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Harnack inequality for hypoelliptic
ultraparabolic equations

with a singular lower order term

Sergio Polidoro and Maria Alessandra Ragusa

Abstract
We prove a Harnack inequality for the positive solutions of ultra-

parabolic equations of the type

L0 u + V u = 0,

where L0 is a linear second order hypoelliptic operator and V belongs
to a class of functions of Stummel-Kato type. We also obtain the
existence of a Green function and an uniqueness result for the Cauchy-
Dirichlet problem.

1. Introduction

We prove some regularity results for the solutions of the equation in R
N+1

(1.1) L0 u + V u = 0,

where V is a singular potential belonging to a Stummel-Kato class (see
Definition 1.1 below) and L0 is a linear second order operator of the form

(1.2) L0 =
m∑

k=1

X2
k +X0 − ∂t.

We always denote by z = (x, t) the point in RN+1; the Xk’s in (1.2) are
smooth vector fields on RN , i.e.

Xk(x) =

N∑
j=1

ak
j (x)∂xj

, k = 0, . . . , m,
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where any ak
j is a C∞ function. In the sequel we also consider the Xk’s as

vector fields in RN+1 and we denote

(1.3) Y = X0 − ∂t.

We also assume that X0(0) = 0, so that

(1.4) Y (0) = −∂t.

As we will see in Remark 3.2, this assumption is not necessary, but allows
us to simplify the notations.

We say that a curve γ : [0, T ] → RN+1 is L-admissible if it is absolutely
continuous and satisfies

γ′(s) =

m∑
k=1

λk(s)Xk(γ(s)) + µ(s)Y (γ(s)), a.e. in [0, T ],

for suitable piecewise constant real functions λ1, . . . , λm, µ, with µ ≥ 0. We
next state our main assumptions:

[H.1] there exists a homogeneous Lie group G =
(
RN+1, ◦, δλ

)
such that

(i) X1, . . . , Xm, Y are left translation invariant on G;

(ii) X1, . . . , Xm are δλ-homogeneous of degree one and Y is δλ-homo-
geneous of degree two;

[H.2] for every (x, t), (ξ, τ) ∈ RN+1 with t > τ , there exists an L-admissible
path γ : [0, T ] → RN+1 such that γ(0) = (x, t), γ(T ) = (ξ, τ).

Operators of this kind have been studied by Kogoj and Lanconelli in [11].
The above hypotheses and the main properties of homogeneous Lie groups
will be discussed in detail in the next section, here we recall that assump-
tions [H.1]–[H.2] yield the well known Hörmander condition [10]:

(1.5) rank Lie{X1, . . . , Xm, Y }(z) = N + 1, for every z ∈ R
N+1,

then L0 is hypoelliptic (i.e. every distributional solution to L0u = f is
smooth whenever f is smooth; see, for instance, Proposition 10.1 in [11]).
Hence L0 belongs to the general class of the hypoelliptic operators on homo-
geneous groups first studied by Folland [8]. We recall that a general theory
of function spaces related to Hörmander operators has been developed by
Rothschild and Stein in [24], and by Nagel, Stein and Wainger in [21]. An
invariant Harnack inequality for the positive solutions of L0u = 0 and a
Gaussian upper estimate of its fundamental solution Γ0 have been proved
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in [11]. We also recall that Gaussian lower bounds for operators verifying
assumptions [H.1]–[H.2] on Lie group of step three have been given in [22];
and one-side Liouville theorems are provided in [12].

Let us point out that several meaningful examples of operators of the
form (1.2) satisfy assumptions [H.1]–[H.2]:

• heat operators on Carnot groups

(1.6) ∆G − ∂t,

where ∆G =
∑m

k=1X
2
k denotes the sub-Laplacian on a homogeneous

Carnot group G (see Varopoulos, Saloff-Coste and Coulhon [28]);

• heat operators with drift on Carnot groups

(1.7) ∆G +X0 − ∂t,

(see Alexopoulos [1]). Note that, due to our assumption [H.1], the
vector field X0 belongs to the second layer of the Lie algebra of the
group);

• Kolmogorov type operators

(1.8) ∆Rm + 〈Bx,∇〉 − ∂t,

where ∆Rm is the Laplace operator on Rm andB is a constantN×N real
matrix (see [16] and its bibliography for a survey on known results on
Kolmogorov type operators. In [18] necessary and sufficient conditions
are given on the matrix B in order to satisfy assumptions [H.1]–[H.2]);

• operators on the “link of a Carnot and a Kolmogorov group”

(1.9) ∆G + 〈Bx,∇〉 − ∂t

here the domain of the solution is Rm × Rp × Rq × R,G is a Carnot
group on Rm ×Rp and B is a (m+ q)× (m+ q) matrix as in the Kol-
mogorov operator (1.8) (see Kogoj and Lanconelli [11, Example 9.7]).
A general procedure for the construction of sequences of linked groups
of dimension and step arbitrarily large is given in the paper [13].

We are concerned with the regularity of the operator

(1.10) LV = L0 + V,

where V belongs to the following Stummel-Kato class (defined by the fun-
damental solution Γ0 of L0).
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Definition 1.1. Let Ω be an open subset contained in R
N+1. A function

V ∈ L1(Ω) belongs to the space SK(Ω,L0), if

(1.11) lim
h→0

ηV(h) = 0, lim
h→0

η∗V(h) = 0,

where

ηV(h) = sup
(x,t)∈Ω

∫
(y,s)∈Ω, t−h2<s<t

Γ0(x, t, y, s)|V(y, s)|dyds,

η∗V(h) = sup
(y,s)∈Ω

∫
(x,t)∈Ω, s<t<s+h2

Γ0(x, t, y, s)|V(x, t)|dxdt.
(1.12)

We say that u is a weak solution of LVu = 0 if

1. there exists p > 1 such that u,X1u, . . . , Xmu ∈ Lp
loc(Ω),

2. Vu ∈ L1
loc(Ω),

3.

∫
Ω

m∑
k=1

XkuX
∗
kϕ+

∫
Ω

uY ∗ϕ+

∫
Ω

uVϕ = 0, for every ϕ ∈ C∞
0 (Ω).

