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Projections of hypersurfaces
in the hyperbolic space

to hyperhorospheres and hyperplanes

Shyuichi Izumiya and Farid Tari

Abstract

We study in this paper orthogonal projections in a hyperbolic
space to hyperhorospheres and hyperplanes. We deal in more de-
tails with the case of embedded surfaces M in H3

+(−1). We study
the generic singularities of the projections of M to horospheres and
planes. We give geometric characterizations of these singularities and
prove duality results concerning the bifurcation sets of the families of
projections. We also prove Koenderink type theorems that give the
curvature of the surface in terms of the curvatures of the profile and
the normal section of the surface.

1. Introduction

Projections of surfaces in the Euclidean and projective 3-spaces are well stud-
ied (see for example [1, 3, 4, 5, 6, 7, 9, 23, 24, 27, 28, 29, 30]). We initiate in
this paper an analogous study for embedded surfaces in the hyperbolic space
H3

+(−1). Projections in the Euclidean space Rn are linear maps. By such
projections, a point in Rn is taken along a line (a geodesic) until it hits an
orthogonal hyperplane of projection (which is an (n−1)-dimensional flat ob-
ject). There are two notions of flat objects in the hyperbolic space Hn

+(−1).
One is given by the everywhere vanishing of de Sitter Gaussian curvature
and the other by the everywhere vanishing of the hyperbolic Gaussian cur-
vature (see Section 2). It is shown in [17] that a totally umbilic hypersurface
has everywhere zero hyperbolic Gaussian curvature if and only if it is part of
a hyperhorosphere, and it has everywhere zero de Sitter Gaussian curvature
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if and only if it is part of a hyperplane ([19]). So we consider in this paper
orthogonal projections to hyperhorospheres and to hyperplanes. By such
projections, a point in Hn

+(−1) is taken along the unique geodesic to the
point where such geodesic meets orthogonally the chosen hyperhorosphere
or hyperplane of projection.

We deal in Section 3 with projection to hyperhorospheres and in Sec-
tion 4 with projections to hyperplanes. In both cases we start by finding the
expressions of the families of orthogonal projections in Hn

+(−1) to hyper-
horospheres and hyperplanes (Theorems 3.1 and 4.1). We then restrict to
the cases of embedded surfaces M in H3

+(−1). We give geometric charac-
terisations of the generic singularities of the orthogonal projections of M
to horospheres and planes (Theorems 3.5 and 4.4). We observe that the
singularities of these projections measure the contact of the surface with
geodesics in H3

+(−1). We prove duality results (Theorems 3.2 and 4.2) con-
cerning the bifurcation sets of the families of projections, analogous to those
of Shcherback in [29]. Here, we use the duality concepts introduced by the
first author in [11, 12]; see §2 for details. We also prove Koenderink type
theorems that give the curvature of the surface in terms of the curvature of
the profile and of the normal section of the surface (Theorems 3.6 and 4.5).

2. Preliminaries

We start by recalling some basic concepts in hyperbolic geometry (see for
example [26] for details). The Minkowski (n + 1)-space (Rn+1

1 , 〈, 〉) is the
(n+1)-dimensional vector space Rn+1 endowed by the pseudo scalar product
〈x, y〉 = −x0y0 +

∑n
i=1 xiyi, for x = (x0, . . . , xn) and y = (y0, . . . , yn) in

Rn+1
1 . We say that a vector x in Rn+1

1 \ {0} is spacelike, lightlike or timelike
if 〈x, x〉 > 0, = 0 or < 0 respectively. The norm of a vector x ∈ Rn+1

1 is
defined by ‖x‖ =

√|〈x, x〉|.
Given a vector v ∈ Rn+1

1 and a real number c, the hyperplane with
pseudo normal v is defined by

HP (v, c) = {x ∈ Rn+1
1 | 〈x, v〉 = c}.

We say that HP (v, c) is a spacelike, timelike or lightlike hyperplane if v
is timelike, spacelike or lightlike respectively. For v = e0 = (1, 0, . . . , 0), we
have HP (e0, 0) = {x ∈ Rn+1

1 | x0 = 0}. This space is identified with the
Euclidean n-space and is denoted by Rn

0 .
We have the following three types of pseudo-spheres in Rn+1

1 :

Hyperbolic n-space : Hn(−1) = {x ∈ Rn+1
1 | 〈x, x〉 = −1},

de Sitter n-space : Sn
1 = {x ∈ Rn+1

1 | 〈x, x〉 = 1},
(open) lightcone : LC∗ = {x ∈ Rn+1

1 \ {0} | 〈x, x〉 = 0}.
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We also define the lightcone hypersphere

Sn−1
+ = {x = (x0, . . . , xn) | 〈x, x〉 = 0, x0 = 1}.

For x ∈ LC∗, we have x0 �= 0 so

x̃ =

(
1,

x1

x0
, . . . ,

xn

x0

)
∈ Sn−1

+ .

The hyperbolic space has two connected components Hn
+(−1)={x∈Hn(−1)

| x0 ≥ 1} and Hn
−(−1) = {x ∈ Hn(−1)| x0 ≤ −1}. We only consider

embedded surfaces in Hn
+(−1) as the study is similar for those embedded

in Hn
−(−1).

The wedge product of n vectors a1, a2, . . . , an ∈ Rn+1
1 is given by

a1 ∧ a2 ∧ · · · ∧ an =

∣∣∣∣∣∣∣∣∣∣∣

−e0 e1 · · · en

a1
0 a1

1 · · · a1
n

a2
0 a2

1 · · · a2
n

...
... · · · ...

an
0 an

1 · · · an
n

∣∣∣∣∣∣∣∣∣∣∣
,

where {e0, e1, . . . , en} is the canonical basis of Rn+1
1 and ai =(ai

0, a
i
1, . . . , a

i
n),

i = 1, . . . , n. One can check that

〈a, a1 ∧ a2 ∧ · · · ∧ an〉 = det(a, a1, . . . , an),

so the vector a1 ∧ a2 ∧ · · · ∧ an is pseudo orthogonal to all the vectors ai,
i = 1, . . . , n.

The extrinsic geometry of hypersurfaces in the hyperbolic space is studied
in [11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21]. Let M be a hypersurface
embedded in Hn

+(−1). Given a local chart i : U → M , where U is an open
subset of Rn−1, we denote by x : U → Hn

+(−1) such embedding, identify
x(U) with U through the embedding x and write M = x(U). Since 〈x, x〉 ≡
−1, we have 〈xui

, x〉 ≡ 0, for i = 1, . . . , n−1, where u = (u1, . . . , un−1) ∈ U.
We define the spacelike unit normal vector e(u) to M at x(u) by

e(u) =
x(u) ∧ xu1(u) ∧ . . . ∧ xun−1(u)

‖x(u) ∧ xu1(u) ∧ . . . ∧ xun−1(u)‖ .

