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On the NLS dynamics for infinite energy
vortex configurations on the plane

Fabrice Bethuel, Robert L. Jerrard and Didier Smets

Abstract

We derive the asymptotical dynamical law for Ginzburg-Landau
vortices in the plane under the Schrödinger dynamics, as the Ginz-
burg-Landau parameter goes to zero. The limiting law is the well-
known point-vortex system. This result extends to the whole plane
previous results of [8, 13] established for bounded domains, and holds
for arbitrary degree at infinity. When this degree is non-zero, the total
Ginzburg-Landau energy is infinite.

1. Introduction

The purpose of this paper is to investigate the dynamics of vortices for
the nonlinear Schrödinger equation on the plane, when the total degree at
infinity is non zero. The equation we are interested in, also often referred to
as the Gross-Pitaevskii equation, is written on R2 × R as

(GP )ε i∂tuε + ∆uε =
1

ε2
(|uε|2 − 1)uε,

where 0 < ε < 1 denotes a small parameter. This equation is Hamiltonian,
with Hamiltonian given by the Ginzburg-Landau energy

Eε(u) ≡
∫

R2

eε(u) :=

∫
R2

|∇u|2
2

+
(1 − |u|2)2

4ε2
.

One peculiarity of Eε and (GP )ε is that finite energy fields do not tend
to zero at infinity, but have instead to stay close to the unit circle S1. The
Gross-Pitaevskii equation possesses distinguished stationary solutions called
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vortices and labelled by an integer d ∈ Z∗, which have the special form, for
z = x1 + ıx2,

uε,d(z) ≡ uε,d(r, θ) = fε,d(r) exp(idθ) = fε,d(r)
( z
|z|
)d

where fε,d : R+ → [0, 1] satisfies fε,d(0) = 0, fε,d(+∞) = 1, and

d2

dr2
fε,d +

1

r

d

dr
fε,d − d2

r2
fε,d +

1

ε2
fε,d(1 − (fε,d)

2) = 0.

Notice that ε has the dimension of a length and that by scaling

fε,d(r) = f1,d

(r
ε

)
.

In particular ε is the characteristic length scale describing the core of the
vortex, and as ε → 0

uε,d(z) →
( z
|z|
)d

= exp ıdθ.

It is known (see e.g. [12]) that |∇uε,d(z)| ∼ d/|z| as |z| → +∞, so that

(1.1)

∫
|∇uε,d|2 = +∞.

On the other hand, the potential term remains bounded (actually∫
(1 − |uε,d|2)2/4ε2 = πd2), as well as the modulus part of the gradient:∫ |∇|uε,d||2 < +∞. Notice that uε,d has winding number d at infinity, in the

sense that for each radius r > 0 large enough ( actually for any radius r > 0
in the case considered here) the map ψr : ∂Br � S1 → S1 given by

∂Br � z 	→ uε,d(z)

|uε,d(z)|
has topological degree d. Actually it can easily be proved that any contin-
uous field which does not vanish outside a compact set and has a nonzero
degree at infinity has infinite energy.

In this paper, we wish to study multi-vortex configurations, and the
dynamics near such configurations. More precisely, for given points a1, . . . , al

in R2, and integers d1, . . . , dl in Z∗, we have in mind initial data of the form

(1.2) u�
ε(ai, di)(z) ≡

l∏
i=1

uε,di
(z − ai) =

l∏
i=1

f1,di

( |z − ai|
ε

)( z − ai

|z − ai|
)di

,

as well as small perturbations of the maps defined above.
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Notice that if Σdi 
= 0, then∫
R2

|∇u�
ε(ai, di)|2 = +∞,

and that

J(u�
ε(ai, di)) ⇀ π

l∑
i=1

diδai
in D′(R2),

where for a map v : R2 → C, Jv denotes its Jacobian

Jv =
1

2
vx1 × vx2 .

We will often use the notation

jv = v ×∇v.
Physically, jv represents the momentum density associated with a wave
function v. Note that Jv = 1

2
∇× jv, so that Jv is naturally interpreted as

vorticity.

This program has already been successfully carried out, in the case
|di| = 1 for all i, on bounded domains with periodic, Dirichlet or Neumann
boundary conditions by Colliander and Jerrard [8], Lin and Xin [13] and Jer-
rard and Spirn [11], for suitable modification ũ�

ε(ai, di) of u�
ε(ai, di), according

to the boundary condition. These papers show that the vortex dynamics is
governed in the limit ε → 0 by exactly the same ordinary differential equa-
tions that describe the motion of vortices in an ideal incompressible fluid,
with suitable boundary condition.

In the bounded case, a crucial observation is the fact that the total
energy is bounded and that ũ�

ε(ai, di) is almost energy minimizing for the
given vortex configuration. More precisely, it is proved in [8] that if

J(uε) ⇀ π

l∑
i=1

diδai

then
lim inf

ε→0
Eε(uε) − Eε(ũ

�
ε(ai, di)) ≥ 0.

Moreover the last inequality is coercive in the sense that, if the left-hand side
is small, then uε is close to ũ�

ε(ai, di) in various norms. This last property
makes it possible to compare the dynamics of (GP )ε with that of the fi-
nite dimensional Hamiltonian system whose Hamiltonian is essentially given
by Eε(ũ

�
ε(ai, di)).
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Our main aim here is to extend the result to the whole plane and to
initial data of the form u�

ε(ai, di) and perturbations thereof. One of the
main additional difficulties we have to face is the divergence of the total
energy and various losses of control at infinity. A first issue is to solve the
Cauchy problem. This is done in [6]. It is proved there that the Cauchy
problem is globally well-posed in {U} +H1(R2), for any U ∈ V, where

V =
{
U ∈ L∞(R2,C), ∇kU ∈ L2, ∀k ≥ 2, ∇|U | ∈ L2, (1 − |U |2) ∈ L2

}
.

In particular, for any configuration (ai, di), since u�
ε(ai, di) is in V, the Cauchy

problem is globally well-posed in {u�
ε(ai, di)} + H1(R2). It turns out that,

for any U ∈ V, one may define a renormalized energy in {U} +H1(R2), de-
noted Eε,U , whose definition depends on U , and that this renormalized energy
remains constant in time, for (GP )ε and intial data in {U} +H1(R2), i.e

(1.3) ∀t ∈ R, Eε,U(uε(., t)) = Eε,U(uε(., 0)).

More precisely, Eε,U is given by

(1.4) Eε,U(U + v) =

∫
R2

|∇v|2
2

−
∫

R2

(∆U) · v +

∫
R2

(|U + v|2 − 1)2

4ε2
.

If moreover the map U verifies the additional condition |∇U(z)| ≤ C√
|z| then

the renormalized energy Eε,U may be defined as follows (see Section 3)

(1.5) Eε,U(u) = lim
R→∞

∫
B(R)

[eε(u) − |∇U |2
2

].

We therefore restrict ourselves to the class

V∗ =

{
U ∈ V, |∇U(z)| ≤ C√|z|

}
.

In contrast with the classical energy, we will show in Section 4 that the
renormalized energy is unbounded from below when the degree at infinity
of U is greater or equal to 2 in absolute value.

Working in {U} +H1(R2) for a single reference field u is in some places
too restrictive. In this direction, we introduce an equivalence relation on
the set V∗. First, observe that if U ∈ V, its zero set is bounded so that its
topological degree at infinity deg(U,∞) is well defined. We write

U ∼ U ′ iff deg(U,∞) = deg(U ′,∞) and |∇U |2 − |∇U ′|2 ∈ L1(R2)
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and denote by [U ] the corresponding equivalence class. As a consequence of
the second condition, if U ′ ∈ [U ],

lim
R→+∞

∫
B(R)

eε(u) − |∇U |2
2

exists

for any u ∈ {U ′} + H1(R2). This allows us to extend the definition of Eε,U

to [U ] +H1(R2).

For every d ∈ Z, we choose a smooth reference field Ud such that

(1.6) Ud =
( z
|z|
)d

= exp idθ, ∀z ∈ R2\B(1).

Notice that for any configuration of vortices (ai, di) with
∑
di = D, one

has u∗ε(ai, di) ∈ [Ud], whereas u∗ε(ai, di) ∈ {Ud} +H1(R2) if and only if (see
Lemma 4.4)

∑
diai = 0.

In the sequel, we decompose, for suitable choices of integer n0 ∈ N∗ the
plane R2 as R2 = B(2n0) ∪ (∪+∞

n=n0
An

)
, where An = B(2n+1)\B(2n).

