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Reflections of regular maps
and Riemann surfaces

Adnan Melekoğlu and David Singerman

Abstract

A compact Riemann surface of genus g is called an M-surface if
it admits an anti-conformal involution that fixes g + 1 simple closed
curves, the maximum number by Harnack’s Theorem. Underlying
every map on an orientable surface there is a Riemann surface and
so the conclusions of Harnack’s theorem still apply. Here we show
that for each genus g > 1 there is a unique M-surface of genus g that
underlies a regular map, and we prove a similar result for Riemann
surfaces admitting anti-conformal involutions that fix g curves.

1. Introduction

A regular map is said to be reflexible if it admits a reflection, that is, an
orientation-reversing automorphism of order two that has a non-empty fixed-
point set. (Maps and regular maps are described in Section 4.) There is
much work in the literature on the question of whether a given regular map
is reflexible, (see [8], chapter 8) but there is little work related to the nature
of the fixed-point set of a reflection of a regular map. Underlying every map
on a surface there is a Riemann surface, which is defined in such a way that
every automorphism of the map is a conformal automorphism of the corre-
sponding Riemann surface. Thus when we study reflexible maps we should
consider Riemann surfaces that admit an anti-conformal involution. Follow-
ing a tradition that goes back to Klein [13], we call such transformations
symmetries. Whereas compact Riemann surfaces correspond to complex
algebraic curves, the symmetric Riemann surfaces correspond to real alge-
braic curves, the fixed-point set of the symmetry being the real circuits of
the curve.
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By a classical theorem of Harnack the fixed-point set of a symmetry
of a compact Riemann surface of genus g > 1 consists of at most g + 1
simple closed curves, or mirrors as we shall call them. A Riemann surface
of genus g that admits a symmetry with g + 1 mirrors is called an M-
surface, and if it admits a symmetry with g mirrors then it is called an
(M–1)-surface. A Riemann surface that underlies a regular map is called a
Platonic surface. In this case, by Bely̆ı’s theorem the corresponding algebraic
curve is defined over the field of algebraic numbers. The main results of this
paper will uniquely characterise the Platonic M-surfaces and the Platonic
(M–1)-surfaces. These turn out to be Riemann surfaces that are already
well-known from the study of Riemann surfaces with large automorphism
groups and are the Accola-Maclachlan surfaces, (in the case of M-surfaces)
and the Wiman surfaces of type II (in the case of (M–1)-surfaces.) In this
way, we find the reflexible maps that admit reflections fixing g+1 or g closed
curves.

2. Non-Euclidean Crystallographic Groups

A discrete group of sense-preserving isometries of the hyperbolic plane U
is called a Fuchsian group. A discrete group of isometries of the hyper-
bolic plane which might include sense-reversing isometries is called a non-
Euclidean crystallographic (NEC ) group. An NEC group which is not Fuch-
sian is called a proper NEC group. The subgroup of an NEC group Γ
consisting of orientation-preserving transformations is called the canonical
Fuchsian group of Γ and it is denoted by Γ+. All NEC groups Γ in this
paper will be assumed to be cocompact, (which means that the quotient
space U/Γ is compact.) If X is a Riemann surface of genus g > 1 then it can
be expressed in the form U/K, where K is a torsion-free Fuchsian group.
Any group G of conformal homeomorphisms of X (that may include sense-
reversing automorphisms) may then be lifted to an NEC group Γ acting on
U , while if G only contains sense-preserving automorphisms then Γ is Fuch-
sian. In either case there is a smooth homomorphism θ : Γ → G whose kernel
is K, where by smooth we mean that θ preserves the orders of elements of
finite order; equivalently K is torsion-free. The structure of NEC groups is
described in [3], [17] and [24]. For completeness we describe the structure
of such groups. The signature of an NEC group is defined to be

(2.1) (g;±; [m1, m2, . . . , mr]; {(n11, . . . , n1s1), . . . , (nk1, . . . , nksk
)}).

The algebraic and geometric structure of an NEC group is completely deter-
mined by its signature. If ∆ is an NEC group with signature (2.1), then U/∆
is a compact surface of genus g with k holes. The surface is orientable if +
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sign is used and non-orientable if − sign is used. The integers m1, m2, . . . , mr

are called the proper periods and represent the branching over interior points
of U/∆ in the natural projection from U to U/∆. The brackets (ni1, . . . , nisi

)
are the period cycles and the integers ni1, . . . , nisi

are called the link periods
and they represent the branching around the ith hole. Now let us describe
the presentation of a group with signature (2.1). If the + sign is used, it has
generators

(i) x1, . . . , xr (elliptic elements),

(ii) c10, . . . , c1s1 , . . . , ck0, . . . , cksk
(reflections),

(iii) e1, . . . , ek (usually hyperbolic elements but sometimes elliptic),

(iv) a1, b1, . . . , ag, bg (hyperbolic elements),

and relations

(a) xmi
i = 1, for i = 1, . . . , r,

(b) c2
i,j−1 = c2

ij = (ci,j−1cij)
nij = 1, for i = 1, . . . , k and j = 1, . . . , si,

(c) e−1
i ci0ei = cisi

for i = 1, . . . , k,

(d) x1x2 . . . xre1e2 . . . eka1b1a
−1
1 b−1

1 . . . agbga
−1
g b−1

g = 1.

