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Homology exponents for H-spaces

Alain Clément and Jérôme Scherer

Abstract

We say that a space X admits a homology exponent if there exists
an exponent for the torsion subgroup of H∗(X; Z). Our main result
states that if an H-space of finite type admits a homology exponent,
then either it is, up to 2-completion, a product of spaces of the form
BZ/2r, S1, CP∞, and K(Z, 3), or it has infinitely many non-trivial
homotopy groups and k-invariants. Relying on recent advances in the
theory of H-spaces, we then show that simply connected H -spaces
whose mod 2 cohomology is finitely generated as an algebra over the
Steenrod algebra do not have homology exponents, except products
of mod 2 finite H-spaces with copies of CP∞ and K(Z, 3).

Introduction

The study of the torsion in the homotopy groups and the integral homology
groups of a space motivated the Moore conjecture, see [26], and the Serre
conjecture, [27]. Serre proved that a simply connected space with finite di-
mensional (and non-trivial) mod p (co)homology H∗(X; Fp) must have infi-
nitely many non-trivial homotopy groups. He conjectured that there should
in fact exist infinitely many homotopy groups of X containing p-torsion,
which was proved eventually by McGibbon and Neisendorfer [24], relying
on Miller’s solution [22] of the Sullivan conjecture. This was then refined
further by Lannes and Schwartz in [21]. Their criterion is that H∗(X; Fp)
is locally finite, as a module over the Steenrod algebra. Dwyer and Wilk-
erson went one step further, [9], looking only at the module QH∗(X; Fp) of
indecomposable elements. Félix, Halperin, Lemaire, and Thomas provided
yet another criterion involving the depth of H∗(ΩX; Fp), [12]. In their sub-
sequent paper [13] they focused on the size of the torsion part in the “loop
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space homology” H∗(ΩX; Z). They proved in fact a homological version of
the Moore conjecture, namely that the p-torsion part of the integral homol-
ogy of the loop space of a Z(p)-elliptic space always has an exponent.

In this article we are interested in understanding when the torsion sub-
group of the integral homology of a large class of loop spaces, and more
generally H-spaces, can have an exponent. In the spirit of Serre’s theorem,
we first classify those H-spaces having a homology exponent at the prime 2
which are Postnikov pieces (they have only a finite number of non-trivial ho-
motopy groups). Thus we will say henceforth that a space admits a homology
exponent if there exists an integer k such that 2k ·T2H

∗(X; Z) = 0, where T2

stands for the 2-torsion subgroup. We work with connected H-spaces of
finite type.

Theorem 5.2 Let X be an H-space of finite type which admits a homology
exponent. Then either X is, up to 2-completion, a product of spaces of the
form BZ/2r, S1, CP∞ and K(Z, 3), or X admits infinitely many non-trivial
k-invariants and homotopy groups.

The methods we develop predict in fact explicit degrees in which to find
homology classes of order 2r for arbitrarily large r when the space has no ho-
mology exponent, quite in the spirit of Browder’s “infinite implications”, [3].
This builds on previous work by the first author, who analyzed the case of
a Postnikov piece with at most two non-trivial homotopy groups in [8].

There is a class of H-spaces which is very close to the Postnikov pieces
we have been dealing with up to now, namely those H-spaces for which
the mod 2 cohomology is finitely generated as an algebra over the Steenrod
algebra. They are obtained indeed as extensions by H-fibrations of an H-
space with finite mod 2 cohomology by a Postnikov piece, [5].

Theorem 7.5 Let X be a simply connected H-space of finite type such
that H∗(X; F2) is finitely generated as an algebra over the Steenrod algebra.
Assume that X admits a homology exponent. Then X is, up to 2-completion,
the product of a mod 2 finite H-space Y with copies of K(Z, 2) and K(Z, 3).

This contrasts with the homological version of the Moore conjecture ob-
tained by Félix, Halperin, and Thomas in [13]. Of course the mod 2 coho-
mology of the loop space on a finite complex is very rarely finitely generated
as an algebra over the Steenrod algebra. In this article we only deal with the
prime 2, just like Serre in [27], or Lannes and Schwartz in [21]. We expect
our methods to go through mutatis mutandis in the case of an odd prime.
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a simple proof of Lemma 3.3, and Juan A. Crespo and Wolfgang Pitsch for
helpful comments. The second author would like to thank Kathryn Hess and
the IGAT, EPFL, for the invitation which made this collaboration possible.
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1. Reduction to simply connected spaces

In this section we explain how to reduce the study of arbitrary connected
H-spaces to simply connected ones for which the second homotopy group is
torsion. These are then the spaces we study in the rest of the article. Let
us start with basic terminology and notation.

Notation 1.1. A space X is a Postnikov piece if it has only finitely many
non-trivial homotopy groups. It is an H-Postnikov piece if it is moreover
an H-space. The n-th Postnikov section in : X → X[n] is determined, up
to homotopy, by the property that it induces isomorphisms on homotopy
groups πi, for i ≤ n, and πiX[n] = 0 for i > n. The homotopy fiber X〈n〉
of in is the n-connected cover of X. When X is simple (for example when
X is simply connected or when X is an H-space), there exist k-invariants
kn ∈ Hn+1(X[n−1]; πnX) such that X[n] can be recovered as the homotopy
fiber of a map kn : X[n − 1] → K(πnX, n + 1) representing the k-invariant.
When X is an H-space, all k-invariants are primitive elements.

