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Tropical resultants for curves
and stable intersection

Luis Felipe Tabera

Abstract

We introduce the notion of resultant of two planar curves in the
tropical geometry framework. We prove that the tropicalization of the
algebraic resultant can be used to compute the stable intersection of
two tropical plane curves. It is shown that, for two generic preimages
of the curves to an algebraic framework, their intersection projects
exactly onto the stable intersection of the curves. It is also given
sufficient conditions for such a generality in terms of the residual
coefficients of the algebraic coefficients of defining equations of the
curves.

1. Introduction

In the context of tropical geometry, it is well known that two tropical curves
may share an infinite number of intersection points without sharing a com-
mon component. This problem is avoided with the notion of stable intersec-
tion, [9]. Given two curves, there is a well defined set of intersection points
that varies continuously under perturbations of the curves. This stable in-
tersection has very nice properties. For example, it verifies a tropical version
of Bernstein-Koushnirenko Theorem (cf. [9]). An alternative way of defining
a finite intersection set is the following: given two tropical curves f and g,
take two algebraic curves f̃ and g̃ projecting onto the tropical curves. Then,
the intersection of the two algebraic curves f̃ ∩ g̃ will project into the inter-
section of the tropical curves, T (f̃ ∩ g̃) ⊆ f ∩ g. In general, the set T (f̃ ∩ g̃)

depends on the election of the curves f̃ and g̃. We are proving that, if the
coefficients of f̃ , g̃ are generic, then the algebraic intersection will project
exactly onto the stable intersection and there is a correspondence among
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the multiplicities of the intersection points. Moreover, given two curves, we
compute residually dense sufficient conditions defining these genericity con-
ditions. The method works in any characteristic and it is essential in the
generalization of the geometric construction method of [13] to the non linear
case. This also provides a particular case of Bernstein-Koushnirenko theo-
rem for fields of positive characteristic. In order to prove this relationship,
we introduce the notion of tropical resultant, as the tropicalization of the
algebraic resultant.

The paper is structured as follows. In Section 2, we give a brief descrip-
tion of the algebraic context we will work in. Next, in Section 3 we recall the
notion of stable intersection for plane curves and provide a brief discussion
about its properties. Then, it is introduced the notion of tropical resultant
for univariate polynomials (Section 4) and plane curves (Section 5). In Sec-
tion 6, we relate the stable intersection of tropical curves with the resultant
of the curves and the generic preimage under the tropicalization map. We
will provide conditions for the lifts (preimages) to be compatible with the
stable intersection and the correspondence of the multiplicities. Finally, in
Section 7 we present some comments and remarks about the results.

2. Some basic notions in Tropical Geometry

The algebraic context where the theory is developed is the following:
Let K be an algebraically closed field provided with a non trivial rank

one valuation v : K∗ → Γ. Without loss of generality, we may suppose that
Q ⊆ Γ ⊆ R and that v is onto Γ. We denote by k the residual field of K

under the valuation. We will distinguish two main cases along the paper:
the case whether char(k) = 0 (hence char(K) = 0) and the case wether
char(k) = p > 0. In this case, either char(K) = p (equicharacteristic p )
or char(K) = 0 (p-adic case). It is also assumed that we have fixed a
multiplicative subgroup Γ′ ⊆ K∗ that is isomorphic to Γ by the valuation
map. The element tγ represents the element of Γ′ whose valuation is γ. Any
element x of K∗ can be uniquely written as x = x0t

γ , where v(x0) = 0. We
will denote the principal coefficient of an element x of K by Pc(x) = x0 ∈ k∗

and Pc(0) = 0. We denote the principal term of an element by Pt(x) = x0t
γ .

The principal term of an element is only a notation, it is not, in general,
an element of K. If y is an element of K∗, Pt(x) = Pt(y) if and only if
v(x) = v(y) < v(x − y).

The tropicalization map is minus the valuation, T (x) = −v(x). The
tropical semiring T is the group Γ with the operations of tropical addition
“a + b” = max{a, b} and tropical product “ab” = a + b. With these opera-
tions, T (ab) = “T (a)T (b)” and, if v(a) �= v(b) or v(a) = v(b) = v(a+ b) then
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T (a + b) = “T (a) + T (b)”. Let f = “
∑

i∈I aix
i” = maxi∈I{ai + ix} ∈

T[x1, . . . , xn] be a polynomial of support I, where x = x1, . . . , xn, i =
i1, . . . , in, ix = i1x1+. . .+inxn. The set T (f) of zeroes of f is the set of points
in Tn such that the maximum of the piecewise affine function maxi∈I{ai+ix}
is attained for at least two different indices. It is known (Kapranov’s Theo-

rem, [3]) that if f̃ =
∑

i∈I ãix
i is any polynomial in K[x1, . . . , xn] such that

T (ãi) = ai, then T ({f̃(x) = 0} ∩ (K∗)n) is exactly the set of zeroes of f .
Moreover, if q ∈ Tn is a point, let J ⊆ I be the set of indices where the
value f(q) is attained and let αi = Pc(ãi). We define the residual polynomial

of f̃ over q as:

f̃q(x1, . . . , xn) =
∑
i∈J

αix
i = Pc(f̃(x1t

−q1, . . . , xnt−qn)) ∈ k[x1, . . . , xn]

Then, it happens that:

Theorem 1. Let f̃ ∈ K[x1, . . . , xn] and (̃b1, . . . , b̃n) ∈ (K∗)n be any point,

then there is a root (c̃1, . . . , c̃n) of f̃ such that Pt(c̃i) = Pt(̃bi), 1 ≤ i ≤ n, if

and only if b = (T (̃b1), . . . , T (̃bn)) is a zero of the tropical polynomial f and

(Pc(̃b1), . . . , P c(̃bn)) is a root of f̃b in (k∗)n.

For a constructive proof of this theorem we refer to [14] or [6].

Let C be a tropical plane curve defined as the zero set of a tropical
polynomial f = “

∑
(i,j)∈I a(i,j)x

iyj”. If we multiply f by a monomial, the
curve it defines stays invariant. We define the support of C as the sup-
port I of f modulo a translation of an integer vector in Z2. Analogously,
given an algebraic curve C in (K∗)2 defined by an algebraic polynomial

f̃ =
∑

(i,j)∈I ã(i,j)x
iyj, multiplying by a monomial does not change the set

of zeroes in the algebraic torus (K∗)2, we also define the support of C as the
set I modulo translations by an integer vector. If C is a tropical curve, it
may happen that there are polynomials with different support defining C,
even under the identification by translations we have defined. Hence, when
we define a tropical curve, we will always fix the support of a defining poly-
nomial.

