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Abstract

The main result in the paper states the following: For a finite
group G = AB, which is the product of the soluble subgroups A
and B, if 〈a, b〉 is a metanilpotent group for all a ∈ A and b ∈ B, then
the factor groups 〈a, b〉F (G)/F (G) are nilpotent, F (G) denoting the
Fitting subgroup of G. A particular generalization of this result and
some consequences are also obtained. For instance, such a group G
is proved to be soluble of nilpotent length at most l + 1, assuming
that the factors A and B have nilpotent length at most l. Also for
any finite soluble group G and k ≥ 1, an element g ∈ G is contained
in the preimage of the hypercenter of G/Fk−1(G), where Fk−1(G)
denotes the (k − 1)th term of the Fitting series of G, if and only if
the subgroups 〈g, h〉 have nilpotent length at most k for all h ∈ G.

1. Introduction

The study of factorized groups whose factors are linked by some particular
property has received considerable interest recently. The focus in this paper
is on a connection property introduced by Carocca [5] (based on a remark
of Maier in [14]):

Let L be a non-empty class of groups. Subgroups A and B of a group G
are L-connected if 〈a, b〉 ∈ L for all a ∈ A and b ∈ B. A group G = AB
is an L-connected product of A and B if A and B are L-connected. Of
course, the special case A = B = G has been dealt with before; there are
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numerous results considering the question when for a group G containment
of all 2-generated subgroups in L implies that G is contained in L. For
finite groups, the most famous result in this direction is a consequence of
Thompson’s classification of minimal simple groups [15]:

A finite group is soluble if all of its 2-generated subgroups are soluble.

A nice elementary proof of this theorem has been given by Flavell [9]. As
a further example we mention the work of Carter, Fischer and Hawkes [7]
where results of the same type are obtained for various important subclasses
of finite soluble groups.

We note also that results of this type follow from the theory of varieties
of groups, and for finite groups in particular from studying finite varieties
introduced by Brandl in [4].

For general L-connected products, up to now only the cases L = S, the
class of finite soluble groups, and L = N , the class of finite nilpotent groups,
have been studied.

Carocca [6] showed that S-connected products of soluble groups are solu-
ble. Structure and properties of N -connected products are understood very
well (cf. Ballester-Bolinches, Pedraza-Aguilera [2] and Hauck, Mart́ınez-Pas-
tor, Pérez-Ramos [12]). For instance, in an N -connected product G = AB,
A and B are subnormal subgroups and the nilpotent residual AN of A is
centralized by B (and vice versa). Also the product G = AB is N -connected
if and only if G modulo its hypercenter is a direct product of the images
of A and B. A further study of the behaviour of N -connected products of
groups, in relation to certain inheritance properties between the factors and
the whole group, was carried out by Beidleman and Heineken [3].

In this paper we consider mainly the case L = N 2, the class of finite
metanilpotent groups. It is obvious that G = AB is an N 2-connected prod-
uct of A and B if G/F (G), F (G) denoting the Fitting subgroup of G, is
an N -connected product of AF (G)/F (G) and BF (G)/F (G). The main the-
orem of this paper says that for soluble groups the converse holds, too. Thus,
the structure of soluble N 2-connected products is reduced to the structure
of N -connected products which is quite transparent by the results mentioned
above.

It is an open question whether a corresponding statement is true if N 2

is replaced by N k, the class of finite soluble groups of nilpotent length at
most k, for k ≥ 3. However, under certain conditions on A and B such a
generalization can be obtained which has already interesting implications.
For instance, let k ≥ 1 and let g be an element of a finite soluble group G;
then 〈g, h〉 ∈ N k for all h ∈ G if and only if g is contained in the preimage
of the hypercenter of G/Fk−1(G), where Fk−1(G) denotes the (k−1)th term
of the Fitting series of G.
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2. Notation and preliminary results

All groups considered in this paper are assumed to be finite.
We shall adhere to the notation used in [8] and we refer also to that book

for the basic results on classes of groups. In particular, P denotes the set of
all prime numbers and σ(G) the set of all primes dividing the order of the
group G. Also A denotes the class of all abelian groups.

We now gather some results on products of groups and on N -connected
products which will be needed in the paper.

Lemma 1 Let the group G = AB be the product of two subgroups A and B.
Then:

1. ([1, Lemma 1.3.2]) If A, B, G are Dπ-groups for a set π of primes,
then there exist Hall π-subgroups A0 of A and B0 of B such that A0B0

is a Hall π-subgroup of G.

2. ([1, p. 3, Lemma 1.1.4(i)]) For a subgroup S of G, the factorizer X(S)
of S in G = AB satisfies S ≤ X(S) =

(
A ∩ X(S)

)(
B ∩ X(S)

)
. If in

addition S is normal in G, then X(S) = AS ∩ BS.

3. ([13, Theorem 4.4.1]) If A and B are subnormal subgroups of G, then
GN = ANBN .

Lemma 2 ([12, Proposition 1 (2), (8), Proposition 4]) Let the group G =
AB be an N -connected product of the subgroups A and B. Then:

1. A and B are subnormal in G.

2. A ∩ B ≤ Z∞(G) ≤ F (G).

3. F (G) =
(
F (G) ∩ A

)(
F (G) ∩ B

)
.

Lemma 3 If two elements x, y of a group G have coprime orders, then
〈x, y〉N =

[〈x〉, 〈y〉].
Lemma 4 Let the group G = AB be the product of the subgroups A and B.
If F (G) =

(
F (G) ∩ A

)(
F (G) ∩ B

)
, then

Os(G) =
(
Os(G) ∩ A

)(
Os(G) ∩ B

)
,

for any prime s. If in addition F2(G) =
(
F2(G) ∩ A

)(
F2(G) ∩ B

)
, then

Os := Os

(
G mod F (G)

)
=

(
Os ∩ A

)(
Os ∩ B

)
,

for any prime s.



436 M.P. Gállego, P. Hauck and M.D. Pérez-Ramos

Proof . The first part is easily proved. From this part we deduce in order
to complete the proof that

Os =
(
Os ∩ AF (G)

)(
Os ∩ BF (G)

)
=

(
Os ∩ A

)
F (G)

(
Os ∩ B

)
=

=
(
Os ∩ A

)(
F (G) ∩ A

)(
F (G) ∩ B

)(
Os ∩ B

)
=

(
Os ∩ A

)(
Os ∩ B

)

and we are done. �

Lemma 5 If the group G = AB is an L-connected product, then G = AxBy

is an L-connected product, for any pair of elements x, y ∈ G.

Proof . Let x, y ∈ G. Since G = AB it is known by [1, Lemma 1.3.1] that
G = AxBy. Moreover, there exists an element z of G such that Ax = Az

and By = Bz. The result follows now by a straightforward argument. �

Lemma 6 Let the finite group G = AB be the product of the subgroups A
and B. Then the following statements are pairwise equivalent:

(i) A and B are N -connected.

(ii) For every pair of primes p and q such that p �= q, [Ap, Bq] = 1 for all
Ap ∈ Sylp(A) and all Bq ∈ Sylq(B).

(iii) (a) [AN , B] = 1, [BN , A] = 1;

(b) for every pair of primes p and q such that p �= q, there exist Ap ∈
Sylp(A) and Bq ∈ Sylq(B) such that [Ap, Bq] = 1.

Proof . (i) implies (ii). This is clear.
(ii) implies (iii). Let q be a prime number and Bq ∈ Sylq(B). From (ii)

it follows that [AN , Bq] ≤ [Oq(A), Bq] = 1. Consequently [AN , B] = 1. The
second part is clear.

(iii) implies (i). We notice that for every prime p, if P ∈ Sylp(A), then

ANP is normal in A and so Sylp(A) =
{
P t | t ∈ AN}

. Analogously, if
Q ∈ Sylp(B), then Sylp(B) =

{
Qt | t ∈ BN}

. Then (ii) is easily deduced
from (iii). On the other hand, for every prime p, we recall that there exist
Xp ∈ Sylp(A) and Yp ∈ Sylp(B) such that XpYp ∈ Sylp(G). Then it can be
also proved that every Sylow p-subgroup of A permutes with every Sylow
p-subgroup of B.

Now, let a ∈ A, b ∈ B and let us consider 〈a〉 = ×p∈P〈a〉p, 〈b〉 =
×p∈P〈b〉p. It is clear that 〈a, b〉 = ×p∈P

〈〈a〉p, 〈b〉p
〉

is nilpotent and so A and
B are N -connected. �
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Lemma 7 If N is a subgroup of a group G normalized by an element g ∈ G,
then [N, 〈g〉] = [N, g].

In addition, if N is abelian, the map N −→ [N, g], which sends each
n ∈ N to [n, g] ∈ [N, g], is an epimorphism of groups with kernel CN(g). In
particular, N/CN(g) ∼= [N, g] =

{
[n, g] |n ∈ N

}
.

The above-mentioned results will be used freely throughout the paper,
usually without further reference.

Lemma 8 Let F be a formation of soluble groups. Let G be a group, N
a subgroup of G and α, β ∈ G. We say that N, α, β satisfy Condition (∗)
provided that

N is normalized by 〈α, β〉,
N is an abelian p-group for some prime p,

Op

(〈α, β〉F) ≤ N and

〈αn, βm〉 ∈ NF for all n, m ∈ N .

(It is clear that the last part of (∗) holds if 〈α, βn〉 ∈ NF for all n ∈ N .)

Assume that N, α, β satisfy Condition (∗). Set

T = N〈α, β〉, C = CN

(〈α, β〉F)
, R = [N, 〈α, β〉F ],

N1 =
{

n ∈ N | 〈nα, β〉 ∈ NF }
, N2 =

{
n ∈ N | 〈α, nβ〉 ∈ NF }

.

Then:

1. N = C×R and C〈αn, βm〉 is an NF-projector of T for all n, m ∈ N .

(Notice that NF is a saturated formation for any formation F .)

2. R = CR(α) × CR(β).

3. N1 = C[N, 〈α〉] = C[R, α] and N2 = C[N, 〈β〉] = C[R, β].

4. If µ ∈ N1, then N, µα, β satisfy Condition (∗).
5. If L1 ≤ N1, L2 ≤ N2 and N = L1L2, then CL1 = N1, CL2 = N2.

6. If in addition A ⊆ F , then
N = N1 if and only if N = C if and only if β normalizes N1.

Proof. Note that T = N〈α, β〉 is a soluble group and that C = CN

(〈α, β〉F)

and R = [N, 〈α, β〉F ] are normal subgroups of T .

