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Non-uniqueness

in a free boundary problem

Bjorn Bennewitz

Abstract

We show that a result of Lewis and Vogel on uniqueness in a
free boundary problem for the p-Laplace operator is sharp in two
dimensions.

1. Introduction

Denote points in Euclidean 2 space R? by z = (z1,7s). Let (-,-) be the
standard inner product on R? and let |z| = (x, z)'/? be the Euclidean norm
of z. Set B(z,r) = {y € R* : |x — y| < r} whenever z € R? and r > 0.
Let dz denote Lebesgue measure on R? and define k& dimensional Hausdorff
measure, in R%, 0 < k < 2, as follows: For fixed § > 0 and E C R2, let
L(6) = {B(x;,7;)} be such that E C |JB(z;, ;) and 0 <r; <§,i=1,2,...

Set
oh(E) = inf (D alhrt)

L(9)

where a(k) denotes the volume of the unit ball in R¥. Then
H*(E) = lim P(E), 0<k<2.
If O is open and 1 < ¢ < oo, let W19(O) be the space of equivalence classes

of functions u with distributional gradient Vu = (ug,, us,), both of which
are ¢ th power integrable on O. Let

||u||1,q = Hqu + ||vu||q

be the norm in W(O) where || - ||, denotes the usual Lebesgue ¢ norm
in O. Let C§°(O) be the space of infinitely differentiable functions with
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compact support in O and let W, ?(0) be the closure of C$°(O) in the norm
of Wh4(0O). Let Q be a domain (i. e. an open connected set) and suppose
that the boundary of 2 (denoted 0f2) is bounded and non empty. Let N be
a neighborhood of 0f2, p fixed, 1 < p < co and u a positive weak solution to
the p Laplace differential equation in Q N N. That is u € WP(Q2 N N) and

(1.1) / |VulP~2(Vu, Vo) dz =0

whenever # € Wy ”(QNN). Observe that if u is smooth and Vu # 0 in QNN,
then V - (|Vu[P72Vu) = 0 where V- denotes divergence. We assume that u
has zero boundary values on 0f) in the Sobolev sense. More specifically if
¢ € C°(N), then u¢ € WyP(QN N). Extend u to N \ Q by putting u = 0
on N\ Q. Then u € WHP(N) and it follows from (1.1) as in [10] that there
exists a positive finite Borel measure p on R? with support contained in OS2
and the property that

(12) /|Vu|p2<Vu, Vo) dr — —/qbdu

whenever ¢ € C§°(N). We give a proof that p exists provided u has a
continuous extension to N. It suffices to show

F(¢) =— /N(|Vu|p_2Vu,ng) dr > 0.

for ¢ > 0. Then the existence follows from the Riesz representation theorem
and the basic estimates listed in section 2. To see this let ¢ = ((e +max(u —

€,0))" — €") ¢ where ¢ € C5°(B(z,r)) and ¢ = 1 on B(z,r/2) and supp ¢ C
B(z,r) for some z € 9€2. Then supp ¢ C 2 so we get

(1.3) 0 :/N<|Vu|p2Vu, Vo) dx
:/ n(e + max(u — ¢, 0))n_1|Vu|p¢ dx
+ / ((e + max(u —€,0))" — €")|Vul|P">(Vi, Vu) dz
N

Note that
77/ (e + max(u — e, O))n_1|Vu|pw dr >0
u>e€

SO

0> /N ((e + max(u — €,0))" — €")|Vul["~*(Vi), Vu) dz
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Suppose r is so small that v < 1 in B(z,r). Then
e+ max(u — €,0))" — )V 2(Ve, Va)| < V]| up .

Now |Vu| € LP71(2) so we can use the dominated convergence theorem
to take the limits under the integral sign as ¢ and 7 go to zero and get
F(1) > 0. We can use a partition of unity to reduce the problem to such
small 7’s. Note that if 02 is smooth enough then

(1.4) dp = |VulP~*dH™ !

Let £ be a compact set and G an open set containing F. For fixed p,
1 <p < oo set

K,(E,G) = inf { / Vo) dx}

where the infimum is taken over all § € C3°(G) with § =1 on E. K,(E,G)
is called the p-capacity of E relative to G.

In [17] Lewis and Vogel consider the following free boundary problem.
Given F' C R" a compact convex set, a > 0, and 1 < p < oo, find a function
u defined on a domain D = D(a,p) D F with

(1.5a) V- (|VuP~?Vu) = 0 weakly in D \ F,
1.5b) u(z) — 1 whenever x — y € F
and u(x) - 0asz — y € 0D,
(1.5¢) p=a’""H" " on dD.
They prove

Theorem A. Suppose K,(F,G) > 0 for some open G D F and let D,u,p,a
be as in (1.5a), (1.5b) and let v be the measure corresponding to u as in (1.2).
If p satisfies (1.5¢) and in addition there exists 3, 0 < 3 < oo and 9 > 0,
for which

(1.6) p[B(x,r)] < pr"t 0<r<nrg
then v and D are uniquely determined.

Previously Henrot and Shahgholian had considered the classical version
of this problem that is the problem obtained by replacing (1.5¢) by the
condition |Vu(x)| — a whenever x — y € 0D. In [11] they proved

Theorem B. If K,(F,G) > 0 for some open G D F then there exists a
unique @i, D = D(a, p) such that (1.5a), (1.5b) are satisfied and |Vu(z)| — a.
Moreover D is convex with a smooth (C*) boundary.
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In this paper we show that theorem A is sharp in two dimensions, namely

Theorem 1. Suppose n = 2 and K,(F,G) > 0 for some open G D F. If
a>0and1l < p < oo there exists a bounded domain D which is not convex,
a p harmonic function u and a corresponding measure p which satisfy (1.5)
but u does not satisfy (1.6).