Let X be a space. By {B∗
r , dr} we denote its mod 2 cohomology Bockstein

spectral sequence: B∗
1
∼= H∗(X; F2) =⇒ (H∗(X; Z)/torsion)⊗F2. Recall that

the first differential d1 = Sq1 is the Bockstein and a pair of elements x and
y which survive to the page Br and such that dr(x) = y detect a copy of
Z/2r in H∗(X; Z) in degree |y| = |x| + 1.

We collect now a result about “small” Postnikov pieces. These will turn
out to be the only H-Postnikov pieces having an exponent.

Proposition 1.2. Let X be a connected H-space of finite type such that
π2(X) and π3(X) are torsion free. Then X[3] is a product of spaces of the
form BZ/pr, S1, CP∞ and K(Z, 3). Moreover, X[3] admits a homology
exponent.

Proof. It is well-known that a copy of the integers in π1X corresponds to
a copy of S1 splitting of X (because of the existence of a section S1 → X).
One readily verifies that H3(K(Z/pr, 1); Z) = 0, which shows that the first k-
invariant must be trivial. Thus X[2] splits as a product of copies of BZ/pr’s,
S1’s, and CP∞’s. Next, the only elements in H4(K(Z/pr, 1); Z), for any
prime p and any integer r, and H4(K(Z, 1); Z) are multiples of the square of
the generator in degree 2. Such elements are not primitive (unless they are
trivial), and hence cannot be the k-invariants of an H-space. Therefore, the
second k-invariant of X[3] is trivial as well and the space splits as a product.

It remains to prove the assertion about the homology exponent. Recall
that pr ·H̃∗(BZ/pr; Z) = 0 (by a transfer argument), H∗(S1; Z), H∗(CP∞; Z)
are torsion free and 2·T2(H

∗(K(Z, 3); Z)) = 0 (as a consequence of Serre [27]
or Cartan’s computations [4]). �
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Lemma 1.3. Let r ≥ 1 and (S1)r → Y → X be a H-fibration. If X admits
a homology exponent, then so will Y .

Proof. Let us remark that the fibration is orientable [29, p. 476]. We
obtain the result for r = 1 by inspecting the associated Gysin cohomology
exact sequence and conclude by induction on r. �

We conclude this section with the promised reduction. The existence of
a homology exponent for an arbitrary H-space is detected in the homology
of a certain covering space.

Proposition 1.4. Let X be a connected H-space of finite type. Then there
exists a simply connected H-space of finite type Y such that π2Y is a torsion
abelian group and Y fits into the following H-fibration:

Y �� X �� Bπ1X × K(Zk, 2),

for some k ≥ 0. Moreover, if X admits a homology exponent, then so will Y .

Proof. Let us first deal with the copies of Z in π1X. They correspond to a
torus (S1)r splitting off X. There exists hence X1 such that X 
 X1× (S1)r

and π1X1
∼= ⊕aZ/2sa ⊕ A, where A is a 2′-torsion abelian group (i.e. any

element in A has finite order prime to 2). There is a map BZ/2sa → K(Z, 2)
for any a, corresponding to the Bockstein operation of order sa. Let us define
X2 to be the homotopy fiber of the composite map

X1 → Bπ1X1 →
∏

a

K(Z, 2) × K(A, 1).

As in the proof of [21, Proposition 0.7], X2 splits as a product X̃ × ∏
a S1,

where X̃ denotes the universal cover of X. By the previous lemma, X2, and
thus X̃, admit an exponent if X does.

Finally write π2X ∼= Zk ⊕A′ where A′ is a finite torsion group and let Y
be the homotopy fiber of the map X̃ → K(Zk, 2) so that π2Y ∼= A′. The
previous lemma yields the statement about the exponent. The description
of the base of the H-fibration comes from Proposition 1.2. �

2. A splitting principle

Let X be a Postnikov piece, which highest non-trivial homotopy group is
πnX = H . In this section we show that, if H is torsion free, the (n − 2)-
connected cover X〈n−2〉 splits as a product K(H, n)×K(G, n−1). Loosely
speaking, the n-th k-invariant attaches K(H, n) directly to X[n − 2] and
cannot tie the last two homotopy groups together.



Homology exponents for H-spaces 967

We will first need some basic results on Eilenberg-MacLane spaces. We
follow the terminology and notation of [25, Chapter 1]. For a unified treat-
ment of the spaces K(Z/2s, n), with s ≥ 1, and K(Z, n), it is convenient
to introduce a notation for the higher Bockstein operations. Let un (re-
spectively Sq1

sun) denote the generator of the 1-dimensional F2-vector space
Hn(K(Z/2s, n); F2) (respectively Hn+1(K(Z/2s, n); F2)). For an admissible
sequence I = (i1, . . . , im), we will write SqI

sun instead of Sq(i1,...,im−1)Sq1
sun if

im = 1 and instead of SqIun if im �= 1. We denote also by un the generator
of Hn(K(Z, n); F2).

