REV. MAT. IBEROAMERICANA 24 (2008), no. 3, 941-961

Tropical resultants for curves

and stable intersection

Luis Felipe Tabera

Abstract

We introduce the notion of resultant of two planar curves in the
tropical geometry framework. We prove that the tropicalization of the
algebraic resultant can be used to compute the stable intersection of
two tropical plane curves. It is shown that, for two generic preimages
of the curves to an algebraic framework, their intersection projects
exactly onto the stable intersection of the curves. It is also given
sufficient conditions for such a generality in terms of the residual
coefficients of the algebraic coefficients of defining equations of the
curves.

1. Introduction

In the context of tropical geometry, it is well known that two tropical curves
may share an infinite number of intersection points without sharing a com-
mon component. This problem is avoided with the notion of stable intersec-
tion, [9]. Given two curves, there is a well defined set of intersection points
that varies continuously under perturbations of the curves. This stable in-
tersection has very nice properties. For example, it verifies a tropical version
of Bernstein-Koushnirenko Theorem (cf. [9]). An alternative way of defining
a finite intersection set is the following: given two tropical curves f and g,
take two algebraic curves f and g projecting onto the tropical curves. Then,
the intersection of the two algebraic curves f Mg will project into the inter-
section of the tropical curves, T'(f Ng) C fNg. In general, the set T'(f Ng)
depends on the election of the curves f and g. We are proving that, if the
coefficients of f, g are generic, then the algebraic intersection will project
exactly onto the stable intersection and there is a correspondence among
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the multiplicities of the intersection points. Moreover, given two curves, we
compute residually dense sufficient conditions defining these genericity con-
ditions. The method works in any characteristic and it is essential in the
generalization of the geometric construction method of [13] to the non linear
case. This also provides a particular case of Bernstein-Koushnirenko theo-
rem for fields of positive characteristic. In order to prove this relationship,
we introduce the notion of tropical resultant, as the tropicalization of the
algebraic resultant.

The paper is structured as follows. In Section 2, we give a brief descrip-
tion of the algebraic context we will work in. Next, in Section 3 we recall the
notion of stable intersection for plane curves and provide a brief discussion
about its properties. Then, it is introduced the notion of tropical resultant
for univariate polynomials (Section 4) and plane curves (Section 5). In Sec-
tion 6, we relate the stable intersection of tropical curves with the resultant
of the curves and the generic preimage under the tropicalization map. We
will provide conditions for the lifts (preimages) to be compatible with the
stable intersection and the correspondence of the multiplicities. Finally, in
Section 7 we present some comments and remarks about the results.

2. Some basic notions in Tropical Geometry

The algebraic context where the theory is developed is the following:

Let K be an algebraically closed field provided with a non trivial rank
one valuation v : K* — I'. Without loss of generality, we may suppose that
Q@ C T € R and that v is onto I'. We denote by £ the residual field of K
under the valuation. We will distinguish two main cases along the paper:
the case whether char(k) = 0 (hence char(K) = 0) and the case wether
char(k) = p > 0. In this case, either char(K) = p (equicharacteristic p )
or char(K) = 0 (p-adic case). It is also assumed that we have fixed a
multiplicative subgroup I'" C K* that is isomorphic to I' by the valuation
map. The element ¢7 represents the element of I'” whose valuation is 7. Any
element x of K* can be uniquely written as x = x(t”, where v(zg) = 0. We
will denote the principal coefficient of an element = of K by Pc(x) = Ty € k*
and Pc(0) = 0. We denote the principal term of an element by Pt(z) = Tot".
The principal term of an element is only a notation, it is not, in general,
an element of K. If y is an element of K*, Pt(x) = Pt(y) if and only if
v(z) =v(y) <v(z—y).

The tropicalization map is minus the valuation, 7T'(z) = —v(z). The
tropical semiring T is the group I' with the operations of tropical addition
“a +b” = max{a, b} and tropical product “ab” = a + b. With these opera-
tions, T'(ab) = “T'(a)T'(b)” and, if v(a) # v(b) or v(a) = v(b) = v(a+0b) then
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T(a+0b) = “T(a) + T(b)". Let f = “>. ;a2 = maxje{a; + iz} €
T[zy,...,z,] be a polynomial of support I, where x = x1,...,x,, i =
W1y ey in, 1T = G121+ . .+ip,2,. The set T (f) of zeroes of f is the set of points
in T™ such that the maximum of the piecewise affine function max;e;{a;+ix}
is attained for at least two different indices. It is known (Kapranov’s Theo-
rem, [3]) that if f = > ier @iz’ is any polynomial in K[z1, ..., z,] such that
T(a@;) = a;, then T({f(z) = 0} N (K*)") is exactly the set of zeroes of f.
Moreover, if ¢ € T" is a point, let J C I be the set of indices where the
value f(q) is attained and let a; = Pec(a;). We define the residual polynomial
of J?over q as:

f;(xl, e Ty) = Z i’ = Pe(f(zt™®, .. ant™™)) € klzy, ..., 2]

ied
Then, it happens that:

Theorem 1. Let f € K[z, ..., z,] and (by,...,b,) € (K*)" be any point,

then there is a oot (¢y,...,¢,) of f such that Pt(c;) = Pt(b;), 1 <i <mn, if

and only if b= (T(br),...,T(bn)) is a zero of the tropical polynomial f and
(Pce(by), ..., Pc(by)) is a root of fi, in (kK*)™.

For a constructive proof of this theorem we refer to [14] or [6].

Let C' be a tropical plane curve defined as the zero set of a tropical
polynomial f = “Z(m)el agpx'y’”. If we multiply f by a monomial, the
curve it defines stays invariant. We define the support of C' as the sup-
port I of f modulo a translation of an integer vector in Z2. Analogously,
given an algebraic curve C' in (K*)? defined by an algebraic polynomial
f = Z(i, Del a2y’ , multiplying by a monomial does not change the set
of zeroes in the algebraic torus (K*)?, we also define the support of C' as the
set I modulo translations by an integer vector. If C'is a tropical curve, it
may happen that there are polynomials with different support defining C,
even under the identification by translations we have defined. Hence, when
we define a tropical curve, we will always fix the support of a defining poly-
nomial.