As in the Euclidean setting, the Stummel-Kato class can be related
to the Morrey spaces Lp,λ(Ω,G); in Section 3 we will prove the inclusion
L1,λ(Ω,G) ⊂ SK(Ω,L0) for λ ∈]Q − 2, Q[, where Q is the homogeneous
dimension of G (see Section 2 for the definitions). We also give a simple suf-
ficient condition for the integrability of Vu: we show that, if the derivatives
Xju, XjXku, for j, k = 1, . . . , m and Y u belong to L1

loc(Ω) then Vu ∈ L1
loc(Ω).

Our main result is an invariant Harnack inequality for the positive solu-
tions to LVu = 0. The proof of the Harnack inequality given by Kogoj and
Lanconelli in [11] (for the solutions to L0u = 0) is based on a mean value
theorem and follows the same lines of the classical proof of the Harnack in-
equality for harmonic functions. That approach has been used in the study
of Kolmogorov operators (1.8) by Kuptsov in [14], later by Garofalo and
Lanconelli in [9] then by Lanconelli and Polidoro in [18] and relies on some
accurate estimates of the derivatives X1Γ0, . . .XmΓ0 of the fundamental so-
lution of L0. Here we use a method based on the Green function G0 of L0

related to suitable “cylindrical” open sets and on a pointwise lower bound
for G0. This technique is inspired by some arguments by Safanov in [25],
and used in [15] where Kusuoka and Stroock obtain Harnack inequality for
solutions to certain degenerate equations. It has been also used by Fabes
and Stroock in [6], [7] to study uniformly elliptic and parabolic operators
with measurable coefficients and later adapted by Montanari in [20] to ob-
tain a Harnack inequality for L0 belonging to a class of totally degenerate
hypoelliptic operators. The same method has been successfully used by the
authors in [23], in the study of Kolmogorov operators (1.8).
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We finally recall some papers where the second order part of the oper-
ator L0 has non-smooth coefficients. We quote Sturm [27] and Zhang [29],
that consider the operator (1.10) where L0 is uniformly parabolic, Citti,
Garofalo and Lanconelli [5] and Lu [19], who consider the Schrödinger oper-
ator related to sum of square of Hörmander’s vector fields LV =

∑m
k=1X

2
k+V,

Zhang [30], who studies the analogous parabolic operator LV =
∑m

k=1X
2
k −

∂t +V as (1.6). Recently Bramanti and Brandolini in [4] consider operators,
without potential function, of the following type: L =

∑m
i,j=1 aij(x)XiXj,

where aij belong to the the Sarason class VMO. They extend to spaces of
homogeneous type some regularity estimates.

We end this introduction with a short outline of this paper. In Sec-
tion 2 we recall the known facts about homogeneous Lie groups and on
the boundary value problems for L0, that will be needed through in the
sequel, then we state our main results. In Section 3 we discuss the main
properties of the fundamental solution and of the Green function for L0.
In Section 4 we construct a Green function for LV by the Levi parametrix
method; some Lp estimates and a pointwise lower bound for the Green func-
tion are proved. Then, in Section 5 we prove the results of this paper, in
a preliminary statement only for bounded potentials V, then, by a limiting
argument, for every V in the Stummel-Kato class.

2. Known facts and statement of main results

In this section we briefly recall the basic properties of the homogeneous Lie
groups and the related homogeneous vector fields. We refer to the recent
monograph [2] by Bonfiglioli, Lanconelli and Uguzzoni, for a more exhaustive
treatment of that topic. We state our main results in the last part of the
section.

A Lie group G =
(
RN+1, ◦

)
is said homogeneous if there exists a family

of dilations (δλ)λ>0 of the form

δλ : R
N+1 → R

N+1, δλ(x1, . . . , ξN , t) = (λα1x1, . . . , λ
αN ξN , λ

α0t)

for some positive α1, . . . , αN , α0, with the following property

(2.1) δλ
(
z ◦ ζ

)
=
(
δλz
)
◦
(
δλζ
)
, for every z, ζ ∈ R

N+1 and λ > 0.

Hypotheses [H.1]–[H.2] imply that R
N has a direct sum decomposition

R
N = V1 ⊕ · · · ⊕ Vn

such that, if we decompose any point x ∈ RN as x = x(1) + · · · + x(n) with
x(k) ∈ Vk, then the dilations are

(2.2) δλ(x
(1) + · · ·+ x(n), t) = (λx(1) + · · ·+ λnx(n), λ2t),
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for any λ > 0. If we let mk = dimVk, the natural number

Q = 2 +

n∑
k=1

kmk

is usually called the homogeneous dimension of G with respect to (δλ)λ>0.
We also introduce the following δλ-homogeneous norms on RN+1 and RN :

‖(x, t)‖G =

( n∑
k=1

∣∣x(k)
∣∣ 2n!

k + |t|n!

) 1
2n!

|x|G =

( n∑
k=1

∣∣x(k)
∣∣ 2n!

k

) 1
2n!

(
∣∣x(k)

∣∣ is the Euclidean norm of x(k)). We denote by

d(z, ζ) = ‖ζ−1 ◦ z‖G

the quasi-distance between two points z, ζ ∈ R
N+1, and by

Br(z) =
{
ζ ∈ R

N+1 : d(z, ζ) < r
}

the ball with center at z and radius r. Recall that there exists a positive
constant c such that

(2.3) d(z, w) ≤ c
(
d(z, ζ) + d(ζ, w)

)
, d(z, w) ≤ c d(w, z),

for every z, ζ, w ∈ R
N+1 (see [8], Proposition 1.4).

We also recall that, due to the fact that X0, . . . , Xm only depend on the
space variable x, the composition law ◦ is Euclidean in the time variable t, i.e.