If there is − sign in the signature we replace (iv) by

(iv)′ a1, . . . , ag (glide reflections), and (d) by

(d)′ x1x2 . . . xre1e2 . . . eka
2
1a

2
2 . . . a2

g = 1.

In this paper we shall often be considering triangle groups. An NEC tri-
angle group is a group of signature (0; +; [ ]; {(l, m, n)}) which we say is the
NEC triangle group Γ∗(l, m, n). It is the group generated by the reflections
in the sides of a triangle with angles π/l, π/m and π/n. The subgroup of
index two of this group consisting of orientation-preserving isometries has
signature (0; +; [l, m, n]; { }) is the Fuchsian triangle group Γ[l, m, n]. We
will need some results on inclusions of Fuchsian and NEC groups.

Lemma 2.1 [24] If l, m, n are three distinct integers ≥ 2 then the only NEC
group that contains Γ[l, m, n] is Γ∗(l, m, n). If two or more of l, m, n are equal
(say l=m) then also the NEC group of signature (0; +; [m]; {(n)}) contains
Γ[m, m, n]. In both cases the index of the inclusion is equal to 2.

Lemma 2.2 [22] Γ[m, m, n] < Γ[2, m, 2n] with index 2.
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3. Symmetries of Riemann Surfaces

An automorphism of a Riemann surface X is a conformal or anti-conformal
homeomorphism of X onto itself. The automorphisms of X form a group
under the composition of maps which is denoted by AutX and the subgroup
of index one or two consisting of conformal automorphisms is denoted by
Aut+X.

A Riemann surface X is called symmetric if it admits an anti-conformal
involution T : X → X and such an involution is called a symmetry. If T has
no fixed-point, then it is called an antipodal symmetry, otherwise it is called
a reflective symmetry. The fixed-point set of T consists of disjoint simple
closed curves on X and these curves are called the mirrors of T .

The basic results concerning symmetries of compact Riemann surfaces
go back to Harnack [9] in 1876 and a useful account of the 19th century
work on the subject may be found in part III of Klein’s classic book “On
Riemann’s theory of algebraic functions and their integrals” [13]. Let X be a
compact Riemann surface of genus g and T : X → X be a symmetry. Thus,
T is anti-conformal and T 2 = I. Let 〈T 〉 denote the cyclic group of order
two generated by T and F (T ) the fixed-point set of T . The classical results
may be stated as follows.

Theorem 3.1 (i) F (T ) consists of k mirrors, where 0 ≤ k ≤ g + 1.

(ii) X − F (T ) consists of one component if X/〈T 〉 is non-orientable and
two components if X/〈T 〉 is orientable.

(iii) If X − F (T ) consists of two components, then g − k is odd.

Let X be Riemann surface of genus g > 1 and T : X → X a symmetry
of X. If T has g+1 mirrors, then it is called an M-symmetry, and in this case
X is called an M-surface. Similarly, if T has g mirrors, then it is called an
(M–1)-symmetry, and X is called an (M–1)-surface. A Riemann surface X
is called hyperelliptic if it admits a conformal involution J such that X/〈J〉
has genus 0. Equivalently, J has 2g + 2 fixed-points.

We now give the following theorems which appear in Natanzon [19], [20]
and [21], and also Bujalance and Costa [5].

Theorem 3.2 Let X be an M-surface. If X is non-hyperelliptic then

(i) X admits exactly one M-symmetry,

(ii) AutX = C2 × Aut+X, where C2 is generated by the M-symmetry and
Aut+X is isomorphic to a finite subgroup of the group of isometries of
the sphere.

If X is hyperelliptic then X admits exactly two M-symmetries and their
product is the hyperelliptic involution.
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Theorem 3.3 Let X be an (M–1)-surface of genus g > 2. If X is non-
hyperelliptic then

(i) X admits exactly one (M–1)-symmetry,

(ii) AutX = C2 × Aut+X, where C2 is generated by the (M–1)-symmetry
and Aut+X is isomorphic to a finite subgroup of the group of isometries
of the sphere.

If X is hyperelliptic then X admits exactly two (M–1)-symmetries and their
product is the hyperelliptic involution.

We shall also need the following concept.

Definition 3.1 Let Γ be an NEC group and G a finite group. A homo-
morphism θ : Γ → G is called admissible if the kernel of θ is a torsion-free
Fuchsian group K with compact quotient space.

Then X = U/K is a Riemann surface of genus g and G is a subgroup
of AutX. The following properties of admissible homomorphisms are given
in [4]:

(i) If g ∈ Γ has order n, then θ(g) has order n in G,

(ii) g ∈ Γ+ if and only if θ(g) ∈ Aut+X,

(iii) If c ∈ Γ is a reflection, then θ(c) is a reflective symmetry.