Serre computed the mod 2 cohomology of Eilenberg-MacLane spaces.

Theorem 2.1. (Serre, [27]) Let n ≥ 1 and s ≥ 1.

(1) The F2-algebra H∗(K(Z/2s, n); F2) is isomorphic to the polynomial
F2-algebra on generators SqI

sun, where I covers all the admissible se-
quences of excess e(I) < n.

(2) The F2-algebra H∗(K(Z, n); F2) is isomorphic to the polynomial F2-
algebra on generators SqIun, where I covers all the admissible se-
quences of the form (i1, . . . , in) where in �= 1 and of excess e(I) < n.

Our first lemma relies on Serre’s computations in low degrees.

Lemma 2.2. Let G be a finitely generated abelian group, H be free abelian,
and n ≥ 3. Then P n+1H∗(K(G, n − 1); H) = 0.

Proof. Since H∗(K(G, n − 1); H) ∼= H∗(K(G, n − 1); Z) ⊗ H , it is enough
to consider the case when H = Z. When n ≥ 4, the only elements in
Hn+1(K(G, n−1); F2) are sums of elements of the form Sq2un−1. These ele-
ments all have non-trivial Bockstein and we see therefore from the Bockstein
spectral sequence that Hn+1(K(G, n − 1); Z) is 2-torsion free. As there is
obviously no odd primary torsion in this degree (from Cartan’s description
of H∗(K(G, n− 1); Fp), [4]), we have that Hn+1(K(G, n− 1); Z) = 0. When
n = 3, write G ∼= Zk ⊕ A, where A is torsion. Then H4(K(G, 2); Z) ∼=
H4(K(Zk, 2); Z). There are no primitive elements in this degree. �

Proposition 2.3. Let X be a simply connected H-space of finite type such
that π2X is a torsion group. Let n ≥ 3, consider the Postnikov section X[n]
and assume that πnX is torsion free. Then we have the following H-fibration:

X[n] �� X[n − 2] �� K(πn−1X, n) × K(πnX, n + 1).
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Proof. Set G = πn−1X and H = πnX. We prove that the k-invariant
kn ∈ Hn+1(X[n−1]; H) factors through Hn+1(X[n−2]; H). Let us consider
the fibration

K(G, n − 1) → X[n − 1] → X[n − 2]

and the cofibration K(G, n−1)→X[n−1]→C. From Lemma 2.2 we deduce

that the H-map K(G, n− 1) → X[n− 1]
kn−→ K(H, n+1) is null-homotopic.

Therefore kn factors through a map C → K(H, n + 1). By Ganea’s
result [14] the fiber of the map C → X[n − 2] is the join K(G, n − 1) ∗
Ω(X[n − 2]). This is an n-connected space and because π2X is a torsion
group so is πn+1(K(G, n−1)∗Ω(X[n−2])) ∼= G⊗π2X. Thus K(H, n+1) is
a K(G, n−1)∗Ω(X[n−2])-local space, as we assume that H is torsion free.
From Dwyer’s version of Zabrodsky lemma [10, Proposition 3.5] we deduce
that kn factors through a map k : X[n − 2] → K(H, n + 1).

If kn−1 ∈ Hn(X[n − 2]; G) denotes the previous k-invariant, this means

that X[n] is the homotopy fiber of X[n− 2]
kn−1×k−−−−→ K(G, n)×K(H, n + 1),

the product map. �

3. Gaps in the primitives

This section contains the key cohomological result which makes the analysis
of the Serre spectral sequence possible. We notice first that there are gaps
in the mod 2 cohomology of Eilenberg-MacLane spaces and show then that
these gaps propagate in the cohomology of any Postnikov piece.

Definition 3.1. Let n ≥ 1. We set An = {a ∈ N, a odd | ν2(a) ≥ n + 1}
where ν2(a) is the 2-adic length of the integer a.

We will show that there are no indecomposable elements in the cohomolo-
gy of an n-stage Postnikov piece in degrees a ∈ An. To deduce that there are
no primitive elements either, we make use of the relationship provided by the
Milnor-Moore theorem [23, Proposition 4.21]: For a connected, associative,
and commutative Hopf algebra over F2, there is an exact sequence of graded
modules

0 �� P (ξH) �� PH �� QH,

where ξH is the image of the Frobenius map ξ : x �→ x2, QH is the module of
indecomposable elements and PH is the module of primitive elements of H .

Lemma 3.2. Let H be a finitely generated abelian group and n ≥ 2. Then

QaH∗(K(H, n); F2) = 0 = P aH∗(K(H, n); F2)

for all a ∈ An.
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Proof. When it is not trivial, the F2-algebra structure of H∗(K(H, n); F2)
is given by a polynomial algebra on generators of the form SqI

sun where I
runs over admissible sequences with excess e(I) < n, as we have recalled in
Theorem 2.1. Careful calculations show that these generators lie in degrees
1 + 2h1 + · · ·+ 2hn−1 where h1 ≥ · · · ≥ hn−1 ≥ 0 (see [27, Théorème 1, p. 212
and Théorème 2, p. 213]). The 2-adic length of these degrees is bounded
by n. This shows that there are no indecomposable elements in the de-
grees we claimed. These degrees being odd, there are no primitives either,
because the kernel of the map PH∗(K(H, n); F2) → QH∗(K(H, n); F2) is
concentrated in even degrees. �

The proof of the following lemma has been kindly communicated to us
by Richard Kane, [18].