The proof uses the same method as the construction of pseudospheres
in [16] to construct a domain which satisfies (1.5) but is not convex and
thus is not the same as the domain in [11]. To outline this method let €
be a domain and let u be a function which satisfies (1.5a), (1.5b) with D
replaced by 2 and suppose a = 1. If p < 2 suppose that |Vu| > 1 on 02 but
if p > 2 suppose |Vu| < 1 on 9. For a given small € we add smooth bumps
to 02 by “pushing out” or “pushing in” along certain surface elements of
{z € 0Q : |[Vu(z)| > 1+ €} or {z € 9Q : [Vu(z)| < 1— ¢} depending on
whether p > 2 or p < 2. In this way we obtain a new domain ' D Q if
p <2but  CQif p>2and we choose the bumps so that for e <t <1

(1.7) H'(0Y) > H'(0Q) + n(t)H' {z : |Vu(z)| > 1 +t}
if p < 2 but
(1.8) H'(0Q) > H'(0Q) + n(t)H{z : |[Vu(z)] < 1 —t}

if p > 2. Here 7 is a positive function on |0, oco[. Let u’ be a function in
which satisfies (1.5a), (1.5b) with D replaced by €. If p < 2 then Q C
and it follows that u <« in € and by the maximum principle |Vu/| > 1 on
QNI In section 3 we prove that |Vu/| > 1 on the bumps. If p > 2 we
get |Vu/| < 1 in the same way. In section 4 we will show that there exists
a certain elliptic partial differential equation for which u’ is a solution and
log | V4| is a supersolution if 1 < p < 2 and a subsolution if p > 2. Then we
use the divergence theorem as in [2] to prove that if 1 < p < 2 then

(1.9) / V'[P~ og |[Vu/| dH' < C
o
and if p > 2 then
(1.10) / (V' [P~ og |Vu/| dH > C
o’
where the constant C' depends only on F. If 1 < p < 2 this allows us to
control the size of the set where |Vu/| is large so that by pushing out and

keeping |Vu'| > 1 we in fact keep |Vu/| close to 1 for the most part. Likewise
if p > 2 we are able to control the size of the set where |V/| is close to zero.
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Finally we use (1.7)-(1.10) and induction to construct D. We describe
the case p < 2 in detail, the case p > 2 is similar. Let Dy be a domain such
that ug satisfies (1.5a) and (1.5b) with D replaced by Dy and let 2 = D.
Modify € as above to get ' = D; and v = u;. If Dy has been constructed
for 0 < k < m we put €, = 27™¢, and modify D,, to obtain D,, ;. Set
D = J;” Dg. The construction can be arranged so that D is not convex (see
Section 4) which shows that it is not the domain in [17]. To prove (1.5¢) we
first note

(1.11) C > / dyug :/ |Vug|P~ 1 dH' > H'(ODy,)
0Dy,

for kK = 0,1,... because ui(0D;) < C for some C independent of k (see
Section 4). Second, for each § > 0 we have

(1.12) klim H'{z € dDy, : |Vuy(z)] >1+6} =0

since otherwise (1.7) and iteration would lead to a contradiction to (1.11).
Next from (1.9) and the fact that |Vug| > 1 on 0Dy we see that for M > 1
and k=0,1,...

(1.13) logM/ V[P~ dH! §/ |VurP~tlog |Vug| dH' < O < .
{IVug[>M} dDy,

We also show that as £ — oo
(1.14) H'op, — H'|op and iy —

weakly as measures on R? in section 4. Let ¢ € C5°(R?) and ¢ > 0. Then
we get

(1.15) /gbduk = | VuP~tdH* > pdH" .
8Dk aDk

To obtain the reverse inequality let 0 be a fixed small number and M be a
fixed large number and put

(1.16) Ey ={x € 0D : 1 < |[Vug(z)] <1446}
(1.17) Fp,={x € 0Dy : 146 < |Vug(z)] < M}

for k=0,1,.... Then

8Dk Ek Fk Lk
It is clear that

L] < (1 +5)P—1/ pdH".

9Dy,
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Also from (1.12) we have
|L| < MP7H|@lloH' {z € 0Dy : 146 < |Vuy|} — 0
as k — oo. Using (1.13) we get

C
[13] < ||¢||oo/ |Vug|P P dH' <
[Vug|>M

log M

Letting k& — oo we obtain from the above and (1.14)

ol

C
dH' < [ ¢pdu < (1+0)P! dH' + —— :
[ am < [oaus aipt | oant+ ol

Finally letting 6 — 0 and M — oo we obtain

fou- [ o

which is what we wanted to prove. Finally the author would like to thank
J. Lewis for pointing out this problem and helpful discussions.

2. Basic estimates

A Jordan curve J is said to be a k quasicircle 0 < k < 1if J = f(0B(0,1))
where f € W?(R?) is a homeomorphism of R? and

(2.1) Ifz] < E|f.], H? a. e. in R?.

Here we use complex notation, i = /=1, 2z = x1 + ixa, 2fs = fo, + ifes,
2f, = fu, —ifs,- We call J a quasicircle if J is a k quasicircle for some
0 < k < 1. Let wy,wy be distinct points on the Jordan curve J and Jy, Jo
the arcs with endpoints wy, wy. Then J is said to satisfy the Ahlfors three
point condition if there exists an 1 < M < oo such that for all wq,ws € J
we have
min{diamJ;, diam.Jy} < M|w; — wyl.

A Jordan curve J is a quasicircle if and only if it satisfies the Ahlfors three
point condition. A domain €2 is said to be uniform provided there exists
M;1 < M < oo such that if wy,wy € €1, then there is a rectifiable curve
v :[0,1] — Q with v(0) = wq, ¥(1) = ws, and

(2.2a) H(y) < M|w; — w,|

(2.2b) min{ " (y([0,4])), H' (v([t,1]))} < Md(~(t),09)

where d(E, F') denotes the distance between two non-empty sets £ and F.
If 1 < M < oo and Q is a domain a ball B(w,r) C Q is said to be M
non-tangential if

Mr > d(B(w,r),00) > M~ 'r
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If wy,wy € Q) a Harnack chain from w; to wsy in €2 is a sequence of M
non-tangential balls such that the first ball contains w; the last ball contains
wy and consecutive balls intersect. The conditions (2.2) are equivalent to

(2.3a) For any w € 092,0 < r < diam (2, there exists
a = a,(w) € Q such that M~'r < |a —r| < r and
d(a,00) > M~ 'r

(2.3b) Given € > 0,wy, ws € Q, d(wj, 082) > € and
|w; — wsy| < Ce, there is a Harnack chain from

w1 to wy whose length depends on C' but not on e.

See [9] for references.

In the sequel ¢ will denote a positive constant > 1 (not necessarily the
same at each occurrence) which may depend only on p unless otherwise
stated. In general c(ay,...,a,) denotes a positive constant > 1 which may
only depend on p,aq,...,a,, not necessarily the same at each occurrence.
We begin by stating some interior and boundary estimates for u a positive
weak solution to the p Laplacian in B(w, 4r)NQ with u = 0 on 02N B(w, 4r)
when this set is nonempty. In this case we extend u to B(w, 4r) by putting
u = 0on B(w,4r)\. Let maxp(. s u, minp ;) u be the essential supremum
and infimum of v on B(z, s) whenever B(z,s) C B(w,4r).