(Note that being admissible is stronger than just being smooth as we require
the kernel to consist of orientation-preserving isometries).

4. Maps and Regular maps

Definition 4.1 A map M is an embedding of a finite graph G into a sur-
face X such that the components of X − G, which are called faces of M,
are polygonal 2-cells.

We shall require X to be compact, connected, orientable and without
boundary. Also we shall require that every edge ofM has one or two vertices.
The genus of M is defined to be the genus of the underlying surface X.

We define a dart to be a pair, consisting of a vertex v and an edge
directed towards v. An edge may be homeomorphic to the closed interval
[0, 1] or to a circle S1 and in the latter case it is called a loop. In the first
case it is usual for the edge to have two vertices and two darts. However,
we sometimes require the edge only to have just one vertex and one dart as
illustrated as c in Figure 1. Such an edge is called a free edge. (For more
details see [12].) In this paper our maps will not contain loops and except in
one important case, not contain free edges. Since X has no boundary, each
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dart has two sides which are called blades. In Figure 1, a is an edge with
two darts, b is a blade, c is a free edge and d is a loop.
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Figure 1

Let X be a Riemann surface of genus g > 1 and M be a map on X.
An automorphism of M is a homeomorphism of X which leaves the map
invariant and preserves incidence and every such automorphism also gives
an automorphism of the Riemann surface X, see [12]. The automorphisms
of M form a group, called the automorphism group of M, which we shall
denote by AutM. We shall denote the subgroup of AutM consisting of
orientation-preserving elements by Aut+M. We say that M is regular if
Aut+M is transitive on the darts. If M admits an involution C which fixes
the mid-point of an edge and interchanges the two darts of the edge without
interchanging the two neighbouring faces, then M is called reflexible and
C is called a reflection. It is easy to see that M is reflexible if and only if
AutM is transitive on the blades. In general a map is said to be of type
{m, n} if m is the least common multiple of the vertex valencies and n is
the least common multiple of the face sizes, so that a regular map of type
{m, n} has all vertex valencies equal to m and all face sizes equal to n.

The automorphism group of a reflexible regular map M of type {m, n}
gives a group of automorphisms of the underlying surface X that lifts to an
NEC triangle group of signature (0; +; [ ]; {(2, m, n)}) with presentation

(4.1) 〈a, b, c | a2 = b2 = c2 = (ab)2 = (bc)m = (ca)n = 1〉
and AutM is a smooth homomorphic image of this group. If this homo-
morphism is given by a �→ A, b �→ B, c �→ C then the group of conformal
automorphisms of M, Aut+M, can be generated by BC = R and CA = S
which obey

Rm = Sn = (RS)2 = I,

where R is an anticlockwise rotation about a vertex and S is an anticlockwise
rotation about a face-centre.

In [12] it was shown that if M is a map of type {m, n} on a Riemann
surface X, then X is uniformized by a subgroup M of a triangle group Γ
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with signature (0; +; [2, m, n]; { }). The relationship between M and M is
as follows. On U there lies the universal tessellation M̂ of type {m, n} in
which every vertex has valency m and every face is a regular n-gon. The
group Γ acts on M̂ as a group of automorphisms, and hence so does M . We
then have M̂/M is a map on the Riemann surface U/M which is isomorphic
to M. Moreover, M is regular if and only if M � Γ. We call M the map
subgroup of M.

Definition 4.2 A compact Riemann surface X is called Platonic if X =
U/K, where K is a normal subgroup of a triangle group with signature
(0; +; [2, m, n]; { }).

In future work we shall undertake a more detailed study of Platonic
surfaces. For now, we just note that a Riemann surface that underlies a
regular map is Platonic as are many well-known families of Riemann surfaces
such as those that admit a Hurwitz group of automorphisms, and the Accola-
Maclachlaclan and Wiman surfaces as we show in §5.

If M is a reflexible regular map, then the underlying Riemann sur-
face X = U/K is symmetric and K is normal in the NEC triangle group
Γ∗(2, m, n). However, if X is symmetric, then M is not necessarily re-
flexible. If m = n, then by Lemma 2.1 there are two NEC groups which
contain Γ[2, m, m] with index 2, namely Γ∗(2, m, m) and the group of sig-
nature (0; +; [m]; {(2)}). Let Γ∗

1 and Γ∗
2 be the NEC groups with the above

signatures respectively. If K is normal in Γ∗
2 and not in Γ∗

1, then M is not
reflexible but X is symmetric. However, if m �= n, then X is symmetric if
and only if M is reflexible. See [23] for more details.

A map M of genus g > 1 is said to be hyperelliptic if there is an auto-
morphism j of M such that j2 = 1 and M/〈j〉 is isomorphic to a map on
the sphere. The following theorem is given in [25].

Theorem 4.1 Let M be a regular map with underlying Riemann surface X.
Then M is hyperelliptic if and only if X is hyperelliptic.