Definition 1. Let a1, . . . , al be l points in R2, let di = ±1, for i = 1, . . . , l,
and set d = Σdi. We say that a family {uε}0<ε<1 of maps in [Ud] +H1(R2)
is well-prepared with respect to the configuration (ai, di) if and only if there
exists R = 2n0 > max{|ai|} and K0 > 0 such that

(1.7) lim
ε→0

‖Juε − πΣdiδai
‖[C0,1

c (B(R))]∗ = 0,

(1.8) sup
0<ε<1

Eε(uε, An) ≤ K0 ∀n ≥ n0,

and

(1.9) lim
ε→0

[Eε,Ud
(uε) − Eε,Ud

(u�
ε(ai, di))] = 0.

Our main theorem then can be stated as

Theorem 1. Assume that {u0
ε}0<ε<1 is well-prepared with respect to the con-

figuration (a0
i , di). Let {ai(t)}i=1,...,l denote the solution of the point-vortex

system with initial data (a0
i )i=1,...,l, that is

(1.10)

⎧⎪⎨
⎪⎩

d

dt
ai(t) =

∑
j �=i

dj
(ai(t) − aj(t))

⊥

|ai(t) − aj(t)|2 , for i = 1, . . . , l

ai(0) = a0
i , for i = 1, . . . , l

and let (T∗, T ∗) denote its maximal interval of existence. Then, for every
T∗ ≤ t < T ∗, the sequence {uε(., t)}0<ε<1 is well-prepared with respect to the
configuration (ai(t), di).
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Notice that the system (1.10) is Hamiltonian, with Hamiltonian given by
the Kirchhoff-Onsager functional

W ((ai, di)) = −π
∑
i�=j

didj log |ai − aj|

divided by π. As a matter of fact, this quantity appears in the computation
of the expansion of the energy of u�

ε(ai, di). We will show in Section 4 that

∫
B(R)

eε(u
∗
ε(ai, di)) = π

l∑
i=1

d2
i |log ε| + πd2 logR +W ((ai, di))

+

l∑
i=1

γ(|di|) + oε,R(1),

where oε,R(1) → 0 as ε → 0 and R → +∞, and where the constant γ(|di|)
is given by

γ(d) = π

(∫ 1

0

|f ′
1,d|2r dr −

∫ ∞

1

(1 − f 2
1,d)

d2

r
dr(1.11)

+

∫ 1

0

f 2
1,d

d2

r
dr +

∫ ∞

0

(1−f2
1,d)2

2
r dr

)
.

Therefore,

Eε,Ud
(u�

ε(ai, di)) = π

l∑
i=1

d2
i |log ε| +W ((ai, di)) +

l∑
i=1

γ(|di|)

+

∫
B(1)

|∇Ud|2
2

+ oε(1).

The proof of Theorem 1 borrows many ideas from [8] and [11]. The start-
ing point in [8] is the remarkable identity for the evolution of the Jacobian,
valid for any solution u of (GP )ε,

(1.12)
d

dt
Ju = (|ux2|2 − |ux1|2)x1x2 + (ux1 · ux2)x1x1 − (ux1 · ux2)x2x2 .

Integrating against a test function χ ∈ D(R2), this yields

(1.13)
d

dt

∫
R2

χJu =

∫
R2

(|ux2|2 − |ux1|2)χx1x2 + (ux1 · ux2)(χx1x1 − χx2x2),

which may be reformulated in complex notations as

(1.14)
d

dt

∫
R2

χJu = −2

∫
R2

Im
(
ω(u)

∂2χ

∂z̄2

)
,
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where ω denotes the Hopf differential given by

(1.15) ω(u) = |ux1|2 − |ux2|2 − 2iux1 · ux2 = 4∂zu∂z̄u.

To derive the motion law, one specifies (1.14) for test functions χ = χaff

which are affine near a point ai and vanish near all the other ones, and one
takes advantage of the special form of the integral in (1.14) when u is close
to a map u∗ε(ai, di). Indeed, for the map

u∗(ai, di) = lim
ε→0

u∗ε(ai, di) =
l∏

i=1

(
z − ai

|z − ai|
)di

,

one computes

(1.16) J((u∗(ai, di)) = π

l∑
i=1

diδai
and ω(u∗(ai, di)) = −

( l∑
i=1

di

z − ai

)2

,

so that

(1.17)

∫
R2

χJu∗(ai, di) = πdiχ(ai),

and

(1.18) −2

∫
R2

Im
(
ω(u∗(ai, di))

∂2χ

∂z̄2

)
= π

∑
j �=i

didj
(ai − aj)

⊥

|ai − aj |2 · ∇χ(ai).

Replacing u(·, t) by u∗(ai(t), di) one obtains formally from (1.12)

d

dt
ai(t) · ∇χ(ai(t)) =

∑
j �=i

dj
(ai(t) − aj(t))

⊥

|ai(t) − aj(t)|2 · ∇χ(ai(t)).

By varying ∇χ(ai) one is therefore led to (1.10). A rigorous justification of
the previous limiting procedure requires precise control of the distance be-
tween u(·, t) and u∗ε(ai(t), di). For bounded domains (using ũ∗ε instead of u∗ε),
this control was provided combining conservation of energy with the already
mentioned coercivity property near the ũ∗ε(ai, di). In our context, the conser-
vation of energy is replaced by the conservation of renormalized energy. The
important new point is to establish a kind of coercivity of the renormalized
energy about the reference map u∗ε(ai, di), with respect to perturbations at
infinity. For that purpose, we use almost minimizing properties of the map(

z
|z|
)d

on annuli. This property is strongly connected to topological prop-
erties of Ginzburg-Landau maps on annuli, which we expose in the next
section. Thanks to the coercivity properties on annuli, we are able to adapt
the stoppiing time argument of [8] to our setting. This adaptation which
leads to the proof of Theorem 1 is carried out in Section 7 and 8.
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2. Topological sectors and almost minimizing proper-
ties

Let A = B(2) \ B(1) be a reference annulus. Although the zero set of
Ginzburg-Landau maps on A may be nonempty, a restriction on the Ginz-
burg-Landau energy allows us to define a notion of degree with suitable
continuity properties. First, notice that by Sobolev embedding, for u ∈
H1(A), the restriction u|∂B(r) is continuous for almost every r ∈ [1, 2]. In
particular, if it does not vanish, we may define the degree of u

|u| |∂B(r)
. We

therefore define, for u ∈ H1(A), the set B(u) as the subset of of radii r
of [1, 2] for which the restriction of u to ∂B(r) is continuous and does not
vanish. We set

Td =
{
u ∈ H1(A) s.t. ∃B ⊂ B(u), meas(B) ≥ 3

4
,

and ∀r ∈ B deg(u, ∂B(r)) = d
}
.

It is clear from the definition that
(

z
|z|
)d ∈ Td and that Td ∩Td′ = ∅ if d 
= d′.

Of course, ∪d∈ZTd 
= H1(A). Next, we restrict ourselves to the sublevel
sets EΛ

ε of H1(A) defined by

EΛ
ε =

{
u ∈ H1(A), s.t. Eε(u,A) ≡

∫
A

eε(u) < Λ

}
and set

SΛ
d,ε = EΛ

ε ∩ Td.

The following result was proved by Almeida.

Theorem 2.1 ([1]). Let Λ > 0 be given. There exists a constant εΛ > 0,
such that for every 0 < ε < εΛ, we have the partition

(2.1) EΛ
ε =

⋃
d∈Z

SΛ
d,ε.

Moreover, the map

deg : EΛ
ε → Z, u ∈ SΛ

d,ε 	→ d

is continuous.

It is also proved in [1] that, for d 
= d′, the threshold energy between SΛ
d,ε

and SΛ
d′,ε satisfies the lower bound, for every 0 < ε < εΛ,

(2.2)

inf

{
sup

s∈[0,1]

Eε(p(s), A), p ∈ C([0, 1], H1(A)), p(0) ∈ SΛ
d,ε, p(1) ∈ SΛ

d′,ε

}
≥ σ|log ε| ≥ 2Λ,
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where σ > 0 is some universal constant. The set SΛ
d,ε is referred to in [1] as

the topological sector of degree d. An elementary computation shows that
Eε(exp idθ, A) = πd2 log 2, so that the condition exp idθ ∈ EΛ

ε is equivalent
to Λ > πd2 log 2.

Our next results stresses the almost minimizing properties of the map
exp idθ.1 Note that the proof shows that every energy-minimizer in a topo-
logical sector SΛ

d,ε is equivariant.

Lemma 2.1. Let d ∈ Z. There exists a constant C > 0 depending only on d
such that, for every 0 < ε < 1, and for every Λ such that SΛ

d,ε is nonempty,

(2.3) πd2 log 2 = Eε(exp idθ, A) ≤ inf
v∈SΛ

d,ε

Eε(v, A) + Cε2.