Lemma 1. Let u be as above. Then

clrp2/ |VulPde < max u? < cr2/ uP dx.
B(w,r/2) B(w,r) B(w,2r)

If B(w,2r) C Q, then

max v < ¢ min u.
B(w,r) B(w,r)

Proof. The first display in Lemma 1 is a standard subsolution estimate
while the second display is a standard weak Harnack estimate for positive
weak solutions to nonlinear partial differential equations of p Laplacian type
(see [20]). [ |

Lemma 2. Let u be as in Lemma 1. Then u has a representative in
WP (B(w,4r)N Q) with Hélder continuous partial derivatives in B(w,4r)N
Q. That is for some o = o(p) €]0, 1] we have

c’l}Vu(wl) — V’u(’wz)} < (Jwy — w2|/8)0g(132<) [Vul

< st - 7
< esH(Jwy — wol/s) B%?g;)u

whenever wy, wy € B(z,s) and B(z,4s) C B(w,4r) N Q.
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Proof. The proof of Lemma 2 can be found in [4], [14] or [21] and in fact is
true when B(w,4r) N Q C R™. In R? the best Holder exponent in Lemma 2
is known when p > 2 while for 1 < p < 2 a solution has continuous second

partials (see [12]). [ |

A mapping h : B(w, 4r)N Q — R? is said to be quasiregular in B(w, 47)N
Qif h € WY (B(w,4r) N Q) and (2.1) holds with f replaced by h in
B(w,4r) N Q. From a factorization theorem for quasiregular mappings it
follows that h = 7 o f where f is quasiconformal in R? and 7 is an analytic
function on f(B(w,4r) N Q).

Lemma 3. If u is as in Lemma 1 and z = x1 + 129 then u, is quasiregular
in B(w,4r)N Q for some 0 < k < 1 (depending only on p) and consequently
Vu has only isolated zeros in B(w,4r) N Q.

Proof. For a proof of quasiregularity see [1], [15]. Since the zeros of an
analytic function are isolated it follows from the factorization theorem that
the zeros of Vu are isolated. ]

Lemma 4. If B(w,4r) C Q, Vu # 0 in B(w,4r) and maxp(y . |Vu| <
AMaxg () |Vu| then

max |Vu| < ¢(A) min |Vl

B(w,27") B(’LU,T')

Proof. Note that v = log |Vu| is a weak solution in B(w,4r) to the diver-
gence form partial differential equation (see [19])

3 a%(Aij(x)vxj) 0

1,7=1

where the (A;;) are bounded and uniformly elliptic (with constants depend-
ing only on p). Using Harnacks inequality for positive solutions to partial
differential equations of this type (see [20]) applied to maxp(y,2,) v — v in
B(w,r) we obtain the lemma. [ |

Lemma 5. Let u be as in Lemma 1 and w € 0). If p > 2 there exists
a = a(p) €]0,1[ such that u has a Hélder o continuous representative in
B(w,r) (also denoted w). Moreover if x,y € B(w,r) then
— < _ @ )
ue) = u(y)] < el — yl/r)" g
If 1 < p <2 and Q is simply connected, then this inequality is also valid
when 1 < p <2 with o = «a(p).
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Proof. For p > 2, Lemma 5 is a consequence of Lemma 1 and Morreys
inequality (see [6]). If 1 < p < 2 and Q is simply connected we deduce from
the interior estimates in Lemma 2 that it suffices to consider only the case
when y € B(w,r) N 0. We then show for some 6 = 0(p, k),0 < 6 < 1 that

(24) max u <6 max u whenever 0 < p<r and z¢€ IQN B(w,r).
B(z,p/4) B(z,p/2)

This inequality can then be iterated to get Lemma 5 for x,y as above. To
prove (2.4) we use the fact that B(z, p/4) N OS2 and B(z, p/4) have compa-
rable p capacities (see [10]) and estimates for subsolutions to elliptic partial
differential equations of p Laplacian type (see [8], [15]). [ |

Lemma 6. Let u, ), w be as in Lemma 5. Assume also that € is a uniform
domain. Then there exist c = ¢(M) and ¢ = ¢(M) with

max u < cu(a,/s(w
< culare(w))

where M is as in (2.2) and a,(w) is as in (2.3). Hence

() = u(y)| < e —yl/r)*ulara(w))
for z,y € B(w,r/2¢).

Proof. The first display in Lemma 6 follows from Harnacks principle in
Lemma 1, Holder continuity of u in Lemma 5 and the fact that €2 is a uni-
form domain and a general argument which can be found in [3]. The second
display follows from the first display and Lemma 5 [ |

To proceed we consider the following scenario. Let €2 be a domain such
that 9 is C*. Let w € 99 and let u be a positive p harmonic function in
QN B(w,2r) and assume that 2 N B(w, 2r) has only one component. We
further assume that Vu # 0 in Q N B(w, ). We have

Lemma 7. Let u be as above. If x € QN B(w,r) there exists a ¢ > 1
depending only on k and p such that

ctd(z,00) u(z) < |Vu(z)| < cd(z,00)  u(x)
where d(x,082) denotes the distance from x to 02

Proof. Choose y € B(x,d(x,08)) with u(y) = u(x)/2. Apply the mean
value theorem of calculus to u restricted to the line segment with endpoints
x,y. From this and Lemma 6 it follows that there exists a constant ¢ > 4
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and z such that y € B(z, (1 — ¢ 1)d(x,00)) and 2 is on the line segment
between x and y and

u(@)/2 = [u(z) —uly)] < [Vu(z)[|z —yl.

Using this inequality and Lemma 2 we see for some positive ¢ that if ¢; =
(1 —cNd(z,090),t, = (1 — (2¢)1)d(z, ) then

(2.5) ¢ tu(z)/d(z,00) < Eglax) |Vu| < max) |Vu| < cu(x)/d(z, 00).
x,t1 2

B(x,t
From (2.5) and Lemma 4 we conclude that Lemma 7 is valid for v at . W

Let 6 be a function whose graph is after a rotation and translation €2 N
B(w,r/2) and suppose that the C*-norm of # is bounded by c¢/r. The
condition (3.1) stated in the next section is clearly sufficient. At each point
x € 00N B(w,r/2) we can find a tangential ball B(z, p) C Q2N B(w, r) with
x € 0B(z,p) and radius p > 0 depending only on A and r. Let v be the p
harmonic function which is zero on 9B(z, p) and infyp(. ,/2) u on 0B(z, p/2).
Then v < w in the annulus B(z, p) \ B(z, p/2). Therefore

(Vu(t)| > ¢ tu(t)d(t,09) > ¢ to(t)d(t,00) ™ > ¢t inf u/p
0B(z,p/2)

for ¢ in the annulus where we used the fact that v(z) = Alz — Z|Z%? + B to
compute Vu. Then by Harnack’s inequality we get a lower bound in terms
of maxp(y,, u. We can argue in the same way to get an upper bound so that
we have

-1
(2.6) c g(lﬁ)r() u/r < |Vu|(t) < cg(lﬁf)u/r
for t in B(w,r/2) N Q and thus u € WH2(B(w,r/2)).