1. Let n, m ∈ N . Notice that we have N〈αn, βm〉 = N〈α, β〉 = T , which
implies that N〈αn, βm〉F = N〈α, β〉F . Since 〈α, β〉∈NF and Op

(〈α, β〉F)≤
N , it follows that N〈α, β〉F = NOp′

(〈α, β〉F)
. Thus Op

(〈αn, βm〉F) ≤ N
and consequently, NOp′

(〈αn, βm〉F)
= N〈αn, βm〉F = N〈α, β〉F . Since N is
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abelian, we conclude that C = CN

(〈α, β〉F)
= CN

(
Op′

(〈αn, βm〉F))
. More-

over, R = [N, N〈α, β〉F ] = [N, Op′(〈αn, βm〉F)]. Therefore, by coprime ac-
tion it follows that N = R × C and that R =

[
R, Op′(〈αn, βm〉F)

]
.

We claim that C〈αn, βm〉 is a complement of R in T . We have T =
N〈αn, βm〉 = RC〈αn, βm〉. Observe that

[
N ∩ 〈αn, βm〉, Op′(〈αn, βm〉F)

] ≤
N ∩Op′

(〈αn, βm〉F)
= 1. Hence N ∩ 〈αn, βm〉 ≤ C. Thus, R ∩C〈αn, βm〉 =

R ∩ N ∩ C〈αn, βm〉 = R ∩ C
(
N ∩ 〈αn, βm〉) = R ∩ C = 1. This proves that

C〈αn, βm〉 is a complement of R in T .
Since C〈αn, βm〉F ∈ N , it is clear that TNF ≤ R. In particular, TNF

is abelian and by [8, Theorem IV.5.18], the complements of TNF in T are
precisely the NF-projectors of T . Thus, to complete the proof of Part 1
it is sufficient to show that TNF = R. Since R = [R, N〈α, β〉F ] = [R, TF ],
then R ≤ TF . Furthermore R ≤ (TF)N = TNF ≤ R and we are done.

2. In order to show that R = CR(α)CR(β), let n ∈ R. By Part 1, C〈α, β〉 and
C〈αn, β〉 are NF-projectors of T , which implies that C〈αn, β〉 = (C〈α, β〉)µ

for some µ ∈ R. Since C〈α, β〉 is a complement in the group T of the
normal subgroup R, we obtain that β ∈ C〈α, β〉 ∩ (C〈α, β〉)µ ≤ CT (µ).
Since C〈α, β〉 ∩ (C〈α, β〉)µn−1 ≤ CT (µn−1), it follows that α ∈ CT (µn−1),
and so we have that n = (µn−1)−1µ ∈ CR(α)CR(β). This means that
R = CR(α)CR(β). Furthermore, CR(α) ∩ CR(β) ≤ C ∩ R = 1, so we have
R = CR(α) × CR(β).

3. Let n ∈ N1 =
{
µ ∈ N | 〈µα, β〉 ∈ NF}

. We have that T = N〈nα, β〉 and
〈nα, β〉 ∈ NF . Therefore N〈nα, β〉F = N〈α, β〉F = NOp′

(〈α, β〉F)
. Hence

we obtain that NOp′
(〈nα, β〉F)

= N〈α, β〉F and so CN

(
Op′(〈nα, β〉F)

)
=

C. Arguing as in the proof of Part 1, it follows that C〈nα, β〉 is an NF-
projector of T . By Part 1, C〈α, β〉 is also an NF-projector of T and it is
a complement of R in T . Therefore C〈nα, β〉 =

(
C〈α, β〉)ρ

for some ρ ∈ R.
Thus we have nα = cxρ with c ∈ C and x ∈ 〈α, β〉. This means that
n = c[ρ, x−1]xα−1 = [ρ, x−1]cxα−1 with [ρ, x−1] ∈ R and cxα−1 ∈ C〈α, β〉.
On the other hand, n ∈ N = RC, which implies that cxα−1 ∈ C because
C〈α, β〉 is a complement of R in T . Then x = c2α for some c2 ∈ C and so we
have n = cxρα−1 = cc2α

ρα−1 ∈ C[N, 〈α〉]. This proves that N1 ⊆ C[N, 〈α〉].
To prove the reverse inclusion, let n ∈ C[N, 〈α〉]. By Lemma 7 we may

write n = cµ−1αµα−1 with c ∈ C and µ ∈ N . Therefore C〈nα, β〉 =
C〈cαµ, β〉 = C〈αµ, β〉 and we have C〈nα, β〉F = C〈αµ, β〉F because C is a
normal subgroup of T . We have already seen in the proof of Part 1 that
N〈α, β〉F = N〈αµ, β〉F , so it follows that C centralizes 〈αµ, β〉F . Since
〈αµ, β〉F ∈ N , we have C〈nα, β〉F = C〈αµ, β〉F ∈ N . Then 〈nα, β〉F ∈ N
which means that n ∈ N1. We conclude that N1 = C[N, 〈α〉]. Moreover
C[N, 〈α〉] = C[CR, α] = C[R, α]. Similarly N2 = C[N, 〈β〉] = C[R, β].
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4. Let µ ∈ N1. Evidently N is normalized by 〈µα, β〉. We have already seen
in the proof of Part 3 that N〈µα, β〉F = NOp′

(〈α, β〉F)
, so we have that

Op

(〈µα, β〉F) ≤ N . Finally, let us see that 〈µα, βn〉 ∈ NF for all n ∈ N .
Let n ∈ N . Since µ ∈ N1 = C[N, α−1], we may write µ = cρ−1αρα−1 with
c ∈ C and ρ ∈ N . Thus µα = cαρ. Arguing as in the proof of Part 3 we
have that: C〈µα, βn〉 = C〈αρ, βn〉, N〈α, β〉F = N〈αρ, βn〉F , C centralizes
〈αρ, βn〉F , C〈µα, βn〉F = C〈αρ, βn〉F ∈ N and 〈µα, βn〉 ∈ NF .

5. Assume that L1 ≤ N1, L2 ≤ N2 and L1L2 = N . We notice now that
N1 = C[R, α] and R/CR(α) ∼= [R, α]. By Part 2, R = CR(α) × CR(β),
so it follows that |N1/C | = | [R, α] | = |CR(β) |. Analogously, |N2/C | =
| [R, β] | = |CR(α) |. We have:

|R | = |N/C | = | (CL1/C) (CL2/C) | ≤ |CL1/C ||CL2/C | ≤
≤ |N1/C ||N2/C | = |R |.

Therefore |CLi | = |Ni | and so we have that CLi = Ni for i = 1, 2.

6. Assume that A ⊆ F .
First suppose that N = N1, we claim that N = C. We have that

C × R = N = N1 = C [N, 〈α〉] = C [R, α].

Therefore R = [R, α]. Since R/CR(α) ∼= [R, α] = R by Lemma 7, we have

that CR(α) = 1. By Part 2, R = CR(α)CR(β), so it follows that R = CR(β).
Since A ⊆ F , we have 〈α, β〉F ≤ 〈β〉〈α,β〉 ≤ CT (R), which implies that
R ≤ C and so N = C as claimed.

Since C ≤ C[N, 〈α〉] = N1 ≤ N , we have proved that

N = N1 if and only if N = C.

Now assume that β normalizes N1. Let us see that N = C. Since N1 =
C[N, 〈α〉], it follows that N1 is normalized by 〈α, β〉. In the proof of Part 1 we
have seen that C = CN

(
Op′(〈α, β〉F)

)
. Then we conclude that Op(〈α, β〉F) ≤

C ≤ N1. Hence it is clear that N1, α, β satisfy Condition (∗). Note that{
n ∈ N1 | 〈nα, β〉 ∈ NF }

= N1 and so, by the above equivalence we have
that N1 = CN1(〈α, β〉F) = N1 ∩C = C. Therefore [R, 〈α〉] ≤ [N, 〈α〉]∩R ≤
C ∩ R = 1 and so R = CR(α). Arguing as above we have that R ≤ C and
so N = C. Now, Part 6 is clear. �
Lemma 9 Let F be a formation of soluble groups containing all abelian
groups. Let G be a soluble group such that G = AB is the NF-connected
product of the subgroups A and B. Assume that 〈a, b〉F ≤ F (G mod K) for
all a ∈ A, b ∈ B and all non-trivial normal subgroup K of G, and assume
that there exist a0 ∈ A and b0 ∈ B such that 〈a0, b0〉F �≤ F (G).

Then G has a unique minimal normal subgroup N , N = CG(N) =
Op(G) = F (G) for a prime p, N, a, b satisfy Condition (∗) of Lemma 8
for all a ∈ A and b ∈ B, N �≤ A and N �≤ B.



440 M.P. Gállego, P. Hauck and M.D. Pérez-Ramos

Proof. Since F (G mod Φ(G)) = F (G), it follows that Φ(G) = 1. Let N be
a minimal normal subgroup of G. Let a ∈ A and b ∈ B. By the hypothesis
we have that 〈a, b〉F ∈ N . Since Z := 〈a, b〉F ≤ F (G mod N), it follows that
ZN��G. Moreover, ZN/N ∈ N . Therefore, [G, kZ] ≤ N for a suitable
k ≥ 1. If there were another minimal normal subgroup U of G, N �= U , then
[G, lZ] ≤ N ∩ U = 1, for a suitable l. In particular, Z��G, which would
imply the contradiction 〈a, b〉F ≤ F (G) for all a ∈ A, b ∈ B.

Therefore G is a primitive group. In particular, N = CG(N) = Op(G) =

F (G) for a prime p, and F2(G)/N = F (G/N) is a p′-group. Since 〈a, b〉F ≤
F2(G), it follows that Op

(〈a, b〉F) ≤ N . Hence N, a, b satisfy Condition (∗)
of Lemma 8.

If either N ≤ A or N ≤ B, then by Lemma 8 (6) it follows that N =
CN

(〈a, b〉F)
. Consequently 〈a, b〉F ≤ CG(N) = F (G) for all a ∈ A, b ∈ B,

which provides a contradiction. �

3. The main result

Theorem 1 If the soluble group G = AB is the N 2-connected product of
the subgroups A and B, then

G/F (G) =
(
AF (G)/F (G)

)(
BF (G)/F (G)

)

is an N -connected product of the two factors.

Proof. We observe first that the statement of the theorem is equivalent to
the fact that 〈a, b〉N ≤ F (G) for all a ∈ A and all b ∈ B.