Lemma 3.3. Let B be a connected, associative, and commutative Hopf alge-
bra of finite type over F2 and A a sub-Hopf algebra of B. Then the morphism
QA → QB is injective in odd degrees.

Proof. We work in degree 2n+1. Consider the Hopf subalgebra C of A, and
hence of B, generated by the elements in A of degree ≤ 2n. Then one has an
inclusion of quotient Hopf algebras A//C ↪→ B//C by [17, Corollary p.9].
Let x be an indecomposable element in QA of degree 2n + 1. It determines
a non-zero primitive element in P (A//C), hence in P (B//C). As the map
P (B//C) → Q(B//C) is injective in odd degrees, we see that the composite
QA → Q(B//C) is injective in degree 2n + 1. Therefore QA → QB must
be injective in degree 2n + 1 as well. �

Remark 3.4. The preceding lemma has a nice interpretation in terms of
André-Quillen homology, the derived functor of Q(−). It is proved in [6,
Proposition 1.3] that one has, in the setting of the lemma, an exact sequence
HQ

1 (B//A) → QA → QB → Q(B//A) → 0, a result dual to that of Bous-
field, [1, Theorem 3.6]. Moreover the graded F2-vector space HQ

1 (B//A) is
concentrated in even degrees.

We are now ready to prove that the gaps also appear in the cohomology
of any Postnikov piece. A good example to have in mind, in fact for the
more general situation of Proposition 7.2, is that of the Postnikov fibration
S3〈3〉 → S3 → K(Z, 3). Recall that H∗(S3〈3〉; F2) ∼= F[x4] ⊗ E(x5). In the
notation of the following proof, the polynomial algebra F[x4] = S and the
exterior algebra E(x5) = Λ.

Proposition 3.5. Let n ≥ 2 and X be a simply connected n-stage H-
Postnikov piece of finite type. Then QaH∗(X; F2) = 0 = P aH∗(X; F2) for
all a ∈ An.
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Proof. The proof goes by induction on n. We have the following H-fibration
given by the Postnikov tower of X:

X
p �� X[n − 1]

k �� K(πn(X), n + 1).

We rely on the analysis of the Eilenberg-Moore spectral sequence done
by Smith [28, Proposition 3.2]. One can identify the quotient Hopf al-
gebra R = H∗(X[n − 1]; F2)// ker p∗ via p∗ with a sub-Hopf algebra of
H∗(X; F2). The corresponding quotient H∗(X; F2)//R splits, as an al-
gebra, as a tensor product Λ ⊗ S, where S is a sub-Hopf algebra (and
a sub-A2-algebra) of H = H∗(K(πn(X), n); F2) and Λ is an exterior al-
gebra. Let K denote the (polynomial) Hopf algebra kernel of k∗. Its
generators which do not lie in the kernel of the cohomology suspension
H∗(K(πn(X), n + 1); F2) → H∗−1(K(πn(X), n); F2) –such as the generators
of maximal excess– correspond to the generators of the polynomial alge-
bra S, and the ones in the kernel correspond to generators of Λ, with a shift
by one of the degree.

Since Q(−) is right exact, we only have to prove that QR, QS, and QΛ
are trivial in degrees in An. First, QaH∗(X[n− 1]; F2) = 0 for any a ∈ An−1

by induction hypothesis and QH∗(X[n − 1]; F2) � QR is a surjection. We
conclude that QaR = 0 for any a ∈ An since An ⊂ An−1. Second, we ap-
ply the preceding lemma to the inclusion S ⊂ H and see that QS → QH
is a monomorphism in odd degrees. Therefore QaS = 0 for all a ∈ An by
Lemma 3.2. Finally we examine the generators of the exterior algebra Λ. Be-
cause the only relations in a Hopf algebra are of truncated polynomial type,
one sees that the degrees in which such generators lie are of the form 2n times
the degree of some generator of non-maximal excess in H∗(K(πn(X), n+1).
The same computation as in the proof of Lemma 3.2 shows then that the
2-adic length of such an element is smaller than n + 1. �

4. Transverse elements in Eilenberg-Mac Lane spaces

Now begins the study of the 2-torsion in Postnikov pieces. In this section
we deal with the first step of the induction, namely the analysis of the
case of Eilenberg-MacLane spaces. Recall that {B∗

r , dr} denote the mod 2
cohomology Bockstein spectral sequence of a space X.