Let @(z) = u(rz 4+ w)/r. Then @ is a solution to the p Laplace equation
in B(0,2) N Q where Q = {z € R?: rz +w € Q}. Let ® be a differentiable
mapping from B(0,2) to B(0,2) such that 0 is mapped to 0 and | — 1,1]
is mapped to 0Q N B(0,2) and {(z,y) € B(0,2) : y > 0} is mapped to
B(0,2)N<Q. Define v = @o® in {(z,y) € B(0,2) : y > 0} and let v(z,y) =0
in {(z,y) € B(0,2) : y < 0}. Then v satisfies an equation of the form

(2.7) V- ((AVv, Vo)P/2 L AVY) = 0

in B(0,2)" = B(0,2) N {(z,y) € B(0,2) : y > 0} where A = [4;;] is a
symmetric matrix whose coefficients are in C'. From our work above it
follows that

(2.8) ¢! max v < |Vo|(r) < ¢ max v
B(0,2) B(0,2)
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for x € B(0,1)" where the constant may depend on ®. If we let A(z,§) =
(A€, €)P/271 A¢ then we have

(1€l + 1) 7*[€ = nl* < e{A(w, &) — A(z,), € —n)
and
(2.9) Ve A(z,n)| < cln”™
where V, denotes the gradient with respect to the x variable.

Lemma 8. Let v be as above. Then v has weak derivatives of second order
and vy, € WY2(B(0,1/2)) and we have

2
/ Z Va0, |* d < % g, — al? dx + cp®(max v)®
B(Z,p/Z) =1 ‘ p B(Z,p) ‘ B(Ovl)
if B(z,p) C B(0,1/2)" = {(z1,22) € B(0,1/2) : z3 > 0} and a € R. In
addition we have

2
/ Z|Ux1xi|2d$ < %/ Vg, |2 dz + cp*(max v)?
B(Z,p/Z) =1 p B(Z,p) B(071)

for any z € B(0,1/2) and p < 1/4
Proof. Let
v(x + hey) — v(x)

h
where e, denotes the k-th unit vector. Let ¢ be a smooth function such that
¢ =1on B(zp/2), supp ¢ C B(z,p) and |V(| < ¢/p for some constant
c. Since v € W2(B(0,1)") and v = 0 on {(z1,23) : x5 = 0} the function
¢ = D" (¢3(Djv — a)) belongs to Wy ?(B(0,1)%) if B(z,p) C B(0,1/2)*
and if a = 0 and &k = 1 we have ¢ € Wol’2(B(0, 1)*) for any z € B(0,1/2)
and p < 1/4. This function is therefore an admissible test function. We
obtain

Div(x) =

0=

S

Az, V0), V(DM ((Dhv = 0)) ) da

D A(x, V), V(Cz(DZU — a))> dx

I
\>\

_ [/A(z + hex, Vo(z + hey)) —A(z + hey, Vo(z)) 2/ i
= < % , V(¢ (Dpv — a))> dx
+ /<A(x - he W(xh)) “ALYYD) g (o - a))> de =T+11
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The first of these integrals is

/ <A(z + heg, Vo(x + hekfz) — A(x + hey, Vo(z)) ’ C2DZVU> dr
A hei, V h - A hey, V
N / < (x + heg, Vo(z + ekfz) (z + hey, U<x))72§V§(DZU — a)> dx

The first term in this expression can be bounded below by
c_l/ <|Vv(x + heg)| + |Vv(x)|>p_2CQ|DZVU|2dx
and the second term can be bounded above by
[ (90t + e+ Vel 107 VEll26 (Do - ) da
< 6/ (|Vv(z + hey)| + |Vv(x)|)p_2|DZVv|2C2 dx
+ S / (IVv(z + heg)| + |Vv(x)|)p_2|V§|2|DZv —al*dx
by Youngs inequality. As for II we get
1< c/|vu|p—142|D,’;W| dx + c/|W|P—1|g||vg||D;;v —aldx
/|vv|p 23 DIVvPdr + - /|Vv|pC2da;+ —/|Vv|p 2| Div — al?*dux.
Choosing € small enough and using (2.8) to estimate |Vv|[P~2 we get

/ | DIVl do < %/ v, — a|® dz + p*(max v)?.
B(z,p/2) P B(zp)

B(0,1)

We conclude that (DI'v)¢ € W, *(B(z, p)) with a norm independent of h. It
now follows from a weak compactness argument that v,, ¢ € W,*(B(z, p))
and

/ Z Vg0 |2 dr < — / vz, — al*dz + p (max )2
B(z,p/2) 0,1)

This is what we wanted to prove. |

Recall that if ¢ € W?(B(z, p)) and g, = m fB(z,p) Y dx then

Vi(y)| ay
(z,p) |fL’ - y|

|M@—MMM§CL
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Let ¢¥(z) = vy, (z) and 1/4 > p. It follows if x € B(0,1/4)

\Y
) —voepl < [ L

\Y% \Y%
:/ | w(y)ldy+/ VeIl ,,
B(x,5) [z — | B(z,p)\B(z,5) [z — y|

and by Holders inequality

20 | Ve,
B(z,2p)\B(z,0) |z — |

1/q 1 T
<c </ |V¢(y)|qdy) </ 7 dy)
B(z,2p) B(2.20)\B(z,8) |& — y|a1

< o[V 8tr 2

and for the other integral we have the estimate

w22 (5) )
2.11 / y < Vi (y)| dy
( ) B(z,6) |37—y| ;0 {2~ (4D §<|z—y|<2~ k5}| W)l

5
<92 Z_k (V) < 20M(|Ve])

k=0

Here M (f) denotes the maximal function of f. We conclude

[0(2) = Vpp] < 2M (V) + 8727V,

o= (aieen)