If M is a hyperelliptic map of genus g > 1, then M has an automorphism
j of order 2 such that M/〈j〉 is a map on the sphere. The automorphism j is
orientation-preserving and fixes 2g+2 points which can only be the vertices,
the edge-centres or the face-centres of M. Let M be of type {m, n}. If j
fixes only the face-centres of M, then M/〈j〉 will be a regular map of type
{m, n

2
} on the sphere. Note that unless n is even j cannot fix the face-centres

of M. Similarly, if j fixes only the vertices of M, then M/〈j〉 is a regular
map of type {m

2
, n} on the sphere and in this case m must be even.

We call a map on the sphere an m-star map if it consists of a single
vertex v and m free edges incident with v. Let M� be an m-star map.
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Obviously, M� has a single face which can be regarded as an m-gon and
Aut+M� is isomorphic to Cm, the cyclic group of order m.

Let M be a hyperelliptic map of genus g > 1 and j : M → M the
hyperelliptic involution. If M/〈j〉 is an m-star map on the sphere for some
m then we call M a double-star map. Note that unless j fixes the edge-
centres of M, M/〈j〉 is never an m-star map on the sphere.

5. Accola-Maclachlan and Wiman surfaces

Let g > 1 be an integer and µ(g) be the maximum number of conformal
automorphisms of all Riemann surfaces of genus g. Then it is known that
µ(g) ≤ 84(g−1) and this upper bound is attained for infinitely many g > 1,
see Macbeath [16]. If X = U/K is a Riemann surface of genus g > 1 with
|Aut+X| = 84(g−1), then Aut+X is called a Hurwitz group and in this case
Aut+X 	 Γ/K and Γ is a Fuchsian triangle group Γ[2, 3, 7]. It was shown
independently by Accola [1] and Maclachlan [18] that µ(g) ≥ 8(g + 1) and
for every g ≥ 2 there is a Riemann surface of genus g with 8(g+1) conformal
automorphisms. These surfaces are known as Accola-Maclachlan surfaces.

The Accola-Maclachlan surfaces are constructed as follows. Consider the
map on the Riemann sphere that has vertices at the (2g + 2)th roots of 1
and edges joining these vertices along the equator. Such a map is called a
regular dihedron. This is a regular map on the sphere with 2g + 2 vertices,
2g + 2 edges and 2 faces. Consider the two sheeted covering of this map
with branch points at the vertices. We thus have a regular map with 2g + 2
vertices, 4g + 4 edges and 4 faces and by the Euler-Poincaré formula, the
underlying surface has genus g. We call this map the Accola-Maclachlan
map. The automorphism group of the above regular dihedron is isomorphic
to D2g+2 and so has order 4g +4, and thus the number of automorphisms of
the two-sheeted cover is 8g + 8. The Riemann surface X that underlies this
map is the Accola-Maclachlan surface and we see that for every genus g both
this surface and map admit 8g+8 (conformal) automorphisms showing that
the lower bound for µ(g) is always attained. As every vertex of the map has
valency 4, and every face is a (2g + 2)-gon the Accola-Machlachlan surface
is a Platonic surface uniformised by a normal subgroup of index 8g + 8 in
the triangle group Γ[2, 4, 2g + 2] . If R is the rotation of order 4 that fixes
the 2g + 2 vertices then by construction R2 is the hyperelliptic involution
and hence central in AutX. Thus we get the following presentation for
the conformal automorphism group of X and the Accola-Maclachlan map
underlying X:

(5.1) 〈R, S |R4 = S2g+2 = (RS)2 = (R−1S)2 = I〉.
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If we factor out Aut+X by the cyclic group of order 2 generated by R2 we
get D2g+2 as expected.

From the question “which Riemann surfaces admit automorphisms of
the largest order” we get other classes of Platonic surfaces of interest to us.
According to a classical theorem of Wiman [26] the largest possible order
of an automorphism of a Riemann surface of genus g is 4g + 2 and the
second largest possible order is 4g. (Also, see [10].) These are obtained as
kernels of smooth homomorphisms of the triangle groups Γ[2, 2g + 1, 4g + 2]
and Γ[2, 4g, 4g] onto C4g+2 and C4g, respectively and thus these surfaces are
Platonic. Following Kulkarni [14, 15] we call these surfaces Wiman surfaces
of types I and II, respectively.

Let X1 and X2 be the Wiman surfaces of type I and II, respectively.
Then Aut+X1 	 C4g+2, where g > 1 is the genus of X1. However, C4g is
a subgroup of Aut+X2 with index 2. This comes from the inclusion rela-
tionship Γ[2, 4g, 4g] < Γ[2, 4, 4g] of Lemma 2.2 and we can then show that
Aut+X2 has a presentation

(5.2) 〈x, y | x2 = y4g = 1, xyx−1 = y2g−1〉

where g > 2 is the genus of X2. See Kulkarni [15].