It follows that the vector x± e is a lightlike vector. Let

E : U → Sn
1 and L± : U → LC∗

be the maps defined by E(u) = e(u) and L±(u) = x(u) ± e(u). These are
called, respectively, the de Sitter Gauss map and the lightcone Gauss map
(or hyperbolic Gauss indicatrix) of M ([17]). For any p = x(u0) ∈ M and
v ∈ TpM, one can show that DvE ∈ TpM, where Dv denotes the covariant
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derivative with respect to the tangent vector v. Since the derivative dx(u0)
can be identified with the identity mapping 1TpM on the tangent space TpM,
we have dL±(u0) = 1TpM ± dE(u0), under the identification of U and M
via the embedding x. The linear transformation Ap = −dE(u0) is called the
de Sitter shape operator. Its eigenvalues κi, i = 1, . . . , n − 1, are called
the de Sitter principal curvature and the corresponding eigenvectors pi,
i = 1, . . . , n − 1, are called the de Sitter principal directions. The lin-
ear transformation S±

p = −dL±(u0) is labelled the lightcone (or hyperbolic)
shape operator of M at p. It has the same eigenvectors as Ap but its eigen-
values are distinct from those of Ap. In fact the eigenvalues κ̄±

i of S±
p satisfy

κ̄±
i = −1± κi, i = 1, . . . , n− 1.

We call Ke(p) =
∏n

i=1 κi(p) (resp. Kh(p) =
∏n

i=1 κ̄i(p)) the de Sitter
(resp. hyperbolic) Gauss-Kronecker curvature of M at p. The curvature
Ke is also called the extrinsic Gaussian curvature. The set of points where
Ke(p) = 0 (resp. Kh(p) = 0) is labelled the de Sitter (resp. horospherical)
parabolic set of M . The restriction of the pseudo-scalar product to the
hyperbolic space is a scalar product, so Hn

+(−1) is a Rimaniann manifold.
When n = 3, we have the sectional curvature KI of M which is also called
the intrinsic Gaussian curvature. It is known that Ke = KI + 1 (see (2.2)
in [8]).

A hypersurface given by the intersection of Hn
+(−1) with a spacelike,

timelike or lightlike hyperplane is called respectively hypersphere, equidistant
hypersurface or hyperhorosphere. The intersection of the surface with time-
like hyperplane through the origin is called simply a hyperplane. As pointed
out in the introduction, the hyperhorospheres (resp. hyperplanes) are the
only hypersurfaces with everywhere zero lightcone (resp. de Sitter) Gaussian
curvature. We deal in Section 3 with projections to hyperhorospheres and
in Section 4 with projections to hyperplanes.

We need the notion of curvature of a curve in H3
+(−1). Let γ : I →

H3
+(−1) be a regular curve. Since H3

+(−1) is a Riemannian manifold, we
can parametrise γ by arc-length and assume that γ(s) is unit speed. Let
t(s) = γ′(s), with ||t(s)|| = 1. When 〈t′(s), t′(s)〉 �= −1, we have a unit

normal vector n(s) = t′(s)−γ(s)
||t′(s)−γ(s)|| . Let e(s) = γ(s)∧ t(s)∧n(s), then we have

a pseudo orthogonal frame {γ(s), t(s), n(s), e(s)} in R4
1 along γ. Frenet-

Serret type formulae, similar to those for a space curve in R3, can be proved
for the curve γ ([20]). The curvature of γ at γ(s) is defined to be

κh(s) = ||t′(s)− γ(s)||.
In particular, t′(s) = κh(s)n(s) + γ(s). The condition 〈t′(s), t′(s)〉 �= −1
above is in fact equivalent to κh(s) �= 0. See [20] for more results on curves
in the hyperbolic plane.
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We require some properties of contact manifolds and Legendrian sub-
manifolds for the duality results in this paper (for more details see for ex-
ample [2]). Let N be a (2n + 1)-dimensional smooth manifold and K be
a field of tangent hyperplanes on N . Such a field is locally defined by a
1-form α. The tangent hyperplane field K is said to be non-degenerate if
α ∧ (dα)n �= 0 at any point on N. The pair (N, K) is a contact manifold if
K is a non-degenerate hyperplane field. In this case K is called a contact
structure and α a contact form.

A submanifold i : L ⊂ N of a contact manifold (N, K) is said to be
Legendrian if dim L = n and dix(TxL) ⊂ Ki(x)

at any x ∈ L. A smooth

fibre bundle π : E → M is called a Legendrian fibration if its total space E
is furnished with a contact structure and the fibres of π are Legendrian
submanifolds. Let π : E → M be a Legendrian fibration. For a Legendrian
submanifold i : L ⊂ E, π ◦ i : L → M is called a Legendrian map. The
image of the Legendrian map π◦i is called a wavefront set of i and is denoted
by W (i).

There are two families of maps defined on an embedded manifold M in
the Euclidean space Rn. These are the family of height functions given by

H : M × Sn−1 → R× Sn−1

(q, v) → q.v

and the family of orthogonal projections given by

P : M × Sn−1 → TSn−1

(q, v) → (q, q − (q.v)v)

where Sn−1 denotes the unit sphere and “.” the scalar product in Rn.
The local bifurcation set of H (resp. P ) is the set of u ∈ Sn−1 for which
there exists p ∈M such that Hu (resp. Pu) has a non-stable singularity at p.
When n = 3, a result in [7] shows that the dual of the A2-stratum of the
bifurcation set of the family of height functions on M ⊂ R3 is the lips/beaks
stratum of the family of orthogonal projections on M . The duality in [7]
refers to the double Legendrian fibration S2 π1←− ∆

π2−→ S2, where S2 is
the unit sphere in R3 and ∆ = {(u, v) ∈ S2 × S2 | u.v = 0}. The contact
structure on ∆ is given by the 1-form θ = v.du|∆. (There are also other
duality results in [29] regarding the strata of the bifurcation set of the family
of projections of surfaces in the projective space RP 3. Details of these are
given in §3.2.)

We prove in §3.2 and §4.2 analogous results to those in [7] and [29]. The
duality concepts we use here are those introduced in [11, 12, 22], where five
Legendrian double fibrations are considered on the subsets ∆i, i = 1, . . . , 5
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below, of the product of two of the pseudo spheres Hn(−1), Sn
1 and LC∗.

The geometric ideas behind the choice of the subsets ∆i and the Legendrian
double fibrations are as follows (for more details see [11, 12, 22]).

To any hypersurface x : U → Hn(−1) is associated the de Sitter Gauss
map E : U → Sn

1 . It is easy to show that the pair (x, E) : U → Hn(−1)×Sn
1 is

a Legedrian embedding into the set ∆1 ={(v, w)∈Hn(−1)×Sn
1 | 〈v, w〉=0}.

(The contact structure on ∆1 is given below.) This means that M = x(U)
and M∗ = E(U) are dual. We call this duality the ∆1-duality. This is a
direct analogue of the spherical duality in the Euclidean space.

Consider now the lightcone Gauss map L± : U → Hn(−1)× LC∗ which
satisfies 〈x(u), L±(u)〉 = −1. The pair (x, L±) : U → Hn(−1) × LC∗

determines a Legedrian embedding into the set ∆2 = {(v, w) ∈ Hn(−1) ×
LC∗ | 〈v, w〉 = −1}, so M = x(U) and M∗ = L±(U) are dual. We call this
duality the ∆2-duality.

Similarly, we have 〈E(u)±x(u), E(u)〉 = 1 and 〈L+(u), L−(u)〉 = −2 and
these lead to the concepts of ∆3-duality and ∆4-duality respectively.

For spacelike hypersurfaces embedded in one of the pseudo-spheres in
the Minkowski space (i.e. surfaces whose tangent spaces at all points are
spacelike), we need to consider only the above four ∆i-dualities, i = 1, . . . , 4.
However, if we consider timelike hypersurfaces in Sn

1 , (i.e. surfaces whose
tangent spaces at all points are timelike) we need the concept of ∆5-duality
below which is also a direct analogue to the spherical duality in the Euclid-
ean space. To summarise, we have the following five Legendrian double
fibrations.