Let I be the support of a tropical polynomial f, the convex hull A = A(T)
of I in R™ is the Newton polytope of f. This object is strongly connected
with the set of zeroes of f. Every tropical polynomial f defines a regular
subdivision of its Newton polytope A. The topological closure of 7 (f)
in R™ has naturally a structure of piecewise affine polyhedral complex. This
complex is dual to the subdivision induced to A. To achieve this duality we
have first to define the subdivision of A.
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Let A’ be the convex hull of the set {(i,¢)|i € I,t < a;} € R™™!. The
upper convex hull of A’, that is, the set of boundary maximal cells whose
outgoing normal vector has its last coordinate positive, projects onto A by
deleting the last coordinate. This projection defines the regular subdivision
of A associated to f (See [8] for the details).

Proposition 2. The subdivision of A associated to f is dual to the set of
zeroes of f. There is a bijection between the cells of Subdiv(A) and the cells
of T(f) such that:

o Fvery k-dimensional cell A of A corresponds to a cell VA of T(f) of
dimension n — k such that the affine linear space generated by V* is
orthogonal to A. (In the case where k = 0, the corresponding dual cell
is a connected component of R"\ T(f))

o If Ay # Ay, then VM NVA2 =)
[} ]fAl C KQ, then VA2 C W

o T(f)= U V™ where the union is disjoint.
0£dim(A)

o VA is not bounded if and only if A C OA.

From this, we deduce that, given a fixed support I, there are finitely
many combinatorial types of tropical curves with support I. These different
types are in bijection with the different regular subdivisions of A.

Finally, let C' be a tropical planar curve of support I and Newton poly-
gon A, let A be a one-dimensional cell of the subdivision of A dual to C,
then, the weight of the dual cell VA is defined as #(A NZ?) — 1, the integer
length of the segment A.

3. The notion of stable intersection

One of the first problems encountered in tropical geometry is that the pro-
jective geometry intuition is no longer valid. If we define a tropical line as
the set of zeroes of an affine polynomial “ax 4 by + ¢”, then two different
lines always intersect in at least one point. The problem is that sometimes
they intersect in more than one point. The usual answer to deal with this
problem is using the notion of stable intersection.

Let Cy, Cy be the set of zeroes of two tropical polynomials f and g
respectively. Let P be the intersection of the curves, P = Cy N C,. It is
possible that P is not the image of an algebraic variety P by the map T
We want to associate, to each ¢ € P an intersection multiplicity. We will
follow the notions of [9] and we will compare them with the subdivisions of



TROPICAL RESULTANTS FOR CURVES AND STABLE INTERSECTION 945

the associated Newton polygons of the curves in terms of mixed volumes.
See [12] to precise the comparison between mixed volumes and intersection
of algebraic curves.

Let Cyy = CyUC,. It is easy to check that the union of the two tropical
curves is the set of zeroes of the product “fg”. The Newton polygon Ay, of
Cy Uy is the Minkowski sum of Ay and A,. That is:

Ay ={z+y |z eArye A}

The subdivision of Ay, dual to Uy, is a subdivision induced by the subdivi-
sions of Ay, A,. More concretely, let ¢ be a point in Cy,, let {i1,...,i,} be
the monomials of f where f(q) is attained and let {ji, ..., j,n} be the mono-
mials of g where g(q) is attained. Then n > 2 or m > 2. The monomials
where “fg¢” attains its maximum are {i,js|1 < r < n,1 < s < m}. The
Newton polygon of these monomials is the Minkowski sum of the Newton
polygons of {iy,...,7,} and {j1, ..., jm}, each one of these Newton polygons
is the cell dual to the cell containing ¢ in Ay, Ay and A, respectively. This
process covers every cell of dimension 1 and 2 of Af,. The zero dimensional
cells correspond to points ¢ belonging neither to Cy nor to Cy. Let 7, j be the
monomials of f and g where the value at ¢ is attained. Then the monomial
of “fg” where (“fg”)(q) is attained is 7j. To sum up, every cell of Ay, is
naturally the Minkowski sum of a cell v of f and a cell v of g. The possible
combination of dimensions (dim(u), dim(v), dim(u + v)) are:

e (0,0,0), these cells do not correspond to points of Cf,.

(1,0,1), these are edges of C, that correspond to a maximal segment
contained in an edge of C'y that does not intersect C,.

(2,0,2), correspond to the vertices of Cy, that are vertices of C'y that
do not belong to Cj.

(1,1,2), this combination defines a vertex of C', which is the unique
intersection point of an edge of Cy with an edge of C.

(1,1,1) are the edges of Uy, that are the infinite intersection of an
edge of Cy and an edge of C,,.

(1,2,2) corresponds with the vertices of C, that are a vertex of C,
belonging to an edge of CY.

e (2,2,2) This is a vertex of C'y, which is a common vertex of Cy and Cj.

and the obvious symmetric cases (0,1, 1), (0,2,2) and (2,1, 2).

If the relative position of C, Cy is generic, then C, cannot contain any
cell of type (1,1,1), (1,2,2) and (2,2,2). That is, the intersection points ¢
of Uy and Cy are always the unique intersection point of an edge of C'y and
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an edge of C,. This is the transversal case. The definition of intersection
multiplicity, as presented in [9] for these cells (1,1,2) is the following:

Definition 3. Let ¢ be an intersection point of two tropical curves C
and C,. Suppose that ¢ is the unique intersection point of an edge r of Cy
and an edge s of C,. Let 7 be the primitive vector in Z? of the support
line of . Let s be the corresponding primitive vector of s. Let u be
the dual edge of r in Ay and let v be the dual edge of s in Ay, we call
m, = #(UNZ?* —1 and m, = #(VNZ*) — 1 the weight of the edges r and s
respectively. The intersection multiplicity is

Ta T

xr

mult(q) = |mymy, | = 4
Se Sy

the absolute value of the determinant of the primitive vectors times the
weight of the edges.

If the curves are not in a generic relative position, consider the curve C'¥
obtained by translation of Cy by a vector v. If the length of v is suffi-
ciently small, |v|] < € (that is, it is an infinitesimal translation), then every
cell of Ay, of type (0,0,0), (1,0,1), (2,0,2) and (1,1,2) stays invariant.
Furthermore, if the translation is generic (for all but finitely many direc-
tions of v), the cells of type (1,1, 1) are subdivided into cells of type (0,0, 0)
and (0,1,1). That is, if two edges intersect in infinitely many points, after
the translation, every intersection point will disappear. If ¢ is an intersection
point of C; and C, corresponding to a cell of type (2,1,2) or (2,2,2) and
the direction of v is generic, this cell is subdivided, after the perturbation,
into cells of type (0,0,0), (1,0,1), (1,1,2), (2,0,2). That is, no intersection
point is a vertex of f or g. However, some transversal intersection points
appear instead (of type (1,1,2)) in a neighborhood of ¢q. The intersection
multiplicity of ¢ is, in this case, the sum of the intersection multiplicities of
the transversal intersection points.