Let I be the support of a tropical polynomial f , the convex hull ∆ = ∆(I)
of I in Rn is the Newton polytope of f . This object is strongly connected
with the set of zeroes of f . Every tropical polynomial f defines a regular
subdivision of its Newton polytope ∆. The topological closure of T (f)
in Rn has naturally a structure of piecewise affine polyhedral complex. This
complex is dual to the subdivision induced to ∆. To achieve this duality we
have first to define the subdivision of ∆.
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Let ∆′ be the convex hull of the set {(i, t)|i ∈ I, t ≤ ai} ⊆ Rn+1. The
upper convex hull of ∆′, that is, the set of boundary maximal cells whose
outgoing normal vector has its last coordinate positive, projects onto ∆ by
deleting the last coordinate. This projection defines the regular subdivision
of ∆ associated to f (See [8] for the details).

Proposition 2. The subdivision of ∆ associated to f is dual to the set of
zeroes of f . There is a bijection between the cells of Subdiv(∆) and the cells
of T (f) such that:

• Every k-dimensional cell Λ of ∆ corresponds to a cell V Λ of T (f) of
dimension n − k such that the affine linear space generated by V Λ is
orthogonal to Λ. (In the case where k = 0, the corresponding dual cell
is a connected component of Rn \ T (f))

• If Λ1 �= Λ2, then V Λ1 ∩ V Λ2 = ∅
• If Λ1 ⊂ Λ2, then V Λ2 ⊂ V Λ1

• T (f) =
⋃

0�=dim(Λ)

V Λ where the union is disjoint.

• V Λ is not bounded if and only if Λ ⊆ ∂∆.

From this, we deduce that, given a fixed support I, there are finitely
many combinatorial types of tropical curves with support I. These different
types are in bijection with the different regular subdivisions of ∆.

Finally, let C be a tropical planar curve of support I and Newton poly-
gon ∆, let Λ be a one-dimensional cell of the subdivision of ∆ dual to C,
then, the weight of the dual cell V Λ is defined as #(Λ∩Z2)− 1, the integer
length of the segment Λ.

3. The notion of stable intersection

One of the first problems encountered in tropical geometry is that the pro-
jective geometry intuition is no longer valid. If we define a tropical line as
the set of zeroes of an affine polynomial “ax + by + c”, then two different
lines always intersect in at least one point. The problem is that sometimes
they intersect in more than one point. The usual answer to deal with this
problem is using the notion of stable intersection.

Let Cf , Cg be the set of zeroes of two tropical polynomials f and g
respectively. Let P be the intersection of the curves, P = Cf ∩ Cg. It is

possible that P is not the image of an algebraic variety P̃ by the map T .
We want to associate, to each q ∈ P an intersection multiplicity. We will
follow the notions of [9] and we will compare them with the subdivisions of
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the associated Newton polygons of the curves in terms of mixed volumes.
See [12] to precise the comparison between mixed volumes and intersection
of algebraic curves.

Let Cfg = Cf ∪Cg. It is easy to check that the union of the two tropical
curves is the set of zeroes of the product “fg”. The Newton polygon ∆fg of
Cf ∪ Cg is the Minkowski sum of ∆f and ∆g. That is:

∆fg = {x + y | x ∈ ∆f , y ∈ ∆g}

The subdivision of ∆fg dual to Cfg is a subdivision induced by the subdivi-
sions of ∆f , ∆g. More concretely, let q be a point in Cfg, let {i1, . . . , in} be
the monomials of f where f(q) is attained and let {j1, . . . , jm} be the mono-
mials of g where g(q) is attained. Then n ≥ 2 or m ≥ 2. The monomials
where “fg” attains its maximum are {irjs| 1 ≤ r ≤ n , 1 ≤ s ≤ m}. The
Newton polygon of these monomials is the Minkowski sum of the Newton
polygons of {i1, . . . , in} and {j1, . . . , jm}, each one of these Newton polygons
is the cell dual to the cell containing q in ∆fg, ∆f and ∆g respectively. This
process covers every cell of dimension 1 and 2 of ∆fg. The zero dimensional
cells correspond to points q belonging neither to Cf nor to Cg. Let i, j be the
monomials of f and g where the value at q is attained. Then the monomial
of “fg” where (“fg”)(q) is attained is ij. To sum up, every cell of ∆fg is
naturally the Minkowski sum of a cell u of f and a cell v of g. The possible
combination of dimensions (dim(u), dim(v), dim(u + v)) are:

• (0, 0, 0), these cells do not correspond to points of Cfg.

• (1, 0, 1), these are edges of Cfg that correspond to a maximal segment
contained in an edge of Cf that does not intersect Cg.

• (2, 0, 2), correspond to the vertices of Cfg that are vertices of Cf that
do not belong to Cg.

• (1, 1, 2), this combination defines a vertex of Cfg which is the unique
intersection point of an edge of Cf with an edge of Cg.

• (1, 1, 1) are the edges of Cfg that are the infinite intersection of an
edge of Cf and an edge of Cg.

• (1, 2, 2) corresponds with the vertices of Cfg that are a vertex of Cg

belonging to an edge of Cf .

• (2, 2, 2) This is a vertex of Cfg which is a common vertex of Cf and Cg.

and the obvious symmetric cases (0, 1, 1), (0, 2, 2) and (2, 1, 2).
If the relative position of Cf , Cg is generic, then Cfg cannot contain any

cell of type (1, 1, 1), (1, 2, 2) and (2, 2, 2). That is, the intersection points q
of Cf and Cg are always the unique intersection point of an edge of Cf and
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an edge of Cg. This is the transversal case. The definition of intersection
multiplicity, as presented in [9] for these cells (1, 1, 2) is the following:

Definition 3. Let q be an intersection point of two tropical curves Cf

and Cg. Suppose that q is the unique intersection point of an edge r of Cf

and an edge s of Cg. Let −→r be the primitive vector in Z2 of the support
line of r. Let −→s be the corresponding primitive vector of s. Let u be
the dual edge of r in ∆f and let v be the dual edge of s in ∆g, we call
mu = #(u∩Z2)−1 and mv = #(v∩Z2)−1 the weight of the edges r and s
respectively. The intersection multiplicity is

mult(q) =

∣∣∣∣mumv

∣∣∣∣−→rx
−→ry−→sx
−→sy

∣∣∣∣
∣∣∣∣

the absolute value of the determinant of the primitive vectors times the
weight of the edges.

If the curves are not in a generic relative position, consider the curve Cv
f

obtained by translation of Cf by a vector v. If the length of v is suffi-
ciently small, |v| < ε (that is, it is an infinitesimal translation), then every
cell of ∆f ′g of type (0, 0, 0), (1, 0, 1), (2, 0, 2) and (1, 1, 2) stays invariant.
Furthermore, if the translation is generic (for all but finitely many direc-
tions of v), the cells of type (1, 1, 1) are subdivided into cells of type (0, 0, 0)
and (0, 1, 1). That is, if two edges intersect in infinitely many points, after
the translation, every intersection point will disappear. If q is an intersection
point of Cf and Cg corresponding to a cell of type (2, 1, 2) or (2, 2, 2) and
the direction of v is generic, this cell is subdivided, after the perturbation,
into cells of type (0, 0, 0), (1, 0, 1), (1, 1, 2), (2, 0, 2). That is, no intersection
point is a vertex of f or g. However, some transversal intersection points
appear instead (of type (1,1,2)) in a neighborhood of q. The intersection
multiplicity of q is, in this case, the sum of the intersection multiplicities of
the transversal intersection points.