6. Double-star maps and the Wiman and Accola-Mac-

lachlan surfaces

In this section we shall see that the regular maps that are underlied by the
Accola-Maclachlan and Wiman surfaces are double-star maps as defined at
the end of §4. We first note the following facts. As the automorphism group
of the m-star map is isomorphic to Cm and as the hyperelliptic involution
is central, the automorphism group of a double m-star map is isomorphic
to either C2 ×Cm, or to C2m. Secondly, (and this applies to all two-sheeted
covers) if a vertex of valency k is the image of a branch point there are either
two vertices of valency k, or, in the case when this vertex is the image of
a branch point, one vertex of valency 2k. Thus, when we consider the case
where the vertex is the image of a branch-point we go from smooth homo-
morphisms of Γ[2, k, u] → G to smooth homomorphisms of Γ[2, 2k, u] → Ĝ
where |Ĝ| = 2|G|. If the face-centre was also the image of a branch-point we
would replace u by 2u. Now if the edge-centres were images of branch-points
then the period 2 would double to a period 4 and so the two-sheeted cover
is no longer a map in the sense we have defined it here. (In some works the
structure we have is called a hypermap, and, in others, a non-clean dessin).
However a star map only has free edges and these could be described as
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edges of valency 1. Formally, the group of Γ[1, m, m] is isomorphic to Cm

and so a two-sheeted cover corresponds to a smooth image of Γ[2, k, u] where
k, u are either m or 2m, depending on whether there is branching over the
vertex or face centre, as described above.

A double-star map on a surface of genus g is the two-sheeted cover of an
m-star map on the sphere. There are three possibilities (up to duality).

(i) There is only branching over the free end-points. As the number of
branch points is equal to 2g + 2 we have m = 2g + 2. Thus we are
considering smooth homomorphisms of Γ[2, 2g + 2, 2g + 2] to either
C4g+4 or to C2 × C2g+2. However, it is easy to see that there is no
smooth homomorphism in the first case, so we here have a double-
star map with automorphism group C2 ×C2g+2. As the corresponding
Riemann surface is the two-sheeted cover of the sphere branched over
the (2g + 2)th roots of 1, it is the Accola-Maclachlan surface. (Using
Lemma 2.2, Γ[2, 2g + 2, 2g + 2] � Γ[2, 4, 2g + 2] with index 2, and then
we can obtain the description of the Accola-Maclachlan surface given
in §5 in terms of the triangle group Γ[2, 4, 2g + 2].)

(ii) There is branching over the free end-points and at the vertex. As above
we see that m = 2g+1 and we are considering smooth homomorphisms
from Γ[2, 2g + 1, 4g + 2] to C4g+2, (Note that C2 ×C2g+1

∼= C4g+2.) In
this case the corresponding Riemann surface is the Wiman surface of
type I. We get the same result by considering the dual situation of
branching over the free end-points and the unique face centre.

(iii) There is branching over the free end-points, the vertex and the face
center. Now m = 2g and we are considering smooth homomorphisms
from Γ[2, 4g, 4g] to either C4g or to C2 × C2g. As the latter group has
no element of order 4g, the image must be C4g and so the underly-
ing Riemann surface of the double-star map is the Wiman surface of
type II.

7. The Medial Map

Let M be a regular map of type {m, m} lying on a surface of genus g > 1
(so m > 4). As each vertex of M has valency m each angle at a vertex is
equal to 2π/m. A medial of M is a geodesic arc whose end-points are at
the edge-centres of adjacent edges of a face of M and whose interior lies
inside the interior of that face and the medial map Med(M) of M has as
vertices the edge-centres of M, as edges the medials of M. It has two kinds
of faces; the first kind lie completely in the faces of M, and their centre
is at the corresponding face-centre. The second kind of face has as their
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centres the vertices of M. As each angle at a vertex of M is 2π/m all faces
of Med(M) have size m. Thus if M has |V | vertices, |E| edges and |F |
faces then Med(M) has |E| vertices, and 2|E| edges, (to see the latter we
note that every vertex of Med(M) has valency 4 and each edge of M and
a neighbouring edge give the same edge of Med(M)). We now see that, as
expected, the Euler characteristic of M and Med(M) are the same. Also,
every vertex of Med(M) has valency 4 and every face has valency m, so that
the Med(M) has type {4, m}. By Lemma 2.2, Γ[2, m, m] < Γ[2, 4, m] with
index 2, so that if M < Γ[2, m, m] then M is a map subgroup for a map M
of type {m, m} and also of a second map of type {4, m}. By considering
fundamental regions it is easy to see that this second map is Med(M). (Note
that it is not necessarily the case that Med(M) is regular. However from
[12], §6, Med(M) is edge transitive and is regular if and only if there is an
automorphism of order 2 that fixes the mid-point of an edge, and so fixes
that edge setwise while reversing its direction.)

Theorem 7.1 The medials of a map M of type {m, m} are mirrors of the
underlying Riemann surface of M.