(1) (a) Hn(−1)× Sn
1 ⊃ ∆1 = {(v, w) | 〈v, w〉 = 0},

(b) π11 : ∆1 → Hn(−1), π12 : ∆1 → Sn
1 ,

(c) θ11 = 〈dv, w〉|∆1, θ12 = 〈v, dw〉|∆1.

(2) (a) Hn(−1)× LC∗ ⊃ ∆2 = {(v, w) | 〈v, w〉 = −1 },
(b) π21 : ∆2 → Hn(−1),π22 : ∆2 → LC∗,
(c) θ21 = 〈dv, w〉|∆2, θ22 = 〈v, dw〉|∆2.

(3) (a) LC∗ × Sn
1 ⊃ ∆3 = {(v, w) | 〈v, w〉 = 1 },

(b) π31 : ∆3 → LC∗,π32 : ∆3 → Sn
1 ,

(c) θ31 = 〈dv, w〉|∆3, θ32 = 〈v, dw〉|∆3.

(4) (a) LC∗ × LC∗ ⊃ ∆4 = {(v, w) | 〈v, w〉 = −2 },
(b) π41 : ∆4 → LC∗,π42 : ∆4 → LC∗,
(c) θ41 = 〈dv, w〉|∆4, θ42 = 〈v, dw〉|∆4.

(5) (a) Sn
1 × Sn

1 ⊃ ∆5 = {(v, w) | 〈v, w〉 = 0},
(b) π51 : ∆5 → Sn

1 ,π52 : ∆5 → Sn
1 ,

(c) θ51 = 〈dv, w〉|∆5, θ52 = 〈v, dw〉|∆5.
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Above, πi1(v, w) = v and πi2(v, w) = w for i = 1, . . . , 5, 〈dv, w〉 =
−w0dv0 +

∑n
i=1 widvi and 〈v, dw〉 = −v0dw0 +

∑n
i=1 vidwi. The 1-forms θ−1

i1

and θ−1
i2 , i = 1, . . . , 5, define the same tangent hyperplane field over ∆i which

is denoted by Ki.
We have the following duality theorem on the above spaces.

Theorem 2.1 ([11, 12, 22]) The pairs (∆i, Ki), i = 1, . . . , 5, are contact
manifolds and πi1 and πi2 are Legendrian fibrations.

We have the following general remarks, some of which follow from the
discussion proceeding Theorem 2.1.

Remark 2.2 1. Given a Legendrian submanifold i : L → ∆i, i = 1, . . . , 5,
Theorem 2.1 states that πi1(i(L)) is the ∆i-dual of πi2(i(L)) and vice-versa.

2. We have the following geometric properties for a Legendrian subman-
ifold L ⊂ ∆i, i = 1, . . . , 5. Take the case i = 1. If π11(i(L)) is smooth at
a point π11(i(u)), then π12(i(u)) is the normal vector to the hypersurface
π11(i(L)) ⊂ Hn

+(−1) at π11(i(u)). Conversely, if π12(i(L)) is smooth at
a point π12(i(u)), then π11(i(u)) is the normal vector to the hypersurface
π12(i(L)) ⊂ Sn

1 . The same holds for the ∆i-dualities, i = 2, . . . , 5, where
we take the normal to a hypersurface M ⊂ LC∗ at p ∈ M as the direction
given by the intersection of the normal plane to TpM in Rn+1

1 with TpLC∗.
3. The ∆4-duality is included for completion only and is not used in this

paper.
4. Since the normal of a hypersurface in Hn(−1) is always spacelike, we

have no good duality relationship in Hn(−1)×Hn(−1).

3. Projections to hyperhorospheres

Our construction of the family of orthogonal projections works in Hn
+(−1)

for n ≥ 3. So we shall first deal with the general case and then restrict to
n = 3 for a detailed study of the singularities of the members of the family.
Let HP (v, c) be a lightlike hyperplane (so v ∈ LC∗ and c ∈ R). Given a
point p ∈ Hn

+(−1), there is a unique geodesic in Hn
+(−1) which intersects

orthogonally the hyperhorosphere HP (v, c)∩Hn
+(−1) at some point q(p, v).

We call the point q(p, v) the orthogonal projection of p in the direction of v
to the hyperhorosphere HP (v, c) ∩ Hn

+(−1). By varying c, we obtain or-
thogonal projections to parallel hyperhorospheres. As the geometry we are
investigating here is the same in all these parallel hyperhorospheres, we fix c
to be 〈e0, v〉, with e0 = (1, 0, . . . , 0) ∈ Hn

+(−1). That is, we consider orthog-
onal projections to the hyperhorospheres that passe through the point e0.
We observe that HP (v, 〈e0, v〉) = HP ( 1

v0
v,−1), so the hyperhorospheres
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we are considering are in fact parametrised by the sphere Sn−1
+ . We define

the fibre bundle

L := {(v, q) ∈ Sn−1
+ ×Hn

+(−1) | 〈v, q〉 = −1}.
By varying v, we obtain a family of orthogonal projections to hyperhoro-
spheres parametrised by vectors in Sn−1

+ .

Theorem 3.1 The family of orthogonal projections in Hn
+(−1) to hyper-

horospheres is given by

PHS : Hn
+(−1)× Sn−1

+ → L
(p, v) → (v, q(p, v))

where q(p, v) has the following expression

q(p, v) = − 1

〈p, v〉p−
1− 〈p, v〉2
2 〈p, v〉2 v.

Proof. Let p ∈ Hn
+(−1) and v ∈ Sn−1

+ . Consider the two parallel hy-
perhorospheres HP (v,−1)∩Hn

+(−1) and HP (v, 〈p, v〉)∩Hn
+(−1), the first

contains the point e0 and the second the point p. A geodesic orthogo-
nal to one of these hyperhorospheres is also orthogonal to the other, and
the length of the segment of such geodesics between a point on one hyper-
horosphere and another point on the other hyperhorosphere is the same for
all such geodesics. The geodesic in Hn

+(−1) through e0 and orthogonal to
HP (v,−1) ∩Hn

+(−1) is parametrised by

(3.1) c(t) = cosh(t)e0 + sinh(t)u,

where u is orthogonal to HP (v,−1)∩Hn
+(−1) at e0 and satisfies 〈u, u〉 = 1.

A short calculation shows that

u = e0 − v.

We are seeking the expressions of cosh(t0) and sinh(t0) in (3.1) when c(t0)
is on the hyperhorosphere HP (v, 〈p, v〉) ∩Hn

+(−1). For such t0 we have

〈p, v〉 = 〈c(t0), v〉
= − cosh(t0) + 〈u, v〉 sinh(t0)
= − cosh(t0) + 〈e0 − v, v〉 sinh(t0)
= −(cosh(t0) + sinh(t0)).

Therefore
cosh(t0) + sinh(t0) = −〈p, v〉 .
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Combining the above relation with the identity cosh2(t0) − sinh2(t0) = 1
yields

cosh(t0) = −〈p, v〉
2 + 1

2 〈p, v〉 ,

sinh(t0) = −〈p, v〉
2 − 1

2 〈p, v〉 .