Now we recall the notion of stable intersection of curves (See [9]).

Definition 4. Let Cf , Cg be two tropical curves. Let Cv
f , Cw

g be two small
generic translations of Cf , Cg such that their intersection is finite. The stable
intersection Cf ∩st Cg of Cf and Cg is the limit set of intersection points of
the translated curves limv,w→0(C

v
f ∩ Cw

g ).

From the previous comments it is clear that

Proposition 5. Let Cf , Cg be two tropical curves, then the stable intersec-
tion of Cf and Cg is the set of intersection points with positive multiplicity.

This stable intersection has very nice properties. From the definition,
it follows that it is continuous under small perturbations on the curves.
Moreover, it verifies a Berstein-Koushnirenko Theorem for tropical curves.
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Theorem 6. Let Cf , Cg be two tropical curves of Newton polygons ∆f , ∆g.
Then the number of stable intersection points, counted with multiplicity is
the mixed volumes of the Newton polygons of the curves∑

q∈Cf∩stCg

m(q) = M(∆f , ∆g) = vol(∆f + ∆g) − vol(∆f) − vol(∆g)

Proof . See [9]. �
In particular, we have the following alternative definition of intersection

multiplicity for plane curves:

Corollary 7. Let f , g be two tropical polynomials of Newton polygons ∆f ,
∆g respectively. Let q ∈ T (f) ∩ T (g) be an intersection point. Let Λf ,
Λg be the cells of Subdiv(∆f), Subdiv(∆g) dual to the cells in the curve
containing q respectively, then, the tropical intersection multiplicity of q is:

mult(q) = M(Λf , Λg) = vol(Λf + Λg) − vol(Λf) − vol(Λg).

Proof. From the classification of intersection points, q is an intersection
point of multiplicity zero if and only if it belongs to a cell of type (1, 1, 1)
in Cfg. In this case M(Λf , Λg) = vol(Λf + Λg) − vol(Λf) − vol(Λg) = 0,
because an edge has no area. If q is a stable intersection point, let f =
“
∑

i∈∆f
aix

i1yi2”, g = “
∑

j∈∆g
bjx

j1yj2”, let fq = “
∑

i∈Λf
aix

i”, gq =

“
∑

j∈Λg
bjx

j” be truncated polynomials. It follows from the definition that
the intersection multiplicity of q only depends in the behaviour of the mixed
cell Λf + Λg in the dual subdivision of ∆fg. That is, the intersection multi-
plicity of q as intersection of Cf and Cg equals the intersection multiplicity
of q as an intersection point of T (fq) and T (gq). But, by construction, the
unique stable intersection point of T (fq) and T (gq) is q itself. Hence, by
Theorem 6, the intersection multiplicity of q is

�M(Λf , Λg) = vol(Λf + Λg) − vol(Λf) − vol(Λg).

4. Univariate resultants

Let us start with the notion of tropical resultant of two univariate polyno-
mials. In algebraic geometry, the resultant of two univariate polynomials is
a polynomial that solves the decision problem of determining if both poly-
nomials have a common root.

Definition 8. Let f̃ =
∑n

i=0 aix
i, g̃ =

∑m
j=0 bjx

j ∈ K[x], where K is an
algebraically closed field. For simplicity, we assume that a0anb0bm �= 0.
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Let p be the characteristic of K. Then, there is a unique polynomial in
Z/(pZ)[ai, bj ], up to a constant factor, called the resultant, such that it

vanishes if and only if f̃ and g̃ have a common root.

In the definition, it is asked the polynomials to be of effective degree n
and m, this is in order to avoid the specialization problems that usually
appear when using resultants. But the polynomials are also asked to have
order zero. This restriction is demanded for convenience with tropicalization.
Recall that the intersection of the varieties with the coordinate hyperplanes
is always neglected. Hence, the definition of resultant will take this into
account. Moreover, as the polynomials are described by its support, the
resultant will not be defined by the degree of the polynomials, but by their
support. This approach will be convenient in the next section, when there
will be provided a notion of resultant for bivariate polynomials.

Definition 9. Let I, J be two finite subsets of N of cardinality at least 2
such that 0 ∈ I ∩ J . That is, the support of two polynomials that do not
have zero as a root. Let R(I, J, K) be the resultant of two polynomials with
indeterminate coefficients, f =

∑
i∈I aix

i, g =
∑

j∈J bjx
j over the field K.

R(I, J, K) ∈ Z/(pZ)[a, b],

(where p is the characteristic of the field K). Let Rt(I, J, K) be the tropi-
calization of R(I, J, K). This is a polynomial in T[a, b], which is called the
tropical resultant of supports I and J over K.

So, our approach is to define the tropical resultant polynomial as the
projection of the algebraic polynomial. In this point, one may obtain, for
the same support sets I and J , different tropical resultants, one for each
possible characteristic of K. This is not good, in the sense that tropical
geometry should not be determined by the characteristic of the field we
have used to define the projection. Hence, one has to take care of what is
the common information of these polynomials. The answer is complete: the
tropical variety they define is always the same. This variety is the image of
any resultant variety over a field K, so it will code the pairs of polynomials
with fixed support that have a common root.

Lemma 10. The tropical variety T (Rt(I, J, K)) does not depend on the
field K, but only on the sets I and J .

Proof. Let N be the Newton polytope of the resultant defined over a
field L of characteristic zero, N ⊆ Rn+m+2. It is known that the monomi-
als of R(I, J, L) corresponding to vertices of N (extreme monomials) have
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always as coefficient ±1 (See, for example, [4] or [11]). Hence, the extreme
monomials in R(I, J, K) are independent of the characteristic of the field K

and so is N . If x = (xj1
1 , . . . , xjN

N ) is a monomial of R(I, J, K) that does
not correspond to a vertex of N , then x =

∑
λivi, 0 ≤ λi ≤ 1, where

vi = (x
ji,1

1 , . . . , x
ji,N

N ) are vertices of N . T (coeff(vi)) = T (±1) = 0 and,
as coeff(x) is an integer (or an integer mod p), it is contained in the val-
uation ring, that is, 0 ≥ T (coeff(x)) ∈ T ∪ {−∞}. T (coeff(x)) is finite
and not zero if and only if we are dealing with a p-adic valuation and p
divides coeff(x). It is −∞ if and only if the characteristic of K divides
the coefficient. Hence, for any evaluation w of the indeterminates, we have
that T (coeff(x)) + w1j1 + . . . + wNjN ≤ w1j1 + . . . + wNjN =