(2.4) (x, t) ◦ (y, s) =
(
σ(x, t, y, s), t+ s

)
for a suitable smooth function σ (see [11], Proposition 10.2). Moreover,
since X1, . . . , Xm and Y are homogeneous vector fields of degree 1 and 2,
respectively, we have

(2.5)

(
(x, t) ◦ (y, s)

)(1)
= x(1) + y(1),(

(x, t) ◦ (y, s)
)(k)

= x(k) + y(k) + σk(x, t, y, s)

for k = 2, . . . , m, where σk(x, t, y, s) is a polynomial function that only
depends on x(k+1) + · · ·+x(m), t, y(k+1) + · · ·+ y(m) and s. As a consequence,
the determinant of the Jacobian matrix of the function z �→ z0◦z equals one,
thus the Lebesgue measure of RN+1 is left-invariant under left translations,
namely

(2.6) meas (z0 ◦ E) = meas (E) ,

for every z0 ∈ R
N+1 and every measurable set E ⊂ R

N+1.
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Another consequence of the homogeneity of the vector fields X1, . . . , Xm

and Y is that they are of the form

Xk =

n∑
j=1

ak
j−1(x

(1), . . . , x(j−1)) · ∇(j), k = 1, . . . , m,

Y =

n∑
j=2

bj−2(x
(1), . . . , x(j−2)) · ∇(j) − ∂t,

(2.7)

where ∇(j) =
(
0, . . . , 0, ∂

x
(j)
1
, . . . , ∂

x
(j)
mj

, 0, . . . , 0
)

denotes the gradient with

respect to the variable x(j) and ak
j and bj are δλ−homogeneous polynomial

functions of degree j with values in Vj+1 and Vj+2 respectively. As a first
consequence we have that X∗

k = −Xk for k = 1, . . . , m and Y ∗ = −Y, thus
the formal adjoint of L0 is L0

∗ =
∑m

k=1X
2
k − Y.

Let us explicitly note that hypothesis [H.2] and formula (2.7) imply that,
if we write L0 as

(2.8) L0 ≡
N∑

i,j=1

ai,j(x)∂xixj
+

N∑
j=1

bj(x)∂xj
− ∂t,

then the m×m block matrix (ai,j(x))i,j=1,...,m is constant and positive defi-
nite.

We next recall some results, due to Lanconelli and Pascucci [17], con-
cerning the boundary value problem for L0. Let k ∈ N and ε > 0 be two
constants that will be chosen in the sequel. We denote

(2.9) O = Beucl(ke1,k+kε) ∩ Beucl(−ke1,k+kε),

where Beucl(x,r) is the Euclidean ball of RN with center at x and radius r.
Moreover, for positive T we let

Q(T ) = O×]0, T [, S = O×
{
0
}
, S(T ) = O×

{
T
}
, and M(T ) = ∂O×]0, T [

be the “unit” cylinder of R
N+1, its lower and upper basis (resp.), and its

lateral boundary. We will call parabolic boundary of Q(T ) the set

∂rQ(T ) = S ∪
(
∂O × [0, T ]

)
.

Finally, for every positive R and for any (ξ, τ) ∈ RN+1, we set

QR(ξ, τ, T ) = (ξ, τ) ◦ δR
(
Q(R−2T )

)
,
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and, analogously,

MR(ξ, τ, T )=(ξ, τ) ◦ δR
(
M(R−2T )

)
, SR(ξ, τ)=(ξ, τ) ◦ δR (S) ,

SR(ξ, τ, T )=(ξ, τ) ◦ δR
(
S(R−2T )

)
, ∂rQR(ξ, τ, T )=(ξ, τ) ◦ δR

(
∂rQ(R−2T )

)
(note that, by (2.2) and (2.4), T is the true height of the sets QR(ξ, τ, T ),
MR(ξ, τ, T ) and ∂rQR(ξ, τ, T ), and SR(ξ, τ, T ) = QR(ξ, τ, T ) ∩

{
(x, t) : t =

τ + T
}
). We also remark that, by (2.2) and (2.6), we have

meas
(
QR(ξ, τ, R2T )

)
= RQmeas (Q(T )) .

Moreover

(2.10) meas (SR(ξ, τ)) = RQ−2meas (S) ,

where, with a slight abuse of notations, meas (SR(ξ, τ)) is the N -dimensional
measure of the set SR(ξ, τ) and, obviously,

(2.11) meas
(
QR(ξ, τ, R2T )

)
= T RQmeas (S) .

Consider the Cauchy-Dirichlet problem in the unit cylinder

(2.12)

{
L0u = f in Q(T )
u = 0 in ∂rQ(T )

with f∈C∞
0 (Q(T )). As noticed before, them×m block matrix (ai,j(x))i,j=1,...,m

in (2.8) is constant and positive definite so that, in particular, a11 > 0. Then,
by Proposition 2.4 and Theorem 2.5 in [17]1 there exists a positive ε in the
definition of O such that the Dirichlet problem (2.12) has a unique (classical)
solution u ∈ C(Q(T )∪∂rQ(T ))∩C∞(Q(T )) (in the sequel ε in the definition
of O will be always chosen as above).

We say that G0 :
(
Q(T ) ∪ ∂rQ(T )

)
×Q(T ) → R is a Green function for

Q(T ) if, for every f ∈ C0(SR), the function

u(z) = −
∫

Q(T )

G0(z, ζ)f(ζ)dζ

is solution of the Cauchy-Dirichlet problem (2.12). In [17], Theorem 2.7 it
is proved that a Green function G0 exists and is smooth out of the diagonal
of the set

(
Q(T )∪ ∂rQ(T )

)
×Q(T ); G0(x, t, ξ, τ) ≥ 0; for any (x, t), (ξ, τ) ∈

R
N+1, G0(x, t, ξ, τ) = 0 if, t ≤ τ .

1in [17] it is assumed that L0 is the heat operator out of a compact set of RN+1. L0

can be suitably modified outside Q(T ) in order to fulfill such a requirement.
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The function G∗
0(z, ζ) ≡ G0(ζ, z) is a Green function for the adjoint

operator L0
∗. For every positive R and for any (ξ, τ) ∈ RN+1 the function

G0((ξ, τ) ◦ δR(ζ), (ξ, τ) ◦ δR(z)) is a Green function for the set QR(ξ, τ, T ).
The Green function can be characterized as

(2.13) G0(x, t, y, τ) = Γ0(x, t, y, τ) − h(x, t, y, τ),

where h(·, ·, y, 0) is the solution of the boundary value problem

(2.14)

⎧⎨⎩
L0u = 0 in Q(T )
u = 0 in M(T )
u = Γ0(·, ·, y, 0) in S

The existence of a generalized solution h can be proved by a standard
method, based on the elliptic regularization procedure. An universal barrier
at every point of M(T )∪S has been constructed in the proof of Theorem 2.5
in [17], then h attains the boundary data by continuity. Moreover, by the
hypoellipticity of L0, h is a smooth classical solution to L0u = 0 in Q(T ).
Since G0(ζ, · ) is a Green function for the adjoint operator L0

∗, we also have
that h is smooth for (x, t) �= (y, 0). By the minimum principle it plainly
follows h ≥ 0, then

(2.15) G0(x, t, y, s) ≤ Γ0(x, t, y, s), for every (x, t), (y, s) ∈ R
N+1.