Now the point q(p, v), which is the orthogonal projection of p to the
hyperhorosphere HP (v,−1) ∩Hn

+(−1) is given by

q(p, v) = cosh(−t0)p + sinh(−t0)w,

with w = p+1/〈p, v〉v. Substituting the expressions for cosh(t0) and sinh(t0)
yields the expression of q(p, v) in the statement of the theorem. �

The projection PHS can be interpreted as follows in the Poincaré ball
model of Hn

+(−1). Given a point v on the ideal boundary, the hyper-
horospheres defined by v are the hyperspheres in the ball that are tangent
to the boundary at v. If we fix one of them, then the projection q(p, v) is
represented by the intersection of the geodesic linking v and p with the fixed
hyperhorosphere. One can also define a projection to the ideal boundary by
considering the point of intersection of the geodesic linking v and p with the
ideal boundary. By varying v, we obtain a family of projections to the ideal
boundary. Under the identification between Sn−1

+ in the Minkowski model
and the ideal boundary in the Poincaré ball model via the canonical stere-
ographic projection, we also have the corresponding projection onto Sn−1

+

that we denote by PLS.

Theorem 3.2 There is a bundle isomorphism taking PHS to PLS.

Proof. For any v ∈ Sn−1
+ , the tangent space of Sn−1

+ at v can be canonically
identified with the space

TvSn−1
+ = {w ∈ Rn

0 | 〈v, w〉 = 0 }.
We define the stereographic projection Πv : Sn−1

+ \ {v} → TvSn−1
+ by

Πv(u) = v +
v − u

〈u, v〉 − e0.

We consider the induced metric on Sn−1
+ \ {v} via the stereographic

projection from the Euclidean space TvSn−1
+ , so that Πv is an isometric

diffeomorphism. We also define a projection Pv
LS : Hn

+(−1) → Sn−1
+ \ {v}

as follows. Given a point p ∈ Hn
+(−1), the line joining p and v meets
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the lightcone at another point q. Then Pv
LS(p) is defined to be the point

q̃ ∈ Sn−1
+ \ {v}. One can show that

Pv
LS(p) =

˜
2p +

v

〈p, v〉 .

We remark that the restriction

Pv
LS|HP (v,−1)∩Hn

+(−1) : HP (v,−1) ∩Hn
+(−1)→ Sn−1

+ \ {v}
is an isometric diffeomorphism. Therefore,

Πv ◦ Pv
LS|HP (v,−1)∩Hn

+(−1) : HP (v,−1) ∩Hn
+(−1)→ TvSn−1

+

is an isometric diffeomorphism. Varying v in Sn−1
+ yields a family of map-

pings PLS : Hn
+(−1)×Sn−1

+ → Sn−1
+ ×Sn−1

+ given by PLS(p, v) = (v, Pv
LS(p)).

The tangent bundle of the lightcone hypersphere is

TSn−1
+ = {(v, w) ∈ Sn−1

+ ×Rn
0 | 〈v, w〉 = 0 }.

Therefore we have a family of projections to the tangent bundle of Sn−1
+

PLS : Hn
+(−1)× Sn−1

+ → TSn−1
+

defined by PLS(p, v) = (1Sn−1
+
× Πv) ◦ PLS(p, v) = (v, Πv ◦ Pv

LS(p)). A

straightforward calculation shows that Pv
LS(q(p, v)) = Pv

LS(p), where q(p, v)
is as in Theorem 3.1.

Let Φ : L → TSn−1
+ be the mapping defined by Φ(v, q) = (v, Πv◦Pv

LS(q)).
Since Πv ◦Pv

LS|HP (v,−1)∩Hn
+(−1) is an isometric diffeomorphism, Φ is a bundle

isomorphism and Φ ◦ PHS = PLS.
On the Poincaré ball model of Hn

+(−1), the ideal boundary can be iden-
tified with Sn−1

+ through the canonical stereographic projection. Therefore,
the bundle L can be identified with the tangent bundle of the ideal boundary.

�

In this paper, the family of orthogonal projections of a given submanifold
M in Hn

+(−1) to hyperhorospheres refers to the restriction of the family PHS

to M . We still denote this restriction by PHS. We have the following result
where the term generic is defined in terms of transversality to submanifolds
of multi-jet spaces (see for example [10]).

Theorem 3.3 For a residual set of embeddings x : M → Hn
+(−1), the

family PHS is a generic family of mappings.

Proof. The theorem follows from Montaldi’s result in [25] and the fact
that PHS |Hn

+(−1) is a stable map. �

We denote by Pv
HS the map Hn

+(−1) → Hn
+(−1), given by Pv

HS(p) =
q(p, v), with q(p, v) as in Theorem 3.1.
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3.1. Projections of surfaces in H3(−1) to horospheres

We now study projections of embedded surfaces in H3
+(−1) to horospheres.

For a given v ∈ S2
+ and a point p0 ∈ M , one can choose local coordi-

nates so that Pv
HS restricted to M can be considered locally as a map-germ

R2, 0 → R2, 0. These map-germs are extensively studied. We refer to [27]
for the list of the A-orbits with Ae-codimension ≤ 6, where A denotes
the Mather group of smooth changes of coordinates in the source and tar-
get. In Table 1, we reproduce from [27] the list of local singularities of
Ae-codimension ≤ 3. Some of these singularities are also called as follows:
42 (lips/beaks), 43 (goose), 5 (swallowtail), 6 (butterfly), 115 (gulls). The
multi-local singularities of Ae-codimension ≤ 2 are as follows:

codimension 0: double fold.
codimension 1: triple fold; double tangent fold; fold plus cusp.
codimension 2: quadruple fold; double cusp; double fold plus cusp;

double tangent; fold plus fold; 3-point contact folds;
cusp plus tangent fold; swallowtail plus fold;
lips/beaks plus fold.

Table 1: Ae-codimension ≤ 3 local singularities of map-germs
R2, 0→ R2, 0 ([27]).

Name Normal form Ae-codimension
Immersion (x, y) 0
Fold (x, y2) 0
Cusp (x, xy + y3) 0
4k (x, y3 ± xky), k = 2, 3, 4 k − 1
5 (x, xy + y4) 1
6 (x, xy + y5 ± y7) 2
7 (x, xy + y5) 3
112k+1 (x, xy2 + y4 + y2k+1), k = 2, 3 k
12 (x, xy2 + y5 + y6) 3
16 (x, x2y + y4 ± y5) 3

It follows from Theorem 3.3 that for generic embeddings of the surface
only singularities of Ae-codimension ≤ dim(S2

+) = 2 can occur in the mem-
bers of the family of orthogonal projections. So we have the following result.

Proposition 3.4 For a residual set of embeddings x : M → H3
+(−1), the

projections Pv
HS : M → H3

+(−1) in the family PHS have local singularities
A-equivalent to one in Table 1 whose Ae-codimension ≤ 2. Moreover, these
singularities are versally unfolded by the family PHS.
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The members of PHS can also have multi-local local singularities A-
equivalent to one listed above with Ae-codimension ≤ 2, and these singu-
larities are also versally unfolded by the family PHS. In this paper, we deal
mainly with the geometry of the local singularities.

As Ap and Sp are self-adjoint operators on M we can define the no-
tion of asymptotic directions at p. We say that u ∈ TpM is a de Sitter
(resp. horospherical ) asymptotic direction if and only if 〈Ap.u, u〉 = 0 (resp.
〈Sp.u, u〉 = 0). There are 0/1/2 de Sitter (resp. horospherical) asymptotic
directions at every point where Ke(p) (resp. Kh(p)) 0 > / = / < 0.