∑
λivi(w) ≤

maxi{vi(w)}, where vi(w) = w1ji,1 + . . . + wNji,N . It follows that the maxi-
mum of the piecewise affine function Rt(I, J, K) is never attained in the
monomial x alone and that x does not induce any subdivision in the cell
it is contained. Thus, this monomial does not add anything to the tropical
variety defined by Rt(I, J, K). The tropical hypersurface T (Rt(I, J, K)) is,
as a polyhedral complex, dual to the subdivision of N induced by Rt(I, J, K)
(cf. [8]). In this case, the subdivision of N induced by the tropical polyno-
mial is N itself. So T (Rt(I, J, K)) is always the polyhedral complex dual
to N centered at the origin. This complex is independent of K. �

Hence, fixed two supports I, J , there may be different tropical polyno-
mials that can be called the resultant of polynomials of support I and J .
However, the variety all of them define is always the same, so there is a
good notion of resultant variety. Now we prove that the resultant variety
T (Rt(I, J, K)) has the same geometric meaning than the algebraic resultant
variety.

Lemma 11. Let I, J be two support subsets as before. Let f = “
∑

i∈I aix
i”,

g = “
∑m

j∈J bjx
j” be two univariate tropical polynomials of support I and J .

Then, f and g have a common tropical root if and only if the point (ai, bj)
belongs to the variety defined by Rt(I, J, K).

Proof . Suppose that (ai, bj) belongs to Rt(I, J, K). By Theorem 1, we can

compute an element (ãi, b̃j) in the variety defined by R(I, J, K). In this case,

f̃ =
∑

i∈I ãix
i and g̃ =

∑
j∈J b̃jx

j are lifts of f and g. That is, T (f̃) = f ,
T (g̃) = g. Moreover, their coefficients belong to the algebraic resultant, so
the algebraic polynomials have a common root q̃ that is non zero by con-
struction (0 ∈ I ∩ J). Projecting to the tropical space, f and g have a
common root T (q̃). Conversely, if f and g have a common root q, we may

take any lift g̃ =
∑

j∈J b̃jx
j of g. Then, by Theorem 1, we may lift q to

a root q̃ of g̃. Finally, note that the coefficients of f belong to the hyper-
plane defined by the equation

∑
i∈I ziq

i, so it can be lifted to an algebraic
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solution ã of the affine equation
∑

i∈I ziq̃
i, the polynomial f̃ =

∑
i∈I ãix

i

projects onto f and has q̃ as a root. By construction, f̃ , g̃ share a common
root q̃, hence, their coefficients (ãi, b̃j) belong to the algebraic resultant va-
riety. Projecting again, the coefficient vector (ai, bj) of f and g belong to
the tropical resultant. �

This Lemma about the geometric meaning of the resultant also shows
that the variety defined by Rt(I, J, K) does not depend on the field K. At
least as a set of points, because the tropical characterization of two tropical
polynomials having a common root does not depend on the field K.

Example 12. Consider the easiest nonlinear case, I = J = {0, 1, 2}, the
resultant of two quadratic polynomials. If f = a+bx+cx2, g = p+qx+rx2,
the algebraic resultant in characteristic zero is R0 = r2a2 − 2racp + c2p2 −
qrba − qbcp + cq2a + prb2 and, over a characteristic 2 field it is R2 = r2a2 +
c2p2 + qrba + qbcp + cq2a + prb2. If char(k) �= 2, the tropical polynomial is
P1 = “0r2a2 +0racp+0c2p2 +0qrba+0qbcp+0cq2a+0prb2”. If char(K) = 0
and char(k) = 2, the tropical polynomial is P2 = “0r2a2 + (−1)racp +
0c2p2 + 0qrba + 0qbcp + 0cq2a + 0prb2”. Finally, if char(k) = char(K) = 2
then the tropical polynomial is P3 = “0r2a2 +0c2p2 +0qrba+0qbcp+0cq2a+
0prb2”. The unique difference among these polynomials is the term racp.
This monomial lies in the convex hull of the monomials r2a2 and c2p2 and
it does not define a subdivision because its tropical coefficient is always
≤ 0. The piecewise affine functions max{2r + 2a, r + a + c + p, 2c + 2p},
max{2r + 2a,−1 + r + a + c + p, 2c + 2p} and max{2r + 2a, 2c + ap} are the
same. So the three polynomials define the same tropical variety.

5. Resultant of two curves

In this section, the notion of univariate resultant is extended to the case
where the polynomials are bivariate.

Definition 13. Let f̃ and g̃ be two bivariate polynomials. In order to
compute the algebraic resultant with respect to x, we can rewrite them as
polynomials in x.

f̃ =
∑
i∈I

f̃i(y)xi, g̃ =
∑
j∈J

g̃j(y)xj,

where

f̃i =

ni∑
k=oi

Aikt
−νikyk, g̃j =

mj∑
q=rj

Bjqt
−ηjqyq

and Aik, Bjq are elements of valuation zero.
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Let P (ai, bj , K) = R(I, J, K) ∈ Z/(pZ)[ai, bj ] be the algebraic univari-

ate resultant of supports I, J . The algebraic resultant of f̃ and g̃ is the
polynomial P (f̃i, g̃j, K) ∈ K[y]. Analogously, let f = T (f̃), g = T (g̃),
f = “

∑
i∈I fi(y)xi”, g = “

∑
j∈J gj(y)xj”, where

fi = “

ni∑
k=oi

νiky
k”, gj = “

mj∑
q=rj

ηjqy
q”.

Let Pt(ai, bj , K) = Rt(I, J, K) ∈ T[ai, bj ] be the tropical resultant of sup-
ports I and J . Then, the polynomial Pt(fi, gj, K) ∈ T[y] is the tropical
resultant of f and g.

Again, we have different tropical resultant polynomials, one for each
possible characteristic of the fields K and k. We want to check that this
notion of tropical resultant also has a geometric meaning. In the algebraic
setting, the roots of the resultant P (f̃i, g̃j, K) are the possible y-th values of

the intersection points of the curves defined by f̃ and g̃. This is not the case
of the tropical resultant, because Pt(fi, gj, K) only has finitely many tropical
roots, while the intersection T (f)∩T (g) may have infinitely many points and
there may be infinitely many possible values of the y-th coordinates. Again,
this indetermination is avoided with the notion of stable intersection. We will
prove that the roots of Pt(fi, gj, K) are the possible y-th values of the stable
intersection T (f) ∩st T (g). This will be made in several steps, the first one

is to check that T (V (P (f̃i, g̃j, K))) = T (Pt(fi, gj, K)), provided that Aik, Bjq

are residually generic. Sometimes, for technical reasons, it is better to work
with an affine representation of the polynomials. The set of polynomials f̃ =∑

i∈I aix
i1yi2 of fixed support I is an open subspace (a torus) of a projective

space. The projective coordinates of f̃ are its coefficients [ai : i ∈ I]. We

may fix an index i0 ∈ I. Then, the affine representation of f̃ with respect
to this index is obtained by setting ai0 = 1 and aij = aij/ai0. We prove that
this dehomogenization process is also compatible with tropicalization. That
is, if we divide each algebraic coefficient Aikt

−νik and Bjqt
−ηjq by Ai0k0t

−νi0k0

and Bj0q0t
−ηj0q0 respectively and substitute each coefficient νik, ηjq of the

tropical polynomials f and g by νik − νi0k0 = “νik/νi0k0” and ηiq − ηi0q0

respectively, still we have that T (V (P (f̃i, g̃j, K))) = T (Pt(fi, gj, K)).