Proof. It suffices of course to prove that (2.3) is satisfied for ε sufficiently
small, the other cases being treated by considering a sufficiently large con-
stant C. It is proved in [1] that Eε satisfies the Palais-Smale condition
in EΛ

ε and also (therefore) that the infimum appearing in (2.3) is achieved
in each topological sector SΛ

d,ε. We denote by Vd one such minimizer. Since
Eε(Vd) ≤ πd2 log 2 and Vd is a solution of the Euler-Lagrange equation with
Neumann boundary conditions on ∂A, it follows from the η-ellipticity results
proved in [4] (for the interior) and [7] (Theorem 3, for the boundary) that
|Vd| ≥ 2

3
on A. We may hence write

Vd = ρ exp(iϕ) on A

where ρ ≥ 2
3

and ϕ : A 	→ T1 are smooth and satisfy

(2.4)

∫ 2π

0

∂ϕ

∂θ
(r exp(iθ)) dθ = 2πd ∀ r ∈ [1, 2].

We claim that Vd is equivariant, in the sense that

(2.5) ∃α ∈ T1 s.t. ϕ(r exp(iθ)) = α + dθ.

Proof of the claim (2.5). Let Wd denote a minimizer among equivari-
ant maps in SΛ

d,ε. Up to a constant phase shift, we may assume that
Wd(r exp(iθ)) = M(r) exp(idθ), and we have

Eε(Wd) = π

∫ 2

1

[
M ′(r)2 +M(r)2d

2

r2
+

(1 −M(r)2)2

2ε2

]
rdr.

1See [2] for a somewhat related result.
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The minimality of Wd amounts to

Eε(Wd)=min

{
π

∫ 2

1

[
m′(r)2+m(r)2d

2

r2
+

(1 −m(r)2)2

2ε2

]
rdr, m ∈ H1([1, 2])

}
.

For r ∈ [1, 2], we set

(2.6) m(r) :=

∫
∂B(r)

ρ.

On the one hand, by Jensen’s inequality we obtain

(2.7)

∫
A

|∇ρ|2
2

= π

∫ 2

1

r

( ∫
∂B(r)

|∇ρ|2
)
dr ≥ π

∫ 2

1

r

( ∫
∂B(r)

|∇ρ|
)2

dr

≥ π

∫ 2

1

(m′(r))2r dr.

On the other hand,

(2.8)∫
A

ρ2|∇ϕ|2
2

+
(1 − ρ2)2

4ε2
≥
∫ 2

1

r

[
2π2d

2

r2

(∫ 2π

0

ρ−2

)−1

+

∫ 2π

0

(1 − ρ2)2

4ε2

]
dr.

Indeed, for each r ∈ [1, 2], minimization over ϕ ∈ H1([0, 2π]) with the
constraint (2.4) leads to ∂θ(ρ

2∂θϕ) = 0 and therefore to

∂ϕ

∂θ
=
C

ρ2
where C = 2πd(

∫ 2π

0

ρ−2)−1,

from which (2.8) follows. Notice that since ρ ≥ 1
2
, for each r ∈ [1, 2]

2π2d
2

r2

(∫ 2π

0

ρ−2

)−1

+

∫ 2π

0

(1 − ρ2)2

4ε2
= 2π2d

2

r2

(∫ 2π

0

S(ρ)

)−1

+

∫ 2π

0

B(ρ)

4ε2

where S is a smooth function with uniformly bounded derivatives at all
orders which coincide with ρ−2 on the interval [2/3,+∞), and B is a strictly
convex smooth function which coincides with (1 − ρ2)2 on [2/3,+∞) and
which satisfies the growth condition B(ρ) ≤ C(1 + ρ4). For ε sufficiently
small, the functional

I(ρ) = 2π2d
2

r2

(∫ 2π

0

S(ρ)

)−1

+

∫ 2π

0

B(ρ)

4ε2
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is well-defined, smooth and strictly convex on L4([0, 2π]). It possesses
therefore a unique critical point over the affine space defined by the con-
straint (2.6). Since the constant function ρ(r exp(iθ)) ≡ m(r) is clearly
such a critical point, it is also the unique minimizer and we are lead to
improve (2.8) by

(2.9)

∫
A

ρ2|∇ϕ|2
2

+
(1 − ρ2)2

4ε2
≥
∫ 2

1

π
[
m(r)2d

2

r2
+

(1 −m(r)2)2

2ε2

]
rdr.

Combining (2.7) and (2.9) we obtain

Eε(Vd) ≥ Eε(Wd)

from which the claim follows since all the previous inequalities are strict
unless Vd is equivariant.

Proof of Lemma 2.1 completed. Since Vd = Wd up to a constant phase
shift, we have ρ(r exp(iθ)) = m(r). On the other hand, m(r) solves the
ordinary differential equation

−m′′(r) − 1

r
m′(r) +

d2

r2
m(r) +

1

ε2
(m(r)2 − 1)m(r) = 0 on [1, 2]

with Neumann boundary condition. Since the constant functions r 	→ 1
and r 	→ √

1 − ε2d2 are respectively upper and lower solutions of the same
equation, we infer from the maximum principle that

1 − ε2d2 ≤ m(r)2 ≤ 1 ∀ r ∈ [1, 2],

from which (2.3) follows, noticing that |eε(Ud)− eε(Wd)| ≤ C[(1−m(r)2) +
(1 −m(r)2)2/ε2] pointwise on A. �

3. Energy at infinity and topological sectors

We use Theorem 2.1 next to define the smallest radius from which the degree
(at infinity) is well defined and constant, even for functions whose zero set
is unbounded. For that purpose, given Λ > Λd := 2πd2 log 2 we set

Sd = SΛ
d,εΛ

.

An easy consequence of the definition of [Ud] and (2.2) is

Corollary 3.1. Let d ∈ Z, Λ > Λd and u ∈ [Ud] + H1(R2). There exists
an integer n ∈ N∗, such that for any k ≥ n, the function defined on the
reference annulus A by z 	→ u(2kz), belongs to the topological sector Sd.
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This leads us to

Definition 2. For u ∈ [Ud] + H1(R2), n(u) is the smallest integer such
that for k ≥ n(u) the function defined on the reference annulus A by z 	→
u(2kz), belongs to the topological sector Sd. This integer is finite in view of
Corollary 3.1.

We would like to emphasize that our definition of n(u) does not depend
on ε. By scaling and summation over the annuli An = B(2n+1) \ B(2n) we
infer from Lemma 2.1

Lemma 3.1. Let d ∈ Z, and u ∈ [Ud] + H1(R2). Then, for any k ≥ n(u),
we have, for every 0 < ε < εΛ

(3.1)

∫
Ak

[
eε(u) − |∇Ud|2

2

]
≥ −C2−2kε2.

It follows in particular that

(3.2) lim
R→+∞

∫
B(R)\B(2k )

[
eε(u) − |∇Ud|2

2

]
≥ −C2−2kε2

and therefore

(3.3) Eε,Ud
(u) ≥ −C2−2n(u)ε2 −

∫
B(2n(u))

|∇Ud|2
2

.

Proof. By definition of n(u), for k ≥ n(u) the map Tk(u) : A → C ,
z 	→ u(2kz) belongs to Sd, so that in view of Lemma 2.1 we have for every
0 < ε̃ < 1

(3.4) πd2 log 2 ≤ Eε̃(Tku,A) + cε̃2.

On the other hand, by scaling we derive the identity

Eε(u,A) = E2−kε(Tku,A),

whereas a direct compution shows that∫
Ak

|∇Ud|2
2

= πd2 log 2.

Choosing ε̃ = 2−kε in (3.4) inequality (3.1) follows. Inequality (3.2) is
obtained by summation of (3.1), for k ≥ n. Finally, inequality (3.3) follows
from (3.2) and (1.5). �

Inequality (3.2) expresses the almost minimizing properties of Ud at in-
finity. Taking into account the fact that u∗ε(ai, di) is very close to Ud at
infinity, we infer
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Lemma 3.2. Let d∈Z, u ∈ [Ud]+H
1(R2), a1, . . . , al ∈R2 and d1, . . . , dl ∈Z∗

such that
∑
di = d. Then, for k ≥ 1+max {log2 |a1|, . . . , log2 |al|, n(u)} and

R = 2k we have

(3.5)

∫
B(R)

eε(u) − eε(u
∗
ε(ai, di)) ≤ Eε,Ud

(u) − Eε,Ud
(u∗ε(ai, di)) +

C

R
,

where C depends only on l and d.

Proof. In view of (1.5), we have

(3.6)

∫
B(R)

eε(uε) − eε(u
∗
ε(ai, di)) − [Eε,Ud

(uε) − Eε,Ud
(u∗ε(ai, di))]

= lim
R′→+∞

∫
B(R′)\B(R)

[
eε(uε) − |∇Ud|2

2

]

− lim
R′→+∞

∫
B(R′)\B(R)

[
eε(u

∗
ε(ai, di)) − |∇Ud|2

2

]
.