We finally note that, for any ϕ ∈ C0(R
N), the function

u(x, t) =

∫
RN

Γ0(x, t, y, 0)ϕ(y)d y

is a classical solution to the Cauchy problem L0u = 0 in RN ×R+, u(x, 0) =
ϕ(x); as a consequence, for every ϕ ∈ C0(S), the function

v(x, t) =

∫
S

G0(x, t, y, 0)ϕ(y)d y

is a classical solution to the Cauchy-Dirichlet problem L0u = 0 in Q(T ),
u = ϕ in S and u ≡ 0 in M(T ).

We next state the main results of this note. For every R, T > 0 and
(ξ, τ) ∈ RN+1, consider the Cauchy-Dirichlet problem

(2.16)

{
LVu = f in QR(ξ, τ, T )
u = 0 in ∂rQR(ξ, τ, T )

with f ∈ C0(QR(ξ, τ, T )).
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We say that u is a weak solution of (2.16) if it is a weak solution to
LVu = f in QR(ξ, τ, T ), it belongs to C(QR(ξ, τ, T ) ∪ ∂rQR(ξ, τ, T )) and
attains the boundary data by continuity. We say that

G : (QR(ξ, τ, T ) ∪ ∂rQR(ξ, τ, T )) ×QR(ξ, τ, T ) → R

is a Green function for (2.16) if G( · , w) is a weak solution to (2.16), for
every w ∈ QR(ξ, τ, T ).

Theorem 2.1. The Cauchy-Dirichlet problem (2.16) has a unique weak solu-
tion u. Moreover a Green function G for QR(ξ, τ, T ) exists, and the function
G∗(ζ, z) = G(z, ζ) is a Green function for the adjoint operator LV

∗.

Before stating our second result, we introduce two further notations. Let
us consider the cylinder QR(ξ, τ, R2) and, for every α, β, γ, δ∈]0, 1[: α<β<γ,
let us set

Q− =
{
(x, t) ∈ QδR(ξ, τ, R2) : τ + αR2 ≤ t ≤ τ + βR2

}
,

Q+ =
{
(x, t) ∈ QδR(ξ, τ, R2) : τ + γR2 ≤ t

}
.

Theorem 2.2. (Harnack). Let V ∈ SK(Ω,L0). Then there exist two
constants R0 > 0 and δ0 ∈]0, 1[ such that, for every QR(ξ, τ, R2) ⊂⊂ Ω, with
R ≤ R0 and Q+, Q− as above, with δ ∈]0, δ0[, we have

sup
Q−

u ≤M inf
Q+

u,

for every positive weak solution u of LVu = 0. Here M is a positive constant
that depends on ηV , η

∗
V and on the constants α, β, γ, δ.

Proposition 2.3. If u is a weak solution of LVu = 0 in Ω, with V ∈
SK(Ω,L0), then u is continuous. Moreover, for any β ∈]0, 1[ there exists a
positive constant Cβ, dependent only on L0 and β, such that

|u(z) − u(z0)| ≤
(
Cβd(z, z0)

β + 2ηV(5 c2 d(z, z0)
1−β)

)
sup

B4r(z0)

|u|

for every z0 ∈ Ω, r ∈]0, 1[ such that B4r(z0) ⊂ Ω and for every z ∈ Brβ
(z0)

(where rβ = r
1

1−β and c is the constant in (2.3)).

If V ∈ L1,λ(Ω,G) with λ ∈]Q− 2, Q[, then

|u(z) − u(z0)| ≤ Cβ

(
1 + ‖V‖L1,λ(Ω,G)

)
sup

B4r(z0)

|u| · d(z, z0)α,

where α = min {β, (1 − β)(λ−Q+ 2)}.
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3. Preliminary results

In this section we recall some result about the fundamental solution and to
the Green function G0 for operators satisfying assumptions [H.1]–[H.2]; we
then prove a lower bound for G0. We end the section with some remarks on
the Stummel-Kato class SK(Ω,L0).

In [11], Kogoj and Lanconelli prove the existence of a fundamental so-
lution Γ0(z, ζ) for the operators L0 satisfying conditions [H.1]–[H.2]. The
main properties of Γ0 are analogous to the properties of the heat kernel:
Γ0 is smooth in

{
(z, ζ) ∈ RN+1 × RN+1 : z �= ζ

}
; Γ0(x, t, ξ, τ) ≥ 0; for any

(x, t), (ξ, τ) ∈ R
N+1,Γ0(x, t, ξ, τ) > 0 if, and only if, t > τ .

Γ0 is invariant with respect to the translations of G:

Γ0(z, ζ) = Γ0(ζ
−1 ◦ z, 0) ≡ Γ0(ζ

−1 ◦ z), for every z, ζ ∈ R
N+1,

and it is δλ-homogeneous of degree 2−Q with respect to the dilations of G:

(3.1) Γ0(δλ(z)) = λ2−QΓ0(z) for every z ∈ R
N+1, λ > 0;

as a consequence we have that

lim
|z|→∞

Γ0(z) = 0; lim sup
z→0

Γ0(z) = +∞ and Γ0 ∈ L1
loc(R

N+1).

For every ϕ ∈ C∞
0 (RN+1) and z ∈ RN+1 we have

(3.2) L0

∫
RN+1

Γ0(z, ζ)ϕ(ζ)d ζ = −ϕ(z),

∫
RN+1

Γ0(z, ζ)L0ϕ(ζ)d ζ = −ϕ(z),

and L0Γ0(z, · ) = −δz (the Dirac measure centered at z). Moreover∫
RN

Γ0(x, t)d x = 1, for every t > 0.