Given v ∈ S2
+ and a point q on the horosphere HP (v, 〈q, v〉) ∩H3

+(−1),
we denote by v∗ the projection of v in the direction of q (considered as a
vector in R4

1) to the tangent space of the horosphere at q. We have v∗ =
v + 〈q, v〉 q, and the map v → v∗/||v∗|| = − (v/〈q, v〉+ q) from S2

+ to
TqH

3
+(−1) ∩ S3

1 is one-to-one. Also, given two parallel horospheres defined
by v ∈ S2

+ and a geodesic orthogonal to both of them at p and q respectively,
then the vector v∗ associated to v is the same at p and q. The types of
singularities in the following theorem are those in Table 1.

Theorem 3.5 Let M be an embedded surface in H3
+(−1) and v ∈ S2

+.

(1) The projection Pv
HS is singular at a point p ∈ M if and only if v∗ ∈

TpM.

(2) The singularity of Pv
HS at p is of type cusp or worse if and only if v∗

is a de Sitter asymptotic direction at p. In particular, p is a de Sitter
hyperbolic or parabolic point.

(3) The singularities of Pv
HS of type 5 (swallowtail) occur generically on

a curve in the de Sitter hyperbolic region, labelled the horosphere flec-
nodal curve. This curve can be characterised as the locus of points
where the de Sitter asymptotic curves have geodesic inflections.

(4) The singularities of Pv
HS at p is of type 42 or 43 if and only if p is

a de Sitter parabolic point but not a swallowtail point of the de Sitter
Gauss map and v∗ is the unique de Sitter asymptotic direction there.
Singularities of type 115 occur at swallowtail points of the de Sitter
Gauss map.

Proof. We shall take the surface M in hyperbolic Monge form (H-Monge
form, see [17]) at the point in consideration. In fact, by hyperbolic motions,
we can suppose that the point of interest is e0 = (1, 0, 0, 0) and the surface
is given in H-Monge form

x(x, y) =
(√

f 2(x, y) + x2 + y2 + 1, f(x, y), x, y
)

,
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with (x, y) in some neighbourhood of the origin. Here f is a smooth function
with f(0, 0) = 0 and fx(0, 0) = fy(0, 0) = 0. So a unit normal to M at e0 is
given by n(0, 0) = (0, 1, 0, 0). We shall write the Taylor expansion of f at
the origin in the form

f(x, y) = a20x
2 + a21xy + a22y

2 +
3∑

i=0

a3ix
3−iyi +

4∑
i=0

a4ix
4−iyi + h.o.t.

Let v = (1, v1, v2, v3) ∈ S2
+, so that at e0 we have v∗ = (0, v1, v2, v3).

Then
∂Pv

HS/∂x(0, 0) = (0, v1v2, 1 + v2
2, v2v3)

∂Pv
HS/∂y(0, 0) = (0, v1v3, v2v3, 1 + v2

3)

and these two vectors are linearly dependent if and only if v1 = 0, if and
only if v∗ ∈ Te0M , which proves (1).

For the remaining cases we take, without loss of generality, v=(1, 0, 0, 1).
The restriction of the projection π(x0, x1, x2, x3) → (0, x1, x2, 0) to the horo-
sphere is a submersion at e0. As the singularities of Pv

HS and those of π◦Pv
HS

are A-equivalent, we study π ◦ Pv
HS instead. We have

π ◦ Pv
HS(x, y) =

( f(x, y)√
f 2(x, y) + x2 + y2 + 1

,
x√

f 2(x, y) + x2 + y2 + 1

)
.

We can now analyse the appropriate k-jets of π ◦Pv
HS and interpret geomet-

rically the conditions for it to be A-equivalent to a given singularity. For
example, we have a fold singularity if and only if a20 �= 0, if and only if
v∗ = (0, 0, 0, 1) is not a de Sitter asymptotic direction at e0. The singu-
larity is of type cusp if and only if a20 = 0 and a21a33 �= 0, and is of type
swallowtail if and only if a20 = a33 = 0 and a21a44 �= 0.

The equation of the asymptotic curves in the parameter space is given by
ldx2 + 2mdxdy + ndy2 = 0, where l, m, n are the coefficients of the de Sitter
second fundamental form. Suppose that the projection in the direction of
v = (1, 0, 0, 1) has a singularity worse than fold at e0 and assume that this
point is not a de Sitter parabolic point, i.e. a20 = 0 and a21 �= 0. Then the
de Sitter asymptotic curve tangent to v∗ is parametrised by

γ(t) =
(
1 +

1

2
t2,−1

2
a33t

2,−3

2

a33

a21

t2, t
)

+ h.o.t.

The geodesic curvature of this asymptotic curve at e0 is −3a33/a21 and
its curvature, as a curve in H3

+(−1) (see §2 for definition), is given by

|a33|
√

1 + 9/a2
21. Both these curvatures vanish at e0 if and only if a33 = 0, if

and only if the singularity of the projection is of type swallowtail or worse.
The analysis for remaining cases is similar to the one above. �
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We call the image of the critical set of Pv
HS the contour (or profile) of M

in the direction v. This is generically a curve on a horosphere. We shall
suppose here that it is a smooth curve. (The bifurcations of the contour as v
varies in S2

+ are similar to those of the contour of a surface in the Euclidean
space R3 and can be found in [1].) Let p be a point on M . We call the
intersection of M with the 3-dimensional space generated by the vectors
p, v and e(p) the normal section of M at p along v. Koenderink showed
in [24] that for embedded surfaces in R3, the Gaussian curvature of the
surface at a given point is the product of the curvature of the contour with
the curvature of the normal section in the direction of projection. We have
the following result for projections of surfaces in H3

+(−1) to horospheres,
where the curvature of a curve in H3

+(−1) is as given in §2.

Theorem 3.6 (Koenderink type theorem) Let κc be the curvature of the
contour and κn the curvature of the normal section in the projection direc-
tion. Then the de Sitter Gaussian curvature of the surface is given by

Ke = κn

√
κ2

c − 1.

Proof. We consider the H-Monge form setting of the proof of Theorem 3.5
and take v = (1, 0, 0, 1). We assume that the singularity of the projection is
a fold at e0, so a22 �= 0. Then the 2-jet of the profile is given by

(1 +
1

2
t2,

4a20a22 − a2
21

4a22
t2, t− a21

2a22
t2,

1

2
t2),

so, following the formula in §2, its curvature at e0 is given by

κ2
c =

(4a20a22 − a2
21)

2

4a2
22

+ 1.

The normal section of the surface along v is given by

(
√

f(0, y)2 + y2 + 1, f(0, y), 0, y)

and its curvature at e0 is given by κn = 2a22. Given the fact that the de
Sitter Gaussian curvature Ke = 4a20a22 − a2

21 at e0, it follows that

κ2
c =

K2
e

κ2
n

+ 1.