Definition 4.1. Let n and r be two positive integers. An element x ∈ Bn
r

is said to be �-transverse if dr+lx
2l �= 0 ∈ B2ln

r+l for all 0 ≤ l ≤ �. An element
x ∈ Bn

r is said to be transverse if it is �-transverse for all � ≥ 0. We will also
speak of transverse implications of an element x ∈ Bn

r .
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Every transverse element gives rise to 2-torsion of arbitrarily high order
in the integral cohomology of X. This definition, introduced in [7], adapts
Browder’s “infinite implications” from [3] to our purpose. To us, the fact
that the elements die in increasing pages of the Bockstein spectral sequence
is crucial, whereas Browder was merely interested to know that the degrees
of the elements was increasing.

Our strategy for disproving the existence of a homology exponent for a
space will consist in exhibiting a transverse element in its mod 2 cohomology
Bockstein spectral sequence. Note that in principle the absence of transverse
elements does not imply the existence of an exponent for the 2-torsion part
in H∗(X; Z). An easy example if given by the infinite wedge ∨M(Z/2n, n).

In the special case of Eilenberg-Mac Lane spaces, we have the following
result, which follows from Cartan’s results [4] on the integral homology of
Eilenberg-Mac Lane spaces and careful bookkeeping in the Bockstein spec-
tral sequence.

Theorem 4.2. (Clément, [7, Theorem 1.3.2]) Let H be an abelian group of
finite type, whose 2-torsion part is thus of the form Z/2s1 ⊕ · · ·⊕Z/2sl, and
let n ≥ 2. Consider the Eilenberg-MacLane space K(H, n) and its mod 2
cohomology Bockstein spectral sequence {B∗

r , dr}. Suppose that one of the
following assumptions holds:

• n is even and x ∈ Bn
sj

is 0-transverse for some 1 ≤ j ≤ l,

• x ∈ P evenB∗
1 is 0-transverse (Sq1x �= 0).

Then x is transverse.

Note that the abelian group H is isomorphic to Z
s⊕Z/2s1⊕· · ·⊕Z/2sl⊕A,

where A is a 2′-torsion group, which is therefore invisible to the mod 2
Bockstein spectral sequence. Hence the first type of 0-transverse elements
correspond basically to the fundamental classes un introduced in Section 2,
one for each copy of Z/2sj (the fundamental classes coming from the copies
of Z survive to Bn

∞).

Remark 4.3. Theorem 4.2 tells us that very often a 0-transverse element
in the mod 2 cohomology of an Eilenberg-Mac Lane space is transverse
and thus detects higher and higher torsion in the integral cohomology. In
the cohomology of an arbitrary space though a 0-transverse element is not
always transverse. More precisely, the fact that x ∈ P evenH∗(X; F2) is such
that Sq1x �= 0 does not always force x to be transverse. A counter-example
is given by X = BSO and x = w2, the second Stiefel-Withney class in
H2(BSO; F2).
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From Theorem 4.2 it is not difficult to prove that there is no homology
exponent for most Eilenberg-MacLane spaces.

Proposition 4.4. Let H be a non-trivial 2-torsion abelian group and let
n ≥ 2. The Eilenberg-MacLane space K(H, n) has no homology exponent.

Proof. Accordingly to the Künneth formula, it is sufficient to establish
the result when H = Z/2s for some s ≥ 1. If n is even, consider the
reduction of the fundamental class un ∈ Hn(K(Z/2s, n); F2). This class sur-
vives to Bn

s and is 0-transverse. Then un ∈ Bn
s is transverse. If n is odd,

consider the admissible sequence (2, 1). Its excess is exactly 1 and there-
fore Sq2,1

s un ∈ P evenH∗(K(Z/2s, n); F2) when n ≥ 3. Moreover we have
Sq1Sq2,1

s un = Sq3,1
s un by Adem relations, which means that Sq2,1

s un is 0-
transverse. Hence Sq2,1

s un ∈ Bn+3
1 is transverse. �

Proposition 4.5. Let H be a finitely generated abelian group and n ≥ 4.
The Eilenberg-MacLane space K(H, n) is then either mod 2 acyclic, or has
no homology exponent.

Proof. By the Künneth formula and Proposition 4.4, it is sufficient to
analyze the case H = Z. Consider the reduction of the fundamental class
un ∈ Hn(K(Z, n); F2). If n is even, then Sq2un is transverse. If n is odd,
then Sq6,3un is transverse. �

5. Transverse elements in Postnikov pieces

We are now ready to prove our main result: Most Postnikov pieces do not
have a homology exponent. The strategy to prove this relies on the crucial
observation that the transverse implications of certain element in the coho-
mology of the total space of a fibration can be read in the cohomology of
the fibre.

Lemma 5.1. Let j : F → X be a continuous map. If x ∈ H∗(X; F2) is such
that j∗(x) �= 0 ∈ H∗(F ; F2) is transverse, then x itself is transverse.

Proof. It follows from the naturality of the Bockstein spectral sequence.�

Theorem 5.2. Let X be an H-space of finite type which admits a homology
exponent. Then either X is, up to 2-completion, a product of spaces of the
form BZ/2r, S1, CP∞ and K(Z, 3), or X admits infinitely many non-trivial
k-invariants and homotopy groups.
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Proof. Let us assume that X is a Postnikov piece. By Proposition 1.4,
there is an H-fibration of the form

Y �� X �� Bπ1X × K(Zr, 2),

where Y is a simply connected H-space of finite type such that π2Y is a
torsion abelian group. Moreover, Y admits a homology exponent. It is also
clearly a Postnikov piece. Let us show that Y is, up to 2-completion, a
product of copies of K(Z, 3). By Proposition 1.2, this will imply that X
itself splits as the announced product.