Lemma 14. Let f̃ =
∑

i∈I f̃ix
i, g̃ =

∑
j∈J g̃jx

j ∈ K[x, y], where the coeffi-
cients are

f̃i =

ni∑
k=oi

Aikt
−νikyk, g̃j =

mj∑
q=rj

Bjqt
−ηjqyq
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and let f =
∑

i∈I fi(y)xi, g =
∑

j∈J gj(y)xj,

fi = “

ni∑
k=oi

νiky
k”, gj = “

mj∑
q=rj

ηjqy
q”

be the corresponding tropical polynomials. Suppose that Aik, Bjq are residu-

ally generic. Then T (V (P (f̃i, g̃j, K))) = T (Pt(fi, gj, K)).

Proof. First, we suppose that char(k) = 0. In general, the composition of
polynomials does not commute with tropicalization, because, in the algebraic
case, there can be a cancellation of terms when performing the substitution
that does not occur in the tropical case. Recall that, by the nature of
tropical operations, a cancellation of terms in the tropical development of
the polynomial never happens. So, we have to check that there is never
a cancellation of terms in the algebraic setting. First, it is proved that
there is no cancellation of monomials when substituting the variables by
polynomials without dehomogenizing. P (ai, bj , K) is homogeneous in the
set of variables ai and in the set of variables bj . As the substitution is linear

in the variables Aik and Bjq, P (f̃i, g̃j, K) is homogeneous in Aij and Bjq. If
we have two different terms T1, T2 of P (ai, bj , K), then there is a variable with
different exponent in both terms. Assume for simplicity that this variable is
a1 with degrees d1 and d2 respectively. After the substitution, the monomials
obtained by expansion of T1 are homogeneous of degree d1 in the set of
variables A1k and the monomials coming from T2 are homogeneous of degree
d2 in the variables A1k. Thus, it is not possible to have a cancellation of
terms and we can conclude that the homogeneous polynomial projects onto
the tropical homogeneous polynomial.

In the case we dehomogenize f̃ and g̃ with respect to the indices (i0k0),
(j0q0) respectively. By the homogeneous case, we can suppose that all the
variables ai �= ai0 and bj �= bj0 in P (ai, bj , K) have already been substituted

by the polynomials f̃i and g̃j respectively. The only possibility to have a can-
cellation of terms is if there are two monomials of the form Xad1

i0
bd2
j0

, Xad3
i0

bd4
j0

with d1 + d2 = d3 + d4 and X is a monomial in the variables Aik, Bjq.
But, as the polynomial is multihomogeneous in A and B, it must happen
that d1 = d3 and d2 = d4. That is, the original monomials were the same.
So, a cancellation of terms is not possible and the dehomogenized polyno-
mial projects into the dehomogenized tropical polynomial. In particular,
T (V (P (f̃i, g̃j, K))) = T (Pt(fi, gj, K)).

Now suppose that char(k) = p > 0. In this case, it is not necessa-
rily true that the tropicalization of the algebraic resultant is the tropical
resultant. But we are going to check that the monomials where these
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two tropical polynomials differ do not add anything to the tropical vari-
ety T (fi, gi, K). So, we are going to compare the monomials in P (f̃i, g̃j, K)
and Pt(fi, gj, K). The support of both polynomials is contained in the sup-
port of Pt(fi, gj, L), where L is an equicharacteristic zero field. The first
potential difference in the monomials are those obtained by expansion of
a monomial m of the univariate resultant P (ai, bj , K) = R(I, J, K) whose
coefficient has valuation in [−∞, 0). That is, p divides coeff(m). It happens
that m is never a extreme monomial. That is, m =

∑
l λlvl, 0 ≤ λl ≤ 1

and vi are extreme monomials. So, for every r, coeff(m) + m(fi(r), gj(r)) ≤
m(fi(r), gj(r)) =

∑
l λlvl(fi(r), gj(r)) ≤ max{vl(fi(r), gj(r))}. Hence, the

monomials of m(fi(y), gj(y)) never add anything to the tropical variety de-

fined by P (f̃i, g̃j, K), because they are never greater than the monomials
that appear by the extreme monomials. The other source of potential differ-
ences in the monomials is the decreasing of the tropicalization of some terms
of the power (

∑ni

k=oi
Aikt

−νikyk)N due to some combinatorial coefficient
(

N
m

)
divisible by p. But, in the tropical context, it happens that(

“

ni∑
k=oi

νiky
k”

)N

= “

ni∑
k=oi

νN
ikykN”

as piecewise affine functions. The rest of the terms in the expansion do not
contribute anything to the tropical variety. The only terms that may play a
role are νN

ik , ηM
jq . So, even if the tropicalization of the polynomials P (I, J, K)

depends on the algebraic field K, the tropical variety they define is always
the same and it is the tropical variety defined by Pt(fi, gj, K), including the
weight of the cells. �

So, the previous Lemma provides a notion of tropical resultant for bi-
variate polynomials with respect to one variable. They also prove that this
polynomials define the same variety as the projection of the algebraic resul-
tant in the generic case. Our next goal is to provide a geometric meaning to
the roots of the tropical resultant in terms of the stable intersection of the
curves.

6. Computation of the stable intersection

Let f be a tropical polynomial of support I defining a curve, let ∆f be the
convex hull of I. By Proposition 2, the coefficients of f induce a regular
subdivision in ∆f dual to f . This subdivision is essential in the definition of
tropical multiplicity and stable intersection for the case of curves. Next, it
is proved that, for sufficiently generic lifts f̃ and g̃, their intersection points
correspond with stable intersection points of f and g.
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Lemma 15. Let f and g be two tropical polynomials in two variables. Let L
be its stable intersection. Then, for any two lifts f̃ , g̃ such that their coeffi-
cients are residually generic, the intersection of the algebraic curves projects
into the stable intersection.