It follows from (3.2) that the first limit in (3.6) is bounded from below by
−CR−2ε2. For the second limit, we first infer from the explicit form of u∗ε
and the know facts (see e.g. [12])

fε,d = 1 +O
(( ε

|z|
)2)

and |∇fε,d| = O
(( ε

|z|
)3)

that for |z| ≥ R,

(3.7) |eε(u
∗
ε(ai, di))(z) − |∇Ud|2(z)| ≤ C

|z|3 ,

where C depends only on d. Integrating (3.7) on B(R′) \ B(R) yields the
conclusion (3.5). �

Notice in particular that, if the family {uε}0<ε<1 is well-prepared with
respect to the configuration (ai, di), and if the sequence {n(uε)}0<ε<1 is
bounded by a constant k (which we will prove always holds) then for R≥2k+1

∫
B(R)

eε(uε) ≤
∫

B(R)

eε(u
∗
ε(ai, di)) +

C

R
+ o(1) as ε→ 0

and we may then rely on the coercivity results on B(R) proved in [8, 11] to
show that uε is sufficiently close to u∗ε(ai, di).
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To finish this section, we provide a proof of (1.5)

Lemma 3.3. Let U ∈ V∗ and u ∈ {U} +H1(R2). Then

Eε,U(u) = lim
R→∞

∫
B(R)

[
eε(u) − |∇U |2

2

]
.

Proof. Writing u = U + v where v ∈ H1(R2), we have by definition (1.4)
and the continuity of integration

Eε,U(u) = lim
R→+∞

∫
B(R)

|∇v|2
2

− (∆U) · v +

∫
R2

(|u|2 − 1)2

4ε2
.

By integration by parts∫
B(R)

|∇v|2
2

−(∆U) ·v+

∫
R2

(|u|2 − 1)2

4ε2
=

∫
B(R)

eε(u)− |∇U |2
2

−
∫

∂B(R)

∂U

∂r
v.

We claim that

(3.8) lim
R→+∞

∫
∂B(R)

∂U

∂r
v = 0.

To establish the claim (3.8) it suffices in view of the assumption |∇U(z)| ≤
C/
√|z| and Cauchy-Schwarz inequality to establish that

(3.9) lim
R→+∞

∫
∂B(R)

|v|2 = 0.

This follows from the next lemma and the inclusion W 1,1(R) into C0(R). �
Lemma 3.4. For v ∈ H1(R2), the function f : [1,+∞) → R defined by
f(r) =

∫
∂B(r)

|v|2 belongs to W 1,1([1,+∞)).

Proof. We write

f(r) = r

∫
∂B(1)

|v|2(ry) dy

so that

f ′(r) =

∫
∂B(1)

|v|2(ry) dy + 2r

∫
∂B(1)

v(ry)
∂v

∂r
(ry) dy

=
1

r

∫
∂B(r)

|v|2(y) dy + 2

∫
∂B(r)

v(y)
∂v

∂r
(y) dy.

Hence

|f ′(r)| ≤
(
1 +

1

r

)∫
∂B(r)

|v|2(y) dy +

∫
∂B(r)

|∇v|2(y) dy

and the conclusion follows by integration. �
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4. Some properties of u∗
ε

In this Section we present some properties of the reference maps u∗ε(ai, di),
where a1, . . . , al are l distinct points in R2, and d1, .., dl are l integers in Z�.
We set d =

∑l
i=1 di. We consider also the limiting map u∗0 ≡ u∗ given by

u∗(ai, di) =
l∏

i=1

(
z − ai

|z − ai|
)di

.

We recall that (see e.g. [3])

(4.1) |∇u∗| = |∇ψ∗|, where ψ∗ = ψ∗(ai, di) ≡
l∑

i=i

log |z − ai|,

in particular, the real-valued function ψ∗(ai, di) satisfies the equation

(4.2) ∆ψ∗(ai, di) = 2π
l∑

i=i

diδai
on R2.

For R ≥ Ra := 2 maxi{|ai|} and r ≤ ra := 1
8
mini�=j{|ai − aj|}, we

introduce the domain

ΩR,r = B(R)\
l⋃

i=1

B(ai, r).

We first have

Lemma 4.1. As R → +∞,

(4.3)

∫
ΩR,r

|∇u∗(ai, di)|2
2

= −π
l∑

i=1

d2
i log r − π

∑
i�=j

didj log |ai − aj |

+ πd2 logR+O(Ra

R
),

whereas for 0 < ε < 1,

(4.4)

∫
R2\∪l

i=1B(ai,r)

|eε(u
∗
ε(ai, di)) − |∇u∗(ai, di)|2

2
| ≤ C

(ε
r

)2

,

the constant C depending only on l and maxi(|di|).
Proof. The proof of identity (4.3) is classical (see e.g. [3]). It relies first on
the identity (4.1), so that we may replace the integrand on the r.h.s of (4.3)
by |∇ψ∗(ai, di)|2. To derive the result, one then uses equation (4.2) and
integrations by parts, with suitable estimates for the boundary terms. For
the proof of (4.4) one uses the aforementioned estimates for fε,d. �
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Concerning the energy near the core, we have

Lemma 4.2. Let 0 < ε < 1. The following expansion holds for j = 1, . . . , l,

(4.5)

∫
B(aj ,r)

eε(u
∗
ε(ai, di)) = πd2

j log
ε

r
+ γ(|dj|) +O

( r
ra

)2

+O
(ε
r

)2

.

We omit the proof. Here γ denotes a fixed function γ : N → R+ whose
values are given by (1.11). We are now in position to assert

Proposition 4.1. Let 0 < α < 1 be given. Let 0 < ε < 1 be such that

(4.6) ra =
1

8
min
i�=j

{|ai − aj |
} ≥ εα.

Then, for R > Ra + 1, we have

∫
B(R)

eε(u
∗
ε(ai, di)) = π

l∑
i=1

d2
i |log ε| − π

∑
i�=j

didj log |ai − aj |

+
l∑

i=1

γ(|di|) + πd2 logR+O
(Ra

R

)
+ rε,

(4.7)

where the remainder term rε satisfies, for some constant Cα depending only
on α, l and maxi |di|,

(4.8) rε ≤ Cαε
1−α.

Proof. We write

∫
B(R)

eε(u
∗
ε(ai, di)) =

∫
ΩR,r

eε(u
∗
ε(ai, di)) +

l∑
j=1

∫
B(aj ,r)

eε(u
∗
ε(ai, di)).

It follows therefore from (4.3), (4.4) and (4.5) that

∫
B(R)

eε(u
∗
ε(ai, di)) = π

l∑
i=1

d2
i |log ε| +W (ai, di) + πd2 logR+

O
(Ra

R

)
+O

(ε
r

)2

+O
( r
ra

)2

.

Choosing r such that ε
r

= r
ra

, we obtain the conclusion (4.7) with the esti-
mate (4.8), taking into account (4.6). �
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Proposition 4.1 has the following consequence for the renormalized energy

Corollary 4.1. Let 0 < α < 1 be given and let 0 < ε < 1 be such that the
condition (4.6) holds. Then, we have

Eε,Ud
(u�

ε(ai, di)) = π
l∑

i=1

d2
i |log ε| +W (ai, di) +

l∑
i=1

γ(|di|)(4.9)

+

∫
B(1)

|∇Ud|2
2

+ rε,

where d =
∑l

i=1 di and the remainder term rε satisfies the bound (4.8).

On exterior domains, similar computations yield

Lemma 4.3. For R > Ra we have∣∣∣∣
∫

B(2R)\B(R)

eε(u
∗
ε(ai, di)) − πd2 log 2

∣∣∣∣ ≤ C
Ra

R
.

We finish this section with the following elementary observations. First
we have

Lemma 4.4. Let {(ai, di)}i=1,...,l and {(a′i, d′i)}i=1,...l′ be two vortex configu-
rations. For every 0 ≤ ε < 1 the difference u∗ε(ai, di) − u∗ε(a

′
i, d

′
i) belongs to

L2(R2) if and only if

(4.10)

l∑
i=1

di =

l′∑
i=1

d′i and

l∑
i=1

diai =

l′∑
i=1

d′ia
′
i.

In particular, for 0 < ε < 1 the map u∗ε(ai, di) belongs to {u∗ε(a′i, d′i)}+H1(R2)
if and only if condition (4.10) is satisfied.

Proof. For a given vortex configuration {(ai, di)}i=1,...,l we write for i =
1, . . . , l, (

z − ai

|z − ai|
)di

=
( z
|z|
)di
(

1 − ai

z

|1 − ai

z
|
)di

.