Proof. Let F be a face of M, and V be a vertex of F . We may suppose
that F is a regular hyperbolic polygon inside the unit disc with centre at
the origin 0. Let V1 and V2 be the two vertices adjacent to V in F and let m
be the medial joining the midpoints P1 and P2 of V1V and V V2 respectively.
Then the line 0V intersects the medial m orthogonally. Now the angles V 0P1

and P1V 0 are both equal to π/m. It follows that reflection in the medial m
interchanges V and 0. Thus this reflection preserves the map Med(M) and
hence acts as a symmetry of the underlying Riemann surface of Med(M),
which is the same as the underlying Riemann surface of M as by Lemma 2.2
we have the inclusion relationship Γ[2, m, m] < Γ[2, 4, m]. �

Corollary 7.1 A Platonic Riemann surface that underlies a regular map of
type {m, m} is symmetric.

(This was noted in [23] in the case m = 7.)

Lemma 7.1 Let X be a Platonic Riemann surface that underlies a regular
map M of type {m, m} and suppose that Aut+M is abelian. Then m is
even and

(i) If m is divisible by 4 (say m = 4g) then X is the Wiman surface of
type II of genus g and Aut+M ∼= C4g.

(ii) If m ≡ 2 mod 4 (say m = 2g + 2) then X is the Accola-Maclachlan
surface of genus g and Aut+M ∼= C2 × C2g+2.



932 A. Melekoğlu and D. Singerman

Proof. If m is odd then by abelianising the triangle group Γ[2, m, m] we
find that there is no smooth homomorphism onto an abelian group. Thus
m is even. If m = 4g then the abelianized group is C4g generated by T say
and if Γ[2, m, m] has presentation 〈x, y, z|xm = ym = z2 = xyz = 1〉 then
x �→ T, y �→ T (m/2)−1, z �→ Tm/2 extends to a smooth homomorphism from
Γ[2, m, m] onto C4g. If m = 2g + 2 and if C2 is generated by U and C2g+2

is generated by T then x �→ (1, T ), y �→ (U, T−1), z �→ (U, 1) extends to a
smooth homomorphism from Γ[2, m, m] onto C2 × C2g+2. �

In Figure 2 we draw the fundamental domain for the group that rep-
resents the Wiman surface of type II and genus 3. The fundamental do-
main is a regular hyperbolic 4g-gon which is a union of 4g triangles with
an angle of π/2g at the centre and angles equal to π/4g at the vertices.
In Figure 3 we draw the fundamental domain for the group that represents
the Accola-Maclachlan surface of genus 2. In both cases the side pairings
are as indicated. (These regions and their side-pairings follow from the
Reidemeister-Schreier method as described, for example in [11].) Also, on
these diagrams we draw the medial graphs whose edges, by Theorem 7.1,
project to mirrors of the underlying surfaces.
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If we consider the Wiman surface of type II we see that we have 4g
medial edges on the polygon, which after identification become 2g mirrors
on the surface. We form the Accola-Maclachlan surface from two adjacent
regular (2g + 2)-gons. These contain a total of 4g + 4 medial edges which
after identification (possibly after continuing an edge from one polygon to
another) become 2g + 2 mirrors on the surface. We now show that, in each
case, half of the mirrors are axes of one of the symmetries, and the other half
are axes for the other symmetry. To prove this we just need the following.

Lemma 7.2 Let W be a reflection of the Wiman surface of type II or the
Accola-Maclachlan surface and let T be the conformal automorphism of order
4g or 2g+2 respectively. If W fixes some medials then it commutes with T 2.

Proof. When we lift the extended group generated by the conformal auto-
morphisms and W to the upper-half plane U we obtain the NEC group ∆
with signature (0; +; [m]; {(2)}) and presentation

〈x, c|xm = c2 = (cx−1cx)2 = 1〉
where the homomorphism from ∆ to AutM is just c �→ W and x �→ T . Now
T, WTW−1 ∈ Aut+M and as Aut+M is abelian, and W has order 2

TWTW = WTWT.

Also, as cx−1cx is self-inverse in ∆ we also have

WT−1WT = T−1WTW.

Thus TWTWWT−1WT = WTWTT−1WTW and this gives T 2W = WT 2

as required.
Note that if W fixes no medials then the above argument does not apply.

This is because in this case we obtain the NEC triangle group Γ∗(2, m, m),
which is generated by reflections. However, the extended group cannot be
generated by symmetries and so there is no admissible epimorphism between
them. �

As a consequence we have a geometric proof of a known result.

Theorem 7.2 The Accola-Maclachlan surface is an M-surface. The Wiman
surface of type II is an (M–1)-surface.

Proof. Consider the Accola-Maclachlan surface; as observed before Lemma
7.2, this contains 2g + 2 mirrors coming from the medial edges after iden-
tifications of the edges. If m is one of these mirrors fixed by a symmetry
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W , say, and if T is the conformal automorphism of order 2g + 2 of the sur-
face then WT 2j(m) = T 2jW (m) = T 2j(m), for j = 0, . . . , g, showing that
W has g + 1 mirrors as claimed. Thus the Accola-Maclachlan surfaces are
M-surfaces and a similar proof applies to the Wiman surface of type II. �

We also note the known result that the Wiman surfaces of type I ad-
mit two non-conjugate symmetries each fixing one mirror. To see this just
observe that the Wiman surface of type I of genus g can be formed by identi-
fying the opposite edges of a regular hyperbolic (4g + 2)-gon. (See [14, 15]).
If this surface is denoted by X1 then Aut+X1

∼= C4g+2 and AutX1
∼= D4g+2.