Assume that the result is false and let G be a counterexample with
|G| + |A| + |B| minimal. Let a ∈ A and b ∈ B. By the hypothesis we have
that 〈a, b〉 ∈ N 2 and consequently 〈a, b〉N ∈ N . The choice of G implies that
〈aK, bK〉N = 〈a, b〉NK/K ≤ F (G/K) for all non-trivial normal subgroup
K of G. By considering F = N in Lemma 9, we obtain that

G has a unique minimal normal subgroup N,(1)

N = CG(N) = Op(G) = F (G) for a prime p,

N, a, b satisfy Condition (∗) of Lemma 8 with F = N ,

N �≤ A and N �≤ B.

Let us denote F2 = F2(G) = F (G mod N) and notice that F2/N is a p′-
group. Since 〈a, b〉N ≤ F2, it follows that

(2) G/F2 =
(
AF2/F2

)(
BF2/F2

)
is an N -connected product.

We point out also the following fact:
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(3) Whenever U ≤ A, V ≤ B and N ≤ UV < G, then
(
UN/N

)(
V N/N

)
is

an N -connected product; equivalently, for every pair of primes l and r
such that r �= l, [Ur, Vl] ≤ N for all Ur ∈ Sylr(U) and all Vl ∈ Syll(V ).

To prove this we notice that F (UV ) is a p-group, since N = CG(N) ≤
F (UV ) and N is a p-group. Now, for any Ur and Vl as above, we have by
the choice of G that [Ur, Vl] ≤ F (UV ) ∩ F2 ≤ N .

We split now the proof into two cases:

Case 1: NA < G and NB < G.
Case 2: NA = G or NB = G.

Case 1: AN < G and BN < G.

We claim first:

(1.1) N = (N ∩ A)(N ∩ B).

Let X := X(N) the factorizer of N in ApBp, for some Ap ∈ Sylp(A) and
Bp ∈ Sylp(B) such that ApBp ∈ Sylp(G). We will show that X��G,
which implies N = X and proves the claim, as N ∩ A = N ∩ Ap and
N ∩ B = N ∩ Bp.

We know that

NAp = XAp = (X ∩ Bp)Ap and NBp = XBp = (X ∩ Ap)Bp.

Then

NA = XA = (X ∩ Bp)A and NB = XB = (X ∩ Ap)B.

Since NA < G, we deduce from (3) that AN/N and (X ∩Bp)N/N are
N -connected. In particular, X = (X ∩ Bp)N��AN . From NB < G
we obtain analogously that X��BN . Hence X��(AN)(BN) = G
(see [13, Theorem 7.7.1]).

Our next aim is to prove that G has the following structure, after inter-
changing the roles of A and B if necessary:

A =
(
N ∩ A

)
Aq〈α〉, Aq ∈ Sylq(A), α an r − element,(S)

α normalizes (N ∩ A)Aq,

r, q ∈ σ(G), r �= q �= p,

B =
(
N ∩ B

)
Bq, Bq ∈ Sylq(B), [Bq, α] �≤ N,

AqBq ∈ Sylq(G), NAqBq � G.

This is derived in the next two steps by distinguishing the cases when
p
∣∣ |G : N | and when p � | |G : N |.
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(1.2) If p
∣∣ |G : N |, then G satisfies (S).

We split the proof of this fact into the following steps:

(1.2.a) F2 =
(
F2 ∩ A

)(
F2 ∩ B

)
.

Since AF2, BF2 � �G from (2), F (AF2) = F (G) = F (BF2) and also
F2(AF2) = F2 = F2(BF2).

Assume that AF2 < G. Since AF2 = A(AF2 ∩ B), it follows by the
choice of G that AF2/F (G) =

(
AF (G)/F (G)

)(
(AF2∩B)F (G)/F (G)

)

is an N -connected product. Then by Lemma 2 (3), we have that

F2/F (G) = F
(
AF2/F (G)

)
=

(
(F2/F (G)) ∩ (AF (G)/F (G))

)(
(F2/F (G)) ∩ ((AF2 ∩ B)F (G)/F (G))

)

=
(
(F2 ∩ A)F (G)/F (G)

)(
(F2 ∩ B)F (G)/F (G)

)
,

and so

F2 =
(
F2 ∩ A

)
F (G)

(
F2 ∩ B

)
=

=
(
F2 ∩ A

)(
F (G) ∩ A

)(
F (G) ∩ B

)(
F2 ∩ B

)
=

(
F2 ∩ A

)(
F2 ∩ B

)
,

as we wanted to prove.

If BF2 < G, the result follows analogously.

Assume now that AF2 = G = BF2. Let Ap ∈ Sylp(A) and Bp ∈
Sylp(B) such that ApBp ∈ Sylp(G). It is clear that NAp, NBp ∈
Sylp(G) and so NAp = NBp = ApBp. Let us consider

NA = ApNA = BpNA = Bp(N ∩ B)(N ∩ A)A = BpA < G.

By (3) it follows that Ap′ normalizes BpN = ApN , ∀Ap′ ∈ Hallp′(A).
Analogously Bp′ normalizes ApN = BpN , ∀Bp′ ∈ Hallp′(B). But this
implies that ApN = BpN is a normal subgroup of G and so G/N is a
p′-group, a contradiction.

(1.2.b) There exist a prime q �= p, and w.l.o.g. Ap ∈ Sylp(A) and Bq ∈
Sylq(B) such that [Ap, Bq] �≤ N .

Moreover G = OqAp, where Oq := Oq(G mod N).

If Ar ∈ Sylr(A), Bq ∈ Sylq(B), p �= q �= r �= p, then F2ArBq is
a subgroup of G by (2) and F2ArBq = Ar(F2 ∩ A)(F2 ∩ B)Bq < G.
By (3) we have that [Ar, Bq] ≤ N . Then the first part of the statement
follows from Lemma 6. Moreover G = F2ApBq.
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Now Lemma 4 and (1.2.a) imply that

Or := Or(G mod N) = (Or ∩ A)(Or ∩ B) ∈ Hall {p,r}(F2),

for any prime r �= p. Hence

Or ∩ A ∈ Hall{p,r}(F2 ∩ A), Or ∩ A � A,

Or ∩ B ∈ Hall{p,r}(F2 ∩ B), Or ∩ B � B.

In particular, F2 ∩ A =
∏

r �=p(Or ∩ A) and F2 ∩ B =
∏

r �=p(Or ∩ B).

We prove next that G = OqAp. If F2Ap = G, then Bq ≤ Oq. Hence,
if OqAp = (Oq ∩ B)(Oq ∩ A)Ap < G, we would deduce from (3) that
[Ap, Bq] ≤ N , a contradiction. Thus we can assume that F2Ap < G.

It follows from the choice of (G, A, B) that A = Ap(F2 ∩ A) and B =
(F2 ∩ B)Bq. In particular,

Hall{p,q}(A) =
{
Aa

p(Oq ∩ A) | a ∈ A
}

and

Hall{p,q}(B) =
{
(Oq ∩ B)Bb

q | b ∈ B
}
.

We consider Xp ∈ Sylp(A) and Yq ∈ Sylq(B) such that

T := Xp(Oq ∩ A)(Oq ∩ B)Yq ∈ Hall{p,q}(G).

If T = G, then G = OqXpYq = OqApBq is a {p, q}-group. In particular,
F2 = Oq. Moreover, F2B = F2Bq�G and F2Bq ∈ N 2, that is Bq ≤ F2.
This implies that G = OqAp and we are done.

Assume now that T < G. By (3), [Xp, Yq] ≤ N . On the other hand,
for any Q ∈ Sylq(B), we have that F2Q = (F2 ∩ A)(F2 ∩ B)Q < G
because p

∣∣ |G : N |. Then [Or ∩A, Q] ≤ N whenever r �= q. Moreover,
for any P ∈ Sylp(A), we have F2P = (F2 ∩B)(F2 ∩ A)P < G because
F2Ap < G. Then [F2 ∩ B, P ] ≤ N .

Now, Ap = X t
p, for some t = t1t2 ∈ F2 ∩A =

(
Oq ∩A

)(∏
r �=q(Or ∩A)

)

with t1 ∈ Oq ∩ A, t2 ∈ ∏
r �=q(Or ∩ A). Moreover, Bq = Y s

q , for some
s ∈ F2 ∩ B. So it follows that

OqApBq = OqX
t
pY

s
q = OqX

t2
p Y s

q = (OqX
t2
p Yq)

s =

= (OqXpYq)
t2s ∈ Hall{p,q}(G).

Consequently, OqBqAp = Bq(Oq ∩ B)(Oq ∩ A)Ap < G which implies
[Ap, Bq] ≤ N by (3), a contradiction.
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(1.2.c) G = Oq〈a〉, for any a ∈ Ap such that [Bq, a] �≤ N . Moreover,

B = Oq ∩ B = (B ∩ N)Bq and

A = (Oq ∩ A)〈a〉 = (A ∩ N)Aq〈a〉, Aq ∈ Sylq(A).

We can assume AqBq ∈ Sylq(G). Also Oq = NAqBq � G and G
satisfies (S) with r = p.

By (1.2.b) we have that G = OqAp and so Bq ≤ Oq. The choice of
(G, A, B) implies that G = Oq〈a〉, B = Oq ∩ B and A = (Oq ∩ A)〈a〉,
for any a as in the statement. In particular, B = (B ∩ N)Bq and
Oq ∩ A = (N ∩ A)Aq, Aq ∈ Sylq(A), because N ∈ Sylp(Oq).

(1.3) If p � | |G : N |, then G satisfies (S).

Let us consider Ap′ ∈ Hallp′(A) and Bp′ ∈ Hallp′(B) such that M :=
Ap′Bp′ ∈ Hallp′(G). In this case, G = NM , M is a maximal subgroup
of G and CoreG(M) = 1. We notice the following fact: whenever
X ≤ Ap′ and Y ≤ Bp′ , then XN/N and Y N/N are N -connected if
and only if X and Y are N -connected. In particular, the choice of G
implies that Ap′ and Bp′ are not N -connected.

On the other hand, by the choice of (G, A, B) and taking into ac-
count that N = (N ∩A)(N ∩B), the following fact is easily deduced:
Whenever X ≤ Ap′, Y ≤ Bp′ , XY = Y X and |X| + |Y | + |XY | <
|Ap′| + |Bp′| + |M |, then X and Y are N -connected.