Expanding for |z| → ∞, we have(
1 − ai

z

|1 − ai

z
|
)di

=

(
1 − diai

z
+O

( 1

z2

))(
1 + Re

diai

z
+O

( 1

z2

))

= 1 − Im
diai

z
+O

( 1

z2

)
,

so that

u∗(ai, di) =
( z
|z|
)d

−
( z
|z|
)d
(

Im
l∑

i=1,...,l

diai

z
+O

( 1

z2

))
.
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In particular u∗(ai, di) − u∗(0, d′) belongs to L2(R2) if and only if d = d′

and
∑l

i=1 diai = 0. The conclusion follows for ε = 0 translating the origin.
For the general case 0 < ε < 1, one observes that, since 1 − fε,d belongs to
L2(R2), the difference

u∗(ai, di) − u∗ε(ai, di) =

(
1 −

l∏
i=1

fε,di
(|z − ai|)

)
u∗(ai, di)

belongs to L2(R2). �
Next, we have

Lemma 4.5. The renormalized energy Ed,Ud
is bounded from below if and

only if |d| ≤ 1.

Proof. Assume d ≥ 2. We consider the configuration of two vortices {an
i , di}

given by an
1 = (0, 0), d1 = 1, an

2 = (n, 0), d2 = d − 1 > 0. We deduce
from (4.9) that Eε,Ud

(u�
ε(ai, di)) behaves like − log n as n→ +∞, and hence

the conclusion.
When d = 1, the conclusion follows from the locally minimizing proper-

ties of u∗1 established by Mironescu [14].
When d = 0 the renormalized energy is defined by integration of a point-

wise non negative function. �

5. Kirchhoff-Onsager functional and the renormalized

energy

Proposition 4.1 shows that, removing the diverging and constant part of the
energy, the Kirchhoff-Onsager functional is the next important part of the
expansion in (4.7). In order to bridge our work with coercivity properties
derived on bounded domains in [8, 11] we need to compare the Kirchhoff-
Onsager functional with the renormalized energy considered there. For that
purpose, let Ω be a bounded simply connected domain in R2 with C1 bound-
ary, and let G(ai, di) be the function defined on Ω by

∆G(ai, di) = 2π

l∑
i=1

diδai
in Ω, G ≡ 0 on ∂Ω.

Let also H(·, y), for y ∈ Ω, denote the solution of

∆xH(·, y) = 0 in Ω, H(x, y) = − log |x− y| for x ∈ ∂Ω.
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Then, for x ∈ Ω,

G(ai, di)(x) =
l∑

i=1

di [log |x− ai| +H(x, ai)] .

The renormalized energy WΩ(ai, di) is defined to be

(5.1) WΩ(ai, di) = −π
(∑

i�=j

didj log |ai − aj | +
∑
i,j

didjH(ai, aj)

)
.

We next specify the domain Ω to the case Ω = B(R) and set WR ≡WB(0,R).

Proposition 5.1. Let {ai, di}i=1,...,l be a configuration of vortices and set
Ra = 2 max{|ai|}. Then, for R > Ra + 1, we have

(5.2) WR(ai, di) = W (ai, di) + πd2 logR+ O
(Ra

R

)
,

where d =
∑l

i=1 di.

Proof. In view of (5.1) we have

WR(ai, di) −W (ai, di) = −π
∑
i,j

didjH(ai, aj).

Since H is harmonic in each of its variables and for each j

H(·, aj) = − logR+O
(Ra

R

)
on the boundary of Ω, we obtain∑

i,j

didjH(ai, aj) = −
∑
i,j

didj logR+O
(Ra

R

)

and the conclusion follows from the identity
∑

i,j didj = d2. (In fact we give
an explicit formula for H(x, ai) below.) �

Finally, we also recall the canonical harmonic map u∗Ω on a bounded
domain Ω, with vortices (ai, di) and Neumann boundary conditions. This is
characterized (up to a constant phase) by the fact that

ju∗Ω =

�∑
i=1

di∇× [log |x− ai| +H(x, ai)]

for G as defined above, depending on Ω. When Ω = B(R) we wil write u∗R.
Similar to the previous proposition, we have
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Proposition 5.2. Let {ai, di}, Ra, R be as in Proposition 5.1. Then

(5.3) |ju∗R(x; ai, di) − ju∗(x; ai, di)| = O(
Ra

R2
).

for all x ∈ B(R).

Proof. It is a classical fact that H(x, y) = − log
( |y|

R
|x − yR2

|y|2 |
)

as long as

y 
= 0, and that H(x, 0) = − logR. Thus

|ju∗R(x; ai, di) − ju∗(x; ai, di)| ≤
�∑

i=1

|∇ ×H(x, ai)| =

�∑
i=1

|x− aiR
2

|ai|2 |
−1.

If ai = 0 for some i, the corresponding term in the sum is of course replaced
by 0. It is now easy to deduce the conclusion, since |x| < R2/Ra in BR,

and |aiR2

|ai|2 | ≥ 2R2/Ra for all i. �

6. Coercivity for Eε,Ud

In this Section, we adapt to our setting coercivity results established in
[8, 11]. To that purpose, for a given configuration of vortices {ai, di}i=1,...,l

and u ∈ [Ud] +H1(R2) where d =
∑
di, the excess energy is defined as

Σε ≡ Σε(u, ai, di) = Eε,Ud
(u) − Eε,Ud

(u∗ε(ai, di)).

We also set

ra =
1

8
min{|ai − aj |, i 
= i} and Ra = max{|ai|}.

We have

Theorem 6.1. Assume that di ∈ {−1,+1} for all i, and let r ≤ ra and
R > Ra be given. There exist constants ε0 > 0 and η0 > 0 (depending only
on l, r, ra, Ra, R) such that if ε ≤ ε0,

(6.1) η ≡
∥∥∥Ju− π

∑
diδai

∥∥∥
[W 1,∞

0 (B(R))]∗
≤ η0

and

(6.2) 2n(u) ≤ R,

then

(6.3)

∫
B(R)\∪B(ai ,r)

eε(|u|) +
1

8

∣∣∣∣j(u)|u| − j(u∗(ai, di))

∣∣∣∣
2

≤ Σε + C
(
η, ε,

1

R

)
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where C is a continuous function which vanishes at the origin. Moreover,
there exist points bi ∈ B(ai, r/2) such that

(6.4)
∥∥∥Ju− π

∑
diδbi

∥∥∥
[W 1,∞

0 (B(R))]∗
≤ D(R,Σε)ε|log ε|

where D is a continuous function on R2.

Condition (6.1) suggests that the vortex structure of u inside B(R) is suf-
ficiently well approximated by the configuration (ai, di), and condition (6.2)
ensures that no vortex of u is hidden far away. Under those assumptions,
the conclusion (6.3) asserts that the deviation of u from the canonical map
u∗(ai, di) is controlled by the excess Σε away from the vortices.

For sake of conciseness we will not present a self-contained proof The-
orem 6.1 but instead rely on Theorem 2 in [11], which we use as a black
box.

Proof of Theorem 6.1. First notice that there exists ε2 > 0 such that
if ε < ε2 and εEε(u,B(R)) >

√
ε then (6.3) trivially holds. Indeed, since

Eε(u
∗
ε(ai, di)) ≤ C|log ε|+logR, for ε small enough one even has 1

2
Eε(u) ≤ Σε

so that (6.3) holds with C = 0. In the sequel, we assume that ε ≤ ε2 and
εEε(u,B(R)) ≤ √

ε.
Let K1 be the constant given by Theorem 2 in [11]. We choose 0<ε1≤ε2

and η0 sufficiently small so that

(6.5) 4x ≤ ra

l3
√
x ∀x ∈ [0, η0] and

ra

l3

√
η0 +

√
ε1 ≤ min

(
r,

ra

lK1

)
.

Finally, we choose 0 < ε0 ≤ ε1 sufficiently small so that

ε0

√
log
( ra

lK1

)
≤ η0.

Assume that u is such that (6.1) is satisfied. We distinguish two cases.

Case 1: ε
√

log( ra

ε
) ≤ η. In that case, we will apply Theorem 2 in [11]

with the choice sε = η. From (6.5) and the fact that ε ≤ ε2 we infer that
4sε ≤ σ∗ ≡ √

ra

l3
(sε + εEε(u,B(R))) ≤ ra

lK1
and therefore the conditions of

Theorem 2 in [11] are satisfied and we get

(6.6)

∫
B(R)\∪B(ai ,σ∗)

eε(|u|) +
1

4

∣∣∣∣j(u)|u| − j(u∗R(ai, di))

∣∣∣∣
2

≤ Eε(u,B(R)) − πl|log ε| − lγ(1) −WR(ai, di) + C

√
l5

ra

(η +
√
ε),

where C is universal.
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By (6.5), σ∗ ≤ r and we may therefore replace σ∗ by r in (6.6). By (6.2)
we may apply Lemma 3.2, and combining (3.5), (4.7) and (5.2) we obtain

Eε(u,B(R)) − πl|log ε| − lγ(1) −WR(ai, di) ≤ Σε + C
(Ra

R
+
√
ε
)
.