The symmetries are the two classes of involutions outside the cyclic subgroup
of order 2. Each fixes either a single mirror coming (after identification of
sides) from a diagonal line of the polygon or from a perpendicular bisector
of a pair of opposite edges.

8. Platonic M and (M–1)-surfaces

Theorem 8.1 Platonic M and (M–1)-surfaces are hyperelliptic.

Proof. We shall assume that X = U/K is a Platonic M-surface which is
non-hyperelliptic and obtain a contradiction. As X is Platonic, K is normal
in a triangle group Γ[2, m, n], where 1/m + 1/n < 1/2. If m �= n, then as X
is symmetric, K is also normal in the NEC triangle group Γ∗(2, m, n) and
AutX can be generated by three reflective symmetries A, B, C obeying

A2 = B2 = C2 = (AB)2 = (BC)m = (CA)n = I.

This group lifts to an NEC triangle group ∆ with presentation (4.1). The
M-symmetry lifts to a reflection in Γ∗(2, m, n) and as every reflection in ∆
is conjugate to one of a, b, c it follows that at least one of A, B, C is the M-
symmetry. Now if A is the M-symmetry, then by Theorem 3.2 A is central
in AutX. So n = 2 which is a contradiction as 1/m + 1/n < 1/2 and we get
similar contradictions if we choose B or C is the M-symmetry.

If m=n, then there is another NEC group (Γ′)∗ which contains Γ[2, m, m]
with index 2 and has signature

(0; +; [m]; {(2)}).
(Γ′)∗ has a presentation

(8.1) 〈x, c|xm = c2 = (cxcx−1)2 = 1〉.
However, as we shall see now, there is no admissible epimorphism from (Γ′)∗

to AutX. Assume that θ : (Γ′)∗ → AutX is an admissible epimorphism. By
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Theorem 3.2 AutX is isomorphic to C2 × Aut+X and C2 is generated by
the unique M-symmetry. It follows from (8.1) that all reflections of (Γ′)∗ are
conjugate and therefore their images under θ must be conjugate in AutX.
The reflection generators of (Γ′)∗ must be mapped to reflective symmetries
of X by θ and as every reflection in (Γ′)∗ is conjugate to c, it follows that θ(c)
is the unique M-symmetry which is central. Then cxcx−1 will be in Kerθ,
the kernel of θ, which is a contradiction as Kerθ must be torsion-free. Thus,
every Platonic M-surface is hyperelliptic and using Theorem 3.3 (and the
fact that every Riemann surface of genus 2 is hyperelliptic) we can show
that every Platonic (M–1)-surface is hyperelliptic in the same way. �

Lemma 8.1 Let X be an M-surface of genus g > 1 and T : X → X be an
M-symmetry. If X admits another symmetry S, then TS has order 2 or 4.
If g > 2 then the same result applies to (M–1)-symmetries acting on an
(M–1)-surface.

Proof. Let X be an M-surface. If X is non-hyperelliptic, then by The-
orem 3.2, T is the unique M-symmetry, which is central in AutX, and so
TS = ST . Therefore, TS has order 2. If X is hyperelliptic and S and T
commute, then TS has order 2. If S and T do not commute, then STS is
conjugate to T and is the other M-symmetry. By [5] their product TSTS is
the hyperelliptic involution and hence TS has order 4. This has also been
proved in [6], (Corollary 2 of Theorem 6). Similarly, we can show that if X
is an (M–1)-surface of genus g > 2 then ST has order 2 or 4. �

Theorem 8.2 For every g > 1 the Accola-Maclachlan surface is the only
Platonic M-surface of genus g.

Proof. Suppose that X = U/K is a Platonic M-surface of genus g > 1.
Then K is normal in a triangle group Γ = Γ[2, m, n], where 1/m+1/n < 1/2.
This means X carries a regular map M of type {m, n}. If m �= n, then as
X is symmetric, K is also normal in the NEC triangle group Γ∗(2, m, n) and
AutX can be generated by three reflective symmetries A,B,C obeying

A2 = B2 = C2 = (AB)2 = (BC)m = (AC)n = I.