[0(x) = Ypepn® < MV V|
Integrating and applying Holder’s inequality yields for 1 < g < %

and if we choose

we get

1/2
(212)  |loe) — daepll < o ( / M) dx) (v
z,2p

1/2
<» ( [ vurs dx) (v
B(z,2p)



580 B. BENNEWITZ

If B(z,p) C B(0,1/2)* Lemma 8 and (2.12) yield with ¢ = v,,, Y5, = a

(2.13)

/ B(z,p/2) Z |Uzlzz

4-9 1/2
‘(/ (D ) w) [ (2
- /U:):jxi x Uzjzi
p B(z,p) Z,] B(Z,p) z’]

If B(z,p) N B(0,1/2)~ # () then we take = (x1,22) € B(z,p) N B(0,1/2)*"
and let 2* = (21, —23). Note that if x,y € B(0,1)" then |z —y| < |z* — y|.
Since ¢ = 0 in B(0,1)” we get

IV (y)] V(y)|
|¢B(z,p)| S/B " dy < C/B(Z’p 7| d

d
) T +cp (ngg%v)

since ¢(2*) = 0. This allows us to get rid of 1p(. ) in our work above and
we see that (2.13) holds in this case as well.

Lemma 9. Let u be defined as above Lemma 7 and v be defined as above
Lemma 8. Then v € C*(B(0, 1/4)+) and we have

2.14 D*v|(z) <
(2.14) |[D0l(z) < ¢ max v

for x in B(0,1/4)". For the function u we have u € C*(Q N B(w,r/8)) and

c

2.15 \Y < -

(2.15) [Vul(z) < - max
) c

(2.16) |Du|(z) < T—Qér(lﬁ}:)u

for x € B(w,r/8) N}

Proof. It follows from lemma 8 that v is a strong solution of (2.7). Writing
the equation in nondivergence form we obtain

2
) + ¢(max v)?

B(0,1)

oo < c (z o
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Let g = ) |Vga,|. We obtain

(2.17)
1/2
][ ¢ dx < ][ gldx <][ gt dat) + p?(max v)?
B(z,p) B(z,2p) B(z,2p) B(0,1)

2/q 1/(2—q)
<e (][ g7 d:l?) +C (][ gt dx) + p?(max v)?
B(.2p) B(2.2p) B(0,1)

1/(2-q)
<e 7/ ¢ dx+C (][ gt dx) + p?*(max v)?
B(.2p) B(.2p) B(0,1)

where we first used Youngs inequality and then Jensens inequality. In a ball
B(z,2t) C B(0,1) we define

o(y)

fly) = 79(9)

where d(y) is the distance from y to 9B(x, 2t) and note

(218)  2f(y) =2 g(y) for y € B(x,t) and f(y) < g(y) for y € B(x,2t)

If z € B(x,2t) then

<2‘19) ][B(z,é(z)/Q) fz(y) dy = (%) | /B(z,é(z)/?) (%) | gz(y) dy

4
<5 g (y) dy = A3
B(x,2t)

Let p§ = A§ + 2t*(maxp(o1) v)?, take A > Xg, let pu? = A% 4 2t*(maxp(1) v)*

and F(u) = {z € B(z,2t) : f(z) > p}. Then it follows from differentiation
theory that for almost every z € F'(u) there exists p > 0 such that

][ fAdx > u?
B(z,p)

If z € F(u) and p is sufficiently small it follows from (2.19) that we can
select p such that 10p < §(z)/2 and

(2.20) ][ frdr < i
B(z,10p)

(2.21) ][ frdx > p?
B(z,p)
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Then we obtain

2
(2.22) / deyS/ g* dy < (10p)* (—) f F*(y) dy
B(z,2p) B(z,10p) z B(z,10p)

2t \?
< (10p)? (—) 7/ fPdy < C/ g% dy.
0(2) ) JB(zp) B(z.p)

Along with (2.17) this gives the estimate

1/(2—q)
(2.23) ][ g*dr < C (7[ gt d:l?) + 2t*(max v)?
B(z,p) B(z,2p) B(O.1)

Since 10p < 6(z)/2 we have 0(2)/4 < §(y)/2 < d(2) for all y € B(z,2p).
Therefore

1/(2—q)
][ frdz < C (][ [ d:l?) + 2t*(max v)?
B(z,p) B(z,2p) B(0,1)

From (2.21) it now follows

=

—~ DN
~+~

~—

(2.24) M2 < 07/ fi*dx
B(z,2p)

SO

(2.25) ][ frdr < p? = N + 2¢*(max v)?
B(2,10p) B(0,1)

< ON? (][ fi2a d:l?) + 2t*(max v)?
B(z,2p)

B(0,1)

Let E(u) = {y € B(z,2t) : f(y) < p} and note

(2.26) / P dr < (50" m(B(z, 20)
E(6p)NB(z,2p)

where m denotes two dimensional Lebesgue measure. By a well known cover-
ing theorem we can find a sequence of balls { B(z;, p;)} such that (2.21), (2.20)
and (2.25) hold and

(2.27) m(F(p) \ U B(zi,10p:)) = 0

(2.28) B(zi,2p:) N B(zj,2p;) =0 i#j
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Now we have

(2.29) / frdx < / f?dx
F(p) ; B(zi,10p;)

< )\2(1—2 4—2qd 2t2 2
: (Z/B(Zi,mf T)

< ON? (/ fi2a dx) + 2t*(max v)?.
F(op)

B(0,1)
Let M be a large number and put

(2.30) ) f = min{f, M}

(2.31) F(u)={z € B(x,2t) : f(z) > u}

Then it follows that

(2.32) / frdr < N2 (/ fi d:l?) + 2t*(max v)?
F(p) F(op)

B(0,1)
Now we get with integration by parts and Fubini’s theorem

(2.33)

] i N )
/ P de = / I / 0 dpd = / o / P dedy
F(uo) F(po) 0 10 F(p)

< 7/ a3 ([ fA2 dx) + 2t*(max v)* du
1o F(p) B(0,1)

(4 —2q)yo*

— ~ 1+y n
= pm(F(0p)) dp
7+ 2q -2 /u

Y Y+2¢—2 (/ F4—2q ) 2 2
+ dr | + 2t“(max v
Y+ 2¢— 2#0 (6o f <B(0,1) )

By choosing § small enough this gives

(2.34) / P de < Ot (/ fA2 dx) + t*(max v)?
F(po) B(=z,2t)

B(0,1)

By the monotone convergence theorem we see that this inequality holds for f
and by (2.18), (2.19) and Jensen’s inequality that