Now we recall the notion of stable intersection of curves (See [9]).

Definition 4. Let C'y, C, be two tropical curves. Let C'7, C’ be two small
generic translations of C't, C, such that their intersection is finite. The stable
intersection C'y Ny Cy of Cy and C, is the limit set of intersection points of
the translated curves limww_,o(C}’ N C’;”).

From the previous comments it is clear that

Proposition 5. Let Cy, C, be two tropical curves, then the stable intersec-
tion of Cy and Cy is the set of intersection points with positive multiplicity.

This stable intersection has very nice properties. From the definition,
it follows that it is continuous under small perturbations on the curves.
Moreover, it verifies a Berstein-Koushnirenko Theorem for tropical curves.
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Theorem 6. Let C'y, Cy be two tropical curves of Newton polygons Ay, A,.
Then the number of stable intersection points, counted with multiplicity is
the mized volumes of the Newton polygons of the curves

> mlg) = M(Ap, Ay) = vol(Af + Ay) — vol(Ay) — vol(A,)

qeCNstCy

Proof. See [9]. |

In particular, we have the following alternative definition of intersection
multiplicity for plane curves:

Corollary 7. Let f, g be two tropical polynomials of Newton polygons Ay,
A, respectively. Let ¢ € T(f) N 7T (g) be an intersection point. Let Ay,
A, be the cells of Subdiv(Ay), Subdiv(A,) dual to the cells in the curve

containing q respectively, then, the tropical intersection multiplicity of q is:
mult(q) = M(Af, Ay) = vol(Af + Ay) — vol(Ay) — vol(Ay).

Proof. From the classification of intersection points, ¢ is an intersection
point of multiplicity zero if and only if it belongs to a cell of type (1,1,1)
in Cy,. In this case M(Af, Ay) = vol(Af + Ay) —vol(Ay) — vol(A,) = 0,
because an edge has no area. If ¢ is a stable intersection point, let f =

o w 79

¢ Zz‘eAf ax"y"?”, g = © ZjeAg bjxhyh”v let fq - ZiEAf @it Yq =
“3 jeh, bjz?” be truncated polynomials. It follows from the definition that
the intersection multiplicity of ¢ only depends in the behaviour of the mixed
cell Ay + A, in the dual subdivision of Ay,. That is, the intersection multi-
plicity of ¢ as intersection of C'y and Cy equals the intersection multiplicity
of ¢ as an intersection point of 7 (f,) and 7 (g,). But, by construction, the
unique stable intersection point of 7(f,) and 7 (g,) is ¢ itself. Hence, by
Theorem 6, the intersection multiplicity of ¢ is

M(Af, Ay) = vol(Af+ Ay) —vol(Ay) — vol(Ay). m

4. Univariate resultants

Let us start with the notion of tropical resultant of two univariate polyno-
mials. In algebraic geometry, the resultant of two univariate polynomials is
a polynomial that solves the decision problem of determining if both poly-
nomials have a common root.

Definition 8. Let [ = Yo', g = Y bja? € Klz], where K is an
algebraically closed field. For simplicity, we assume that aga,bob,, # O.
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Let p be the characteristic of K. Then, there is a unique polynomial in
Z/(pZ)[a;,b;], up to a constant factor, called the resultant, such that it

vanishes if and only if f and g have a common root.

In the definition, it is asked the polynomials to be of effective degree n
and m, this is in order to avoid the specialization problems that usually
appear when using resultants. But the polynomials are also asked to have
order zero. This restriction is demanded for convenience with tropicalization.
Recall that the intersection of the varieties with the coordinate hyperplanes
is always neglected. Hence, the definition of resultant will take this into
account. Moreover, as the polynomials are described by its support, the
resultant will not be defined by the degree of the polynomials, but by their
support. This approach will be convenient in the next section, when there
will be provided a notion of resultant for bivariate polynomials.

Definition 9. Let I, J be two finite subsets of N of cardinality at least 2
such that 0 € I N J. That is, the support of two polynomials that do not
have zero as a root. Let R(I, J,K) be the resultant of two polynomials with
indeterminate coefficients, f =3, ;a;x’, g = 3., bja’ over the field K.

R(I,J,K) € Z/(pZ)[a, b],

(where p is the characteristic of the field K). Let R:(1,J,K) be the tropi-
calization of R(I, J,K). This is a polynomial in T[a, b], which is called the
tropical resultant of supports I and J over K.

So, our approach is to define the tropical resultant polynomial as the
projection of the algebraic polynomial. In this point, one may obtain, for
the same support sets I and J, different tropical resultants, one for each
possible characteristic of K. This is not good, in the sense that tropical
geometry should not be determined by the characteristic of the field we
have used to define the projection. Hence, one has to take care of what is
the common information of these polynomials. The answer is complete: the
tropical variety they define is always the same. This variety is the image of
any resultant variety over a field K, so it will code the pairs of polynomials
with fixed support that have a common root.

Lemma 10. The tropical variety T (R:(1,J,K)) does not depend on the
field K, but only on the sets I and J.

Proof. Let AN be the Newton polytope of the resultant defined over a
field L of characteristic zero, N' C R™*™*2_ It is known that the monomi-
als of R(I,J,1L) corresponding to vertices of N (extreme monomials) have
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always as coefficient +1 (See, for example, [4] or [11]). Hence, the extreme
monomials in R(7, J,K) are independent of the characteristic of the field K
and so is N. If z = (2]',...,2%) is a monomial of R(I,J,K) that does
not correspond to a vertex of N, then = = > \u;, 0 < )\; < 1, where
v; = (7', oY) are vertices of N. T(coeff(v;)) = T(£1) = 0 and,
as coeff(x) is an integer (or an integer mod p), it is contained in the val-
uation ring, that is, 0 > T'(coeff(x)) € T U {—oc}. T(coeff(z)) is finite
and not zero if and only if we are dealing with a p-adic valuation and p
divides coeff(x). It is —oo if and only if the characteristic of K divides
the coefficient. Hence, for any evaluation w of the indeterminates, we have
that T'(coeff(z)) + wiji + ... + wyjy < wiji + ... +wyjiyv = D Avi(w) <
max;{v;(w)}, where v;(w) = wyj;1 + ... +wyjin. It follows that the maxi-
mum of the piecewise affine function R;(/,J,K) is never attained in the
monomial x alone and that x does not induce any subdivision in the cell
it is contained. Thus, this monomial does not add anything to the tropical
variety defined by Ry(I,J,K). The tropical hypersurface 7 (R;(1, J,K)) is,
as a polyhedral complex, dual to the subdivision of A/ induced by R;(1, J, K)
(cf. [8]). In this case, the subdivision of A/ induced by the tropical polyno-
mial is N itself. So 7 (R,(I,J,K)) is always the polyhedral complex dual
to N centered at the origin. This complex is independent of K. |

Hence, fixed two supports I, J, there may be different tropical polyno-
mials that can be called the resultant of polynomials of support I and J.
However, the variety all of them define is always the same, so there is a
good notion of resultant variety. Now we prove that the resultant variety
T(R(I,J,K)) has the same geometric meaning than the algebraic resultant
variety.