We set H = Ap′ and K = Bp′. We notice also that, since M = HK is
the product of the N 2-connected subgroups H and K, the choice of
G implies that HF (M)/F (M) and KF (M)/F (M) are N -connected.

For every r ∈ σ(M), we consider

C1 = {(Hr′, Kr) |Hr′ ∈ Hallr′(H) and there exists Kr′ ∈ Hallr′(K)

such that Hr′Kr′ ∈ Hallr′(M);

Kr ∈ Sylr(K) and there exists Hr ∈ Sylr(H)

such that HrKr ∈ Sylr(M)}
and

C2 = {(Kr′, Hr) |Kr′ ∈ Hallr′(K) and there exists Hr′ ∈ Hallr′(H)

such that Hr′Kr′ ∈ Hallr′(M);

Hr ∈ Sylr(H) and there exists Kr ∈ Sylr(K)

such that HrKr ∈ Sylr(M)}.
It is known that C1 �= ∅ and C2 �= ∅. The following steps lead now to
the desired structure of G.
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(1.3.a) There exist r ∈ σ(M) and w.l.o.g. (Hr′ , Kr) ∈ C1 such that
Hr′KrF (M) = M.

Moreover,

W := F (Hr′Kr′) = (W ∩ Hr′)(W ∩ Kr′) and

F (M) = Or′
(
F (M)

)
Or

(
F (M)

) ≤ WOr

(
F (M)

)
= WF (M).

Assume that for every r ∈ σ(M), we have Hr′KrF (M) < M and
Kr′HrF (M) < M for all (Hr′, Kr) ∈ C1 and (Kr′, Hr) ∈ C2. Let
r ∈ σ(M). We claim that Hr′KrF (M) < M , (Hr′, Kr) ∈ C1, implies
that [Hr′, Kr] = 1. We consider Xr := Or

(
F (M)

)
Kr ≤ HrKr and

Yr′ := Or′
(
F (M)

)
Hr′ ≤ Hr′Kr′. Clearly Xr = (Xr ∩ Hr)Kr and

Yr′ = Hr′(Yr′ ∩ Kr′). Then

R : = Hr′KrF (M) = Hr′Or′
(
F (M)

)
Or

(
F (M)

)
Kr =

= Hr′(Yr′ ∩ Kr′)(Xr ∩ Hr)Kr

contains S := 〈Hr′, Xr ∩ Hr〉〈Yr′ ∩ Kr′, Kr〉.
We set S1 = 〈Hr′, Xr ∩ Hr〉 and S2 = 〈Yr′ ∩ Kr′, Kr〉. We notice that

|S1 ∩ S2| ≤ |H ∩ K| = |H ∩ K|r|H ∩ K|r′ = |Hr ∩ Kr||Hr′ ∩ Kr′|
because Hr′Kr′ ∈ Hallr′(M), HrKr ∈ Sylr(M) and M = HK. Conse-
quently,

|S| =
|S1||S2|
|S1 ∩ S2| ≥

|Hr′||Xr ∩ Hr||Yr′ ∩ Kr′||Kr|
|S1 ∩ S2| ≥

≥ |Hr′||Yr′ ∩ Kr′||Xr ∩ Hr||Kr|
|Hr ∩ Kr||Hr′ ∩ Kr′| = |R|.

Since S ⊆ R, we deduce that S = R < M . Moreover S = S1S2,
S1 ≤ H and S2 ≤ K. By the choice of (G, A, B) we have that S1 and
S2 are N -connected. In particular [Hr′ , Kr] = 1, as claimed.

Let (Hr′, Kr) ∈ C1. We have now that HKr = Hr′HrKr = Hr′KrHr =
KrH ≤ M . We prove next that H and Kr are N -connected. If
|H| + |Kr| + |HKr| < |H| + |K| + |M |, then the result is true by the
choice of (G, A, B). So we may assume that HKr = M and K = Kr.
Let Q ∈ Hallr′(H). We notice that in this case (Q, Kr) ∈ C1, which
implies [Q, Kr] = 1 by the initial assumption. But this means that H
and Kr are N -connected by Lemma 6.

By what we have shown, [HN , Kr] = 1 for all r ∈ σ(M). Consequently,
for all r ∈ σ(M) and every pair (Hr′, Kr) ∈ C1, we have [HN , K] = 1
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and [Hr′, Kr] = 1. In an analogous way we deduce [KN , H ] = 1 and
[Kr′, Hr] = 1 for all r ∈ σ(M) and every (Kr′ , Hr) ∈ C2. Lemma 6
implies now that H and K are N -connected, a contradiction. This
proves the first part of (1.3.a).

For the second part, since r ∈ σ(M), Hr′Kr′ < M and so Hr′ and Kr′

are N -connected. Consequently, W = F (Hr′Kr′) = (W ∩ Hr′)(W ∩
Kr′) by Lemma 2 (3). The rest is clear.

(1.3.b) WF (M) ≤ Hr′Kr′F (M) = Hr′F (M) and WF (M)Kr ≤ M.

By the choice of G we have that Hr′F (M)/F (M) and KrF (M)/F (M)
are N -connected, which implies that Hr′F (M) � M and Hr′Kr′ ≤
Hr′F (M) by (1.3.a). In particular we have WF (M) ≤ Hr′Kr′F (M) =
Hr′F (M) and WF (M) =

(
WF (M) ∩ Hr′

)
F (M). Consequently, it

follows that WF (M)Kr =
(
WF (M) ∩ Hr′

)
KrF (M) ≤ M because

Hr′F (M)/F (M) and KrF (M)/F (M) are N -connected.

(1.3.c) If WF (M)Kr < M , then F (M) =
(
F (M) ∩ H

)(
F (M) ∩ K

)
.

We notice that Hr′ normalizes F (M)Kr and also W . Since M =
Hr′KrF (M) by (1.3.a), we deduce that WF (M)Kr � M , and so
F (M) = F

(
WF (M)Kr

)
. Moreover, Or

(
F (M)

)
Kr = HrKr because

Or

(
F (M)

)
Kr ∈ Sylr(M) and Or

(
F (M)

)
Kr ≤ HrKr. By (1.3.a) it

follows now that

WF (M)Kr = (W ∩ Hr′)(W ∩ Kr′)Or(F (M))Kr =

= (W ∩ Hr′)(W ∩ Kr′)HrKr ⊇ 〈W ∩ Hr′, Hr〉〈W ∩ Kr′, Kr〉.
Let T1 := 〈W ∩Hr′ , Hr〉 and T2 := 〈W ∩Kr′ , Kr〉. We notice again that
|T1 ∩ T2| ≤ |H ∩ K| = |Hr′ ∩ Kr′||Hr ∩ Kr|. Moreover Hr′ ∩ Kr′ ≤ W
because Hr′Kr′ is an N -connected product. In particular, W ∩ Hr′ ∩
Kr′ = Hr′ ∩ Kr′ . Consequently,

|T1T2| =
|T1||T2|
|T1 ∩ T2| ≥

|W ∩ Hr′ ||Hr||W ∩ Kr′ ||Kr|
|Hr′ ∩ Kr′||Hr ∩ Kr| =

=
|W ∩ Hr′ ||W ∩ Kr′ |
|W ∩ Hr′ ∩ Kr′|

|Hr||Kr|
|Hr ∩ Kr| = |WF (M)Kr|.

Since T1T2 ⊆ WF (M)Kr we have that WF (M)Kr = T1T2. But T1 ≤
H , T2 ≤ K and T1T2 < M . Then the choice of (G, A, B) implies that
T1 and T2 are N -connected. Consequently,

F (M) = F
(
WF (M)Kr

)
=

(
F (M) ∩ T1

)(
F (M) ∩ T2

) ⊆
⊆ (

F (M) ∩ H
)(

F (M) ∩ K
) ⊆ F (M).

This means that F (M) =
(
F (M) ∩H

)(
F (M) ∩ K

)
and we are done.



Soluble products of connected subgroups 447

(1.3.d) If WF (M)Kr = M , then F (M) =
(
F (M) ∩ H

)(
F (M) ∩ K

)
.

In this case we have that M/F (M) ∈ N . This is because [Kr, Hr′] ≤
F (M), which implies [Kr, W ]≤ F (M), since W ≤ Hr′F (M) by (1.3.b).

Let X := X(F (M)) be the factorizer of F (M) in M = HK. Then
F (M) ≤ X = (X ∩ H)(X ∩ K). Since M/F (M) ∈ N , it follows that
X � �M and F (M) = F (X).

If X < M , then X ∩ H and X ∩ K are N -connected by the choice of
(G, A, B). Therefore

F (X) =
(
F (X)∩X ∩H

)(
F (X)∩X ∩K

)
=

(
F (X)∩H

)(
F (X)∩K

)

and F (M) = F (X) yields the assertion.

Assume that X = M = F (M)H = F (M)K. Let l ∈ σ(M) and let
Hl ∈ Syll(H) and Kl ∈ Syll(K) such that HlKl ∈ Syll(M).

We notice that Ol(M)Hl = Ol(M)Kl = HlKl because HlKl, Ol(M)Hl,
Ol(M)Kl ∈ Syll(M) and both Ol(M)Hl and Ol(M)Kl are contained
in HlKl.

On the other hand, since M/F (M) ∈ N , we deduce that HN ≤ MN ∩
H ≤ F (M) ∩ H and, consequently,

H =
∏

l∈σ(H)

(
F (M) ∩ H

)
Hl

as
(
F (M) ∩ H

)
Hl � H for all l ∈ σ(H). Moreover,

F (M) ∩ H = Ol′
(
F (M) ∩ H

) × Ol

(
F (M) ∩ H

)
,

Ol′
(
F (M) ∩ H

)
� H and Ol

(
F (M) ∩ H

) ≤ Hl.

In particular, Hl normalizes Ol′(F (M) ∩ H). Since Ol(M) centralizes
Ol′

(
F (M) ∩ H

)
, we can deduce that HlKl = Ol(M)Hl normalizes

Ol′
(
F (M) ∩ H

)
. In particular, Ol′

(
F (M) ∩ H

)
Kl ≤ M.

If M = Ol′
(
F (M) ∩ H

)
Kl, then

F (M) = Ol′
(
F (M) ∩ H

)(
F (M) ∩ Kl

) ⊆
⊆ (

F (M) ∩ H
)(

F (M) ∩ K
) ⊆ F (M),

that is, F (M) =
(
F (M) ∩ H

)(
F (M) ∩ K

)
and (1.3.d) is proved.