The function Γ∗
0(z, ζ) ≡ Γ0(ζ, z) is the fundamental solution of the adjoint

operator L0
∗.

Since Γ0 is a δλ-homogeneous functions of degree −Q+ 2 and the deriv-
atives XjΓ0, for j = 1, . . . , m, are δλ-homogeneous functions of degree
−Q + 1, from the general theory of function spaces on homogeneous Lie
groups (see for instance Folland [8, Proposition (1.15)]; see also Rothschild
and Stein [24] for a more developed analysis of differential operators on Lie

groups) it follows that there exist a positive constant C̃ such that, for every
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z1, z2, ζ ∈ R
N+1, with d(z1, ζ) ≥ 2d(z1, z2) we have

|Γ0(z1, ζ)− Γ0(z2, ζ)| ≤ C̃
d(z1, z2)

d(z1, ζ)Q−1
,

|XjΓ0(z1, ζ) −XjΓ0(z2, ζ)| ≤ C̃
d(z1, z2)

d(z1, ζ)Q
,

|X(ζ)
j Γ0(z1, ζ) −X

(ζ)
j Γ0(z2, ζ)| ≤ C̃

d(z1, z2)

d(z1, ζ)Q
,

(3.3)

for j = 1, . . . , m (the notation X
(ζ)
j means that the vector field Xj acts on

the variable ζ). Moreover, if we set for f ∈ Lp(RN+1)

(3.4) Tf (z) =

∫
RN+1

Γ0(z, ζ)f(ζ)dζ

we have (see [8, Theorem (5.14)]):

i) if 1 < p < Q
2
, then Tf ∈ Lq(RN+1), for 1

q
= 1

p
− 2

Q
, and

(3.5) ‖Tf‖q ≤ Cp‖f‖p;

ii) if p > Q
2
, then

(3.6) |Tf(z1) − Tf (z2)| ≤ Cpd(z1, z2)
α‖f‖p, for every z1, z2 ∈ R

N+1

for some positive constant Cp and α = min
{

1, 2 − Q
p

}
.

Finally, for j = 1, . . . , m we have

(3.7) XjTf (z) =

∫
RN+1

XjΓ0(z, ζ)f(ζ)dζ

and, analogously,

i) if 1 < p < Q, then XjTf ∈ Lq(RN+1), with 1
q

= 1
p
− 1

Q
, and

(3.8) ‖XjTf‖q ≤ Cp‖f‖p;

ii) if p > Q, then

(3.9) |XjTf (z1) −XjTf(z2)| ≤ Cpd(z1, z2)
α‖f‖p, for α = 1 − Q

p
.
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Note that, by (3.5), formula (3.2) extends to

(3.10) L0

∫
RN+1

Γ0(z, ζ)f(ζ)ψ(ζ)d ζ = −f(z)ψ(z),

for any f ∈ Lp
loc(R

N+1), with 1 < p < Q
2
, and any cut-off function ψ. We also

recall that Tf is continuous from L1(RN+1) to L
Q−2

Q

weak(R
N+1); more specifically,

there exists a positive constant C such that

meas
{
z ∈ R

N+1 : |Tf(z) > α
}
≤
(
C

α

)Q−2
Q

‖f‖L1(RN+1), for every α > 0

(see [8, Prop. 1.10]) hence we will also use formula (3.10) for f ∈ L1
loc(R

N+1).

We next prove a lower bound for the Green function G0 for L0:

Proposition 3.1. For any positive R and T and every (ξ, τ) ∈ RN+1 and
α ∈]0, 1[ there exist δ0, ε ∈]0, 1[ such that

G0(x, t, y, τ) ≥
2 ε

meas(SR(ξ, τ))

for every δ ∈]0, δ0], y ∈ SδR(ξ, τ) and (x, t) ∈ QδR(ξ, τ, T ), such that t ≥
τ + αT.

Proof. Thanks to the invariance of the operator with respect to the trans-
lations and the dilations of the Lie group G, it is not restrictive to assume
(ξ, τ) = (0, 0) and R = 1; we also denote S = S1(0, 0). Aiming to prove that
G0(0, t, 0, 0) > 0, for every t ∈]0, T ], we recall (2.13). We first note that h is
a bounded function in the set

{
(x, t, 0, 0) ∈ Q(T ) × {(0, 0)}

}
. On the other

hand Γ0(0, t) = t−
Q−2

2 Γ0(0, 1) by (3.1), then

G0(0, t, 0, 0) = Γ0(0, t) − h(0, t, 0, 0) → +∞

as t → 0+. Then G0(0, t, 0, 0) > 0 for any positive small t. Since G0 ≥ 0
by the Bony’s maximum principle ([3, Theorem 3.2]) G0(0, t, 0, 0) > 0 for
t ∈]0, T ]. In order to prove our claim we let

ε =
1

4
meas(S) min

[αT,T ]
G0(0, t, 0, 0);

it is not restrictive to suppose ε < 1. Since G0 is a continuous function,
there exists δ0 ∈]0, 1[ such that

G0(x, t, y, 0) ≥ 2 ε

meas(S)
;
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for every (x, t) ∈ Qδ(0, 0, T ), such that t ≥ αT and y ∈ Sδ(0, 0), with
δ ∈]0, δ0]. This proves the claim for (ξ, τ) = (0, 0) and R = 1. The result
in the general case follows by using the invariance with respect to the Lie
group structure. �
Remark 3.2. In the above proof we used the assumption (1.4) in order to
apply the Bony’s strong maximum principle along the segment

{
(0, t) : 0 ≤

t ≤ T
}
, which is a trajectory of the vector field Y .

If we remove the requirement (1.4), then the hypothesis [H.2] and (2.7)
yield Y (0) = b0 ·∇(2)−∂t, for some constant vector b0 belonging to the second
layer of the Lie algebra of G. In this case, it is possible to adapt the proof of
Proposition 3.1 by using the change of variable (x, t) �→ (x− t b0, t), however
the assertion has to be stated according to the appropriate geometry.