We remark that KI ≡ 0 (i.e. flat in the intrinsic sense) for a horosphere,
so that Ke ≡ 1. This explains why we have +1 in the last formula. �
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3.2. Duality

We prove in this section duality result similar to those in [29] for central
projections of surfaces in RP 3. Following the notation in [29], let S be a
two-dimensional surface in RP 3 and q a point in RP 3. The pencil of lines
through q form a two dimensional projective space Q and one obtains a
bundle RP 3 \ q → Q. The projection of the surface S from the point q
is the diagram S ↪→ RP 3 \ q → Q. For a generic surface, a germ of a
projection is equivalent to one of 14 non-equivalent types of projections [30].
Three of these types occur when one projects from a point in an open set
of RP 3 and the rest when projecting from points on the bifurcation set of
the family of projections parametrised by points in RP 3. One component
of the bifurcation set is the ruled surface Apar

2 swept out by the asymptotic
lines with origins at the parabolic points of S. Another stratum of the
bifurcation set involving local singularities is the ruled surface A3 swept
out by the asymptotic lines of S which are tangent to S of order at least
three (the origin of such lines form a smooth curve on S). The projection
can have multi-local singularities. Three other ruled surfaces are considered
in [29]. These are the A3

1 whose lines are tangent to S at three points or
more, A1 × A2 whose lines are tangent to S at three points or more, so
that each line is asymptotic tangent at one of the points, and the surface
A1||A1 whose lines are tangent to S at two points, so that for each line, the
projective planes tangent to S at the points coincide. The following result is
proved in [29], where the dual surface S∗ is the wavefront of S ↪→ PT ∗RP 3.
(The projectivised cotangent bundle PT ∗RP 3 is given the canonical contact
structure, see [2] for more details.)

Theorem 3.7 ([29])

(1) Apar
2 is the front of the cuspidal edge of the surface S∗.

(2) A1||A1 is the front of the self-intersection line of the surface S∗.

(3) The surfaces A3, A3
1, A1 × A2 are self-dual, i.e. the surface dual to

these surfaces are the corresponding objects of the surface S∗.

There are Euclidean analogues in [7] of the results in [29] (see also [3, 4, 6]
for related results). It is shown for example in [7] that the dual of the A2-
stratum of the bifurcation set of the family of height functions on a smooth
surface in R3 is dual to the lips/beaks stratum of the family of orthogonal
projections of the surface. (As pointed out in §2, duality in [7] refers to the
double Legendrian fibration S2 π1←− ∆

π2−→ S2, where S2 is the unit sphere
in R3 and ∆ = {(u, v) ∈ S2 × S2 | u.v = 0}. The contact structure on ∆ is
given by the 1-form θ = v.du|∆.)
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Let M be an embedded surface in H3
+(−1). The situation here is different

from that in [29]. We shall use the duality concepts in [11, 12, 22] (see
Section 2), so the ∆1-dual of the surface M does not live in the dual space
of the ambient space H3

+(−1) of the surface M . Also, the bifurcation set of
the family of projections PHS is not a subset of H3

+(−1). However, we still
obtain results similar to those in [29].

We denote by Apar
2 the ruled surface in H3

+(−1) swept out by the geodesics
in H3

+(−1) with origins at the de Sitter parabolic points of M and whose
tangent directions at these points are along the unique de Sitter asymptotic
directions. We also denote by A1||A1 the ruled surface swept out by the
geodesics in H3

+(−1) that are tangent to M at two points where the normals
to M at such points are parallel. (So the projection Pv

HS, with v well chosen,
has a multi-local singularity of type double tangent fold or worse.)

Theorem 3.8 Let M∗ be the ∆1-dual of the surface M embedded in H3
+(−1).

Then,

(1) The ∆1-dual of the surface Apar
2 is the cuspidaledge of M∗.

(2) The ∆1-dual of the surface A1||A1 is the self-intersection line of M∗.

Proof. (1) We suppose that the de Sitter parabolic set K−1
e (0) is a regular

curve. This property holds for generic embeddings of surfaces in H3
+(−1).

Let p(t), t ∈ I, be a parametrisation of the de Sitter parabolic set of M and
ui(t), i = 1, 2, denote the unit principal directions of M at p(t). Suppose,
without loss of generality, that the unique asymptotic direction at p(t) is
along u1(t). Then we have the following local parametrisation of Apar

2 :

y(s, t) = cosh(s)p(t) + sinh(s)u1(t).

The normal to the surface Apar
2 (in H3

+(−1)) is along

y ∧ ys ∧ yt = cosh(s)p(t) ∧ u1(t) ∧ p′(t) + sinh(s)p(t) ∧ u1(t) ∧ u′
1(t).

At a generic point p on the de Sitter parabolic set (i.e. away from swal-
lowtail of the de Sitter Gauss map), the de Sitter asymptotic direction is
transverse to the parabolic set, so p(t)∧u1(t)∧ p′(t) is along e(p(t)). It fol-
lows from Lemma 3.11 below that p(t) ∧ u1(t) ∧ u′

1(t) is also along e(p(t)).
Therefore y ∧ ys ∧ yt is along e(p(t)). So the normal to the ruled surface
Apar

2 is constant along the rulings and is given by the normal vector e(p(t))
to M at p(t). This means that Apar

2 is a de Sitter developable surface. There-
fore, the ∆1-wavefront of Apar

2 is {e(p), p a de Sitter parabolic point}. This
is precisely the singular set (i.e. the cuspidaledge) of the ∆1-dual surface
of M .
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(2) Suppose a multi-local singularity (double tangent fold) occurs at
two points p1 and p2 on M . The surface A1||A1 is then a ruled surface
generated by geodesics along a curve C1 on M through p1 (or a curve C2

on M through p2). The normals to the surface at points on C1 and C2

that are on the same ruling of A1||A1 are parallel. Let q(t) be a local
parametrisation of the curve C1 and u(t) be the unit tangent direction to
the ruling in A1||A1 through q(t). Then a parametrisation of A1||A1 is
given by

w(s, t) = cosh(s)q(t) + sinh(s)u(t).

The normal to this surface is along cosh(s)V1(t) + sinh(s)V2(t) with
V1(t) = q(t)∧u(t) ∧ q′(t) and V2(t) = q(t) ∧u(t)∧u′(t). These normals are
parallel at two points on any ruling, one point being on the curve C1 and the
other on C2. Therefore V1(t) and V2(t) are parallel, so the normal to the sur-
face A1||A1 is constant along the rulings of this surface. As these are along
the normal to the surface at q(t), it follows that the ∆1-wavefront of A1||A1

is {e(p), p ∈ C1} = {e(p), p ∈ C2}. This is precisely the self-intersection
line of M∗, the ∆1-dual surface of M . �

With the notation in the proof of Theorem 3.8, the cuspidaledge of M∗

(the ∆1-dual of M) is parametrised by E(p(t)) (recall that M∗ = E(M)
by definition). Theorem 3.8 asserts that L(s, t) = (y(s, t), E(p(t))) is a
Legendrian embedding into ∆1. This can be checked directly using the para-
metrisation L(s, t).

We consider now other dualities pointed out in Section 2. We define a
diffeomorphism Ψ1 : H3

+(−1)× S2
+ → ∆1 by

Ψ1(q, v) = (q,− v

〈q, v〉 − q).

The inverse mapping Ψ−1
1 : ∆1 → H3

+(−1)× S2
+ is given by

Ψ−1
1 (q, w) = (q, q̃ + w),

so ˜p(t) + u1(t) gives a parametrisation of the stratum Bif(PHS, lips/beaks)
in S2

+. Let

Σ(42) = {(q, v) ∈ H3
+(−1)× S2

+ | Pv
HS has a singularity at q of type 42},

so that π(Σ(42)) = Bif(PHS, lips/beaks), where π : H3
+(−1)× S2

+ → S2
+ is

the canonical projection. Therefore we have

Ψ1

(
Σ(42)

)
= {(q,w) | w is the unique asymptotic direction at q ∈ K−1

e (0) }.
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Moreover, we define a surface in the lightcone by

z(s, t) = y(s, t) + E(p(t))
= cosh(s)p(t) + sinh(s)u1(t) + E(p(t))

with notation as in the proof of Theorem 3.8. We now define the mappings
Φ12 : ∆1 → ∆2 and Φ13 : ∆1 → ∆3 by Φ12(q, w) = (q, q+w) and Φ13(q, w) =
(q + w, w). These mappings are contact diffeomorphisms. Since y(s, t) and
E(p(t)) are ∆1-dual, it follows that y(s, t) and z(s, t) are ∆2-dual and z(s, t)
and E(p(t)) are ∆3-dual. We have therefore shown the following result.