Also, it follows from Proposition 5.2 that

‖juR(ai, di) − ju(ai, di)‖2
L2(B(R) ≤ CR2

a/R
2 ≤ CRa/R.

Combining these estimates we find that

∫
B(R)\∪B(ai ,r)

eε(|u|) +
1

8

∣∣∣∣j(u)|u| − j(u∗(ai, di))

∣∣∣∣
2

≤ Σε + C

(√
l5

ra

(η +
√
ε) +

Ra

R
+
√
ε

)
.

Case 2: ε
√

log( ra

ε
) > η. In that case, we apply Theorem 2 in [11] with the

choice sε = ε
√

log( ra

ε
). This similarly leads to

∫
B(R)\∪B(ai ,r)

eε(|u|) +
1

8

∣∣∣∣j(u)|u| − j(u∗(ai, di))

∣∣∣∣
2

≤ Σε + C

(√
l5

ra

ε log
(ra

ε

)
+
√
ε+

Ra

R
+
√
ε

)
.

The maximum between those two error terms may serve as a definition of
the function C which appears in (6.3). Without loss of generality, we may
assume that η0 ≤ ra/(8K2l

5), where K2 is the constant appearing in [11,
Theorem 3], so that the existence of the points bi and the estimate (6.4)
follow by [11, Theorem 3]. �

7. Lipschitz continuity of vortex paths

The results in this section apply to initial data slightly more general than
the one in Definition 1. More precisely, we keep assumptions (1.7) and (1.8),
and we replace (1.9) by

(7.1) sup
0<ε<1

[Eε,Ud
(uε) − Eε,Ud

(u�
ε(ai, di))] ≤ K1

for some constant K1 < +∞. Without loss of generality, we may assume,
increasing possibly K0, that K0 > K1 + πd2 log 2.

The main result in this section is
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Theorem 7.1. Let (a0
i , di) be a configuration of vortices such that di ∈

{−1,+1}. Let (u0
ε)0<ε<1 satisfy (1.7),(1.8) and (7.1) with u0

ε ∈ [Ud]+H
1(R2)

for all 0 < ε < 1. There exist a time T > 0, depending only on K0, K1, ra

and R, a sequence εk → 0, and Lipschitz paths t 	→ bi(t) defined on [0, T ]
such that bi(0) = a0

i and

(7.2) sup
t∈[0,T ]

‖Juεk
(·, t) − πΣdiδbi(t)‖[W 1,∞

0 (B(R))]∗ → 0, as k → +∞.

Moreover, there exist constants C0 > 0 and C1 > 0, depending only on K0,
K1, ra and R, such that for all t ∈ [0, T ], n ≥ n0 and k ∈ N,

(7.3) Eεk
(uεk

(·, t), An) ≤ C0,

and

(7.4) Eεk,Ud
(uεk

(·, t)) − Eεk,Ud
(u∗εk

(bi(t), di)) ≤ C1.

The proof relies on several arguments which we present separately.

Lemma 7.1. Assume Λ > K0 and let (u0
ε)0<ε<1 be as in Theorem 7.1. Then,

for 0 < ε < εΛ and for n ≥ n0 we have u0
ε(2

n·) ∈ Sd = SΛ
d,εΛ

.

Proof. By Corollary 3.1, u0
ε(2

n·) ∈ Sd for n sufficiently large, say n ≥ n1(ε),
depending possibly on ε. Since by assumption Λ > K0, for each n ≥ n0 the
map u0

ε(2
n·) belongs to some Sd(n). It remains to prove that d(n) ≡ d for all

n ≥ n0. Assume by contradiction that this does not hold, and let N be the
largest integer such that d(N) 
= d. Consider the mapping p : [0, 1] → H1(A)
defined by p(s) = u0

ε(2
N+s·). We have p(0) ∈ Sd(N) whereas p(1) ∈ Sd. It

follows therefore by (2.2) that there exists s ∈ [0, 1] such that Eε(p(s)) > 2Λ.
In particular, this would imply

Eε(u
0
ε, AN ∪ AN+1) > 2Λ > 2K0,

a contradiction with assumption (1.8). �
Throughout the rest of this paper, we assume

(7.5) Λ > K0.

The core argument (as in [8]) relies on the evolution equation (1.12) for
the Jacobians.

Lemma 7.2. Let η0 be given by Theorem 6.1 for the choice r = ra, and
let Tε be the largest time for which for all 0 ≤ s ≤ Tε

‖Juε(·, s) − πΣdiδa0
i
‖[W1,∞

0 (B(R))]∗ ≤ η0 and uε(·, s) ∈ Sd ∀n ≥ n0.

Then we have

(7.6) lim inf
ε→0

Tε ≥ T (ra, R,K0, K1) > 0.
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Proof. First notice that since uε(·, t) − u0
ε belongs to C(R, H1(R2)), the

map t 	→ Juε(·, t) is continuous with values in L1(B(R)) and the maps
t 	→ Eε(uε(·, t), An) are uniformly continuous with respect to n ≥ n0. This
implies that

Tε > 0 ∀ 0 < ε < εΛ.

Step 1. We have, for s ∈ [0, Tε]

Eε(uε(·, s), B(R)) ≥ πl|log ε| − C

for some constant C > 0 depending only on ra and R.

Proof. This directly follows from the positivity of eε and the inequality

(7.7) Eε(uε(·, s), B(a0
i , ra)) ≥ π|log ε| − C

valid for any i = 1, . . . , l. This last inequality is itself a consequence of the
bound ‖Juε(·, s) − πdiδa0

i
‖[W 1,∞

0 (B(a0
i ,ra))]∗ ≤ η0 and Theorem 3 in [10].

Step 2. There exists a constant D > 0 such that for all s ∈ [0, Tε]

Eε(uε(·, s), An) ≤ D, ∀n ≥ n0.

Proof. We write the difference Eε(uε(·, t), An) − Eε(u
∗
ε(a

0
i , di), An) as

(7.8)
+∞∑

k=n0, k �=n

(
Eε(u

∗
ε(a

0
i , di), Ak) − Eε(uε(·, t), Ak)

)
+ Eε(u

∗
ε(a

0
i , di), B(R)) − Eε(uε(·, t), B(R))

+ Eε,Ud
(uε(·, t)) − Eε,Ud

(u∗ε(a
0
i , di)).

For the first term on the r.h.s of (7.8) we invoke Lemma 3.1 and Lemma 4.3
to assert that

(7.9)
+∞∑

k=n0, k �=n

Eε(u
∗
ε(a

0
i , di), Ak) − Eε(uε(·, t), Ak) ≤ C1.

The second term is bounded thanks to Step 1, whereas the last one is
bounded by conservation of Eε,Ud

and hypothesis (7.1). The conclusion fol-
lows.

Notice that the computation in Step 2 leading to the definition of the
constant D does not depend on the precise choice of the constant Λ entering
in the definition of the topological sectors Sd. Therefore, we may assume
that

Λ > D.
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Step 3. We claim that

n(uε(·, Tε)) ≤ n0 ∀ t ∈ [0, Tε]

and that
‖Juε(·, Tε) − πΣdiδa0

i
‖[W1,∞

0 (B(R))]∗ = η0.

This is an immediate consequence of Step 2, (2.2) for the first assertion, and
the definition of Tε for the second assertion.

At this stage, we invoke Theorem 6.1 with the choice r = ra. Assump-
tions (6.1) and (6.2) are satisfied by definition of Tε so that we may assert
that for all s ∈ [0, Tε]∫

B(R)\∪B(a0
i ,ra)

eε(|uε(·, s)|) +
1

8

∣∣∣∣j(uε(·, s))
|uε(·, s)| − j(u∗(a0

i , di))

∣∣∣∣
2

≤ C

where C is independent of ε and s.
Next, for i = 1, . . . , l, we consider real-valued functions χi∈D(B(a0

i ,
3ra

2
))

such that χi is affine on B(a0
i , ra) and |∇χi(a

0
i )| = 1.

Step 4. We have, for 0 ≤ s, t ≤ Tε

(7.10)

∣∣∣∣
∫
〈Juε(·, t) − Juε(·, s), χi〉

∣∣∣∣ ≤ C|D2χi‖L∞|t− s|.

Proof. Since χi is affine on B(a0
i , ra), it follows that supp(∂2χi

∂z̄2 )⊂B(a0
i ,

3ra

2
)\

B(a0
i , ra). The conclusion then follows from (1.12), (1.15) and the bound

provided in Step 2, which yields, for all s ∈ [0, Tε],

‖ω(uε(·, s))‖L1(B(a0
i , 3ra

2
)\B(a0

i ,ra)) ≤ C.