T (f̃ ∩ g̃) ⊆ T (f) ∩st T (g)

Proof . If every intersection point of f and g is stable, then there is nothing
to prove. Let q be a non stable intersection point. This means that q belongs
to the relative interior of two parallel edges of T (f) and T (g). The resid-

ual polynomials f̃q and g̃q can be written (after multiplication by a suitable

monomial) as f̃q =
∑n

i=0 αi(x
rys)i, g̃q =

∑m
j=0 βi(x

rys)j. If f̃ , g̃ have a com-
mon point projecting into q then there is an algebraic relation among their
residual coefficients. Namely, the resultant of the polynomials

∑n
i=0 αiz

i,∑m
j=0 βiz

j with respect to z must vanish. If the residual coefficients of f̃ , g̃
do not belong to the resultant defined by each non stable intersection cell,
the intersection in the torus of f̃ , g̃ projects into the stable intersection of f
and g. �

So, there is a natural relation between the stable intersection of two
tropical curves f and g and the intersection of two generic lifts f̃ and g̃ of
the curves. On the other hand, the intersection of two generic lifts can be
determined by the algebraic resultant of the defining polynomials. Applying
tropicalization, this relationship links the notion of stable intersection with
the resultants. To achieve a true bijection between the roots of the resultant
and the intersection points of the curves, it is used the relationship between
the tropical and algebraic resultants. So, one needs to concrete the gener-
ality conditions for the values values Aik, Bjq that makes Lemma 14 hold.
Next Proposition shows how to compute the residually conditions for the
compatibility of the resultant.

Proposition 16. Let f̃ , g̃ ∈ K[x, y]. Then, there is a finite set of nonzero

polynomials in the principal coefficients of the coefficients of f̃ , g̃, that de-
pends only on the tropicalization f and g such that, if no one of them van-
ishes, then

T (Resx(f̃ , g̃)) = T (R(I, J, K)(f, g)).

Where R(I, J, K)(f, g) is the evaluation of the tropical resultant of supports
I and J in the coefficients of f and g as polynomials over x.

Proof. Write f̃ = “
∑

i,k ãikx
iyk”, g̃ = “

∑
j,q b̃jqx

jyq”, and take Pc(ãik) =

αik, Pc(̃bjq) = βjq, T (ãik) = aik, T (̃bjq) = bjq, f = “
∑

i,k aikx
iyk”, g =

“
∑

j,q bjqx
jyq”. Let I, J be the support of f and g with respect to x.
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Consider both resultants

R(I, J, K)(f̃ , g̃) =
N∑

r=0

h̃ry
r and Rt(I, J, K)(f, g) = “

N∑
r=0

hry
r”.

It happens that T (h̃r) ≤ hr and the equality holds if and only if the term

γr(α, β)t−hr of h̃r is different from 0. As in the generic case the resultant
projects correctly by Lemma 14, the polynomials γr corresponding to vertices
of the subdivision of the Newton polytope of the resultant polynomial (that
in this case is a segment) are nonzero polynomials in k[αik, βjq]. If no one
of them vanish, the resultant tropicalizes correctly. �

With all these results we are ready to prove our main result, we can
provide a bijection between the stable intersection of two tropical curves
and the intersection of two generic lifts of the curves. Moreover, sufficient
residual conditions for the genericity can be explicitly computed.

Theorem 17. Let f̃ , g̃ ∈ K[x, y]. Then, it can be computed a finite set

of polynomials in the principal coefficients of f̃ , g̃ depending only on their
tropicalization f , g such that, if no one of them vanishes, the tropicalization
of the intersection of f̃ , g̃ is exactly the stable intersection of f and g.
Moreover, the multiplicities are conserved.∑

�q∈ �f∩�g
T (�q)=q

mult(q̃) = multt(q)

Proof. Proposition 16 provides a set S of polynomials in the principal
coefficients of f̃ and g̃ such that, if no one vanishes, the algebraic resultants
Resx(f̃ , g̃) and Resy(f̃ , g̃) define the same tropical varieties as Resx(f, g) and
Resy(f, g). These two resultants define a finite set P that contains the stable
intersection. The problem is that, in the tropical case, it is possible that
the intersection of P with both curves may be strictly larger than the stable
intersection of the curves, see Example 19. So, we need another polynomial
in order to discriminate the points in this intersection that are not stable
points. Take a, any natural number such that the affine function x − ay
is injective in the finite set P . Make the monomial change of coordinates
z = xy−a. The polynomial Resy(f̃(zya, y), g̃(zya, y)) = R̃(z) = R̃(xy−a)

encodes the values xy−a of the common roots of f̃ and g̃. We add to the
set S the restrictions in the principal coefficients of this resultant to be
compatible with tropicalization according to Proposition 16. These values
xy−a of the algebraic intersection points correspond with the possible values
x − ay of the tropicalization of the roots. As the linear function is injective
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in P , then T (f) ∩ T (g) ∩ T (Resx(f, g)) ∩ T (Resy(f, g)) ∩ T (R(“xy−a”)) is

exactly the tropicalization of the intersection points of any system (f̃ , g̃)
verifying the restrictions of S. By, Lemma 15, this set is contained in the
stable intersection of f and g.

To prove that the multiplicities are conserved, consider the field K =
C((tR)) of generalized Puiseux series, in this case∑

�q∈ �f∩�g
T (�q)=q

mult(q̃) ≤ multt(q).

because the sum on the left is bounded by the mixed volume of the residual
polynomials f̃q, g̃q over q by Bernstein-Koushnirenko Theorem (c.f. [1, 7,
10]). This mixed volume is, by definition, the tropical multiplicity of q on the
right. On the other hand, the sum on the left is, over any field, the sum of
the multiplicities of the algebraic roots of R̃(xy−a) projecting onto q. By the
previous results on the correct projection of the resultant, this multiplicity
does not depend on K, because it is the degree minus the order of the residual
polynomial R(xy−a)qx−aqy , or, equivalently, the multiplicity of q as a root of
T (R(xy−a)). Moreover, this multiplicity is the mixed volume of the residual
polynomials over q. That is, the inequality∑

�q∈ �f∩�g
T (�q)=q

mult(q̃) ≤ multt(q)

holds for any field. The total number of roots of f̃ and g̃ counted with
multiplicities in the torus equals the sum of multiplicities of the stable roots
of f and g, because, in both cases, this is the degree minus the order of
R(xy−a). From this, we conclude that∑

�q∈ �f∩�g
T (�q)=q

mult(q̃) = multt(q)

Hence, the projection of the intersection of f̃ and g̃ is exactly the stable
intersection. �

Along the proof of the Theorem we have proved the following result, that
asserts that the tropical resultant of two tropical curves has a geometric
meaning analogous to the algebraic resultant.