If Ol′
(
F (M) ∩ H

)
Kl < M , then Ol′

(
F (M) ∩ H

)
and Kl are N -

connected. In particular, [Ol′(F (M) ∩ H), Kl] = 1. Since Ol(M)
centralizes Ol′(F (M)∩H) and HlKl = Ol(M)Kl, we deduce now that
[Ol′(F (M) ∩ H), Hl] = 1. But this means that

(
F (M) ∩ H

)
Hl = Ol′

(
F (M) ∩ H

)
Hl ∈ N .
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Consequently,

H =
∏

l∈σ(H)

(
F (M) ∩ H

)
Hl ∈ N0 N = N .

In an analogous way we can assume that K ∈ N . But this implies
that F (M) =

(
F (M) ∩ H

)(
F (M) ∩ K

)
by [1, Lemma 2.5.7] and the

step is proved.

(1.3.e) F (M) =
(
F (M) ∩ H

)(
F (M) ∩ K

)
. In particular,

Os(M) =
(
Os(M) ∩ H

)(
Os(M) ∩ K

)
for all s ∈ σ(F (M)).

This follows from (1.3.c), (1.3.d) and Lemma 4.

We take now 1 �= x ∈ H , x an l-element, 1 �= y ∈ K, y a q-element,
l ∈ σ(H), q ∈ σ(K), l �= q, such that [x, y] �= 1, whose existence is
assured by Lemma 6.

(1.3.f) M = F (M)〈x〉〈y〉, σ(M) = {l, q} and w.l.o.g. one of the following
cases holds:

I. Oq(M)〈x〉 = M ;

II. F (M)〈x〉 < M and F (M)〈y〉 < M .

Since HF (M)/F (M) and KF (M)/F (M) are N -connected, it is clear
that [x, y] ∈ F (M). Then
F (M)〈x, y〉 = F (M)〈x〉〈y〉 = 〈x〉(F (M) ∩ H

)(
F (M) ∩ K

)〈y〉,
where 〈x〉(F (M) ∩ H

) ≤ H and (F (M) ∩ K)〈y〉 ≤ K. By the choice
of G it follows that F (M)〈x〉〈y〉 = M .

Assume that the case II does not hold and w.l.o.g. F (M)〈x〉 = M .
Then y ∈ Oq(M)∩K. Again the choice of G implies that Oq(M)〈x〉 =(
Oq(M) ∩ K

)(
Oq(M) ∩ H

)〈x〉 = M and I holds.

We prove next that σ(M) = {l, q}. This is clear in the case I. Assume
that II holds. Let

K1 := 〈y〉(Oq(M) ∩ K)(×s �=q,l(Os(M) ∩ K))(Ol(M) ∩ K)

and

H1 :=
(
Oq(M) ∩ H

)( ×s �=q,l (Os(M) ∩ H)
)(

Ol(M) ∩ H
)〈x〉.

Since M = F (M)〈x〉〈y〉, it is clear that M = H1K1 and so K = K1

and H = H1 by the choice of (G, A, B). Let us consider F (M)〈x〉 =
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(
F (M) ∩ K

)(
F (M) ∩ H

)
Q < M , for any Q ∈ Hall{q,l}(H). By the

choice of G we have in particular that [×s �=q,l(Os(M) ∩ K), Q] = 1.
From F (M)〈y〉 < M , we deduce that [×s �=q,l(Os(M) ∩ H), P ] = 1 for
any P ∈ Hall{q,l}(K). We consider now X ∈ Hall{q,l}(K) and Y ∈
Hall{q,l}(H) such that XY = Y X ∈ Hall{q,l}(M). Then we have that

X1 := Xu = 〈y〉(Oq(M) ∩ K
)(

Ol(M) ∩ K
) ≤ K,

for some u ∈ ×s �=q,l

(
Os(M) ∩ K

)
, and

Y1 := Y v =
(
Oq(M) ∩ H

)(
Ol(M) ∩ H

)〈x〉 ≤ H,

for some v ∈ ×s �=q,l(Os(M) ∩ H). Moreover

X1Y1 = XuY v = XuvY uv = (XY )uv ≤ M.

If |σ(M)| ≥ 3, then X1Y1 < M and we would obtain the contradiction
[x, y] = 1. Therefore σ(M) = {l, q} and we are done.

(1.3.g) (1.3.f)I holds and G satisfies (S) with r = l.

Assume that M = F (M)〈x〉〈y〉, σ(M) = {l, q}, F (M)〈x〉 < M and
F (M)〈y〉 < M . By the choice of (G, A, B) we have that H =

(
Oq(M)∩

H
)(

Ol(M) ∩ H
)〈x〉 and K = 〈y〉(Oq(M) ∩ K

)(
Ol(M) ∩ K

)
.

We claim that H � �M and K � �M . Since HF (M)/F (M) and
KF (M)/F (M) are N -connected, we have HF (M) � �M . More-
over F (M)H = (F (M) ∩ K)H = F (M)〈x〉 < M , which implies that
(F (M)∩K) and H are N -connected by the choice of G. In particular,
H ��F (M)H and so H ��M . Analogously, K ��M . Consequently
MN = (HK)N = HNKN by Lemma 1 (3). But HN ≤ Oq(M)∩H and
KN ≤ Ol(M) ∩K, which implies HN = Oq(M

N ) and KN = Ol(M
N )

since M/F (M) ∈ N . In particular, Oq

(〈x, y〉N) ≤ Oq

(
MN ) ≤ H and

Ol

(〈x, y〉N) ≤ Ol

(
MN ) ≤ K. Then

〈x, y〉 = 〈x〉〈x, y〉N 〈y〉 = 〈x〉Oq

(〈x, y〉N)
Ol

(〈x, y〉N)〈y〉,

where 〈x〉Oq

(〈x, y〉N) ≤ H and Ol

(〈x, y〉N)〈y〉 ≤ K. It follows that
M = 〈x, y〉, H = 〈x〉Oq(M

N ) and K = Ol(M
N )〈y〉, by the choice

of (G, A, B).

We notice now that N, x, y satisfy Condition (∗) of Lemma 8. In
particular CN

(〈x, y〉N)〈x, y〉 is an N 2-projector of G, which implies
CN

(〈x, y〉N)
= 1. Moreover N = (N ∩ A)(N ∩ B). By Lemma 8 (5)

we deduce that N ∩A = [N, 〈x〉] and N ∩B = [N, 〈y〉]. In particular it
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follows that N ∩ B = [N, 〈y〉K]. But KN ≤ 〈y〉K and KN = Ol(M
N )

is a normal subgroup of M . Consequently, [N, KN ] ≤ N ∩ B < N , be-
cause N �≤ B, and [N, KN ]�G = NM . This implies that [N, KN ] = 1
and so KN ≤ CG(N) = N , that is, KN = 1. Analogously we deduce
that HN = 1. But MN = HNKN = 1, a contradiction. This proves
that (1.3.f)I holds and the choice of (G, A, B) provides the desired
structure for G.

Assuming the structure (S) for the group G, let β ∈ Bq such that [α, β] /∈ N ,
C := CN

(〈α, β〉N)
and L := NAqΦ(AqBq)�G. We denote by bars the images

in the factor group Ḡ = G/N . The final contradiction for case 1 is derived
next:

(1.4) L ∩ Bq = 1.

We claim first that [L ∩ Bq, α] ≤ N . Since A ≤ L〈α〉 ≤ AB = G, it
is clear that L〈α〉 = A(L〈α〉 ∩B). If L〈α〉 = G, we obtain the contra-
diction G = NAq〈α〉 = NA, because Φ(AqBq) ≤ Φ(Ḡ). Consequently
the claim follows by (3).

Assume that L ∩ Bq �= 1. Since L ∩ Bq � Bq, there exists 1 �= z ∈
L ∩ Bq ∩ Z(Bq). We notice now that N, α, β and also N, α, zβ satisfy
Condition (∗) of Lemma 8. Moreover,

CN

(〈α, zβ〉N)
= CN

(
N [〈α〉, 〈zβ〉]) = CN

(
N [〈α〉, 〈β〉]) = C,

because [α, z] ∈ N by the previous claim. By Lemma 8, we deduce in
particular that

C(N ∩ B) = C[N, 〈β〉] = C[N, 〈zβ〉],

as N = (N ∩ A)(N ∩ B) by (1.1). Hence [z, N ] ≤ (N ∩ B)C.

If (N ∩ B)C < N , then CN (z) �= 1 by coprime action since z is a
q-element, q �= p. But N〈Bq, α〉 = G by (3), which implies that
z ∈ Z(G mod N). Hence CN(z) = N , but this means z ∈ CG(N) = N ,
a contradiction.

Therefore C[N, 〈β〉] = N . By Lemma 8 (3) and (6) it follows that
N = C, which implies [α, β] ∈ N , a contradiction. This proves that
L ∩ Bq = 1.

(1.5) Aq = 1.

We have NAq ≤ L ≤ AqBqN . Consequently, by (1.4), L = NAq(Bq ∩
L) = NAq, whence NAq � G and Aq � AqBq. Assume that Aq �= 1.
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Then 1 �= S := Aq ∩ Z(AqBq). Let s ∈ S. By coprime action we
have that S̄ = CS̄(α)[S̄, 〈α〉]. Then s̄ = s̄1s̄2, s̄1 ∈ CS̄(α), s̄2 ∈
[S̄, 〈α〉], s1, s2 ∈ S. Moreover, since S̄ is abelian, [S̄, 〈α〉] = [S̄, α−1] ={
σ̄−1σ̄α−1 | σ̄ ∈ S̄

}
. In particular, s̄2 = σ̄−1σ̄α−1

, for some σ̄ ∈ S̄. Then

s̄2ᾱ = ᾱσ̄, with σ̄ ∈ S̄, is an r-element centralized by s̄1 ∈ Z(AqBq).
Hence 〈β̄, s̄ᾱ〉 = 〈β̄, s̄1, s̄2ᾱ〉 = 〈s̄1〉〈β̄, s̄2ᾱ〉, which is a central product.
Consequently,

〈β, sα〉NN/N = 〈β̄, s̄ᾱ〉N = 〈β̄, s̄2ᾱ〉N = 〈β̄, ᾱσ̄〉N =

= (〈β̄, ᾱ〉N )σ̄ = 〈β̄, ᾱ〉N = 〈β, α〉NN/N.