Step 5. Proof of Lemma 7.2 completed. For 0 ≤ t ≤ Tε, let bi(t) ∈
B(a0

i ,
ra

2
) be the points provided by Theorem 6.1 for uε(·, t) and satisfying

(6.4), that is

(7.11) ‖Juε(·, t) − π
∑

diδbi(t)‖[W 1,∞
0 (B(R))]∗ ≤ Cε|log ε|.

We write (in this Step ‖ · ‖ stands for ‖ · ‖[W 1,∞
0 (B(R))]∗)

η0 = ‖Juε(·, Tε) − πΣdiδa0
i
‖

≤ ‖Juε(·, Tε) − πΣdiδbi(Tε)‖ + ‖πΣdiδa0
i
− πΣdiδbi(Tε)‖.

From the definition of ra and the fact that bi(Tε) ∈ B(a0
i ,

ra

2
) is follows that

there exist real-valued functions χi,ε with the same properties as in Step 4,
such that

‖πΣdiδa0
i
− πΣdiδbi(Tε)‖ =

∣∣∣〈πΣdiδa0
i
− πΣdiδbi(Tε),Σχi,ε〉

∣∣∣ .
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Moreover, the functions χi,ε may be choosed in such a way that ‖D2χi,ε‖L∞

≤ C independently of i and ε. Therefore, we obtain using Step 4 and (7.11)

η0 ≤ ‖Juε(·, Tε) − πΣdiδbi(Tε)‖ +
∣∣∣〈πΣdiδa0

i
− πΣdiδbi(Tε),Σχi,ε〉

∣∣∣
≤ C

(
‖Juε(·, Tε) − πΣdiδbi(Tε)‖ + ‖Ju0

ε − πΣdiδa0
i
‖
)

+

∣∣∣∣
∫

〈Juε(·, Tε) − Ju0
ε,Σχi,ε〉

∣∣∣∣
≤ Cε|log ε| + CTε.

The conclusion (7.6) follows. �
We are now in position to present the

Proof of Theorem 7.1. Using Lemma 7.2, (7.11) and a diagonal argument,
we obtain the existence of a sequence εn → 0 and paths bi(t) defined for
t ∈ Q ≡ Q∩ [0, T (ra, R,K0, K1)] such that bi(0) = a0

i and the norm in (7.2)
converges to zero for each t ∈ Q. Passing to the limit εk → 0 in (7.10)
we infer that the paths bi(·) are lipschitz on Q. We still denote by bi(·)
their unique lipschitz extension on [0, T (ra, R,K0, K1)]. By compactness
and (7.10) once more, it follows that the norm in (7.2) converges to zero
uniformly for every t ∈ [0, T (ra, R,K0, K1)].

By Lemma 7.2 Step 2, the bound (7.3) holds for the whole family of
maps (uε)0<ε<εΛ

and for C0 = D.
Finally, the bound (7.4) is a direct consequence of (7.1), the conserva-

tion of Eε,Ud
, the continuity of the bi(·) and the continuous dependence of

Eε,Ud
(u∗ε(ai, di)) on ai. �

The convergence of the Jacobians in (7.2) actually holds on larger balls
passing possibly to a further subsequence. We have

Lemma 7.3. There exits a subsequence (still denoted by εk) such that for
all for all L ≥ 2n0,

sup
t∈[0,T ]

‖Juεk
(·, t) − πΣdiδbi(t)‖[W 1,∞

0 (B(L))]∗ → 0 as k → +∞.

Proof. From (7.8) and (7.9) we infer that for each n ≥ n0 and for L ≡
Ln = 2n there exists C > 0 (depending on n) such that

Eεk
(u0

εk, B(L)) ≤ πl|log εk| + C,

and therefore by compactness of the Jacobians (see e.g. [9]) there exists a
subsequence (still denoted by εk) and a configuration (a′i, d

′
i) such that

‖Ju0
εk
− πΣd′iδa′

i
‖[W 1,∞

0 (B(Ln))]∗ → 0 as k → +∞.
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By (1.8) and e.g. the lower energy bounds of Theorem 5 in [10] it follows
that none of the a′i lies in B(2n) \B(2n0). By (1.7) we therefore obtain that
the configurations (a0

i , di) and (a′i, d
′
i) are identical. We may then replace

R = 2n0 by R = Ln = 2n when using Theorem 7.1. A diagonal argument
finally allows us to construct a fix subsequence which works for all n. �

Let Σv denote the trajectory set in [0, T ]:

Σv := {(bi(t), t), t ∈ [0, T ], i = 1, . . . , l},
and G denote its complement in R2 × [0, T ]. It follows from Lemma 7.3 and
Theorem 6.1 that the sequence (juεk

/|uεk
|) is uniformly bounded in L2

loc(G).
The next lemma characterizes its weak limit.

Lemma 7.4. There exists a subsequence (still denoted εk) such that

j(uεk
(·, ·))

|uεk
(·, ·)| ⇀ ju∗(bi(·), di))

weakly in L2
loc(G) as k → +∞.

Proof. We already know from Lemma 7.3 that in D′(B × [0, T ])

curl (juεk
) = 2Juεk

→ 2π
∑

diδbi(·) = curl (ju∗(bi, di)).

On the other hand, since uεk
is a solution of (GP )εk

, we have in D′(B×[0, T ])

div (juεk
) = −εk

d

dt

|uεk
|2 − 1

εk
→ 0 = div (ju∗(bi, di)).

Since by (6.3) and Lemma 7.3, |uεk
| → 1 in Lp

loc(G) for every p < +∞, we
first infer that juεk

is uniformly bounded in Lq
loc(G) for every q < 2 and

then, taking possibly subsequences, that

juεk
− ju∗(bi, di) ⇀ ∇⊥

xH

in Lq
loc(G) where H is harmonic on G. It also follows from Theorem 6.1 that

‖∇xH‖2
L2(G) ≤ K1T.

Standard singularity removal theory yields then that H is harmonic on the
whole R2 × [0, T ], and then that it is constant (in x only). Using once
more the fact that |uεk

| → 1 in Lp
loc(G) for every p < +∞, we thus obtain

that juεk
/|uεk

| converges weakly to ju∗(bi, di) in Lq
loc(G) for every q < 2.

The weak convergence in L2
loc(G) then follows from the already mentioned

uniform bound of juεk
/|uεk

| in that space. �
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8. Dynamical law for the vortices

The purpose of this section is to present the proof of Theorem 1. To that aim,
we consider a family (u0

ε)0<ε<1 well-prepared with respect to a configuration
(a0

i , di), i.e. such that di ∈ {−1,+1} and such that the conditions (1.7), (1.8)
and (1.9) are satisfied.

Notice that the results of Section 7, in particular Theorem 7.1, apply in
the present situation, providing a sequence εk → 0, Lipschitz paths bi(t) for
t ∈ [0, T ] such that bi(0) = a0

i and (7.2) (7.3) (7.4) are satisfied. The main
point in order to prove Theorem 1 is to show that bi(t) = ai(t) for all i =
1, . . . , l, where ai(·) denote the unique solution of the Cauchy problem (1.10)
on its maximal interval of existence.2

We set

σ(t) =

l∑
i=1

|ai(t) − bi(t)|

for t ∈ [0, T ]. Note that σ(0) = 0 and that decreasing possibly the time T
provided by Theorem 7.1, we may assume that σ(t) ≤ ra for t ∈ [0, T ]. We
will show that σ is identically zero by a Gronwall type argument adapted
from [8].

We set
Σεk

(t) = Eεk,Ud
(uεk

(·, t)) − Eε,Ud
(u∗ε(bi(t), di)).

Lemma 8.1. There exists C > 0 such that

lim sup
k→+∞

sup
t∈[0,T ]

(
Σεk

(t) − Cσ(t)
)
≤ 0.

Proof. By conservation of renormalized energy we have

Eεk,Ud
(uεk

(·, t)) = Eεk,Ud
(u0

εk
).

By Corollary 4.1 we have

lim sup
k→+∞

∣∣Eε,Ud
(u∗ε(bi(t), di)) − Eε,Ud

(u∗ε(a
0
i , di))

∣∣ ≤ |W (bi(t), di) −W (a0
i , di)|.

By conservation of W under (1.10) we have

W (ai(t), di) = W (a0
i , di).

2In order to prove that the full family (uε(·, t))0<ε<1 is well-prepared with respect
to the configuration (ai(t), di), first notice that it suffices to show that for any sequence
εk → 0 the conditions corresponding to (1.7), (1.8) and (1.9) hold for a subsequence of εk.
Indeed, the general case then follows from the uniqueness of the limits (ai(t), di).
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The conclusion then follows from the inequality

|W (bi(t), di) −W (ai(t), di)| ≤ Cσ(t)

which holds for C > 0 depending only on ra and Ra and for t ∈ [0, T ]. �
From Section 6 we infer

Lemma 8.2. There exists C > 0 such that for every L > 0 we have

lim sup
k→+∞

sup
t∈[0,T ]

∫
U

[
eεk

(|uεk
(·, t)|)+

∣∣∣j(uεk
(·, t))

|uεk
(·, t)| −j(u∗(bi(t), di))

∣∣∣2]−Cσ(t) ≤ 0,

where U = B(L) \ ∪l
i=1B(a0

i ,
3ra

2
).