We end this section with some further remarks about our definition of
the Stummel-Kato class. We first recall the upper gaussian estimate for the
fundamental solution provided by Kogoj and Lanconelli (see (5.1) in [11]),
that allows us to establish whether a given function V does satisfy condi-
tion (1.11): for every t > 0, x ∈ RN

(3.11) Γ0(x, t) ≤
C

t
Q−2

2

exp

(
−|x|G
Ct

)
for some positive constant C.

We next observe that, unlike in the usual definition of the Stummel-Kato
class, in formula (1.12) we integrate V on an unbounded set. A definition
more similar to that one of the elliptic case should be given in terms of the
following functions

η̃V(h) = sup
(x,t)∈Ω

∫
Ω∩Qh(x,t,h2)

Γ0(x, t, y, s)|V(y, s)|dyds,

η̃∗V(h) = sup
(y,s)∈Ω

∫
Ω∩Q∗

h(y,s,h2)

Γ0(x, t, y, s)|V(x, t)|dxdt;
(3.12)

however, it turns out that η̃V and η̃∗V define the same class as ηV and η∗V .

Remark 3.3. We have that

lim
h→0

ηV(h) = 0 ⇐⇒ lim
h→0

η̃V(h) = 0;

lim
h→0

η∗V(h) = 0 ⇐⇒ lim
h→0

η̃∗V(h) = 0.

One of the two implications is an easy consequence of the inequalities η̃V(h)≤
ηV(h) and η̃∗V(h) ≤ η∗V(h). The other one easily follows from the homogeneity
of Γ0, with respect to the dilation of the Lie group, and from the absolute
continuity of the integral.
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We next compare the spaces SK(Ω,L0) and the following Morrey spaces
Lp,λ(Ω,G)

Definition 3.4. Let Ω be an open subset of R
N+1 and let p, λ ∈ R be such

that 1 ≤ p < ∞ and 0 ≤ λ ≤ Q. We say that a function f ∈ Lp
loc(Ω)

belongs to the Morrey space Lp,λ(Ω,G) if ‖f‖Lp,λ(Ω,G) <∞, where

‖f‖Lp,λ(Ω,G) =

(
sup

r>0,z∈Ω

1

rλ

∫
Ω∩Br(z)

|f(w)|pdw
) 1

p

.

Although the class SK(Ω,L0) and the spaces Lp,λ(Ω,G) are defined anal-
ogously to the classic ones, we observe some substantial differences between
them. In the case of elliptic equations we have

(3.13) L1,λ(Ω) ⊆ SK(Ω) ⊆ L1,µ(Ω), 0 < µ ≤ n− 2 < λ < n.

An analogous result is true for the sum of the squares of the Hörmander
fields, however in the case of parabolic (and degenerate parabolic) opera-
tors, we can prove the first inclusion, but the second one seems false (see
Example 2.10 in [23]).

Proposition 3.5. We have

L1,λ(Ω,G) ⊆ SK(Ω,L0), for every λ ∈]Q− 2, Q[.

Proof . By using the homogeneity of the fundamental solution Γ0 we find

(3.14)

∫
Ω∩Qh(x,t,h2)

Γ0(x, t, w)|V(w)|dw ≤ cλh
λ−Q+2 1

hλ

∫
Ω∩Bh(x,t)

|V(w)|dw,

for every V ∈ L1,λ(Ω,G), and by Remark 3.3 this inequality yields the desired
inclusion. �

Since we are concerned with weak solutions to LVu = 0, we need a
sufficient condition for the requirement Vu ∈ L1

loc. We recall that, in the
case of uniformly elliptic operators, Vu ∈ L1

loc(Ω) provided that u belongs
to the space H1

loc(Ω) (see Schechter [26]) and a similar condition holds for
the sum of squares of Hörmander vector fields (see [5]). Here we prove that
Vu is locally integrable when u belongs to the Sobolev-Folland-Stein space
W 2,1(Ω,L0), namely if the following norm

‖u‖W 2,1(Ω,L0) = ‖u‖L1(Ω) +
m∑

j=1

‖Xju‖L1(Ω) +
m∑

i,j=1

‖XiXju‖L1(Ω) + ‖Y u‖L1(Ω)

is finite.
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Lemma 3.6. If u ∈ W 2,1
loc (Ω,L0) and H,K are two compact sets such that

K ⊂⊂ H ⊂ Ω, then there exists a positive constant C, dependent only on
H,K and V ∈ SK(Ω,L0), such that

(3.15)

∫
K

|V(z)u(z)|dz ≤ C‖u‖W 2,1(H,L0).

Proof. We first claim that, for every v ∈ C∞
0 (Ω), we have

(3.16)

∫
Ω

|V(z)v(z)|dz ≤ C0‖v‖W 2,1(Ω,L0),

where C0 is a positive constant dependent only on V and on the support
of v. Indeed, if we denote by H the support of v then∫

Ω

|V(z)v(z)|dz ≤
∫

H

|V(z)|
(∫

H

Γ0(z, ζ)|L0v(ζ)|dζ
)
dz

≤
∫

H

∣∣L0v(ζ)
∣∣dζ sup

η∈H

(∫
H

|V(z)|Γ0(z, η)dz

)
≤ η∗V(cH)‖v‖W 2,1(Ω,L0)

where cH = max{|t− τ | : (x, t), (ξ, τ) ∈ H}. This proves (3.16). The thesis
follows from a standard density argument. �

4. The Green function for LV

In this section we use the parametrix method to prove the existence of a Green
function G for the operator LV , related to any given cylinder QR(ξ, τ, T ).
We construct G as a perturbation of G0:

G(z, w) = G0(z, w) +

∫
QR

G0(z, η)Φ(η, w)dη,

for some unknown function Φ. A formal argument, based on the fact that
L0G0(z, w) = −δw(z) and on the requirement that LVG(z, w) = −δw(z)
leads to the following Volterra equation for Φ

Φ(z, ζ) = V(z)G0(z, ζ) +

∫
QR

V(z)G0(z, η)Φ(η, ζ)dη;

The successive approximation method then gives:

(4.1) G(z, w) = G0(z, w) +
∞∑

k=1

Jk(z, w),
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where

J1(z, w) =

∫
QR(ξ,τ,T )

G0(z, η)V(η)G0(η, w)dη

Jk+1(z, w) =

∫
QR(ξ,τ,T )

G0(z, η)V(η)Jk(η, w)dη.