1/(2+7) 1/2
(2.35) (][ g*t d:l?) <C <][ g° dx) + ¢(max v)?
B(w,t) B(x,2t) B(0,1)
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This implies that v € W*27(B(0,1/4)") and from Morrey’s inequality we
see that v € CH*(B(0, 1/4)+) and the C1* norm of v is bounded by the
W22+ norm of v. If we write (2.7) in nondivergence form we obtain an
equation

Z aij (2, VU)Vge, + b(x, VV) = 0.
0]
Since the matrix A in (2.7) is smooth and the function v € C**(B(0,1/4) +)

it follows that a;; € C*(B(0, 1/4)+). Also (2.8) gives us that the equation
is strictly elliptic. Then lemma 9 follows from boundary Schauder estimates
(see [18, chapter 6]). [ |

3. Preliminary reductions

Assume (2 is a bounded domain of class C*. This means that for each y € 99
there exists s > 0 such that B(y, s)N0oS is a part of the graph of a four times
continuously differentiable function defined on a line in R? and B(y, s) N
lies above the graph. We use compactness and a standard covering argument
to obtain ¢!, ...,y € 0 such that

N
00 | JB(y',100r) and B(y',10r) N B(y),10r) =0, i+# j

i=1

If r is sufficiently small and y = y® then it follows from the implicit function
theorem that there exists a function § = 6(-,y) four times continuously
differentiable on R with #(0) = 0 and 6,(0) = 0 such that after a rotation of
the axes, if necessary:
0 N By, 1000r7%) C {(z1 + y1,0(21) + yo) : 71 € R}
QN By, 10007”1/2) C {(ml + Y1, m0) Ty — Y2 > O(x1), 71 € R}

Let

4
K, = max ( max Z|9(k)(-,y)|>
k=1

ye{y'}V \ 2€dQnB(y,100r1/2)
and for 0 < € < 09 < 1072 choose 1y > 0 so small that for 0 < r < g
(31) K1T1/2 S 10—37,,1/4 S 10_964

which is possible since K < 400 by compactness of d€2. Let u be a function
satisfying (1.5a)—(1.5b) with D replaced by € and assume that u € C*(Q)
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and |Vu| > 1 on 0. Let
- max max E Oau(
’ ye{y' 1Y (xEQﬁB(yJOOrl/Q) | ( )|)

where a = (o, az) is a multiindex and 0 < |a| < 4. Choose ry even smaller
so that if 0 < r < rg then

(3.2) Kyr'/? < 107314 < 107%*

Let [ be the largest nonnegative integer such that 270y > € and let o, =
27 %gy for k =0,1,.... Put

(3.3) Ey={z€00:1+ 0, <|Vu(z) <1404},
for1<k<[+1 and
(3.4) Ey={z€0Q:|Vu(z)| > 1+ 00}

Let ¢ > 0 be a C'*™ function on R with max¢ = 1 and support in the unit
interval. Let L be the set of all y € {y*}¥ for which

I+1

B(y,100r) N | ) Ex #0

k=0

For a fixed y = (y1,92) € L let j be the smallest nonnegative integer with
(3.5) B(y,100r) N E; # 0

Put
(1) = O(x1) — ojrip(a/rof) +y2 1 €R
Now we define €2 as follows

(i) Q\ | By, 10r) = '\ | B(y, 10r)

(ii) o N B(y,10r) = {(z1 + y1,&(x1)) : 1 € R} N B(y, 10r)
(iii) QN By, 10r) = {(z1 + y1,x2) : 22 > &(x1)}} N By, 107).

Clearly € is of class C*.

Lemma 10. Let u' be defined by (1.5a)—(1.5b) with D replaced by €Y'. Then
u' € CHQY) and if ro is small enough

(3.6) V' (z)| > 1, x€d.
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Proof. First ' € C*(Q) follows from lemma 9 since Vu' # 0 in Q' (see [15]).
If 2 € 0 N OQ then it follows from the maximum principle that (3.6) is
true. Let Z(y,t) = {(x1,x2) : |z; —yi| <t,i=1,2}. If x € 9\ O we first
note that since v has support in the unit interval

(3.7) (Y \ 99) N B(y, 10r) C Z(y, )

whenever y € L. From the maximum principle and (3.7) it follows that to
prove (3.6) it suffices to show that

(3.8) [Vu*(z)] >1 z € Z(y,r)NoQ*

where 2* is obtained by adding just one bump to €2 at the point y and u*
satisfies (1.5a)-(1.5b) with D replaced by Q*.

We note that since |Vu(x)| > 1 on 0€2 it follows from (3.2) that u,, > 1/2
when x € Z(y,r). Let to = miny u where Y = {(z1,22) € 0Z(y,r) N Q :
|yo — xo| = r}. Note that cty > maxonz(y, v by Harnack’s inequality. Let
U=QnZ(y,r)N{u < to} and note that w is increasing on oU N IZ(y,r).
Let U* = Q*NZ(y,r)N{u(x) < to}. Define v to be the p harmonic function
in U* such that v = 0 on 9Q* and v = u on OU* \ 9N*. Note that v < u*
in U* by the boundary maximum principle so it suffices to show |Vv| > 1
on 0€2*. In order to do this we need to apply the estimates in section 2 to
the function v. This requires us to show that Vv # 0.

Consider the function v¢ in U* which solves the equation

(3.9) V- ((|Voe]? + e)P/2 Vo)

and satisfies v = v on QU*. This equation is strictly elliptic so it follows
from Schauder estimates (see [13] or [18]) that v¢ is real analytic in the
interior of U* and continous in the closure of U* (see [13]). If ¢t < ¢ty the
set OU N {u = t} contains exactly two points. Since v = u on 9U* \ 9N*
the set {v(x) > s} is connected in U* (s < ty) since each component must
intersect the boundary of U by the maximum principle for v¢. We note that
it follows from [15] that if |[Vv(zo)| = 0 then {v(z) > v°(x)} can not be
connected. Since we have already concluded that these sets are connected
we see that Vo© # 0 in U*. Now one can argue as in [15] to obtain Vv # 0
in U*. Since u is Holder continous there exists a A which depends only on p
so that u < ty in Z(y, Ar) so Z(y, Ar) N Q* C U*. Thus we have Vv # 0
in Z(y, Ar).
Now we can apply lemma 9 to v and obtain

c c c
max |D*| < — max v < — max u < —|Vul(t)
Z(y,\r/8)NQ2* 2 Z(y,\r) 2 Z(y,r) r

for t € Z(y,r).
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Let o9 be so small that oy < A/8. By the maximum principle |Vv| > [Vu|
on 002 N JN* and from our construction we know that there exists some
point x € 0 N B(y,100r) such that 1 4+ o; < |Vu|(z). From (3.2) it
follows that |Vu|(xz) > 1+ 0;/2 for all x € 02 N B(y, 100r). Pick a point
2 € 00N IQ* N B(y,o7r). By (3.2) we see that

|Vu(t)] < |Vu(z)] + 107941/

for t € Z(y,r). Choosing oy smaller so that Coy < 107 and using the mean
value theorem and (3.2) we obtain for z € 0" N B(y, o3r)