Lemma 11. Let I, J be two support subsets as before. Let f = “> ., a;x?”,
g="“ Z;neJ b;x?” be two univariate tropical polynomials of support I and J.

Then, f and g have a common tropical root if and only if the point (a;, b;)
belongs to the variety defined by Ry(1, J, K).

Proof. Suppose that (a;, b;) belongs to R;(1, J,K). By Theorem 1, we can
compute an element (Eii,gj) in the variety defined by R(/, J,K). In this case,
f: > e dix’ and g = Zjngjxj are lifts of f and g. That is, T(f) = f,
T(g) = g. Moreover, their coefficients belong to the algebraic resultant, so
the algebraic polynomials have a common root ¢ that is non zero by con-
struction (0 € I N J). Projecting to the tropical space, f and g have a
common root 7'(q). Conversely, if f and g have a common root ¢, we may
take any lift g = Zjngjxj of g. Then, by Theorem 1, we may lift ¢ to
a root ¢ of g. Finally, note that the coefficients of f belong to the hyper-
plane defined by the equation } ., 2q, so it can be lifted to an algebraic
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solution a of the affine equation ) .,
projects onto f and has ¢ as a root. By construction, f, g share a common
root ¢, hence, their coefficients (a;, b;) belong to the algebraic resultant va-
riety. Projecting again, the coeflicient vector (a;, b;) of f and g belong to
the tropical resultant. |

Zz@i, the polynomial f = Ziel Eiixi

This Lemma about the geometric meaning of the resultant also shows
that the variety defined by R;(I,.J,K) does not depend on the field K. At
least as a set of points, because the tropical characterization of two tropical
polynomials having a common root does not depend on the field K.

Example 12. Consider the easiest nonlinear case, I = J = {0,1,2}, the
resultant of two quadratic polynomials. If f = a+bx+cz?, g = p+qr+ra?,
the algebraic resultant in characteristic zero is Ry = r2a® — 2racp + c*p? —
grba — qbep + cq?a + prb? and, over a characteristic 2 field it is Ry = r2a® +
Ap? + qroa + qbep + cq*a + prbv®. If char(k) # 2, the tropical polynomial is
P, = “0r?a®+ O0racp+ 0c*p* + 0qrba + 0qbep + 0cq?a+ 0prb®” . 1If char(K) = 0
and char(k) = 2, the tropical polynomial is P, = “Or?a® + (—1)racp +
0c*p? + Ogrba + Ogbep + 0cg*a + Oprb?”. Finally, if char(k) = char(K) = 2
then the tropical polynomial is Ps = “0r2a®+0c*p? +0grba+0qbep +0cq®a -+
Oprb®”. The unique difference among these polynomials is the term racp.
This monomial lies in the convex hull of the monomials 7%a? and ¢?p? and
it does not define a subdivision because its tropical coefficient is always
< 0. The piecewise affine functions max{2r + 2a,r + a + ¢ + p, 2¢ + 2p},
max{2r+ 2a,—1+r+a-+c+p,2c+ 2p} and max{2r + 2a, 2c + ap} are the
same. So the three polynomials define the same tropical variety.

5. Resultant of two curves

In this section, the notion of univariate resultant is extended to the case
where the polynomials are bivariate.

Definition 13. Let f and g be two bivariate polynomials. In order to
compute the algebraic resultant with respect to x, we can rewrite them as
polynomials in z.

F=Y "l g=>Y g,
iel jeJ
where
m;
fi = Z Aty gj = Z Bijgt= My
k=o; q=r;

and A;, Bj, are elements of valuation zero.
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Let P(a;,b;,K) = R(I,J,K) € Z/(pZ)[a;,b;] be the algebraic univari-
ate resultant of supports I, J. The algebraic resultant of ]E and ¢ is the
polynomial P(f;,q;,K) € K[y]. Analogously, let f = T(f), g = T(9),
f= e fily)a™, g =“30,c;9i(y)a’”, where

n; m;j
o« k» o« q»
Ji= E Viky gj = E Njqy™ -

k=o0; q=r;

Let Pi(a;,b;,K) = R(I,J,K) € T[a;,b;] be the tropical resultant of sup-
ports I and J. Then, the polynomial P;(f;, ¢;,K) € T[y] is the tropical
resultant of f and g.

Again, we have different tropical resultant polynomials, one for each
possible characteristic of the fields K and k. We want to check that this
notion of tropical resultant also has a geometric meaning. In the algebraic
setting, the roots of the resultant P(f;,g;, K) are the possible y-th values of
the intersection points of the curves defined by fand g. This is not the case
of the tropical resultant, because P;(f;, g;, K) only has finitely many tropical
roots, while the intersection 7 (f)N7 (g) may have infinitely many points and
there may be infinitely many possible values of the y-th coordinates. Again,
this indetermination is avoided with the notion of stable intersection. We will
prove that the roots of P;(f;, g;, K) are the possible y-th values of the stable
intersection 7 (f) Ns 7 (g). This will be made in several steps, the first one
is to check that T(V (P(f;, 9;.K))) = T(P:(fi,9;,K)), provided that A, Bj,
are residually generic. Sometimes, for technical reasons, it is better to work
with an affine representation of the polynomials. The set of polynomials f =
Y il a;z" y?* of fixed support I is an open subspace (a torus) of a projective
space. The projective coordinates of f are its coefficients la; i€ I]. We
may fix an index 19 € I. Then, the affine representation of fwith respect
to this index is obtained by setting a;, = 1 and a;; = a;, /a;,. We prove that
this dehomogenization process is also compatible with tropicalization. That
is, if we divide each algebraic coeflicient A;;t™"* and Bj,t~"7 by A, x,t~ " 0%
and Bj .t ow respectively and substitute each coefficient v, 1;, of the
tropical polynomials f and g by vy, — Vigky = “Vik/Viek,” a0d 0ig — Nigqo

respectively, still we have that T(V(P(f:, 9;,K))) = T (P (fi, g, K)).