Then it is clear that C = CN(〈β, sα〉N ). By Lemma 8 applied to N, α, β
and N, sα, β we have in particular that

C(N ∩ A) = C[N, 〈α〉] = C[N, 〈sα〉].
Therefore we have that [N, S] ≤ (N ∩ A)C. Since S is a q-group and
NS � G we can argue as in (1.4) to deduce that C[N, 〈α〉] = N . But
again Lemma 8 (3) and (6) implies that N = C, which yields the
contradiction [α, β] ∈ N .

(1.6) Final contradiction for case 1.

By the structure (S) of G, (1.4) and (1.5) we have that NBq � G =
NBq〈α〉, Φ(Bq) ≤ L ∩Bq = 1 and α is an r-element, r �= q. Hence B̄q

is a completely reducible 〈α〉-module over GF(q). If V̄ is a proper 〈α〉-
submodule of B̄q, V < Bq, we can consider NV 〈α〉 = V (N ∩ B)(N ∩
A)〈α〉 < G and deduce that [V, α] ≤ N by (3). But this implies that
B̄q is an irreducible GF(q)〈α〉-module, because otherwise [Bq, α] ≤ N ,
a contradiction. It follows in particular that

G = N〈β, α〉 = N〈βα, α〉 = N〈β1, α〉,
for β1 ∈ Bq such that βα = nβ1, for some n ∈ N . We notice that

C = CN(〈β1, α〉N ) = 1. By Lemma 8 we obtain that

[N, β] = N ∩ B = [N, β1] = [N, nβ1] = [N, βα] = [N, β]α,

which implies by Lemma 8 (6) that N = C = 1, the final contradiction.

Case 2: AN = G or BN = G.

We may assume that AN = G. Then A is a maximal subgroup of G and
A ∩ N = 1.

Let Ap ∈ Sylp(A) and Bp ∈ Sylp(B) such that ApBp ∈ Sylp(G). We
consider again X = X(N) the factorizer of N in ApBp. Then we have
(X ∩ Ap)(X ∩ Bp) = X = NAp ∩ NBp. Moreover, recall that N �≤ A and
N �≤ B by (1).
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We will derive a contradiction in this case by means of the following
steps:

(2.1) B = X ∩ Bp is a p-group, NB = X = (X ∩ Ap)B and X ∩ Ap �= 1.

Suppose that X ∩ Bp < B. Since G = AN = AX = A(X ∩ Bp),
by the choice of (G, A, B) we obtain that G/N is the product of the
N -connected subgroups AN/N and (X ∩Bp)N/N . In particular X =
(X ∩ Bp)N is subnormal in G. Hence X = N and so we conclude
that N = (N ∩ A)(N ∩ B) = N ∩ B ≤ B, a contradiction. Therefore
B = X ∩ Bp. Thus B is a p-group and furthermore we have BN =
X = (X ∩ Ap)B, which implies that X ∩ Ap �= 1.

(2.2) Let T be a normal p′-subgroup of A. If T (X ∩ Ap) < A, then
[T, X ∩ Ap] = 1.

We set S = T (X ∩Ap)N ≤ G. Since (X ∩Ap)N = X = (X ∩Ap)B, it
is clear that S = T (X ∩ Ap)B. If T (X ∩ Ap) < A, then S < G = NA
and so S/N =

(
T (X ∩ Ap)N/N

)(
BN/N

)
is an N -connected product

by (3). In particular, BN is subnormal in S and so BN ≤ F (S).
By (2.1) it follows that X∩Ap ≤ BN ≤ F (S). Therefore [T, X∩Ap] ≤
F (S) ∩ Op′(A) = 1.

(2.3) A = F (A)Ap, X ∩ Ap = Ap and NB = NAp.

Since A ∼= G/N , we have that F (A) is a p′-group. Assume that
F (A)(X∩Ap) < A. Hence [F (A), X∩Ap] = 1 by (2.2). Then it follows
that X ∩Ap ≤ CA(F (A)) ≤ F (A), and so X ∩Ap = 1, a contradiction.
Therefore F (A)(X ∩ Ap) = A. We conclude that Ap = X ∩ Ap and
A = F (A)Ap. By (2.1) we have NB = X = ApB. Since ApB is a
Sylow p-subgroup of G and X ≤ NAp, it follows that NB = NAp.

(2.4) F (A) is a q-group for some prime q �= p. Moreover, F (A)/Φ(A) is a
minimal normal subgroup of A/Φ(A) and Φ(F (A)) = Φ(A) = Z(A) =
CF (A)(Ap).

As we have seen in (2.3), F (A) is a p′-group. Let q be a prime divisor of
|F (A)|. If Oq(A)Ap < A, then [Oq(A), Ap] = 1 by (2.2) and (2.3). Since
Ap �= 1, it is clear that Ap is not centralized by F (A). Consequently,
there exists a prime q �= p such that Oq(A)Ap = A, which implies that
F (A) = Oq(A).

Notice that F (A)/Φ(A) = Soc
(
A/Φ(A)

)
= L1/Φ(A)× · · ·×Ls/Φ(A),

where Li/Φ(A) is a minimal normal subgroup of A/Φ(A) for i =
1, . . . , s. If s > 1, then Li < F (A) and LiAp < A for i = 1, . . . , s.
By (2.2) again we obtain that Ap is centralized by L1 . . . Ls = F (A),
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a contradiction. Therefore s = 1, which means that F (A)/Φ(A) is a
minimal normal subgroup of A/Φ(A). We have

A/Φ(A) =
(
F (A)/Φ(A)

)(
ApΦ(A)/Φ(A)

)

and obviously Ap �= A �= ApΦ(A), so it follows that ApΦ(A) is a non-
normal maximal subgroup of A. Thus, Op′(A)Φ(A) = A = Op′(A).
Since Φ(A) < F (A), it follows from (2.2) that Ap ≤ CA(Φ(A)). Hence,
A = Op′(A) ≤ CA(Φ(A)) and we have Φ(A) ≤ Z(A).

Since Φ(A) ≤ Z(A) ≤ CF (A)(Ap) < F (A) and Z(A) and CF (A)(Ap) are
normal subgroups of F (A)Ap = A, we conclude that Φ(A) = Z(A) =
CF (A)(Ap) because F (A)/Φ(A) is a chief factor of A.

Since F (A)/Φ(F (A)) is a completely reducible Ap-module over GF(q)
and Φ(F (A)) ≤ Φ(A) ≤ F (A), there exists an Ap-module T/Φ(F (A))
such that F (A)/Φ(F (A)) = Φ(A)/Φ(F (A)) ⊕ T/Φ(F (A)). Conse-
quently, A = F (A)Ap = Φ(A)TAp = TAp. Then F (A) = T and so we
have that Φ(A) = Φ(F (A)).

(2.5) Let α ∈ A, a ∈ Ap. Then N, α, a satisfy Condition (∗) of Lemma 8.

By (2.3) NB = NAp, so we have a = µb for some µ ∈ N , b ∈ B. We
recall that N, α, b satisfy Condition (∗) of Lemma 8. Since 〈α, µb〉 =
〈α, a〉 ≤ A ∈ N 2, we conclude by Lemma 8 (4) that N, α, a satisfy
Condition (∗).

(2.6) F (A) has exponent q and Φ(A) has order 1 or q.

Let x ∈ F (A) \ Φ(A). First we claim that CN(x) �= 1. If CN(x) = 1,
then [N, x] = N by coprime action. In particular, CN

(〈x, a〉N)
[N, x] =

N for all a ∈ Ap. By (2.5) N, x, a satisfy Condition (∗) of Lemma 8,
so it follows from Lemma 8 (3) and (6) that N = CN(〈x, a〉N ). Thus,
〈x, a〉N ≤ N ∩A = 1 and we have [x, a] = 1. This holds for all a ∈ Ap,
which means that x ∈ CF (A)(Ap) = Φ(A), a contradiction. Therefore
CN(x) �= 1.

Since F (A) is a q-group, we have that xq ∈ Φ(F (A)) = Z(A) by (2.4).
Now it is clear that CN(xq) is a normal subgroup of NA = G. Since
1 �= CN(x) ≤ CN(xq), it follows that CN(xq) = N and hence that
xq ∈ N ∩ A = 1. This proves xq = 1 for all x ∈ F (A) \ Φ(A).

Now, let z ∈ Φ(A). We can consider y ∈ F (A) \ Φ(A), then yz ∈
F (A)\Φ(A). Since Φ(A) = Z(A), we have that 1 = (yz)q = yqzq = zq.
Therefore xq = 1 for all x ∈ F (A).

Since N is an irreducible and faithful A-module over GF(p), it follows
that Z(A) is cyclic (see [8, Corollary B.9.4]). Now the result is clear.
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(2.7) Let x ∈ F (A), a ∈ Ap. Then [xa, x] ∈ 〈x, a〉N = 〈ax, a〉N .

We set z = [xa, x]. Notice that z ∈ F (A)′ ≤ Φ(A) = Z(A). We have
z = (xa)−1x−1xax and so xazx−1 = [x, a]. Thus, [x, a] = xax−1z =
[a, x−1]z. In particular, since x and a have coprime orders, we have
that z ∈ [〈x〉, 〈a〉] = 〈x, a〉N . Since [x, a] = a−1xax−1z, we have
that 〈ax, a〉 = 〈a−1ax, a〉 = 〈[x, a], a〉 = 〈xax−1z, a〉 = 〈ax−1

z , a〉.
Since z ∈ Z(A) and ax−1

and z have coprime orders, it follows that
〈ax, a〉 = 〈ax−1

, z , a〉. It is clear that this subgroup is normalized by x
and so it is a normal subgroup of 〈x, a〉. Let Q denote the normal
closure of 〈x〉 in 〈x, a〉. Since Q ≤ F (A) and 〈x, a〉 = 〈ax, a〉Q, it
follows that 〈x, a〉N = 〈ax, a〉N .

(2.8) Assume that F (A) is not abelian. Then F (A) is an extraspecial q-
group. Moreover, there exist x ∈ F (A) \ Φ(A), a ∈ Ap such that
Φ(A) = 〈 [xa, x] 〉.
Assume that F (A) is not abelian. Then 1 �= Φ(F (A)) = Φ(A) by (2.4)
and it follows that Φ(F (A)) has order q by (2.6). Therefore, F (A)′ =
Φ(F (A)). Furthermore, we have that Φ(A) = Z(A) ≤ Z(F (A)) <
F (A), whence Z(F (A)) = Φ(A). Thus we have that Φ(F (A)) has
order q and Z(F (A)) = Φ(F (A)) = F (A)′, i. e., F (A) is extraspecial.