(4.2)

We will prove that these integrals Jk are well defined, then the Lp conver-
gence of the series and we finally show that G is a Green function for LV .
Aiming to unify the notations, in the sequel we will denote J0 = G0 so that

J1(z, w) =

∫
QR(ξ,τ,T )

G0(z, η)V(η)J0(η, w)dη.

Lemma 4.1. The functions in (4.2) belong toLp(QR(ξ, τ, T )) for every p ∈
[1, Q

Q−2
) and there exists a positive constant cp such that

‖Jk(z, ·), Lp(QR(ξ, τ, T ))‖ ≤ cpη
∗
V(T )k,

‖Jk(·, w), Lp(QR(ξ, τ, T ))‖ ≤ cpηV(T )k,
(4.3)

for every w, z ∈ QR(ξ, τ, T ). Moreover, Jk(x, t, y, s) = 0 for every t ≤ s.
We can also write Jk+1 as

(4.4) Jk+1(z, w) =

∫
QR(ξ,τ,T )

Jk(z, η)V(η)G0(η, w)dη.

Proof . We let Ṽ(η) = |V(η)| and define J̃k, by using formulas (4.2) with Ṽ.
Note that ηV(T ) = η

�V(T ) and η∗V(T ) = η∗
�V(T ), then Ṽ ∈ SK(QT ,L0) if

and only if V ∈ SK(QT ,L0). We first prove the inequalities in (4.3) for the

non-negative functions J̃k, the required estimates will follow from the trivial
inequality |Jk| ≤ J̃k.

Due to the fact that every J̃k is non-negative, (4.4) is immediate. In

order to prove the Lp estimates for J̃k we note that∫
QR(ξ,τ,T )

G0(z, η)|V(η)|dη ≤
∫

QR(ξ,τ,T )

Γ0(z, η)|V(η)|dη = ηV(T ),∫
QR(ξ,τ,T )

G0(η, w)|V(η)|dη ≤
∫

QR(ξ,τ,T )

Γ0(η, w)|V(η)|dη = η∗V(T ),

(4.5)

since G0 ≤ Γ0.
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We next define the sequences:

sk = sup
z∈QR(ξ,τ,T )

∫
QR(ξ,τ,T )̃

Jk(z, η)|V(η)|dη,

s∗k = sup
η∈QR(ξ,τ,T )

∫
QR(ξ,τ,T )

|V(z)|J̃k(z, η)dz,

and we prove the following inequalities

(4.6) sk ≤ ηV(T )k+1, s∗k ≤ η∗V(T )k+1

by induction on k. For k = 1 we have

s1 ≤ sup
z∈QR(ξ,τ,T )

∫
QR(ξ,τ,T )

G0(z, ζ)|V(ζ)| ·

·
(

sup
w∈QR(ξ,τ,T )

∫
QR(ξ,τ,T )

G0(w, η)|V(η)|dη
)
dζ ≤ η2

V(T ),

by (4.5). The same argument and (4.2) give

sk+1 ≤ skηV(T ),

for any k > 1, then the first inequality in (4.6) is proved. The proof of the
second one is analogous.

To obtain the Lp estimate for J̃k we set, for p ∈
[
1, Q

Q−2

)
:

T =
{
ϕ ∈ C∞

0 (QR(ξ, τ, T )) : ϕ ≥ 0, ‖ϕ‖Lp′(QR(ξ,τ,T )) ≤ 1
}
.

For any ϕ ∈ T , we have∫
QR(ξ,τ,T )

J̃k+1(z, w)ϕ(w)dw =

∫
QR(ξ,τ,T )

J̃k(z, η)|V(η)|
(∫

QR(ξ,τ,T )

G0(η, w)ϕ(w)dw
)
dη

≤ cp‖ϕ‖Lp′(QR(ξ,τ,T ))sk ≤ cpη
∗
V(T )k+1,

by (4.4) and (4.6), where

cp = sup
η∈QR(ξ,τ,T )

‖Γ0(η, ·)‖Lp(QR(ξ,τ,T )).

Thus

‖J̃k(z, ·)‖Lp(QR(ξ,τ,T )) = sup
ϕ∈T

∫
QR(ξ,τ,T )

J̃k(z, w)ϕ(w)dw ≤ cpη
∗
V(T )k

and the first inequality in (4.3) holds for every k ∈ N. In the same way

we obtain the second one. Since |Jk(z, w)| ≤ J̃k(z, w), the estimates (4.3)
and the identity (4.4) also hold for every Jk, and the lemma is completely
proved. �
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Proposition 4.2. Let T > 0 be such that ηV(T ) < 1 and η∗V(T ) < 1. Then

i) for every p ∈
[
1, Q

Q−2

)
the series introduced in (4.1) converges in

Lp(QR(ξ, τ, T )) and there exists a positive constant cp such that

‖G(z, ·)‖
Lp(QR(ξ,τ,T ))

≤ cp

∞∑
k=0

ηV(T )k; ‖G(·, w)‖
Lp(QR(ξ,τ,T ))

≤ cp

∞∑
k=0

η∗V(T )k

ii) G(x, t, y, s) = 0 for t ≤ s;

iii) the derivatives

XjG( · , w) = XjG0( · , w) +

∞∑
k=1

∫
QR(ξ,τ,T )

XjG0( · , η)V(η)Jk(η, w)dη,

XjG(z, · ) = XjG0(z, · ) +

∞∑
k=1

∫
QR(ξ,τ,T )

Jk(z, η)V(η)XjG0(η, · )dη

(4.7)

are defined as elements of the space Lp
loc(QR(ξ, τ, T )) for any p ∈[

1, Q
Q−1

)
and, for every compact set K ⊂ QR(ξ, τ, T ), there exists a

positive constant cp such that∥∥∥XjG( · , w)
∥∥∥

Lp(K)
≤ cp

∞∑
k=0

ηV(T )k,
∥∥∥XjG(z, · )

∥∥∥
Lp(K)

≤ cp

∞∑
k=0

η∗V(T )k,

for j = 1, . . . , m;

iv) for every (x, t) ∈ QR(ξ, τ, T ),∫
SR(ξ,τ)

|G(x, t, y, τ)|dy ≤
∞∑

k=1

ηV(T )k;

∫
SR(ξ,τ,T )

|G(y, τ+T, x, t)|dy ≤
∞∑

k=1

η∗V(T )k;

v) for every z ∈ QR(ξ, τ, T ), we have∫
QR(ξ,τ,T )

|G(z, w)V(w)| dw≤
∞∑

k=1

ηV(T )k,

∫
QR(ξ,τ,T )

|V(ζ)G(ζ, z)| dζ≤
∞∑

k=1

η∗V(T )k.