Lemma 14. Let f: Y il ﬁxi, g= Zjejﬁjxj € K[z, y], where the coeffi-
cients are

m;
fi = Z Aty gj = Z Bjgt~ My

k=o; q=r;
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andlet f=3",; fily)z', g = ZjeJ 9i(y)a’,

n; m;
o« k» o« q»
fi= E VikY 9 = E NiaY

k=o; q=r;

be the corresponding tropical polynomials. Suppose that Ay, Bjq are residu-
ally generic. Then T(V(P(f;,9;,K))) = T(P.(fi, 95, K)).

Proof. First, we suppose that char(k) = 0. In general, the composition of
polynomials does not commute with tropicalization, because, in the algebraic
case, there can be a cancellation of terms when performing the substitution
that does not occur in the tropical case. Recall that, by the nature of
tropical operations, a cancellation of terms in the tropical development of
the polynomial never happens. So, we have to check that there is never
a cancellation of terms in the algebraic setting. First, it is proved that
there is no cancellation of monomials when substituting the variables by
polynomials without dehomogenizing. P(a;,b;,K) is homogeneous in the
set of variables a; and in the set of variables b;. As the substitution is linear
in the variables A;; and Bjq, P(ﬁ, gj, K) is homogeneous in A;; and Bj,. If
we have two different terms 77, T of P(a;, b;, K), then there is a variable with
different exponent in both terms. Assume for simplicity that this variable is
ay, with degrees d; and ds respectively. After the substitution, the monomials
obtained by expansion of 7} are homogeneous of degree d; in the set of
variables Ay, and the monomials coming from 75 are homogeneous of degree
dy in the variables Aq,. Thus, it is not possible to have a cancellation of
terms and we can conclude that the homogeneous polynomial projects onto
the tropical homogeneous polynomial.

In the case we dehomogenize f and g with respect to the indices (igko),
(joqo) respectively. By the homogeneous case, we can suppose that all the
variables a; # a;, and b; # b, in P(a;, b;, K) have already been substituted
by the polynomials ﬁ and g; respectively. The only possibility to have a can-
cellation of terms is if there are two monomials of the form X afol b;lj, X af(f b;lg
with dy + dy = d3 + dy and X is a monomial in the variables A;;, Bj,.
But, as the polynomial is multihomogeneous in A and B, it must happen
that dy = d3 and dy = d4. That is, the original monomials were the same.
So, a cancellation of terms is not possible and the dehomogenized polyno-
mial projects into the dehomogenized tropical polynomial. In particular,
T(V(P(f., 3, K))) = T(B(f, 9;. K)).

Now suppose that char(k) = p > 0. In this case, it is not necessa-
rily true that the tropicalization of the algebraic resultant is the tropical
resultant. But we are going to check that the monomials where these
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two tropical polynomials differ do not add anything to the tropical vari-
ety T (fi, 9i,K). So, we are going to compare the monomials in P(f;, g;, K)
and Py(f;, g;, K). The support of both polynomials is contained in the sup-
port of P(f;, g;,L), where L is an equicharacteristic zero field. The first
potential difference in the monomials are those obtained by expansion of
a monomial m of the univariate resultant P(a;,b;,K) = R(I, J,K) whose
coefficient has valuation in [—o0,0). That is, p divides coeff(m). It happens
that m is never a extreme monomial. That is, m = Y, v, 0 < A <1
and v; are extreme monomials. So, for every r, coeff(m) + m(fi(r), g;(r)) <
mf(r),g5() = 3 Awi(£i(r). g;(r)) < max{u(£i(r),g;(r))}. Hence, the
monomials of m(f;(y), g;(y)) never add anything to the tropical variety de-
fined by P(ﬁ,gj,K), because they are never greater than the monomials
that appear by the extreme monomials. The other source of potential differ-
ences in the monomials is the decreasing of the tropicalization of some terms
of the power (3,2, Ayt~ "*y*) due to some combinatorial coefficient (M)
divisible by p. But, in the tropical context, it happens that

n N n
k» N_ kN»»
(“ E ViKY ) = E VikY
k=o0; k=o0;

as piecewise affine functions. The rest of the terms in the expansion do not
contribute anything to the tropical variety. The only terms that may play a
role are v}, 'r]%[ . So, even if the tropicalization of the polynomials P(I, J, K)
depends on the algebraic field K, the tropical variety they define is always
the same and it is the tropical variety defined by P(f;, 9;, K), including the
weight of the cells. [ ]

So, the previous Lemma provides a notion of tropical resultant for bi-
variate polynomials with respect to one variable. They also prove that this
polynomials define the same variety as the projection of the algebraic resul-
tant in the generic case. Our next goal is to provide a geometric meaning to
the roots of the tropical resultant in terms of the stable intersection of the
curves.

6. Computation of the stable intersection

Let f be a tropical polynomial of support I defining a curve, let Ay be the
convex hull of I. By Proposition 2, the coefficients of f induce a regular
subdivision in Ay dual to f. This subdivision is essential in the definition of
tropical multiplicity and stable intersection for the case of curves. Next, it
is proved that, for sufficiently generic lifts f and g, their intersection points
correspond with stable intersection points of f and g.
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Lemma 15. Let f and g be two tropical polynomials in two variables. Let L
be its stable intersection. Then, for any two lifts f, g such that their coeffi-
cients are residually generic, the intersection of the algebraic curves projects
into the stable intersection.

T(fNg) CT(f)NuT(g)

Proof. If every intersection point of f and g is stable, then there is nothing
to prove. Let ¢ be a non stable intersection point. This means that ¢ belongs
to the relative interior of two parallel edges of 7(f) and 7 (g). The resid-
ual polynomials f; and g, can be written (after multiplication by a suitable
monomial) as f, = 3.7 cu(z"y%), G, = Do Bilamy®). It /. § have a com-
mon point projecting into ¢ then there is an algebraic relation among their
residual coefficients. Namely, the resultant of the polynomials >, ;2"
Z;-n:o (377 with respect to z must vanish. If the residual coefficients of f, g
do not belong to the resultant defined by each non stable intersection cell,

the intersection in the torus of f, g projects into the stable intersection of f
and g. |

So, there is a natural relation between the stable intersection of two
tropical curves f and g and the intersection of two generic lifts f and g of
the curves. On the other hand, the intersection of two generic lifts can be
determined by the algebraic resultant of the defining polynomials. Applying
tropicalization, this relationship links the notion of stable intersection with
the resultants. To achieve a true bijection between the roots of the resultant
and the intersection points of the curves, it is used the relationship between
the tropical and algebraic resultants. So, one needs to concrete the gener-
ality conditions for the values values A;;, Bj, that makes Lemma 14 hold.
Next Proposition shows how to compute the residually conditions for the
compatibility of the resultant.