We can consider some x ∈ F (A) \ Φ(A). Since Φ(A)〈x〉[〈x〉, Ap] is a
normal subgroup of A contained in F (A) and x /∈ Φ(A), we deduce
that Φ(A)〈x〉[〈x〉, Ap] = F (A). Thus, we have that 〈x〉[〈x〉, Ap] =
F (A). If xa ∈ CG(x) for all a ∈ Ap, then F (A) ≤ CG(x) and x ∈
Z(F (A)) = Φ(A), a contradiction. Therefore, there exists a ∈ Ap such
that [xa, x] �= 1. Since [xa, x] ∈ F (A)′ = Φ(A), the desired conclusion
follows.

(2.9) Assume that F (A) is not abelian and let x ∈ F (A) \ Φ(A). Then N ,
regarded as a GF(p)〈x〉-module, is a direct sum of regular GF(p)〈x〉-
modules. In particular, we have that |N | = |CN(x)|q.
Assume that F (A) is not abelian. Notice that N is an irreducible A-
module. Let V be an irreducible F (A)-submodule of N . By Clifford’s
theorem, we have that N = V a1 ⊕· · ·⊕V as for certain ai ∈ Ap and V ai

is an irreducible F (A)-module for i = 1, . . . , s.

Let us see first that V ai is a faithful F (A)-module for i = 1, . . . , s.
Notice that CF (A)(V

ai) = CF (A)(V ) ai is a normal subgroup of F (A)
for i = 1, . . . , s. Suppose that CF (A)(V ) �= 1. By (2.8), Z(F (A)) has
order q, so it follows that Z(F (A)) ≤ CF (A)(V ) and so we have that
Z(F (A)) ≤ CF (A)(V

ai) for i=1, . . . , s. Thus, Z(F (A)≤ CF (A)(N)= 1,
a contradiction. Therefore CF (A)(V ) = 1 and CF (A)(V

ai) = 1 for
i = 1, . . . , s.
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Now V ai is an irreducible and faithful F (A)-module for i = 1, . . . , s.
Let x ∈ F (A) \ Φ(A). Then, x ∈ F (A) \ Φ(F (A)) and x has order q.
By (2.8), F (A) is an extraspecial q-group, so we can apply [8, Corollary
B.9.20] to deduce that V ai is a direct sum of regular GF(p)〈x〉-modules.
Therefore N is a direct sum of regular GF(p)〈x〉-modules. In other
words, we have that N = L1 × · · · × Lt, with Li normalized by x,
|Li| = pq and |CLi

(x)| = p for i = 1, . . . , t. Now it is straightforward
to verify that CN(x) = CL1(x)×· · ·×CLt(x), so we can conclude that
|N | = (pq)t = |CN(x)|q.

(2.10) F (A) is an elementary abelian q-group and Φ(A) = 1.

Suppose that F (A) is not abelian. By (2.8), there exist x ∈ F (A) \
Φ(A), a ∈ Ap such that Φ(A) = 〈 [xa, x] 〉. Notice that N, x, a and
also N, ax, a satisfy Condition (∗) of Lemma 8 by (2.5). By (2.7) we
have that Φ(A) ≤ 〈x, a〉N = 〈ax, a〉N . We let C = CN(〈x, a〉N ) =
CN(〈ax, a〉N ) and R = [N, 〈x, a〉N ] = [N, 〈ax, a〉N ]. We have that
Φ(A) = Φ(F (A)) �= 1, CN(Φ(A)) < N and CN(Φ(A)) is a normal
subgroup of G, so it follows that CN(Φ(A)) = 1. Therefore C = 1 and
so, by Lemma 8 (1) and (2), we conclude that R = N and CN(x) ×
CN(a) = N = CN(ax) × CN(a). Hence |CN(x)| = |CN(ax)| = |CN(a)|,
and consequently |N | = |CN(x)|2. On the other hand, we have |N | =
|CN(x)|q by (2.9), and so q = 2. Since F (A) has exponent q, it follows
that F (A) is abelian, a contradiction. Therefore F (A) is abelian and
it is an elementary abelian q-group. Moreover, we have that Φ(A) =
Φ(F (A)) = 1.

(2.11) Let a ∈ Z(Ap), |〈a〉| = p. If S ≤ F (A) and |S| = q, then Sa �= S. In
particular, p �= 2.

Let S ≤ F (A) and |S| = q. Then S = 〈x〉 with 1 �= x ∈ F (A). We
suppose that Sa = S and obtain a contradiction. Notice that N, x, a
satisfy Condition (∗) of Lemma 8 by (2.5). We let C = CN(〈x, a〉N )
and N1 = C[N, 〈x〉] = C[N, S]. Then a normalizes N1 and from
Lemma 8 (6) it follows that N = C. Thus, 〈x, a〉N ≤ N ∩ A = 1.
Since x and a have coprime orders, we conclude that x ∈ CF (A)(a).
By (2.4) and (2.10), F (A) is a minimal normal subgroup of A. Since
1 �= CF (A)(a) and CF (A)(a) is normalized by F (A)Ap = A, it follows
that CF (A)(a) = F (A) whence a ∈ F (A), a contradiction. This proves
that Sa �= S.

Let us see that p �= 2. We can take 1 �= x ∈ F (A). If p = 2, then xxa

is fixed under a since F (A) is abelian and a2 = 1. Hence xxa = 1 and
so 〈x〉a = 〈x〉, a contradiction. Therefore p �= 2.
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(2.12) The final contradiction.

Since Z(Ap) �= 1, we can take a ∈ Z(Ap) such that |〈a〉| = p. We
also take 1 �= x ∈ F (A). By (2.11), 〈x〉a �= 〈x〉. In particular xa �= x,
〈x, a〉N �= 1 and CN(〈x, a〉N ) �= N . Notice that by (2.5) both N, x, a
and N, ax, a satisfy Condition (∗) of Lemma 8. Using (2.7) we set

C = CN(〈x, a〉N ) = CN(〈ax, a〉N ), R = [N, 〈x, a〉N ] = [N, 〈ax, a〉N ].

Since C �= N , it follows from Lemma 8 that R �= 1 and C ∩ R = 1.
Let Q denote the normal closure of 〈x〉 in 〈x, a〉. Since Q ≤ F (A),
Q is an elementary abelian q-group. We have that 〈x, a〉 = Q〈a〉 and
〈x, a〉N = 〈ax, a〉N ≤ Q.

Since R is normalized by 〈x, a〉 and R �= 1, we can consider an irre-
ducible GF(p)Q-submodule V of R. Because Q is abelian, Q/CQ(V )
is abelian, which implies that Q/CQ(V ) is cyclic (see [8, Proposition
B.9.3]). We have that C∩R = 1, and so V is not centralized by 〈x, a〉N .
In particular, CQ(V ) < Q and therefore Q/CQ(V ) has order q. Ob-
serve that Q is completely reducible as GF(q)〈a〉-module. We claim
that CQ(V )a �= CQ(V ). Otherwise, CQ(V ) is a GF(q)〈a〉-submodule
of Q. Then we have Q = CQ(V ) ⊕ S for some GF(q)〈a〉-submodule
S of Q. Therefore S has order q, S ≤ F (A) and Sa = S, which
contradicts (2.11). This proves that CQ(V )a �= CQ(V ).

It is clear that V, V a, V a2
, . . . , V ap−1

are irreducible Q-submodules of R.
Let us see that their sum is direct. Since the sum of these submodules
is a completely reducible Q-module, it is sufficient to show that V ai

and
V aj

are not isomorphic as Q-modules if ai �= aj . If this is not so, then
for some ai �= aj we have that CQ(V ai

) = CQ(V aj
) and consequently,

CQ(V )ai
= CQ(V )aj

. Since 〈a〉 has order p, it follows that CQ(V )a =
CQ(V ), a contradiction. Therefore we may write L=V⊕V a⊕· · ·⊕V ap−1

.
It is clear that L is an 〈x, a〉-submodule of R.

We notice that L is isomorphic to V Q〈a〉, the induced module of V
from Q to Q〈a〉 = 〈x, a〉. Then, by Mackey’s theorem, we obtain that

L〈a〉∼= (V Q〈a〉)〈a〉∼= (VQ∩〈a〉)〈a〉 ∼= (V{1})〈a〉 ∼= GF(p)〈a〉⊕· · ·⊕GF(p)〈a〉,

a direct sum of copies of the regular GF(p)〈a〉-module: L=L1⊕· · ·⊕Ls.

It is straightforward to verify that CL(a) = CL1(a) ⊕ · · · ⊕ CLs(a), so
we can conclude that |CL(a)| = ps. Hence, |L| = pps = |CL(a)|p.
On the other hand, recall that N, ax, a satisfy Condition(∗)of Lemma 8.
Since 〈ax, a〉N ≤ Q, we have that Op(〈ax, a〉N ) = 1. Moreover, L is
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normalized by 〈x, a〉, so it follows that L, ax, a satisfy Condition (∗) of
Lemma 8. Observe that CL(〈ax, a〉N ) = C∩L ≤ C∩R = 1. Therefore,
it follows from Lemma 8 (2) that L = CL(ax) × CL(a). Consequently,
|L| = |CL(ax)| |CL(a)| = |CL(a)|2. Finally, this implies that p = 2,
which contradicts (2.11). �

Remark 1 In contrast to all essential properties of N -connectedness(cf.[12]),
Theorem 1 does not generalize in the obvious way from products with two
factors to products with n ≥ 3 factors. It is easy to construct examples of
groups G = ABC of pairwise permuting subgroups A, B, C such that A, B
and A, C and B, C are N 2-connected, but AF (G)/F (G) and BF (G)/F (G)
are not N -connected; e. g. G = Sym(4), A = 〈(12)〉, B = 〈(123)〉, C =
〈(12)(34)〉 × 〈(13)(24)〉.