(3.10)

— < D? —
Vo() = Vole)| < max D)z~

S C|Vul(t)|z_7x| S 10_30'j|VU|(Z) + 10_12647“1/20']'
T

and since |Vo|(z) > |Vul|(2)

(3.11) Vol(z) > (1-107%5,)|Vo|(z) — 107220,

1
> (1—107%0;)(1 + 503) = 1072120, > 1.
Which is what we needed to prove. |

Lemma 11. Let Q, € be as above. Ife <t <1

(3.12) HY(0Q) > HY(0Q) +n(t)H {z : |Vu(z)| > 1 +t}
if p <2 but
(3.13) HY(0Q) > HY (0) +n(t)H {z : |Vu(z)] < 1 -t}

if p> 2. Heren is a positive function on ]0,c0l.

Proof. To prove (3.12) let

o= [WaPd
R
and choose oy even smaller so that

(3.14) 09 < ¢ < 2(mﬂgx [0'))? < o5 '107°
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Then it follows from (3.1) and the definition of o

(3.15) HY(Z(y,r)NnoY) = /T V14 [¢?dx
> /T \/1 + 0| (x/r)? de — 2¢°r

1
= r/ \/ 1+ il (z)? de — 265
—1
1

1
> (1+ 10;102 —®)2r > gcr;-lcﬂr + HY(Z(y,r) N 0N).

Take t > € and let k be the least nonnegative integer such that ¢t > oy,

0<k<Il+1. Let J = J(k) be the set of all ¢ such that (3.5) holds with
y=1vy'and j < k. From (3.1) it is clear that

(3.16)  HYz €90 : |Vu(z)| >1+1) < H' ( | B(y', 100r) N aQ)

icd
<2 Z 2007
i
and we conclude that
(3.17) HY(0Q) > HY(00) + csop HY{x € 00 : |[Vu(z) > 1+ t}
Let
4 if oy <t
(3.18) n(ty =420 170>
czop o <t<op,k=1,2,...

Since 1 does not depend on {2 this proves (3.12). The case when p > 2 is
similar. |

4. Proof of Theorem 1

Lemma 12. Let u, €2 be as above. If 1 < p < 2 then

(4.1) / |VulP~ log |[Vu| dH' < C
oN

and if p > 2 then

(4.2) / |VulP~ log |[Vu|dH' > C
onN

where the constant C' depends only on F.
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Proof. We proceed as in [2]. Note that if n € R? and || = 1 then
¢ = (Vu,n) is a strong solution to

L=V - ((p—2)|VulP~"(Vu, V) Vu+ [Vul[P V() =0

in QN N since Vu # 0. In other words

(43 L= Y A (ane)e (@) =0
where
(4.4) ag(z) = |Vul"~*((p — 2)us s, + 6| Vul?) (z)

and ¢;; is the Kronecker d. Note that
(4.5) Lu=(p—1)V - (|[Vulf*Vu) =0

Since the equation is rotationally invariant we can assume that Vu(x) =

(IVu(x)|,0). Let v = log [Vu(z)|. Then

2
Uzy, = |Vu|72 Z Ugy Uy,
=1

and so

: 0(aixvz,) 2.0 :
ik Tk —
MZZ—%fI<wQW“mewJ

ik=1 i=1 v k=1
Using (4.3) on the righthand side we get

2

(46) LU = = 2|VU|_4 Z aik(ul'luxlmkummummmi)

i,k,l,m=1

2
2
+ |Vu| E iUy, Uy, = 11+ T

ik,l=1

From the definiton of the a;;’s and our assumption that Vu(z) = (|Vu(zx)l,0)
we see at x

(4.7) ann = (p— D)|VulP2 ag = |Vul[P™? and ajp = ay =0
and also from (4.5)

(48) (p - 1)uw19€1 + Uggzy = 0.



590 B. BENNEWITZ

Using this in the definitions of T3, T, we obtain at x
Tl = —2|Vu|p*4((p - 1)(’&1111)2 + (uzllz)z)
and

Ty = p|Vu|p74((p - 1)(’&119;1)2 + (ux1x2)2)

and we conclude

(4.9) Lo = (p = 2)IVul" ((p = D) (ta,01)* + (t2,)°)

so Lv < 0when 1 < p < 2and Lv > 0 when p > 2. Since u is smooth
and Vu # 0 and 0f2 is smooth we can apply the divergence theorem to the
vector field whose ith component is

2

2
U g Ajj Vg — U E Aif Uy,
k=1

k=1

in the region 2\ G where G is a region with smooth boundary which contains
the set F' in its interior. If 1 < p < 2 we obtain

(4.10)

0 2.0
0> /Q\Gu (; P (azkvxk)) v (; e (alkuxk)> dx
2 2 2
— / |Vu|P~ log |Vu| dH! —i—/ Z (uZaikvxk — vZaikuzk> n; dH!
oK G =1 k=1 k=1

where 7 is the outward unit normal for Q\ G on 0G and we used the fact that

u=0on 0 and n = _\g—:ﬁ\ on 0. This gives (1.9) and (1.10) where the

constant is determined by the integral over OG which is independent of {2. B

Remember that ¢ is a C* function on R with max1) = 1 and support
in the unit interval. Also, in section 3 0y, 0 < 0y < 1073 was chosen so
that (3.14) was true. Finally, for a given ¢, 0 < ¢ < 0 19 was chosen so
small that the estimates in section 3 are true for 0 < r < rg. We describe the
construction of D in more detail. We only describe the case of ” pushing out”
since the other case is similar. Let Dy be a domain such that F C Dy and
the function uy which satisfies (1.5a)-(1.5b) for Dy also satisfies |Vug| > 1
on ODgy. Let p = d(OQ, F) . Let ¢g = 0 and €, = 27F¢q for k = 1,2,.. ..
Choose a covering L; = {B(z,t))}, 1 < i < ko of Dy such that t§ < 1/2

for all 7 and
ko

, 1
23 th < H'(0Dy) + 3

i=1
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Since Dy is compact we can assume kg < oo. Let 2r; > 0 be the dis-
tance from 9D, to R2 \ U B(z},ti). Set © = Dy, € = ¢ and 7, =
min{r}, ro(€r, K1, K3),107?p} where K; and K, are defined relative to Dy,
ug as in section 3. Then we do as in section 3 to obtain D; = €. Now
suppose for some m > 1 we have defined {Dx}g', {Lx}g', {r}.}g" and {ri}g".