Proposition 16. Let f, § € K[z,y]. Then, there is a finite set of nonzero
polynomials in the principal coefficients of the coefficients off, g, that de-
pends only on the tropicalization f and g such that, if no one of them van-
1shes, then

T(Res:(f.9)) = T(R(L, JK)(f.9))-
Where R(I, J,K)(f, g) is the evaluation of the tropical resultant of supports
I and J in the coefficients of f and g as polynomials over x.

Proof. Write f = © D Gnx'y", g =« Zj’qgjqxqu”, and take Pc(ay) =

ik, Pe(biq) = Bigy T(ain) = air, T(bjg) = bjg, [ = "2 ap'y*”, g =
“ ququxfyq”. Let I, J be the support of f and g with respect to z.
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Consider both resultants
R(I, J,K)(f,7) Zmy and  Ry(I,J,K)(f,9) “Zmy

It happens that T(?Lr) < h, and the equality holds if and only if the term
Y (ar, B)thr of h, is different from 0. As in the generic case the resultant
projects correctly by Lemma 14, the polynomials v, corresponding to vertices
of the subdivision of the Newton polytope of the resultant polynomial (that
in this case is a segment) are nonzero polynomials in k[ay, §;,]. If no one
of them vanish, the resultant tropicalizes correctly. |

With all these results we are ready to prove our main result, we can
provide a bijection between the stable intersection of two tropical curves
and the intersection of two generic lifts of the curves. Moreover, sufficient
residual conditions for the genericity can be explicitly computed.

Theorem 17. Let f, g € K[z,y]. Then, it can be computed a finite set
of polynomials in the principal coefficients of f, g depending only on their
tropicalization f, g such_that, if no one of them vanishes, the tropicalization
of the intersection of f, g is exactly the stable intersection of f and g.
Moreover, the multiplicities are conserved.

Z mult(q) = multy(q)

gefng

T(g)=q
Proof. Proposition 16 provides a set S of polynomials in the principal
coefficients of f and g such that, if no one vanishes, the algebraic resultants
Res,( f g) and Res, (f, g) define the same tropical varieties as Res,(f, g) and
Res,(f,g). These two resultants define a finite set P that contains the stable
intersection. The problem is that, in the tropical case, it is possible that
the intersection of P with both curves may be strictly larger than the stable
intersection of the curves, see Example 19. So, we need another polynomial
in order to discriminate the points in this intersection that are not stable
points. Take a, any natural number such that the affine function x — ay
is 1nJectlve in the finite set P. Make the monomial change of coordinates
z = zy~* The polynomial Resy(f(zy ), 3(zy%y)) = R(z) = R(zy™)
encodes the values zy~® of the common roots of ]? and g. We add to the
set S the restrictions in the principal coefficients of this resultant to be
compatible with tropicalization according to Proposition 16. These values
xy~® of the algebraic intersection points correspond with the possible values
x — ay of the tropicalization of the roots. As the linear function is injective
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in P, then 7(f)N7(g9) N7 (Res,(f,9)) NT(Resy(f,9)) NT(R(“zy=")) is
exactly the tropicalization of the intersection points of any system (f, J)
verifying the restrictions of S. By, Lemma 15, this set is contained in the
stable intersection of f and g.

To prove that the multiplicities are conserved, consider the field K =
C((t*)) of generalized Puiseux series, in this case

Z mult(q) < mult;(q).

gefng

T(g)=q
because the sum on the left is bounded by the mixed volume of the residual
polynomials f,, g, over ¢ by Bernstein-Koushnirenko Theorem (c.f. [1, 7,
10]). This mixed volume is, by definition, the tropical multiplicity of ¢ on the
right. On the other hand, the sum on the left is, over any field, the sum of
the multiplicities of the algebraic roots of R(xy~®) projecting onto g. By the
previous results on the correct projection of the resultant, this multiplicity
does not depend on K, because it is the degree minus the order of the residual
polynomial R(2y~%)4,—aq,, OF, equivalently, the multiplicity of ¢ as a root of
T(R(xy~*)). Moreover, this multiplicity is the mixed volume of the residual
polynomials over ¢. That is, the inequality

Z mult(q) < mult,(q)

gefng

T(9)=q
holds for any field. The total number of roots of f and ¢ counted with
multiplicities in the torus equals the sum of multiplicities of the stable roots
of f and g, because, in both cases, this is the degree minus the order of
R(zy~®). From this, we conclude that

Z mult(q) = mult,(q)

gefng

T(9)=q
Hence, the projection of the intersection of J? and ¢ is exactly the stable
intersection. ]

Along the proof of the Theorem we have proved the following result, that
asserts that the tropical resultant of two tropical curves has a geometric
meaning analogous to the algebraic resultant.

Corollary 18. Let f, g € T[x,y] be two tropical polynomials. Let h(y) €
T[y| be a tropical resultant of f and g with respect to the x variable. Then, the
tropical roots of h are exactly the y-th coordinates of the stable intersection

of f and g.
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Example 19. Consider f = g = “0 + 1z + ly + lzy + 02 + 05?7, two
conics. Their stable intersection is the set {(—1,—1), (0,1), (1,0), (0,0)}.
Compute the resultants: Res,(f,g) = “0+1y+1y*+1y3+0y?”, by symmetry
Res,(f,9) = “0+ 1z 4+ 12% + 12 + 02*”. Their roots are the lines y = —1,
y =0,y =1and v = —1, x = 0, x = 1 respectively. In both cases
the multiplicity of the roots —1 and 1 is 1, while the multiplicity of 0 is 2.
The intersection of this lines and the two curves gives the four stable points
plus (—1,1) and (1, —1). We need another resultant that discriminates the
points. See Figure 1. Take x — 3y, the first affine function x — ay that is
injective over these points. f(“zy3”,y) = “O+1y+0y>+ 132+ 1y 2 +0y52%".
Res, (f(“2y*", ), g(“zy*",y)) = “62% + 92 + 9210 4+ 821 + 62!27. Its roots
are 0,1,2,—3, all with multiplicity 1. It is easy to check now that the
intersection of the two curves and the three resultants is exactly the stable
intersection. The two extra points take the values —4, 4 in the monomial
“ry=3”, moreover, every point has intersection multiplicity equal to one.
Two generic lifts of the cubics are of the form:

f=ay+at e+ ayt_ly + axyt_lxy + agpr® + ayyy2
g=c1+ct w4yt Ty + ot T Ty + Coat® 4y
The residual conditions for the compatibility of the algebraic and tropical
resultant with respect to = are:
— Yoy Yer OoyQyy — YoyQzyQzzYyy ’Yiya:c:cayy + ’Yyy')/a:a:a;%w
— Ve Yoz QeQl — VoeQzpQpzY1 + 717:3:2053 + Oém%%ab
’Yy’Yzzai — Yo YzzQz Oy + azz’}’;%ay — Ve QxQxzYy,
— VYayQayQzz Yy + ’Yy’Yzzaiy — Yoy Yoz OayQy + ’ngazzoéy-