Corollary 18. Let f , g ∈ T[x, y] be two tropical polynomials. Let h(y) ∈
T[y] be a tropical resultant of f and g with respect to the x variable. Then, the
tropical roots of h are exactly the y-th coordinates of the stable intersection
of f and g.
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Example 19. Consider f = g = “0 + 1x + 1y + 1xy + 0x2 + 0y2”, two
conics. Their stable intersection is the set {(−1,−1), (0, 1), (1, 0), (0, 0)}.
Compute the resultants: Resx(f, g) = “0+1y+1y2+1y3+0y4”, by symmetry
Resy(f, g) = “0 + 1x + 1x2 + 1x3 + 0x4”. Their roots are the lines y = −1,
y = 0, y = 1 and x = −1, x = 0, x = 1 respectively. In both cases
the multiplicity of the roots −1 and 1 is 1, while the multiplicity of 0 is 2.
The intersection of this lines and the two curves gives the four stable points
plus (−1, 1) and (1,−1). We need another resultant that discriminates the
points. See Figure 1. Take x − 3y, the first affine function x − ay that is
injective over these points. f(“zy3”, y) = “0+1y+0y2+1y3z+1y4z+0y6z2”.
Resy(f(“zy3”, y), g(“zy3”, y)) = “6z8 + 9z9 + 9z10 + 8z11 + 6z12”. Its roots
are 0, 1, 2,−3, all with multiplicity 1. It is easy to check now that the
intersection of the two curves and the three resultants is exactly the stable
intersection. The two extra points take the values −4, 4 in the monomial
“xy−3”, moreover, every point has intersection multiplicity equal to one.

Two generic lifts of the cubics are of the form:

f̃ = a1 + axt
−1x + ayt

−1y + axyt
−1xy + axxx

2 + ayyy
2

g̃ = c1 + cxt
−1x + cyt

−1y + cxyt
−1xy + cxxx

2 + cyyy
2

The residual conditions for the compatibility of the algebraic and tropical
resultant with respect to x are:

− γxyγxxαxyαyy − γxyαxyαxxγyy + γ2
xyαxxαyy + γyyγxxα2

xy,

− γxγxxαxα1 − γxαxαxxγ1 + γ1γxxα2
x + αxxγ2

xα1,

γyγxxα2
x − γxγxxαxαy + αxxγ

2
xαy − γxαxαxxγy,

− γxyαxyαxxγy + γyγxxα2
xy − γxyγxxαxyαy + γ2

xyαxxαy.

For the resultant with respect to y, the compatibility conditions are:

− γyγyyαyα1 − γyαyαyyγ1 + γ1γyyα
2
y + γ2

yαyyα1,

γxγyyα
2
y − γyαyαyyγx + γ2

yαyyαx − γyγyyαyαx,

γ2
xyαyyαx + γxγyyα

2
xy − γxyγyyαxyαx − γxyαxyαyyγx,

− γxyγxxαxyαyy − γxyαxyαxxγyy + γ2
xyαxxαyy + γyyγxxα2

xy.

Finally, the third resultant is a degree twelve polynomial in the variable z.
The residual conditions for its compatibility with the tropical resultant are:

2γ2
yy γxx α3

xy αyy γy αy γ1 αxx γxy −γ2
yy γ2

xx α4
xy αyy γy αy γ1 −2γ2

yy αxy γ3
xy α2

xx

α2
y γ1 αyy +γ4

xy α2
xx γyy α2

yy α2
y γ1 −γ4

xy α2
xx γyy α2

yy αy γy α1 +γ2
yy α2

xy αyy γ2
y

α2
xx γ2

xy α1 −γ2
xy γ2

xx α2
xy α3

yy γy αy γ1 −2γyy αxy γ3
xy α2

xx α2
yy γ2

y α1 +2γ2
yy γ2

xx

α3
xy γxy αy γy αyy α1 −2γ2

yy γ2
xx α3

xy γxy α2
y γ1 αyy −γ2

xy γ2
xx α2

xy γyy α2
yy αy γy α1

+γ2
xy γ2

xx α2
xy γyy α2

yy α2
y γ1 −4γ2

yy γxx α2
xy γ2

xy αxx αy γy αyy α1 −2γyy γ2
xx α3

xy



958 L.F. Tabera

γxy α2
yy γ2

y α1 +2γ2
yy αxy γ3

xy α2
xx αy γy αyy α1 +2γyy γ2

xx α3
xy γxy α2

yy γy αy γ1

+4γyy γxx α2
xy γ2

xy α2
yy γ2

y αxx α1 +γ3
yy γ2

xx α4
xy α2

y γ1 −4γyy γxx α2
xy γ2

xy α2
yy γy

αxx αy γ1 −γ3
yy γ2

xx α4
xy αy γy α1 +2γ3

yy γxx α3
xy αy γy αxx γxy α1 −2γ3

yy γxx α3
xy

α2
y γ1 αxx γxy −γ3

yy α2
xy α2

xx γ2
xy αy γy α1 +γ3

yy α2
xy α2

xx γ2
xy α2

y γ1 +γ2
xy γ2

xx α2
xy

α3
yy γ2

y α1 −γ2
yy α2

xy αyy γy α2
xx γ2

xy αy γ1 −2γ2
yy γxx α3

xy αxx γxy αyy γ2
y α1 +γ2

yy

γ2
xx α4

xy αyy γ2
y α1 −γ4

xy α2
xx α3

yy γy αy γ1 +4γ2
yy γxx α2

xy γ2
xy αxx α2

y γ1 αyy +γ4
xy

α2
xx α3

yy γ2
y α1 +2γ3

xy αxx γxx αxy γyy α2
yy αy γy α1 −2γ3

xy αxx γxx αxy γyy α2
yy α2

y

γ1 −2γ3
xy γxx αxy αxx α3

yy γ2
y α1 +2γ3

xy γxx αxy αxx α3
yy γy αy γ1 +2γyy αxy γ3

xy

α2
xx α2

yy γy αy γ1,

3γxy γ2
xx α4

xy γ2
y α2

y γ1 −3γxy γ2
xx α4

xy γ3
y αy α1 −γ2

xx α5
xy γ3

y αy γ1 +3γ3
xy α2

xx γ2
y

α2
xy α2

y γ1 −γ5
xy α2

xx α3
y γy α1 +γ3

xy γ2
xx α2

xy α4
y γ1 +6γ3

xy αxx γy γxx α2
xy α3

y γ1

−3γ4
xy α2

xx γy αxy α3
y γ1 −6γ3

xy αxx γ2
y γxx α2

xy α2
y α1 +3γ4

xy α2
xx γ2

y αxy α2
y α1

+γ5
xy α2

xx α4
y γ1 −3γ3

xy α2
xx γ3

y α2
xy αy α1 −2γ4

xy γxx αxy αxx α4
y γ1 +2γxy γxx α4

xy

γ3
y αxx αy γ1 −γ2

xy α2
xx γ3

y α3
xy αy γ1 −2γxy γxx α4

xy γ4
y αxx α1 +2γ4

xy γxx αxy αxx

α3
y γy α1 −γ3

xy γ2
xx α2

xy α3
y γy α1 +γ2

xx α5
xy γ4

y α1 +3γ2
xy γ2

xx α3
xy γ2

y α2
y α1 −6γ2

xy

αxx γ2
y γxx α3

xy α2
y γ1 +6γ2

xy αxx γ3
y γxx α3

xy αy α1 −3γ2
xy γ2

xx α3
xy γy α3

y γ1 +γ2
xy

α2
xx γ4

y α3
xy α1,

γ3
xy α2

xx γ2
x αx α3

y γ1 +γx γ2
xx α3

xy α2
x γ3

y α1 +γ3
x γ2

xx α3
xy α2

y γy α1 +γ3
xy α2

xx α3
x

γ2
y αy γ1 −γ3

x αxy α2
xx γ2

xy α3
y γ1 +2γxy γ2

xx α2
xy γx α2

x γ2
y αy α1 +2γ2

xy αxx γxx α3
x

γ3
y αxy α1 +4γ2

xy αxx γx γxx α2
x γy αxy α2

y γ1 −4γ2
xy αxx γx γxx α2

x γ2
y αxy αy α1

−2γ3
xy α2

xx γx α2
x α2

y γy γ1 +2γ3
xy α2

xx γx α2
x αy γ2

y α1 −γ3
xy α2

xx γ2
x αx α2

y γy α1

−γx γ2
xx α3

xy α2
x γ2

y αy γ1 +γxy γ2
xx α2

xy γ2
x αx α3

y γ1 −γxy γ2
xx α2

xy γ2
x αx α2

y γy α1

+2γ2
x γ2

xx α3
xy γy α2

y γ1 αx −2γ2
x γ2

xx α3
xy γ2

y αy αx α1 +2γ3
x γxx α2

xy γxy α3
y γ1 αxx

−2γ3
x γxx α2

xy γxy α2
y γy αxx α1 +γxy γ2

xx α2
xy α3

x γ2
y αy γ1 +γ3

x αxy α2
xx γ2

xy α2
y γy

α1 +2γx γxx α2
xy γxy α2

x γ2
y αxx αy γ1 −2γx γxx α2

xy γxy α2
x γ3

y αxx α1 −4γ2
x γxx

α2
xy γxy αx γy α2

y γ1 αxx +4γ2
x γxx α2

xy γxy αx γ2
y αy αxx α1 +2γ2

x αxy γ2
xy αx α2

y

α2
xx γy γ1 −2γ2

x αxy γ2
xy αx αy α2

xx γ2
y α1 −2γ2

xy αxx γ2
x γxx αx αxy α3

y γ1 +2γ2
xy

αxx γ2
x γxx αx αxy α2

y γy α1 −γ3
x γ2

xx α3
xy α3

y γ1 −γ3
xy α2

xx α3
x γ3

y α1 −2γ2
xy αxx γxx

α3
x γ2

y αy γ1 αxy −γxy γ2
xx α2

xy α3
x γ3

y α1 −2γxy γ2
xx α2

xy γx α2
x γy α2

y γ1 −γx α2
xx

γ2
xy α2

x γ2
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x α2
x α3

1 −3α3
xx γ5

x αx α2
1

γ1 −9γ2
xx αxx γ3
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x
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xx γ3
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x γ2
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Figure 1: Three resultants are needed to compute the stable intersection.

7. Some remarks

As a consequence of Theorem 17, a new proof of Bernstein-Koushnirenko
Theorem for plane curves over an arbitrary algebraically closed field can be
derived from the classic Theorem over C ([1], [7]). We refer to [10] for a
direct proof in positive characteristic.

Corollary 20. Let f̃ , g̃ be two polynomials over K, an algebraically closed.
Let ∆f , ∆g be the Newton polytope of the polynomials f̃ and g̃ respectively.

Then, if the coefficients of f̃ and g̃ are generic, then the number of common
roots of the curves in (K∗)2 counted with multiplicities is the mixed volume
of the Newton polygons

M(∆f , ∆g) = vol(∆f + ∆g) − vol(∆f ) − vol(∆g)

Proof. If the coefficients of the polynomials are generic, the number of
roots in the torus counted with multiplicities is the degree minus the order
of the resultant of the two polynomials with respect to one of the variables.
This number does only depend on the support of the polynomials, and it is
equal to the mixed volume of the Newton polygons, because this is the num-
ber of stable intersection points of two tropical curves of Newton polygons
∆f , ∆g. �

Remark 21. Another application of the techniques developed in this article
is the computation of tropical bases. Theorem 1 proves that for a hyper-
surface f̃ , the projection T ({f̃ = 0}) = T (f). This is not true for general

ideals. If I = (f̃1, . . . , f̃m) ⊆ K[x1, . . . , xn] and V is the variety it defines
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in (K∗)n,

T (V) ⊆
m⋂

i=1

T (fi),

but it is possible that both sets are different. A set of generators g̃1, . . . , g̃r

of I such that T (V) =
⋂r

i=1 T (gr) is called a tropical basis of I. In [2], it is
proved that every ideal has a tropical basis and it is provided an algorithm
for the case of a prime ideal I.

An alternative for the computation of a tropical basis of a zero dimen-
sional ideal in two variables is the following. Let I = (f̃ , g̃) be a zero dimen-

sional ideal in two variables. Let R̃x, R̃y be the resultants with respect to x
and y of the curves. Let P be the intersection of the projections Rx and Ry.
This is always a finite set that contains the projection of the intersection of
f̃ , g̃. It may happen that P is not contained in the stable intersection of the
corresponding tropical curves f and g, though. Let a be a natural number
such that x − ay is injective in P . Let R̃z = Resy(f̃(zya, y), g̃(zya, y)) be

another resultant. Then, it follows that (f̃ , g̃, R̃x, R̃y, R̃z) is a tropical basis

of the ideal (f̃ , g̃). This alternative approach is very similar to the regular
projection method that has been developed by Hept and Theobald [5].

Remark 22. Along the article, the notion of tropical resultant has been
defined as the projection of the algebraic resultant. It is needed a precom-
putation of the algebraic resultant in order to tropicalize it. For the case of
plane curves, it would be preferable to have a determinantal formula. That
is, to prove that the determinant of the Sylvester matrix of two polynomi-
als define the resultant variety. But the proof of the properties is achieved
by a careful look to the polynomials involved, paying special attention to
the cancellation of terms. In the case of the determinant of the Sylvester
matrix, the tropical determinant of the Sylvester matrix is the projection
of the permanent of the algebraic determinant. There are cancellation of
terms even in the equicharacteristic zero case. It is conjectured that still the
determinant of the Sylvester matrix is a tropical polynomial that defines the
same tropical variety as the resultant does. The author has checked that it
is the case for polynomials up to degree four with full support.
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