Proof. Let

ηk := sup
t∈[0,T ]

‖Juεk
(·, t) − πΣdiδbi(t)‖[W 1,∞

0 (B(L))]∗ ,

and note that Lemma 7.3 implies that ηk → 0 as k → ∞. For each n ≥ n0,
let ε0(n) and η0(n) denote the constants provided in the statement of The-
orem 6.1 for the choice R = 2n. Then exists nk → ∞ and nondecreasing
(but not necessarily strictly increasing) in k such that εk ≤ ε0(nk) and
ηk ≤ η0(nk) for every large enough k. We can then use Theorem 6.1 to
conclude that for∫

U

eεk
(|uεk

(·, t)|)+

∣∣∣∣j(uεk
(·, t))

|uεk
(·, t)| − j(u∗(bi(t), di))

∣∣∣∣
2

≤ CΣεk
(t)+C(ηk, εk, 2

−nk).

The conclusion follows letting k → +∞ and using Lemma 8.1. �
The control of the difference between uε and u∗ obtained in Lemma 8.2

allows us to control the difference of their Hopf differential, which was defined
in (1.15) as

ω(u) = |ux1|2 − |ux2|2 − 2iux1 · ux2.

In the sequel, we set A = ∪l
i=1B(a0

i , 2ra) \B(a0
i ,

3ra

2
). Notice that point-

wise on A× [0, T ] we have

(8.1) |ω(u∗(ai(t), di)) − ω(u∗(bi(t), di)| ≤ Cσ(t).

Lemma 8.3. There exists C > 0 such that for 0 ≤ t1 ≤ t2 ≤ T and
ϕ ∈ D(A) we have

lim sup
k→+∞

∣∣∣∣
∫ t2

t1

∫
A

[ω(uεk
) − ω(u∗(bi(·), di))] ϕ

∣∣∣∣ ≤ C‖ϕ‖L∞

∫ t2

t1

σ(t) dt.
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Proof. We start with the pointwise equality

uxp · uxq =
u× uxp

|u|
u× uxq

|u| + |u|xp|u|xq

which applies to uεk
(·, t) and u∗(bi(t), di) almost everywhere on U × [0, T ].

Note that u×uxp is just the pth component of ju, which we will write (ju)p.
Hence, since |u∗(bi, di)| ≡ 1, ω(uεk

) − ω(u∗(bi, di)) has the form

(8.2)
2∑

p,q=1

cpq

[(juεk
)p

|uεk
|

(juεk
)q

|uεk
| −(ju∗(bi, di))p(ju

∗(bi, di))q

]
+dpq|uεk,xp| |uεk,xq |

for certain numbers cpq, dpq ∈ C. For real numbers ap, aq and a∗p, a
∗
q be have

the equality

(8.3) apaq − a∗pa
∗
q = (ap − a∗p)(aq − a∗q) + a∗p(aq − a∗q) + a∗q(aq − a∗q).

We multiply (8.2) by ϕ and rewrite, using (8.3) with aq = j(uεk
)p/|uεk

| and
a∗p = j(u∗(bi, di))p, and similarly aq, a

∗
q . Integrating over A × [t1, t2], letting

k → +∞, and using Lemma 7.4, we see that the terms that are linear
in (juεk

)p − (ju∗(bi, di))p vanish, and the remaining terms can be easily
estimated to obtain

lim sup
k→+∞

∫ t2

t1

∫
A

[ω(uεk
(·, t)) − ω(u∗(bi, di))] ϕ

≤ C‖ϕ‖L∞ lim sup
k→+∞

∫ t2

t1

∫
A

[∣∣∣∣j(uεk
)

|uεk
| − j(u∗(bi, di))

∣∣∣∣
2

+ |∇|uεk
||2
]
.

The conclusion then follows from Lemma 8.2. �
We are now in position to present the

Proof of Theorem 1 completed. We first consider the interval [0, T ]
where T is as above. Let t ∈ [0, T ] be a point of differentiability of all the
Lipschitz functions ai and bi (almost all points t have this property). Since
all the points ai(t) and bi(t) belong to B(a0

i ,
ra

2
), there exists χ ∈ D(R2)

(depending on t) such that χ is affine on each B(a0
i , ra), |∇χ(a0

i )| = 1,

supp∂2χ
∂z̄2 ⊂ A and

(8.4) σ(t) ≡
l∑

i=1

|ai(t) − bi(t)| =
〈 l∑

i=1

δai(t) − δbi(t), χ
〉
.

On the other hand, for every 0 ≤ δ ≤ t,

(8.5) σ(t− δ) ≡
l∑

i=1

|ai(t− δ) − bi(t− δ)| ≥
〈 l∑

i=1

δai(t−δ) − δbi(t−δ), χ
〉
.
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Integrating (1.14) on [t− δ, t] and taking into account (1.17) and (1.18) we
obtain

(8.6)
〈(
Juεk

(·, t) − πΣdiδai(t)

)− (Juεk
(·, t− δ) − πΣdiδai(t−δ)

)
, χ
〉

= −2

∫ t

t−δ

∫
A

Im

([
ω(uεk

) − ω(u∗(ai, di))
] ∂2χ

∂z̄2

)
.

Passing to the limsup k → +∞ we are led, taking into account Lemma 7.3,
Lemma 8.3, (8.5) and (8.1), to

σ(t) − σ(t− δ) ≤ C

∫ t

t−δ

σ(s) ds.

Passing to the limit δ → 0 we finally obtain

d

dt
σ(t) ≤ Cσ(t),

and since σ(0) = 0 Gronwall’s lemma yields

σ(t) = 0 for t ∈ [0, T ].

The conditions (1.7) (1.8) and (1.9) are therefore satisfied for ai = ai(t)
and t ∈ [0, T ]. Indeed, (1.7) is a consequence of Lemma 7.3 and the equal-
ity ai(t) = bi(t), (1.8) was already proved in (7.3), and (1.9) follows from
Lemma 8.1 and the fact that σ ≡ 0.

To conclude, it suffices to pass from the interval [0, T ] to [T∗, T ∗], i.e. the
maximal interval of existence of (1.10). Since we obtained a lower bound
on T which depends only on ra and Ra, this is readily achieved considering
translations in time and reversing time. �
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Bôıte courrier 187
75252 Paris Cedex 05 France

smets@ann.jussieu.fr



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /All
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveEPSInfo true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile ()
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org)
  /PDFXTrapped /Unknown

  /Description <<
    /FRA <>
    /ENU (Use these settings to create PDF documents with higher image resolution for improved printing quality. The PDF documents can be opened with Acrobat and Reader 5.0 and later.)
    /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308000200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
    /DEU <>
    /PTB <>
    /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e006700200066006f00720020006100740020006600e50020006200650064007200650020007500640073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
    /NLD <>
    /SUO <>
    /ITA <>
    /NOR <>
    /SVE <>
    /KOR <FEFFd5a5c0c1b41c0020c778c1c40020d488c9c8c7440020c5bbae300020c704d5740020ace0d574c0c1b3c4c7580020c774bbf8c9c0b97c0020c0acc6a9d558c5ec00200050004400460020bb38c11cb97c0020b9ccb4e4b824ba740020c7740020c124c815c7440020c0acc6a9d558c2edc2dcc624002e0020c7740020c124c815c7440020c0acc6a9d558c5ec0020b9ccb4e000200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /CHS <FEFF4f7f75288fd94e9b8bbe7f6e521b5efa76840020005000440046002065876863ff0c5c065305542b66f49ad8768456fe50cf52068fa87387ff0c4ee563d09ad8625353708d2891cf30028be5002000500044004600206587686353ef4ee54f7f752800200020004100630072006f00620061007400204e0e002000520065006100640065007200200035002e00300020548c66f49ad87248672c62535f003002>
    /CHT <FEFF4f7f752890194e9b8a2d5b9a5efa7acb76840020005000440046002065874ef65305542b8f039ad876845f7150cf89e367905ea6ff0c4fbf65bc63d066075217537054c18cea3002005000440046002065874ef653ef4ee54f7f75280020004100630072006f0062006100740020548c002000520065006100640065007200200035002e0030002053ca66f465b07248672c4f86958b555f3002>
    /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200070006100720061002000610075006d0065006e0074006100720020006c0061002000630061006c006900640061006400200061006c00200069006d007000720069006d00690072002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [595.000 842.000]
>> setpagedevice