Assume that πnY = H is the highest non-trivial homotopy group of Y ,
up to 2-completion. If n = 2, since π2Y is a torsion abelian group, we deduce
from Proposition 4.4 that H is 2′-torsion. In other words Y ∧

2 is contractible.
We can therefore assume that n ≥ 3. The space Y fits into the fibration
sequence

K(H, n)
j �� Y

i �� Y [n − 1]
k �� K(H, n + 1),

where k denotes the last k-invariant. We analyze the situation in two steps,
depending on the presence of 2-torsion in H .

Let us first assume that H contains 2-torsion, let us say ⊕bZ/2tb . Choose
an index b and consider the projection π : H → Z/2tb on the corresponding
cyclic subgroup. Pick vn ∈ Hn(K(H, n); F2), the image via π∗ of the class
un ∈ Hn(K(Z/2tb , n); F2).

Set ξ = (2n−1 − 2, 2n−2 − 1, 2n−3 − 1, . . . , 3, 1). The degree deg(Sqξ
t vn) =

2n − 2 is even and Sq1Sqξ
t vn �= 0 since e(ξ) = n − 2. By Theorem 4.2, the

element Sqξ
t vn is transverse. Since Y is an H-space and the k-invariant is an

H-map, the element dn+1vn is primitive, and so is d2n−1Sqξ
t vn = Sqξ

t dn+1vn ∈
P 2n−1H∗(Y [n−1]; F2). By Proposition 3.5, P 2n−1H∗(Y [n−1]; F2) = 0 since
2n − 1 ∈ An−1. Therefore, Sqξ

t vn survives in the Serre spectral sequence
and by the previous lemma, H∗(Y ; F2) contains a transverse element. In
particular it has no homology exponent.

Hence, H must be 2-torsion free and is thus isomorphic to Zs ⊕A, where
A is a torsion group, for some s ≥ 1. By Proposition 2.3, Y fits in the
following H-fibration:

K(H, n) × K(πn−1Y, n − 1) �� Y �� Y [n − 2].

Choose now vn ∈ Hn(K(H, n); F2) to be the image of the fundamental class
un ∈ Hn(K(Z, n); F2) given by projection on the first copy of Z in H .

If n ≥ 4, then set

η = (2n−2 + 2n−3 − 2, 2n−3 + 2n−4 − 1, 2n−4 + 2n−5 − 1, . . . , 5, 2).
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The degree deg(Sqηvn) = 2n−1 + 2n−2 − 2 is even and Sq1Sqηvn �= 0 since
e(η) = n − 2. Thus Sqηvn is transverse and survives in the Serre spectral
sequence of the above fibration since 2n−1 + 2n−2 − 1 ∈ An−2. In this case,
H∗(Y ; F2) contains a transverse element and has no homology exponent.

Therefore, n = 3 and Y 
 K(H, 3) × K(π2Y, 2). Since Y admits a ho-
mology exponent, the torsion group π2Y is trivial and H is torsion free. �

The proof of the theorem predicts explicit degrees in which to find higher
and higher torsion in the integral cohomology of the space.

Corollary 5.3. Let X be a simply connected H-Postnikov piece of finite
type, say X 
 X[n]. Assume that π2X is torsion and that X is not equivalent
up to 2-completion to a product of copies of K(Z, 3). Then, for any integer
k, there is a copy of Z/2k in H∗(X; Z)

(1) in degree 2k(2n − 2) if πnX contains 2-torsion,

(2) in degree 2k(2n−1 + 2n − 2 − 2) if not.

Proof. Since X is different from K(Zm, 3), we know from Theorem 5.2
that X has no exponent. The higher and higher torsion is detected by the
consecutive powers of the elements Sqξvn and Sqηvn constructed in the above
proof. �

Any finite H-space has obviously a homology exponent. Our second
corollary applies to its Postnikov sections. As soon as it has at least two
homotopy groups, it cannot have a homology exponent.

Corollary 5.4. Let X be a simply connected finite H-space and n ≥ 3.
Then X[n] has a homology exponent if and only if X[n] 
 X[3] 
 K(Zr, 3)
for some r ≥ 0.

Proof. The fact that the H-space X is finite and simply connected forces
it to be 2-connected, [3, Theorem 6.10]. Moreover, π3X ∼= Zr for some inte-
ger r, by work of Hubbuck and Kane, [16]. The result now follows directly
from Theorem 5.2. �

This corollary applies in particular to S3. The third Postnikov section
S3[3] 
 K(Z, 3) has a homology exponent, but all higher Postnikov sections
X[n], n ≥ 4, have none. The following proof of a result obtained by Levi
in [20] is, to our knowledge, the first one not based on Miller’s solution of
the Sullivan’s conjecture [22]. Let us mention in this context the work of
Klaus, [19], who proves the statement about the k-invariants for BG∧

2 , not
for the loop space.
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Corollary 5.5. Let G be a 2-perfect finite group. Then Ω(BG∧
2 ) has infi-

nitely many non-trivial k-invariants and homotopy groups.