For the resultant with respect to y, the compatibility conditions are:

— Yy Yy Ay — YyQyOyy 71 + ’Yl'YyyO‘?/ + 'Yzayyah

7:p7yya§ = VyQyQyy Ve + 'Yzayya:p = VyVyy Oy

7§yayyaz + ’Yz’)/yyaiy — Yoy VyyQay Oz — VYoyloyQyy Ve,

— YayYrxQzyQyy — VYoyQaoyOaxVyy + ’?gyammayy + ’Vyy’ymmaiy-

Finally, the third resultant is a degree twelve polynomial in the variable z.
The residual conditions for its compatibility with the tropical resultant are:
2'75@/ Yoz agy Qyy Yy Oy V1 Czx Vay _73331 ’Y%:c aiy Qyy Yy Oy V1 _2'75 Qlpy "ng Oé;%x
a; 71 CQyy +7§y a?ym Yyy O‘zy O[Z 4! _/ymy Apr Vyy aZy Qy Yy A1 +/7yy O‘%y Qyy /7:3
Oy ’ng a1 _’Y:%y ’Y%:c aiy agy Ty Gy M _27yy Qzy f)/g QC%CC O‘Zy 723 a1 +2’Y§y f)/%f’?
O‘gy Yoy Cy Yy Qyy 1 _27534 %%m O‘%y Yy O‘Z 71 Qyy _%zﬂy 7:%30 Oz%y Tyy Qyy Qy Ty X1
Yoy Vaw Qg Yoy Qay o N1 —4V0y Yoz Oy Yoy Qax Oy Yy Cyy 01 —2Yyy Yoy Oy
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Yy O‘Zy 75 ay +2'7§y Qgy '7334 O‘?cz Qy Yy Qy 0 +27, %%z O‘%y Yy O‘zy Ty Gy N1
+yyy VYau Oz%y '7334 O‘Zy ’75 Ay O] +72y %%z O‘iy O‘z M —4Vyy Vaz O‘g%y %%y O‘Zy Yy
Qe Oy V1 —Vyy Vax Oy Oy Yy 01 T2V Yow Oy Oy Yy Oaw Yoy 01 —2%yy Yow Oy
ag2/ Y1 Czx Vay _’ng aiy a:%:c ’Y%y Qy Yy 01 +’Yg:jy a:%:y aiz ’Y%y ag2/ 71 +’Y:%y ’Ygz aiy
agy ’)/:3 ai _’YSy a%y Qyy Ty aiz ’ng Qy 71 _2’)/:33; Yz agy Qzz Yoy Qyy ,7;3 a1 +’Y§y
Vaw Oy Qyy Ty 01 —Vay Oe Oy YTy Oy V1 H475 Voo 0%y Y2y Qa0 V1 gy gy
a%z ozzy 75 oq +27;E°’y Oz Yz Ozy Vyy agy Qy Yy O —27§y Olzz Yoz Ozy Vyy agy 043
71 _Q'ng Yazz Czy Cxg O‘Sy 75 aq +2'ng Vaza Czy Czx O‘zy Yy Oy V1 2y Oy 7§y
O‘:%:c ag2/y Yy Cy V1,

3oy Vi Cay Yy O V1 —3Vay Vaw Oy Yy Oy 01 —Via Oy Yy Oy V1 +373, 03, 7,
%y Oy N —V2y OFp 0 Yy 01 Yy Vp Oy Oy N H6Yy Qar Yy Yaw OFy 0y N
_37;134 O‘%;p Yy Czy 042 7 _6%20’3; Ogy '75 Vaz O‘?cy O{Z aq +37§y O‘g%z '75 Ay O‘z aq
oy O Oy 11 =375y 02y Vy 02y Oy 01 —2%3y Voo Oy g Oy V1 +2%ay Yoo Oy
’YS Agg Oy V1 _’ng a:%:c 75 a?}y Qy Y1 _2'7:cy Yzx aiy '7;1 Qg (] +27§y Yz Cxy Olxg
Oy Yy 01 —Voy Ve Oy Oy Ty 01 FVag 0oy Yy 1 +372y Vie a3y vy O a1 —673,
Ozw V2 Yoz Oy 02 M1 +672, Qaw Vo Voo Oy 0y a1 =302, V2, 3, 1y @3 11 +92,
agz 7;1 Oégy aq,

73@/ a:%:c 7% Qg 0‘2 M Yz 7%z O‘iy Oé:% ’73 aq +’7§ /7%:1: O‘iy O‘z Ty &1 +/7;co’y a:%:c «Q
75 Oy 71 _75:0’ Ay O‘iz '7:%3; O‘z M F2Yay %%z O‘:%y Yz O‘i '75 Oy O +2'7:%y gy Yoz O

75 Ay O +4’Y§y Uzz Y Yoz ai Ty Cxy a32/ " _4’}’%@/ Cxx Yo Yz a;% ')/5 Olyy Qo O
—293, 0%y Ve O Op Yy M F200y Ohy Ve O Qy Yy A1 —Vay OGy Vi Ow Yy
—Vz Vi Oy OF Vg Oy N Hzy Vo Oy Vo O Oy N —Vay Voo Oy Vo Oz O Ty 01
297 Ve 0%y Y Of M O =293 Vip 02y Yy Ay O 01 +29] Yaz OFy Yay Oy N1 s
=293 Yox Oy Yoy O Vy Cax Q1 FVay Vox Oy OF Yy Oy V1 T2 Qay OFp Yoy O Ty
a1 +27z Yzx a:%y 'Y:l:y Oéi '75 Qg ay 71 _2'7:0 Yz Oéiy ’Yzy Oéi ')/2 Apy 1 _4’73 Yz
O‘?gy Vay Cz Yy 0{13 M Qaz +472 Vox %%y Yoy Cx 'Y; ay Qg 1 273 gy 'Y%y Qg 043
O‘g%z Yy M _27:% Azy %%y Qg Oy O‘%x 'YS aq _2%%3; xy %% Yoz Cz Ozy O‘Z 4! +2'Y;%y
Ogy '73 VYazz Oz Qzy O‘z Yy C1 _%i’ '7:%:c a:?;y 042 7 _7334 O‘%x O‘?c 'YS aq _27:%14 Ozz Vox
O‘:?z): 75 Oy V1 Ogy —Vxy %%z O‘iy O‘:?:: '72 a1 =2y 7:%:1: O‘:%y Yz O‘i Vy %2/ Y1 —Vx O‘:%:c
’Y%y Oéi '75 Ozy Oy Y1 Tz aiz ’Y%y a:%: ’YS Ay 1,