Let L1 = {B(z ™ be a covering of dD,, such that ¢! < 2-(m+1),
1 <1<k, and

m’ m)

krn
(4.11) 2y th, < H'(0D,,) + 27"+

Let 2r], > 0 be the distance between 0D,, and R? \ |J;™ B(z/,,t.,). Let
Q= D, e =€y and r =1, = min{r, ro(€ms1, K1, K3),1074"r,,} where
K, and K are defined relative to D,,, u,, as in Section 3. Then we do as in
Section 3 to obtain D,, 1 = ' D D,,. By induction we get {Dy}°, {Lx}5°,

{r.}5° and {r;}$°. Finally define D to be the union of the sets Dy

Lemma 13. Let D, Dy, k= 1,2,... be as above. Then D 1is a quasicircle
which is not convex. For Dy we have p,(0Dy) < C where C' is inedependent
of k and py is the measure corresponding to uy as in (1.2).

Proof. To prove that D is a quasicircle it suffices to show that dD,, satisfies
the Ahlfors three point condition for m = 1,2, ... with constant independent
of m. Once we have proved this we get a sequence {f,,} of quaisconformal
mappings of R? with

(4.12) fm(0B(0,1)) = 0Dy, and [(fm)z] < K[ (fm)-|

where 0 < k < 1is independent of m. Since a subsequence of { f,,} converges
uniformly on compact subsets of R? to a quasiconformal f : R? — R? we see
that (4.12) holds with f,,, D,, replaced by f, D. To show that dD,, satisfies
the Ahlfors three point condition independent of m we first find a constant C'
such that |z; — 23| < C|z1 — 22| for 21, 29, 23 on the graph of ¢ and z3 between
z1 and zy. Now suppose 21, 22, 23 lie on 0D,,, and |21 — 23| < 10r,,. Let £ be a
function whose graph is after a rotation and translation dD,, N B(z1, 107,,).

By (3.1) the distance |£(x) — 9 (z)] is less than 10~% |=| which implies that
the graph of ¢ and therefore dD,, N B(z1, 10r,,) satisfies the Ahlfors three
point condition with a slightly larger constant C' but still independent of
m. If |23 — 29| > 10r,, we find k& < m such that |z; — 23| < 10r; but
|21 — 22| > 1007)41. Let z* be the projection of z € 9D,, on 0Dy. Then
|21 —22] > |27 —25| —nry where 7 is small and likewise |z —z3| < |21 — 25| +n7.
From this it follows that |z; — 23| < 2C|z; — z3| for all m.
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To prove that p(0Dy) < C where C' is independent of k we recall that
w(B(z,r)) < er* P(maxpg u)?~ " for any measure defined by (1.2). This
estimate is proved in [5] and our claim follows immediately by covering the
boundaries of the domains Dy, with balls and then applying the estimate in
each ball since uy(z) < 1 for all x € Dy. To see that the domain is not
convex note that the function v can be chosen so that D,, has the property
that there exist points z,y € D,, such that

etr €0
max d(tx + (t — 1)y, D,,) > =2 > 54 = >
relo] ( ( )y ) 3 +17g +1
if m is large enough. It is clear from the construction described above that
if z € D then d(z,D,,) < Tm1 so the line segment between = and y does
not lie in D. However x,y € D so D is not convex. |

The proof of Theorem 1 follows from the above lemmas and the argument
at the end of section 1 once we prove (1.14). The proof that H'|sp,, — H'|sp
in [16] applies to our case without change. For completeness we give a brief
outline. First show that there exists a mapping h,, from 0D,, to dD,, 1
which satisfies

) = hun(2)] = (1 = erly?) [ — 2]

Then let
p;(z) = klim hio---ohjy(x) for x € OD;.
If -
;=[] @ —er?)
m=j+1
it follows that
ejle —yl <lpj(x) —p;(W)l,  x,y € 0Dy,

and if g; is the inverse of p; we have

(4.13) lg;(x) — q;(y)] < &5tz —y]

when z,y € 0D. Next we use Kirsbraun’s Theorem (see [7]) to obtain
an extension of ¢; to R? such that (4.13) holds whenever z,y € R?. Let
v(E) = Hl(qj_l(E) N OD). Then we have

HY(ENOD;) <ev(E)

Also note that it follows from the definition of the r,,’s that e; — 1 when
j — oo. Let g > 0 be a continuous function. Then it follows from the
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change of variables formula that

(4.14) ej/ gdng/ gdy:/ gogq;dH"
8Dj n oD

If we let j — oo then g;(x) — x uniformly on compact subsets of R" so

/ goqjdH1—> gdH!
oD oD

Hence from (4.14) we have

limsup/ gdng/ gdH!
k—o00 0D, oD

From our construction of D it follows that

H'(0D) < liminf H'(0D,,)

m—00

If 0 < g <1 then it follows that
H'(0D) < lilgn inf H'(0D,, )

Sliminf/ gdHl—Himsup/ (1—g)dH"
aDk aDk

k—o00 k—o0

glimsup/ gdH1+limsup/ (1—g)dH!
oDy, 9D

k—o00 k—o0

< / gdH" +/ (1—g)dH" = H'(OD)
oD oD

Thus equality holds everywhere so

lim gdH" = / gdH*
oD

k=0 Jap,,
which is what we wanted to prove.

To show that ur — p we note that if we are pushing out then u(x) < e
on 0D,, for n large enough. Therefore u(x) < u,(z)+€in D,, in other words
u(z) — uy(z) < € in D,. Elsewhere u,(z) = 0 and u(x) < € so u,, — u
uniformly. Since the measures p,, are bounded we have a subsequence which
is weakly convergent to some measure v. Now

(4.15) / pdv = lim [ ¢du, = lim / VU, P~ 2(Vu,, V) dr
n—od N

n—~oo

n—oo

:/ lim |Vu,[P~*(Vu,, Vé) dx
N

:/N|Vu|p_2(Vu,ng> dx:/cbdu

where N is some neighborhood containing 9D and 9D, if n is large enough
and ¢ € C§°(N). It follows that v = p which is what we wanted to show.
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