Theorem 3.9 Let M∗ be the ∆1-dual of the surface M embedded in H3
+(−1).

Then the ∆2-dual of Apar
2 is the ∆3-dual of the cuspidaledge of M∗.

Remark 3.10 In Shcherback’s Theorem 3.7, the surfaces A3, A3
1 and A1 ×

A2 are self-dual. In our case, we need the analogues of these surfaces for
M∗. As M∗ is not in H3

+(−1), we need to define the concept of projections
for surfaces embedded in the de Sitter and lightcone pseudo-spheres. This
will be dealt with in a forthcoming paper.

In the proof of Theorem 3.8 we used the following result.

Lemma 3.11 Let M be a generic surface in H3
+(−1). Then the derivative

of the de Sitter (resp. lightcone) asymptotic direction along the de Sitter
(resp. lightcone) parabolic curve is tangent to the surface M .

Proof. We consider the de Sitter case and the lightcone case follows in
a similar way. We can suppose that the surface is parametrised by φ(x, y),
where x = const. and y = const. represent the lines of curvature of M .
Let p(t) be a local parametrisation of the de Sitter parabolic curve. Then the
unique de Sitter asymptotic direction on the parabolic set is also a principal
direction. Suppose without loss of generality that this principal direction
is u1(t). Then u1(t) = λ(t)φx(p(t)) = λ(t)φx(x(t), y(t)), where λ(t) =
1/||φx(x(t), y(t))||. Therefore u′

1(t) = λ(t)(x′(t)φxx(p(t)) + y′(t)φxy(p(t))) +
λ′(t)φx(p(t)). The coefficients of the de Sitter second fundamental form are
given by l = 〈φxx, e〉 = κ1/E, m = 〈φxy, e〉 = 0 and n = 〈φyy, e〉 = κ2/G
(where E, F, G are the coefficients of the first fundamental form). So

〈u′
1(t), e(t)〉 = λ(t) (〈φxx(p(t)), e(t)〉 x′(t) + 〈φxy(p(t)), e(t)〉 y′(t))

= λ(t)κ1(t)/E
= 0,

and hence u′
1(t) ∈ Tp(t)M . �
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4. Projections to hyperplanes

We begin, as in Section 3, by considering the general case of orthogonal
projections in Hn

+(−1), for n ≥ 3, to hyperplanes. Let HP (v, 0) be a timelike
hyperplane (so v ∈ Sn

1 , that is, 〈v, v〉 = 1). Given a point p ∈ Hn
+(−1), there

is a unique geodesic in Hn
+(−1) which intersects orthogonally the hyperplane

HP (v, 0) ∩ Hn
+(−1) at some point r(p, v). We call the point r(p, v) the

orthogonal projection of p in the direction of v to the hyperplane HP (v, 0)∩
Hn

+(−1). The space HP (v, 0) can be identified with the tangent space of Sn
1

at v.

Theorem 4.1 The family of orthogonal projections in Hn
+(−1) to hyper-

planes is given by

PP : Hn
+(−1)× Sn

1 → TSn
1

(p, v) → (v, r(p, v))

where r(p, v) has the following expression

r(p, v) =
1√

1 + 〈v, p〉2
(
p− 〈p, v〉 v)

.

Proof. Let p ∈ Hn
+(−1) and v ∈ Sn

1 . We consider the equidistant hyper-
surface HP (v, 〈p, v〉) ∩Hn

+(−1) through p and the geodesic

(4.1) c(t) = cosh(t)p + sinh(t)u

orthogonal to HP (v, 〈p, v〉) ∩ Hn
+(−1) at p and to HP (v, 0) ∩ Hn

+(−1) at
r(p, v). The vector u is given by

u =
1√

1 + 〈p, v〉2
(
v + 〈p, v〉 p).

We are seeking the expressions of cosh(t0) and sinh(t0) in (4.1) when c(t0)
is on the hyperplane HP (v, 0). For such t0 we have

〈c(t0), v〉 = 〈p, v〉 cosh(t0) + 〈u, v〉 sinh(t0)

= 〈p, v〉 cosh(t0) +
√

1 + 〈p, v〉2 sinh(t0)

= 0

Therefore

sinh(t0) = − 〈p, v〉√
1 + 〈p, v〉2

cosh(t0).
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Combining the above relation with the identity cosh2(t0) − sinh2(t0) = 1
yields

cosh(t0) =
√

1 + 〈p, v〉2
sinh(t0) = −〈p, v〉 .

The point r(p, v) is given by r(p, v) = cosh(t0)p + sinh(t0)u. Substituting
the expressions of cosh(t0), sinh(t0) and u yields the expression of r(p, v) in
the statement of the theorem. �

The family of orthogonal projections of a given submanifold M in Hn
+(−1)

to hyperplanes is the restriction of the family PP to M . We still denote this
restriction by PP .

Theorem 4.2 For a residual set of embeddings x : M → Hn
+(−1), the

family PP is a generic family of mappings.

Proof. The theorem follows from Montaldi’s result in [25] and the fact
that PP |Hn

+(−1) is a stable map. �

We denote by Pv
P the map Hn

+(−1) → Hn
+(−1), given by Pv

P (p) =
r(p, v), with r(p, v) as in Theorem 4.1

4.1. Projections of surfaces in H3(−1) to planes

We consider now embedded surfaces in H3
+(−1). For a given v ∈ S3

1 and
a point p0 ∈ M , one can choose local coordinates so that Pv

P restricted to
M can be considered locally as a map-germ R2, 0 → R2, 0. It follows from
Theorem 4.2 that for generic embeddings of the surface, only singularities
of Ae-codimension ≤ dim(S3

1) = 3 can occur in the members of the family
of orthogonal projections. So we have the following result.

Proposition 4.3 For a residual set of embeddings x : M → H3
+(−1), the

projections Pv
P : M → H3

+(−1) in the family PP have local singularities
A-equivalent to one in Table 1. Moreover, these singularities are versally
unfolded by the family PP .

(The projection Pv
P can also have multi-local singularities ofAe-codimension

≤ 3 and these singularities are versally unfolded by the family PP ; see §3.1
for the codimension ≤ 2 singularities.)

Given v ∈ S3
1 and a point q on the equidistant surface HP (v, 〈q, v〉) ∩

H3
+(−1), we denote by v∗ the projection of v in the direction of q to

Tq(HP (v, 〈q, v〉)∩H3
+(−1)). Observe that when q is on HP (v, 0)∩H3

+(−1),
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then v∗ = v. The map v → v∗/||v∗|| from S3
1 → TqH

3
+(−1) ∩ S3

1 is a sub-
mersion. In this case, the pre-image of a unit direction in TqH

3
+(−1) is a

curve on S3
1 . The geodesic through a point q ∈ HP (v, 0) ∩ H3

+(−1) with
tangent v at q intersects orthogonally any equidistant surface at some point
p and its tangent there is the parallel transport of v to p, which is the vector
v∗/||v∗||.
Theorem 4.4 Let M be an embedded surface in H3

+(−1) and v ∈ S3
1 .