2 2 .3 2 3 3 A2 2 3 5 A3 2 2 3

6 Vex Czz Tz g Vy Oy V1 —Vge X Vo Oy Ty Q1 Vg Vg Vy Q1 _67xx Qg Yz Oy
2 2 3 A2 52 3 5 .3 3 5 A2 2

Yy Oy O1 +672e O, Ve Vy Op Oy 01 —Qy Vo Oy V1 HVz X Yy Gy N +372e Qaa

3 2 52 + 3 3 A2 53 + 3 5 2 Y-} 3 .2 A2 +3 2

Ve O ay Ty O1 TVex Op Va ay M TCQry Vr ay Ty O1 =gy Yy O ’7y Oy N Vex

4 .3 2 3 2 2 3 4 2 3 4
Qzy Yz O Yy 1 —6v20 Zp Vi Ty Qg Gy N1 272 O Ve Ty Cy C1 —2%ze O Vo

2 3 3 .2 .3 2 3 .2 .3 2 4 3
Ty Cy 71 T, Vo O Yy 1 _3751350 Qzz Vg Oy Oy V1 +3Vzx Qzz Vo Oz Oy 71 —3Vax
2 4 2 2 4 .2 2 2 3 .3 3 4
Aoy Vo O ay ’Yy aq _3’)/:(::(: Qg Vo Oy ’Yy ay 71 _371‘1‘ Ay YV O ’Yy a1 _2aa:a: Yz
2 3 4 2 2 2 .3 .2
Oy, ’Yy Oy +2azm Yo Oz Yy ay it +37II Qo Vo Oy ’Yy Ay V1,

3 4 2 2 3 4 .2 2 3 6 -3 3 6 3 3 5 2
3amx Vo Oz O1 7] +3/ymz Oy Ve V1O Ve Qg V] TG, Ve O _3/711 O Yz 71 1
+9 2 4.2 2 +3 2243+32 423_335 2

Yoz Czgz Yz Oz X1 71 Vex Czg Vz Oz M1 Vaz Cxz Vg Oz O Apx Yz Oz OF

2 3 .3 2 2 5 43 2 5 3 2 2
71 _gq/zz Qg Yz Oz V1 O _3’7zz Qzx Yo Oy V1 _3/711 Qpz Yz Qa O +9/7:c:c Qua Yy

4 .2 3 3 3 A3 3 3 A3 .3 2 3 3 A2
Qp V1 01 —CQgg Vo O V1 ~Vza Oz V2 01 —NVaz Oz Vo Oz V1 O1-

3
T
3
T
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Figure 1: Three resultants are needed to compute the stable intersection.

7. Some remarks

As a consequence of Theorem 17, a new proof of Bernstein-Koushnirenko
Theorem for plane curves over an arbitrary algebraically closed field can be
derived from the classic Theorem over C ([1], [7]). We refer to [10] for a
direct proof in positive characteristic.

Corollary 20. Let f, g be two polynomials over K, an_algebraically closed.
Let Ay, A, be the Newton polytope of the polynomials f and g respectively.
Then, if the coefficients off and g are generic, then the number of common
roots of the curves in (K*)? counted with multiplicities is the mized volume
of the Newton polygons

M(Ap, Ay) = vol(Af + Ay) —vol(Ay) —vol(A,)

Proof. If the coefficients of the polynomials are generic, the number of
roots in the torus counted with multiplicities is the degree minus the order
of the resultant of the two polynomials with respect to one of the variables.
This number does only depend on the support of the polynomials, and it is
equal to the mixed volume of the Newton polygons, because this is the num-
ber of stable intersection points of two tropical curves of Newton polygons

As A, u

Remark 21. Another application of the techniques developed in this article
is the computation of tropical bases. Theorem 1 proves that for a hyper-
surface f, the projection T'({f = 0}) = 7(f). This is not true for general
ideals. If T = (f1,..., fm) € Klz1,...,2,] and V is the variety it defines
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in (K*)", -
TO) (T,

but it is possible that both sets are different. A set of generators gy, ..., ¢,
of Z such that T(V) = (;_, 7 (g-) is called a tropical basis of Z. In [2], it is
proved that every ideal has a tropical basis and it is provided an algorithm
for the case of a prime ideal Z.

An alternative for the computation of a tropical basis of a zero dimen-
sional ideal in two variables is the following. Let Z = (f,g) be a zero dimen-
sional ideal in two variables. Let éx, éy be the resultants with respect to x
and y of the curves. Let P be the intersection of the projections R, and R,,.
This is always a finite set that contains the projection of the intersection of
f, g. It may happen that P is not contained in the stable intersection of the
corresponding tropical curves f and g, though. Let a be a natural number
such that x — ay is injective in P. Let R, = Res,(f(2y% vy),q(zy%, vy)) be
another resultant. Then, it follows that (f, g, R, éy, éz) is a tropical basis
of the ideal (f, g). This alternative approach is very similar to the regular
projection method that has been developed by Hept and Theobald [5].

Remark 22. Along the article, the notion of tropical resultant has been
defined as the projection of the algebraic resultant. It is needed a precom-
putation of the algebraic resultant in order to tropicalize it. For the case of
plane curves, it would be preferable to have a determinantal formula. That
is, to prove that the determinant of the Sylvester matrix of two polynomi-
als define the resultant variety. But the proof of the properties is achieved
by a careful look to the polynomials involved, paying special attention to
the cancellation of terms. In the case of the determinant of the Sylvester
matrix, the tropical determinant of the Sylvester matrix is the projection
of the permanent of the algebraic determinant. There are cancellation of
terms even in the equicharacteristic zero case. It is conjectured that still the
determinant of the Sylvester matrix is a tropical polynomial that defines the
same tropical variety as the resultant does. The author has checked that it
is the case for polynomials up to degree four with full support.
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