(Ω; R) and if W̄ ∈ C(Ω; R) satisfies W̄ ≥ W , then (wε)ε is a
family of barrier functions for W̄ . Note also that if λ ≥ 0, then (wλε)ε is a
family of barrier functions for λ−2W .

As mentioned above, the main interest of a family of barrier functions is
to deduce estimates for the solutions (uε)ε obtained in Theorem 22. These
estimates will be obtained through the following proposition.

Proposition 39. Let Ω ⊂ R
N be a regular bounded or exterior domain

and LW,ε be the linear operator formally defined by (6.2) where ε > 0 and
W ∈ C(Ω; R) is nonnegative. Assume wε ∈ H1

loc(Ω \B(xε, rε)), where r > 0
and (xε)ε ⊂ Ω, is a familly of positive barrier functions. If vε ∈ Hε is a
lower solution of LW,ε in Ω \B(xε, rε) such that∫

Ω

|vε|2
1 + |x|2 <∞

if N = 2 and Ω is unbounded, and

vε ≤ cε

on ∂B(xε, rε), then for every ε ∈ ]0, ε0[, we have

vε ≤ cεwε in Ω \B(xε, rε).
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Proof. The proof follows immediately by applying Proposition 24 to the
functions vε/cε − wε taking Definition 37 into account. �

The main concern in this section is to obtain uniform estimates as ε→ 0
so that we have to select carefully the family of barrier functions in our
application of Proposition 39.

Assuming that the potential V is positive, we directly deduce a rough
asymptotic behaviour using constant barrier functions. However, Remark 38
suggests that the construction of barriers depends on the asymptotic behav-
iour of V so that we may hope an improvement of these basic estimates
by choosing a suitable family of barrier functions. In fact, without further
restrictions on the potential, the constant barriers can always be replaced
by harmonic barriers.

Proposition 40. Let N ≥ 2 and Ω ⊂ R
N be a domain. Assume (xε)ε ⊂ Ω

is relatively compact in Ω. Then, the family (Hε)ε ⊂ H1
loc(Ω \ B(xε, rε))

defined by

Hε(x) =
(ε
√

1 + r2)N−2

(ε2 + |x− xε|2)N/2−1

is a family of barrier functions for any nonnegative W ∈ C(Ω; R).

Proof. Notice that −∆Hε ≥ 0 on Ω \ {xε}. All the properties follow then
from straightforward computations. �

When N = 2, we recover the constant barriers wε ≡ 1 while for N > 2,
the barrier functions provide a polynomial decay to 0 at infinity. This control
at infinity can be improved by either exponential or polynomial (of any
order) barriers provided we assume further that

(7.8) lim inf
|x|→∞

W (x)|x|α > 0 for some α ∈ [0, 2].

If W satisfies (7.8) for some α ∈ 0, 2[, then there exists families of barrier
functions for W that decay exponentially fast at infinity.

Proposition 41. Let N ≥ 2, Ω ⊂ R
N be an unbounded domain, r > 0

and (xε)ε ⊂ Ω be relatively compact in Ω. Assume that W ∈ C(Ω; R) is a
positive potential satisfying (7.8) for some α ∈ ]0, 2[ and

lim inf
d(x,∂Ω)→0

W (x) > 0,

if ∂Ω 	= ∅. Then, for any λ > 0, there exists r0 > 0 such that (Eα,λ,ε)ε ⊂
H1

loc(Ω \B(xε, rε)) defined by

Eα,λ,ε(x) = exp
(
λr1−α/2 − λ

∣∣∣x− xε

ε

∣∣∣1−α/2)
is a family of barrier functions for W when r > r0.
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Proof. Let us write for simplicity Eε(x) = Eα,λ,ε(x). We then compute for
x ∈ Ω \B(xε, rε),

−ε2∆Eε(x) +W (x)Eε(x) ≥
(
−λ2(1 − α

2
)2 εα

| x− xε|α +W (x)

)
E(x).

By assumption, since (xε)ε ⊂ Ω is bounded, there exists c > 0 such that for
every x ∈ Ω and ε0 > ε > 0,

W (x) ≥ c

1 + | x− xε|α ,

and on the other hand, for x ∈ Ω \B(xε, rε), we have

ε

| x− xε| ≤
2ε0

rε0 + | x− xε| .

If r0 is taken large enough and ε0 is taken small enough, then one has
−ε2∆Eε(x) +W (x)Eε(x) ≥ 0. �

Remark 42. Observe that when α = 0, we can also obtain barriers of the
form

exp(−λ(|x/ε| − r)),

for some small λ > 0 which provide the decay estimates for the positive
solutions of −∆u + u = f(u). The restriction α > 0 in Proposition 41
allows to play with every λ > 0.

The limit case α = 2 in the exponential barriers yields similarly polyno-
mial barriers of any order.