It follows from Theorem 8.1 that X is hyperelliptic and so admits two M-
symmetries. As in the proof of Theorem 8.1, we can choose one of the
generators of AutX, for instance B, as an M-symmetry. It follows from
Lemma 8.1 that m is either 2 or 4. Since 1/m + 1/n < 1/2, m cannot be 2.
So m = 4 and M has type {4, n}. This means every face of M is surrounded
by n edges and each vertex has valency 4. Now we want to find n. We can
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divide each face of M into 2n triangles such that each triangle has interior
angles π/2, π/4 and π/n. It follows from Lemma 8.1 that one side of each
triangle is a part of a mirror of an M-symmetry. This is the side opposite to
the angle π/n. We can observe that every edge of M lies on a mirror of an
M-symmetry and the M-symmetries do not fix interior points of the faces
of M. Also, we can see that every vertex of M is a fixed-point of J , the
hyperelliptic involution, and J maps each edge of M to another edge such
that these two edges form a mirror for an M-symmetry. The M-symmetries
of X have 2g + 2 mirrors in total and hence M has 4g + 4 edges. So the
order of Aut+M is 8g + 8 and M has 8g+8

4
= 2g + 2 vertices. By the Euler-

Poincaré formula we find that M has 4 faces and so n = 8g+8
4

= 2g + 2.
Therefore, M is of type {4, 2g + 2} and Γ = Γ[2, 4, 2g + 2]. Thus, Aut+M
can be generated by two automorphisms R,S obeying

R4 = S2g+2 = (RS)2 = I.

Here R is a rotation about a vertex and we can see that R2 is the hyperelliptic
involution. Thus, Aut+M is isomorphic to the group with presentation (5.1)
and therefore X is the Accola-Maclachlan surface of genus g.

Now we suppose that m = n. Then either K is normal in Γ∗(2, m, m) as
above and the previous proof holds or K�∆, where ∆ is an NEC group of sig-
nature (0; +; [m]; {(2)}) with a presentation 〈x, c|xm = c2 = (cxcx−1)2 = 1〉
(See §2 and Lemma 2.1). Suppose that in the canonical homomorphism
from ∆ to ∆/K x �→ A and c �→ C. Now, by Theorem 3.2, the surface X
admits two M-symmetries whose product is the hyperelliptic involution and
hence of order 2. Thus, by the smoothness of the homomorphism from ∆
to ∆/K, we deduce that ∆ must contain a subgroup isomorphic to D2 and
we may assume this is the group generated by c and xcx−1. Thus the two
symmetries are C and ACA−1 and the hyperelliptic involution is ACA−1C,
which is central. Let B = CAC. Then Aut+X is generated by A and B
obeying the relations Am = Bm = (AB−1)2 = I with AB−1 central. In
particular, AB−1 commutes with B and so A and B commute and Aut+X
is abelian. Thus A2 = B2 and if m is odd A = B and xcx−1c belongs to the
kernel of the homomorphism from ∆ to ∆/K. This contradicts the smooth-
ness of this homomorphism and so m is even and by Lemma 7.1, X is the
Accola-Maclachlan or Wiman surface of type II. However by [5] a Riemann
surface of genus g cannot admit two symmetries one fixing g + 1 curves
and the other fixing g curves and so X is the Accola-Maclachlan surface of
genus g. �

Theorem 8.3 For every g > 1 the Wiman surface of type II is the only
Platonic (M–1)-surface of genus g.
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Proof. For g > 2 the proof is the same as that of Theorem 8.2. For g = 2
this does not quite work as Theorem 3.3 and Lemma 8.1 do not hold in
this case. However, for g = 2 there are only 3 Platonic surfaces as can
be shown by examining lists of Riemann surfaces of low genus admitting
large automorphism groups, (e.g. see [4]). The three Platonic surfaces of
genus 2 have full conformal automorphism groups equal to C10, a group
of order 24, or a group of order 48 (isomorphic to GL(2,3)); these come as
smooth images of Γ[2, 5, 10], Γ[2, 4, 6], or Γ[2, 3, 8], respectively. We recognise
the first surface as the Wiman surface of type I which we saw at the end of the
previous paragraph only has symmetries fixing one mirror. The second is the
Accola-Maclachlan surface of genus 2 which, as it admits a symmetry fixing 3
mirrors, cannot also have a symmetry fixing 2 mirrors. The final surface
admits an automorphism of order 8 and so must be the Wiman surface
of type II (which also follows from the inclusion relationship Γ[2, 8, 8] <
Γ[2, 3, 8]). Thus the Wiman surface of genus 2 is the unique Platonic (M–1)-
surface of genus 2. �

The M and (M–1)-surfaces we encountered in this paper were hyperel-
liptic. A hyperelliptic M-surface of genus g > 1 corresponds to a complex
algebraic curve

C = {(z, w) ∈ C
2 | w2 = (z − a1)(z − a2) . . . (z − a2g+2)},

where each ai ∈ R and ai �= aj. Here the map h : (z, w) �→ (z,−w) is the hy-
perelliptic involution, which fixes the points (a1, 0), . . . , (a2g+2, 0) on C. The
maps s1 : (z, w) �→ (z̄, w̄) and s2 : (z, w) �→ (z̄,−w̄) are the M-symmetries.
Similarly, a hyperelliptic (M–1)-surface of genus g > 1 is represented by a
curve

C ′ = {(z, w) ∈ C
2 | w2 = (z − b1)(z − b2) . . . (z − b2g+2)},

where two of the numbers bi are non-real and the others are real, and bi �= bj .
In this case, the hyperelliptic involution and the (M–1)-symmetries are given
by the same formulae as above.

Similar work on symmetries of Accola-Maclachlan surfaces has been done
by [2] and [7].
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