However, let us consider another generalizing condition to the case G =
S1 · · ·Sn where G is soluble with S1, . . . , Sn pairwise permuting subgroups.
It follows from [12, Proposition 1 (5)] that, in this case, the subgroups
S1, . . . , Sn are pairwise N -connected if and only if 〈a1, . . . , an〉 ∈ N for all
ai ∈ Si, i = 1, . . . , n. Now, assume that G = S1 · · ·Sn is a product of
pairwise permuting subgroups such that 〈a1, . . . , an〉 ∈ N 2 for all ai ∈ Si,
i = 1, . . . , n. Then it is clear that, for every i = 1, . . . , n, Si and

∏
j �=i Sj

are N 2-connected subgroups of G. By Theorem 1 it follows that the sub-
groups S1F (G)/F (G), . . . , SnF (G)/F (G) are pairwise N -connected and so
that 〈a1, . . . , an〉F (G)/F (G) ∈ N for all ai ∈ Si, i = 1, . . . , n.

It is still possible to state another generalization for products of more
than two factors. Let the soluble group G = S1 · · ·Sn be again a product
of pairwise permuting subgroups with n ≥ 3. Assume that S1 and S2 are
N 2-connected and Si and Sj are N -connected for all i �= j with {i, j} �=
{1, 2}. For any prime p, let P ∈ Sylp(S1) and Q ∈ Sylp(S2) such that PQ ∈
Sylp(S1S2). From [12, Proposition 1 (3)] and Lemma 6 we deduce that
PQ and S3 · · ·Sn are N -connected permuting subgroups. Consequently,
Op(S1S2) � PQ � �PQS3 · · ·Sn and so also Op(S1S2) � �S1S2S3 · · ·Sn. It
follows now from Theorem 1 that 〈a1, a2〉N ≤ F (S1S2) ≤ F (S1 · · ·Sn) =
F (G) for all a1 ∈ S1 and a2 ∈ S2, that is, S1F (G)/F (G) and S2F (G)/F (G)
are N -connected.

Remark 2 The hypothesis in Theorem 1 that G is the product of the
N 2-connected subgroups A and B is essential; it cannot be replaced by
G = 〈A, B〉. For instance, let G =

(
Alt(4) × Alt(4)

)
C2 be the wreath

product of Alt(4) with C2, A = Alt(4) × 1, B = C2. Then G = 〈A, B〉,
A and B are N 2-connected, but AF (G)/F (G) and BF (G)/F (G) are not
N -connected.
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We draw some immediate consequences of Theorem 1.

Corollary 1 Let F be a class of soluble groups and assume that

(i) F is a Q-closed Fitting class, or

(ii) F is a formation containing N .

If the group G = AB is the N 2-connected product of the subgroups A and B,
then A, B ∈ F implies G ∈ NF , and G ∈ NF implies A, B ∈ NF .

Proof. Suppose that A, B ∈ F . Then G = AB is an S-connected product of
the soluble subgroups A and B. Hence G is a soluble group by [6, Theorem].
By Theorem 1 and Q-closure of F , G/F (G) is the N -connected product
of the F -subgroups AF (G)/F (G) and BF (G)/F (G). Each of the condi-
tions (i) and (ii) implies that N -connected products of F -subgroups are
F -subgroups, by Lemma 2 (1) and [12, Proposition 3] respectively. There-
fore, G ∈ NF . The second part is proved similarly. �

As a particular case of Corollary 1 we state explicitly:

Corollary 2 If the group G = AB is the N 2-connected product of the sol-
uble subgroups A and B of nilpotent length at most l, then G is soluble of
nilpotent length at most l + 1.

4. Concluding remarks

It is natural to ask whether Theorem 1 can be extended to the general case of
NF-connected products, F a formation. The following example shows that
this is only possible for formations F containing all finite abelian groups.

Example Let F be a formation such that A �⊆ F . Then there is a cyclic
group C = 〈c〉 which is not contained in F . We consider now V a faithful C-
module over GF(p), for a prime p �∈ σ(C), and G = [V ]C the corresponding
semidirect product.

Obviously
〈g〉 ∈ N ⊆ NF for all g ∈ G,

this is to say that G = GB is the NF-connected product of G and B = 1.
But

〈c〉F �≤ F (G) = V,

that is, G/F (G) and BF (G)/F (G) are not F -connected.



Soluble products of connected subgroups 459

We have not been able yet to prove a version of Theorem 1 for any
soluble NF-connected product G = AB, where F ⊇ A is a formation. This
is however possible under certain conditions on the factors A and B. In
the following we just present one such result which has already interesting
consequences (Corollaries 3 and 4).

Proposition 1 Let F be a formation of soluble groups containing all abelian
groups. Let G be a soluble group such that G = AB is the NF-connected
product of the subgroups A and B. Assume that one of the factors A, B is
normally embedded in G. Then

G/F (G) =
(
AF (G)/F (G)

)(
BF (G)/F (G)

)

is an F-connected product of the two factors.

Proof . We observe first that the statement of the theorem is equivalent to
the fact that 〈a, b〉F ≤ F (G) for all a ∈ A and all b ∈ B.

Assume that the result is false and let G be a counterexample with |G|
minimal. By Lemma 9 we have that G has a unique minimal normal sub-
group N , N �≤ A and N �≤ B. In particular, for the prime p dividing |N |, it
follows that p | |A| and p | |B|. We may assume that A is normally embed-
ded in G. Therefore we have 1 �= Ap ∈ Sylp(A) and Ap ∈ Sylp(K) for some
normal subgroup K of G. Since N is the unique minimal normal subgroup
of G, we have N ≤ K and so N ≤ Ap, a contradiction which concludes the
proof. �

For a group G we set F0(G) = 1 and Fk(G) = F
(
G mod Fk−1(G)

)

for k ≥ 1.

Corollary 3 Let G be a soluble group, g ∈ G and k ≥ 1. Then 〈g, h〉 ∈ N k

for all h ∈ G if and only if g ∈ Z∞
(
G mod Fk−1(G)

)
.

Proof . If g ∈ Z∞
(
G mod Fk−1(G)

)
, then 〈g, h〉Fk−1(G)/Fk−1(G) is nilpo-

tent and so 〈g, h〉 ∈ N k for all h ∈ G. We will show the other implication
by induction on k.

If k =1, then 〈g〉 and G are N -connected and g∈ Z∞(G) by Lemma 2 (2).
Suppose inductively that the result holds for k ≥ 1. Assume that 〈g, h〉 ∈
N k+1 for all h ∈ G. Then 〈g〉 and G are N k+1-connected. It follows from
Proposition 1 with F = N k that 〈ḡ〉 and G are N k-connected, where we
denote by bars the images in the factor group G/F (G). By inductive hy-
pothesis we have ḡ ∈ Z∞(G mod Fk−1(G)). Since the N k−1-radical of G is
Fk−1(G/F (G)) = Fk(G)/F (G), we conclude that g ∈ Z∞(G mod Fk(G)).
This completes the induction argument. �
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Corollary 4 For a soluble group G, an element g ∈ G and k ≥ 1, the
following statements are equivalent:

1. g ∈ Fk(〈g, h〉) for all h ∈ G.

2. 〈g, h〉 ∈ N k for all h ∈ Fk(G) and 〈g, h〉 ∈ N k+1 for all h ∈ G.

3. g ∈ Fk(G).

Proof. Assume that Condition 1 holds. Then it is clear that 〈g, h〉 ∈ N k+1

for all h ∈ G. On the other hand, if h ∈ Fk(G) we deduce that 〈g, h〉 ≤
Fk(〈g, h〉) and so 〈g, h〉 ∈ N k. Hence Condition 1 implies Condition 2.

Assume now that Condition 2 holds and we prove Condition 3. First
it follows from Corollary 3 that g ∈ Fk+1(G) since 〈g, h〉 ∈ N k+1 for all
h ∈ G. Now if x = as ∈ X := Fk(G)〈g〉 with a ∈ Fk(G) and s ∈ 〈g〉, then
〈x, g〉 ≤ 〈a, g〉 ∈ N k by hypothesis. We deduce that g ∈ Fk(X) = Fk(G) by
Corollary 3 again and since X � �G. This proves Condition 3.

Finally Condition 1 is easily deduced from Condition 3. �

Remark 3 The equivalence of Condition 1 and Condition 3 in Corollary 4
is a result of Flavell [10, Theorem 2.1] in a paper that was motivated by
the following conjecture of the same author: “The soluble radical of a finite
group G coincides with the set of elements y ∈ G satisfying that 〈y, x〉 is
soluble for all x ∈ G”. This conjecture has been recently proven in [11].
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Edificio Matemáticas, Ciudad Universitaria. 50009 Zaragoza, Spain

pgallego@unizar.es

Peter Hauck
Wilhelm-Schickard-Institut für Informatik

Universität Tübingen
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Dolores.Perez@uv.es

Research supported by Proyectos MTM2004-06067-C02-02 and MTM2007-68010-C03-03,
Ministerio de Educación y Ciencia and FEDER, Spain.



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /All
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveEPSInfo true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile ()
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org)
  /PDFXTrapped /Unknown

  /Description <<
    /FRA <>
    /ENU (Use these settings to create PDF documents with higher image resolution for improved printing quality. The PDF documents can be opened with Acrobat and Reader 5.0 and later.)
    /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308000200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
    /DEU <>
    /PTB <>
    /DAN <>
    /NLD <>
    /SUO <>
    /ITA <>
    /NOR <>
    /SVE <>
    /KOR <FEFFd5a5c0c1b41c0020c778c1c40020d488c9c8c7440020c5bbae300020c704d5740020ace0d574c0c1b3c4c7580020c774bbf8c9c0b97c0020c0acc6a9d558c5ec00200050004400460020bb38c11cb97c0020b9ccb4e4b824ba740020c7740020c124c815c7440020c0acc6a9d558c2edc2dcc624002e0020c7740020c124c815c7440020c0acc6a9d558c5ec0020b9ccb4e000200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /CHS <FEFF4f7f75288fd94e9b8bbe7f6e521b5efa76840020005000440046002065876863ff0c5c065305542b66f49ad8768456fe50cf52068fa87387ff0c4ee563d09ad8625353708d2891cf30028be5002000500044004600206587686353ef4ee54f7f752800200020004100630072006f00620061007400204e0e002000520065006100640065007200200035002e00300020548c66f49ad87248672c62535f003002>
    /CHT <FEFF4f7f752890194e9b8a2d5b9a5efa7acb76840020005000440046002065874ef65305542b8f039ad876845f7150cf89e367905ea6ff0c4fbf65bc63d066075217537054c18cea3002005000440046002065874ef653ef4ee54f7f75280020004100630072006f0062006100740020548c002000520065006100640065007200200035002e0030002053ca66f465b07248672c4f86958b555f3002>
    /ESP <>
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [595.000 842.000]
>> setpagedevice