Proposition 43. Let N ≥ 2, Ω ⊂ R
N be an unbounded domain and

(xε)ε ⊂ Ω be relatively compact in Ω. Assume that W ∈ C(Ω; R) is a
positive potential satisfying (7.8) with α = 2 and

lim inf
d(x,∂Ω)→0

W (x) > 0,

if ∂Ω 	= ∅. Then, for any λ ≥ N −2, there exists r0 > 0 such that the family
(Pλ,ε)ε ⊂ H1

loc(Ω \B(xε, rε)) defined by

Pλ,ε(x) =

(
ε
√

1 + r2
)λ

(ε2 + | x− xε|2)λ/2

is a family of barrier functions for W .
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7.4. Proof of Theorem 30

To fix the ideas, assume Ω is a regular exterior domain with nonempty
boundary, (G1

f,∞) holds and

lim inf
d(x,∂Ω)→0

V (x) > 0.

Let xε ∈ Ω be such that

uε(xε) = sup
x∈Ω

uε(x).

We first claim there exists ε0 > 0 and δ > 0 such that

inf
0<ε<ε0

d(xε, ∂Λ) > δ.

Indeed, assume this is not true. Then, we can find sequences (εn)n ⊂ R
+

and (xεn)n ⊂ (xε)ε such that d(xεn, ∂Λ) → 0. Going to subsequences if nec-
essary, we now infer that xεn converges to some x̄ ∈ ∂Λ, but this contradicts
Proposition 33 and assumption (6.1). We may of course assume that δ ≤ 1.

The first statements of the theorem then follows from Proposition 32,
Proposition 33 and Proposition 34. Let us now focus on the asymptotic
estimate (7.3). Taking ε0 smaller if necessary, we may assume Proposition 36
holds for ε0 and some r > 0. Now, let λ > 0 and consider the family
(Eα,λ,ε)ε ⊂ H1

loc(Ω\B(xε, rε)) of barrier functions associated to the set (xε)ε,
provided by Proposition 41. Noticing that the maximum of uε is bounded
independently of ε ≤ ε0, we deduce from Proposition 39 that

(7.9) uε(x) ≤ C exp
(
λr1−α/2 − λ

∣∣∣x− xε

ε

∣∣∣1−α/2)
in Ω. In particular, since |x− xε| ≥ δ > 0 for any x ∈ ∂Λ, we infer that

uε(x) ≤ C exp(−λ(δ/ε)1−α/2)

on ∂Λ. Therefore, arguing as in the proof of Theorem 22, we now deduce
that

(7.10) uε(x) ≤ 2C exp(−λ(δ/ε)1−α/2)
d(x, ∂Ω)

1 + d(x, ∂Ω)
,

in Ω \ Λ̄. Using the facts that the boundary is bounded and Λ ⊂⊂ Ω, and
taking (7.9) and (7.10) into account, we finally conclude that

uε(x) ≤ C
d(x, ∂Ω)

1 + d(x, ∂Ω)
exp
(
−cλ

∣∣∣x− xε

ε

∣∣∣1−α/2)
,

with c = min(1, 2δ/(diam(∂Ω)+1))1−α/2. The estimates (7.2) and (7.1) can
be handled in a similar way. �
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We emphasize that when considering the growth condition (G3
f,∞), we do

not have to assume that V is strictly positive up to the boundary. Indeed,
the strict positivity of V only plays a role in the construction of the family
of exponential and polynomial barrier functions. When (G3

f,∞) holds, we
have at hand a family of harmonic barriers which can be constructed for
any nonnegative potential V .

8. Final comments

In [15, 17], del Pino and Felmer used a penalization scheme to treat the
existence of bound state solutions around other type of critical points of the
concentration function C. A penalization method is also developed in [16]
to catch multi-peak solutions. It could be interesting to find out whether
our method can be adapted to those situations.

Another interesting open question concerns the qualitative behaviour of
ground states of

−ε2∆u+ V (x)u = K(x)|u|p−1u, x ∈ R
N .

As mentioned earlier, Ambrosetti, Felli and Malchiodi [2] proved the exis-
tence of a ground state solution under the assumptions (1.7) and (1.8). If
in addition,

a

1 + |x|α ≤ V (x),

with 0 ≤ α < 2, the authors show the ground state belongs to H1(RN) and
concentrates around a global minimum point of A as ε → 0. Concerning
the existence of the ground state solution in a weighted Sobolev space, these
conditions can be relaxed by just assuming that A is coercitive. We then
observe that in this case, our result provide the existence of a H1 bound
state solution for ε small under less restrictive assumptions on V . Namely, if
(G3

∞) holds and N > 4, the bound state belongs to H1(RN) and concentrates
around a global minimum point of A as ε → 0. Such a result is not known
for the ground state solution.
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Université Catholique de Louvain
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