Proof. Suppose BG∧
2 is a Postnikov piece. Following Levi [20], there is a

homology exponent for Ω(BG∧
2 ) and therefore this space has to be a prod-

uct of copies of BZ/2r, S1, CP∞ or K(Z, 3). Since Ω(BG∧
2 ) has torsion

homotopy groups, the only copies that can occur are of the form BZ/2r.
Thus BG∧

2 
 K(A, 2), where A is a 2-torsion abelian group. By the Evens-
Venkov theorem, [11], H∗(BG∧

2 ; F2) is Noetherian. Hence A is trivial, and
so is BG∧

2 . �

6. Comparison with other forms of Serre’s theorem

In this section we compare our theorem to the other results we mentioned
in the introduction. We show that the existence of a homology exponent is
stronger than all previously established criteria, except possibly [12], which
seems difficult to relate directly to cohomological statements. Therefore,
when X is an H-space, our result provides new proofs of those. They are
very different in spirit, since they do not require the Sullivan conjecture. For
simplicity we deal here with simply connected spaces.

Proposition 6.1. Let X be a simply connected H-Postnikov piece. Then

(1) (Serre [27]) H∗(X; F2) is not finite,

(2) (Lannes-Schwartz [21]) H∗(X; F2) is not locally finite,

(3) there exists an element of infinite height in H∗(X; F2),

(4) (Grodal [15]) the transcendence degree of H∗(X; F2) is infinite unless
X is homotopy equivalent, up to 2-completion, to K(Z, 2)s,

(5) (Dwyer-Wilkerson [9]) the unstable module QH∗(X; F2) is not locally
finite unless X is homotopy equivalent, up to 2-completion, to K(Z, 2)s.

Proof. Notice first that K(Z, 2) and K(Z, 3) satisfy (1)–(5). Assume now
that X is a Postnikov piece, say X 
 X[n]. In the proof of Theorem 5.2 we
first considered the covering fibration (S1)r → Y → X. The map Y → X
induces isomorphisms in homology in high degrees. We can therefore as-
sume that π2X is torsion. Our proof then provides a transverse element
x ∈ H∗(X; F2) in even degree whose image in H∗(K(πnX, n)) is a trans-
verse element of the form SqI

t un for some admissible sequence (i1, . . . , im).
In particular all powers x2k

are non-zero, which proves (1), (2), and (3).
Moreover the elements x, Sq2i1x, Sq4i1,2i1x, . . . are non-zero, indecompos-
able, and algebraically independent because so are the corresponding images
in H∗(K(πnX, n)). This proves (4) and (5). �
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7. Cohomological finiteness conditions

The strategy we followed to analyze the integral homology of Postnikov
pieces can be applied in a more general context. We work in this last section
with simply connected H-spaces X such that H∗(X; F2) is finitely generated
as an algebra over the Steenrod algebra. This section relies on Miller’s
Theorem [22]. As it may be considered thus as less elementary than the
part about Postnikov pieces, we have decided to postpone it till the end of
the article.

From the assumption on the mod 2 cohomology, by [5, Lemma 7.1] we
infer that there exists an integer n such that the module QH∗(X; F2) of
indecomposable elements lies in the (n − 1)-st stage of the Krull filtration
for unstable modules, [25]. Therefore there exists by [5, Theorem 7.3] a
simply connected H-space Y = PBZ/2X with finite mod 2 cohomology and
a series of principal H-fibrations

X = Xn
pn−→ Xn−1 → · · · → X1

p1−→ X0 = Y

of simply connected spaces such that the homotopy fiber of pi is an Eilenberg-
MacLane space K(Pi, i), where Pi splits as a product of a finite direct sum
P ′

i of cyclic groups Z/2r and a finite direct sum P ′′
i of Prüfer groups Z2∞ .

Let us recall here that Xk is obtained as the ΣkBZ/p-nullification of X
(the above tower is Bousfield’s nullification tower, [2]). Since K(Z2∞ , i) and
K(Z, i+1) are mod 2 equivalent, we alter slightly the way in which the Pi’s
are added to Y in order to work in a more familiar setting. Then we can
recover X from the tower

X = Yn
qn−→ Yn−1 → · · · → Y1

q1−→ Y0 = Y

of simply connected spaces and principal H-fibrations, where the homotopy
fiber of qi is the product of Eilenberg-MacLane spaces K(P ′

i+1, i + 1) ×
K(P ′′

i , i).
Notice that Q1 = P ′

1 is trivial because we assume that X is simply
connected (Y ∧

2 is therefore 2-connected, [3]). We have a splitting result, just
like in Proposition 2.3.

Lemma 7.1. Let X be a simply connected H-space such that H∗(X; F2) is
finitely generated as an algebra over the Steenrod algebra. Assume that π2X

∧
2

is torsion. Then there is an H-fibration

X �� Yn−2
�� K(P ′′

n+1 ⊕ P ′
n+1, n + 1) × K(P ′′

n , n).