(1) The projection Pv
P is singular at a point p ∈ M if and only if the

parallel transport v∗ of v to the point p is in TpM.

(2) The singularity of Pv
P at p is of type cusp or worse if and only if v∗

is a de Sitter asymptotic direction at p. In particular, p is a de Sitter
hyperbolic or parabolic point.

(3) The singularity of Pv
P at p is of type 5 (swallowtail) or worse if and

only if v∗ is a de Sitter asymptotic direction and p is a point on the
horosphere flecnodal curve (see Theorem 3.5(3)).

(4) The singularity of Pv
P at p is of type 6 if and only if v∗ is a de Sitter

asymptotic direction and p is a point on the horosphere flecnodal curve
where the asymptotic curve has a higher geodesic inflection. There is
a unique direction v ∈ S3

1 where the singularity becomes of type 7.

(5) The singularities of Pv
P at p is of type 4k, k = 2, 3, 4, if and only if p is

a de Sitter parabolic point but not a swallowtail point of the de Sitter
Gauss map and v∗ is the unique de Sitter asymptotic direction there.
There is a unique direction v ∈ S3

1 where the singularity becomes of
type 43, and isolated points on the parabolic set where it becomes of type
44. At a swallowtail point of the de Sitter Gauss map, the singularity
is of type 115 in general and for single directions v ∈ S3

1 , it becomes
of type 117 or of type 12.

Proof. The proof follows by similar calculations to those in the proof of
Theorem 3.5. We take the surface in H-Monge form at e0. When the
projection is singular, we set v = (v0, 0, 0, v3) and consider the singularities
of the modified projection π ◦ Pv

P given by

π ◦ Pv
P (x, y) = (

f(x, y)

λv(x, y)
,

x

λv(x, y)
),

with λv(x, y) = (1 + (−v0

√
f 2(x, y) + x2 + y2 + 1 + v3y)2)1/2 and π is as in

the proof of Theorem 3.5. The results can then be obtained by analysing
the map-germ π ◦ Pv

P . �
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Theorem 4.5 (Koenderink type theorem) Let κc be the curvature of the
contour and κn the curvature of the normal section in the projection direc-
tion. In general, the product of the hyperbolic curvature of the profile and of
the normal section depends on the plane of projection. However, if the point
on the surface is also on the plane of projection (alternatively, if v ∈ TpM)
then

Ke = κnκc.

Proof. We consider the H-Monge form setting of the proof of Theorem 3.5
and take v = (v0, 0, 0, v3) ∈ S3

1 . We assume that the singularity of the
projection is a fold at e0, so a22 �= 0. Then the 2-jet of the profile is given by

1√
1 + v2

0

(
(
3

2
+v2

0)t
2,

4a20a22 − a2
21

4a22
t2, t− v0v3a21

2(1 + v2
0)a22

t2, v0v3 +
v0v3

2(1 + v2
0)

t2
)
.

A calculation shows that its curvature at e0 is given by

κ2
c = (1 + v2

0)
K2

κ2
n

+ v6
0

a2
21

a2
22

.

The above expression depends on v. If v0 = 0 (equivalently, if v∗ = v
which means that e0 is on the hyperplane HP (v, 0)∩H3

+(−1) so v ∈ Te0M)
then K2

e = (κcκn)2. �

Remark 4.6 The locus of points on M ⊂ H3
+(−1) where degenerate singu-

larities occur for Pv
HS and Pv

P coincide (de Sitter parabolic set and the horo-
sphere flecnodal curve for the local singularities in Theorems 3.5 and 4.4).
This is not surprising as both maps measure the contact of M with geo-
desics in H3

+(−1). The families PHS and PP have parameter spaces with
different dimensions, so more singularities occur in the family PP than in
PHS. Also, the target spaces of the projections are different. This influ-
ences the curvature of the profile and we get two different Koenderink type
theorems.

4.2. Duality

We consider here the ∆5-dual (see [11] and Section 2) of some components of
the bifurcation set of the family PP of orthogonal projections of an embedded
surface M in H3

+(−1) to planes. Here the concepts of asymptotic directions
and parabolic points are those associated to the de Sitter shape operator.

Let p(t), t ∈ I, be a parametrisation of the parabolic set of M and ui(t),
i = 1, 2, denote the unit principal directions of M at p(t). Suppose, without
loss of generality, that the unique asymptotic direction at p(t) is along u1(t).



Projections of hypersurfaces in the hyperbolic space 917

Theorem 4.7 Let M∗ be the ∆1-dual of the surface M embedded in H3
+(−1).

Then,

(1) The local stratum Bif(PP , lips/beaks) of the bifurcation set of PP ,
which consits of vectors v ∈ S3

1 for which the projection Pv
P has a

lips/beaks singularity, is a ruled surface parametrised by cosh(s)u1(t)+
sinh(s)p(t), with t ∈ I and s ∈ R. The ∆5-dual of Bif(PP , lips/beaks)
is the cuspidaledge of M∗.

(2) The multi-local stratum Bif(PP , DTF ) of the bifurcation set of PP ,
which consits of vectors v ∈ S3

1 for which the projection Pv
P has a

multi-local singularity of type double tangent fold, is a ruled surface.
The ∆5-dual of this ruled surface is the self-intersection line of M∗.

Proof. (1) It follows from Theorem 4.4(5) that the lips/beaks stratum
Bif(PP , lips/beaks) of the family PP is given by the set of v ∈ S3

1 such that
v∗ is an asymptotic direction at a parabolic point p, where v∗ denotes the
parallel transport of v to p. So v∗ = u1(t) when v ∈ Bif(PP , lips/beaks).
We have then

u1(t) = v∗ =
1√

1 + 〈p(t), v〉2
(v + 〈p(t), v〉 p(t))

and hence

v =

√
1 + 〈p(t), v〉2u1(t)− 〈p(t), v〉 p(t).

If we set sinh(s) = 〈p(t), v〉 we get

Bif(PP , lips/beaks) = {cosh(s)u1(t) + sinh(s)p(t), t ∈ I, s ∈ R}.

For the duality result, following Remark 2.2, we need to find the unit
normal vector to Bif(PP , lips/beaks). Following the same argument in the
proof of Theorem 3.8(1) and using Lemma 3.11, we find that the normal
vector is constant along the rulings of the surface Bif(PP , lips/beaks) and
is along e(t), and the result follows.

(2) Let q(t) and u(t) be as in the proof of Theorem 3.8(2). Then
u(t) = v∗, so

v =

√
1 + 〈q(t), v〉2u(t)− 〈q(t), v〉 q(t).

If we set sinh(s) = 〈q(t), v〉 we get

Bif(PP , DTF ) = {cosh(s)u(t) + sinh(s)q(t), t ∈ I, s ∈ R}.
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The normal to this surface is along cosh(s)V1(t) + sinh(s)V2(t) with
V1(t) = q(t) ∧ u(t) ∧ q′(t) and V2(t) = q(t) ∧ u(t) ∧ u′(t). The same
argument in the proof of Theorem 3.8(2) shows that V1(t) and V2(t) are
parallel, so the normal to Bif(PP , DTF ) is constant along the rulings of
this surface. On the curve u(t), the normal to Bif(PP , DTF ) is along the
normal to the surface M at q(t), so the ∆5-wavefront of Bif(PP , DTF ) is
{e(p), p ∈ C1} = {e(p), p ∈ C2}. This is precisely the self-intersection line
of M∗, the ∆1-dual surface of M . �
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