Proof. The proof is based on the Zabrodsky lemma, as in Proposition 2.3. �
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Our next result is the analog in the present setting of Proposition 3.5.
Recall from Section 3 that the set An consists in those integers for which
the 2-adic length is strictly larger than n.

Proposition 7.2. Let X be a simply connected H-space such that H∗(X; F2)
is finitely generated as an algebra over the Steenrod algebra. There exists
then integers m and N such that QaH∗(X; F2) = 0 = P aH∗(X; F2) for all
a ∈ An with a ≥ N .

Proof. The integer m is determined by the stage of the Krull filtration in
which QH∗(X; F2) lives, i.e. by the degrees in which the homotopy groups
of the homotopy fiber of X → PBZ/2X = Y are non-trivial. With the above
notation, m = n if P ′′

n is trivial, and m = n + 1 if P ′′
n is not. The proof

goes then by induction on m. When m = 0, choose N to be larger than the
cohomological dimension of Y . The proof of Proposition 3.5 goes through. �

Lemma 7.3. Let X be a simply connected H-space which fits, up to 2-
completion, in an H-fibration of the form

K(⊕tZ, 2) �� X �� Y

where H∗(Y ; F2) is finite. Then X has no homology exponent unless the
fibration splits up to 2-completion, i.e X 
∧

2 Y × K(⊕tZ, 2).

Proof. Let us omit the 2-completions in the proof and write the details of
the proof when t = 1. By the result of Hubbuck and Kane, [16], π3Y is
isomorphic to a direct sum of say s copies of Z. The map classifying the
fibration factors through Y [3] 
 K(⊕sZ, 3) → K(Z, 3). The E2-term of
the Serre spectral sequence has the form Z[u] ⊗ H∗(Y ; Z), where u has de-
gree 2 and the cohomology of Y is of finite dimension N , and of exponent 2a

for some integer a. The differential d3(u) = x for some non-zero element
x ∈ H3(Y ; Z) ∼= ⊕sZ. Therefore d3(u

n) = nx⊗ un−1. At worst d3(x⊗ un−1)
is non-zero and then hits a torsion element, of order at most 2a. Hence, on
the third column of the E4-term, we have a group covering Z/2n−a in vertical
degree 2n. From the finiteness of Y we see that the spectral sequence col-
lapses at EN−3. An iteration of the above argument shows therefore that the
third column of the E∞-term contains a group covering Z/2n−(N−5)a in verti-
cal degree 2n, for any n ≥ 1. In particular there is arbitrarily high torsion in
H∗(X; Z). Therefore, for X to have an exponent, the fibration must split. �

Remark 7.4. We point out that the preceding lemma provides simple ex-
amples of fibrations, such as K(Z, 2) → S3〈3〉 → S3, where both the fiber
and the base have an exponent, but the total space has none.
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Theorem 7.5. Let X be a simply connected H-space of finite type such
that H∗(X; F2) is finitely generated as an algebra over the Steenrod algebra.
Assume that X admits a homology exponent. Then X is, up to 2-completion,
the product of a mod 2 finite H-space Y with copies of K(Z, 2) and K(Z, 3).

Proof. We follow the proof of Theorem 5.2. Let us thus assume that X
admits a homology exponent. By killing the copies of Z in π2X just like
in Proposition 1.4, we can assume that π2X

∧
2 is torsion. We also see by

inspection of the tower that π2(Yi)
∧
2 is torsion for any i ≥ 0. Therefore the

splitting in Lemma 7.1 holds and we work with a fibration

K(P ′′
n ⊕ P ′

n, n) × K(P ′′
n−1, n − 1) �� X �� Yn−2.

If P ′
n �= 0, it must contain a copy of Z/2r as direct summand. Choose a power

of the corresponding element Sqξ
t vn, of degree larger than the integer N given

in Proposition 7.2. From the Serre spectral sequence for the above fibration
we see that this provides a transverse element in H∗(X; F2). Therefore
P ′

n = 0 (and so P ′′
n is not trivial).

If n ≥ 3 we choose a copy of Z2∞ in P ′′
n and a suitable power of the

corresponding element Sqηvn to detect a transverse element in H∗(X; F2).
Since we assume that X has a homology exponent, we see that n ≤ 2, i.e. X
is the homotopy fiber of a map k : Y → K(P ′′

1 , 2) × K(P ′′
2 , 3). To conclude

the proof we must show that this map is trivial.
The mod 2 cohomology of the H-space Y is finite. Rationally it is thus

a product of odd dimensional spheres and, in particular, π4Y
∧
2 is torsion.

This implies that the projection of k on the second factor Y → K(P ′′
2 , 3)

is the trivial map, up to 2-completion. Hence the copies of K(Z∧
2 , 3) split

off X∧
2 . We are left with the analysis of a fibration X −→ Y −→ K(P ′′

1 , 2).
If the map Y → K(P ′′

1 , 2) is not trivial, we conclude from Lemma 7.3 that
X cannot have a homology exponent. Hence, the fibration must split and
this concludes the proof. �
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