Proof. Assertions i) and ii) are direct consequences of Lemma 4.1. In order
to prove iii), we show that the series

∞∑
k=1

∫
QR(ξ,τ,T )

XjG0( · , η)V(η)Jk(η, w)dη,

is convergent in Lp
loc(QR(ξ, τ, T )).
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Let K be a compact subset of QR(ξ, τ, T ); for any ϕ ∈ T , such that
supp(ϕ) ⊂ K, we have∫

K

(∫
QR(ξ,τ,T )

XjG0(z, η)V(η)Jk(η, w)dη

)
ϕ(z)dz

≤ cp‖ϕ‖Lp′(K) sup
w∈QR(ξ,τ,T )

∫
QR(ξ,τ,T )

|V(η)|J̃k(η, w)dη

≤ cpη
∗
V(T )k+1

by (4.6), where
cp = sup

η∈QR(ξ,τ,T )

‖XjG0( · , η)‖Lp(K).

Hence∥∥∥∥∫
QR(ξ,τ,T )

XjG0( · , η)V(η)Jk(η, w)dη

∥∥∥∥
Lp(K)

= sup
ϕ∈T

∫
K

(∫
QR(ξ,τ,T )

XjG0(z, η)V(η)Jk(η, w)dη

)
ϕ(z)dz

≤ cpη
∗
V(T )k+1.

This proves the first identity in (4.7) and the estimate

∥∥∥XjG(z, · )
∥∥∥

Lp(K)
≤ cp

∞∑
k=0

η∗V(T )k.

The same argument gives the second identity and the corresponding esti-
mate.

In order to prove iv), we note that, for every k ∈ N,∣∣∣ ∫
SR(ξ,τ)

Jk(x, t, y, τ)dy
∣∣∣

≤
∣∣∣ ∫

QR(ξ,τ,T )

Jk−1(x, t, η)V(η)
(∫

SR(ξ,τ)

G0(η, y, τ)dy
)
dη
∣∣∣

≤ ηk
V(T ),

by (4.6). This proves the first estimate, the proof of the second one is
analogous.

Finally, v) is an immediate consequence of (4.6). This concludes the
proof of Proposition 4.2. �
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Corollary 4.3. The function G defined in (4.1) is solution, in the distri-
bution sense, of LVG( · , ζ) = −δζ , LV

∗G(z, · ) = −δz. Namely: G( · , ζ),
XjG( · , ζ) ∈ Lp(QR(ξ, τ, T )), for some p > 1 and for j = 1, . . . , m,GV ∈
L1(QR(ξ, τ, T )) and ∀ϕ ∈ C∞

0 (QR(ξ, τ, T )), we have∫
QR(ξ,τ,T )

( m∑
j=1

XjG(z, ζ)Xjϕ(z) +G(z, ζ)Y ϕ(z) −G(z, ζ)V(z)ϕ(z)

)
dz=ϕ(ζ),

∫
QR(ξ,τ,T )

( m∑
j=1

XjG(z, ζ)Xjϕ(ζ) −G(z, ζ)Y ϕ(ζ) −G(z, ζ)V(ζ)ϕ(ζ)

)
dζ=ϕ(z).

Proof . Since G0 is the Green function of L0, we have∫
QR(ξ,τ,T )

(
m∑

j=1

XjG0(z, ζ)Xjϕ(z) +G0(z, ζ)Y ϕ(z)

)
dz = ϕ(ζ),

for every ϕ ∈ C∞
0 (QR(ξ, τ, T )). For any k ∈ N, we multiply the above

identity by V(ζ)Jk−1(ζ, w) and integrate on QR(ξ, τ, T ); we find∫
QR(ξ,τ,T )

( m∑
j=1

Xjϕ(z)

∫
QR(ξ,τ,T )

XjG0(z, ζ)V(ζ)Jk−1(ζ, w)dζ+

Y ϕ(z)

∫
QR(ξ,τ,T )

G0(z, ζ)V(ζ)Jk−1(ζ, w)dζ

)
dz =

∫
QR(ξ,τ,T )

ϕ(ζ)V(ζ)Jk−1(ζ, w)dζ

and the first identity follows from the definition (4.1), (4.2) and from (4.7).
In analogue way we can proceed for the second equality. �

Proposition 4.4. Let T > 0 be such that ηV(T ) < 1 and η∗V(T ) < 1. Then,
for any (ξ, τ) ∈ RN+1 the function G defined by (4.1) is the Green function
for the Cauchy-Dirichlet problem (2.16) related to QR(ξ, τ, T ).

Moreover G∗(w, z) = G(z, w) is the Green function for the Cauchy-
Dirichlet problem

(4.8)

{
LV

∗v = g in QR(ξ, τ, T )
v = 0 in ∂∗rQR(ξ, τ, T )

with g ∈ C0(QR(ξ, τ, T )), namely the function

v(y, s) = −
∫

QR(ξ,τ,T )

G∗(y, s, z)g(z)dz

is a weak solution to LV
∗v = g in QR(ξ, τ, T ) and attains the boundary

data by continuity (in (4.8) ∂∗rQR(ξ, τ, T ) = (ξ, τ) ◦ δR (∂∗rQ(R−2T )), where
∂∗rQ(T ) = S(T ) ∪

(
∂O × [0, T ]

)
).



1032 S. Polidoro and M.A. Ragusa

Proof . As said in Section 2, G is a Green function for the Cauchy-Dirichlet
problem (2.16) if, for any f ∈ C0(QR(ξ, τ, T )), the function

u(z) = −
∫

QR(ξ,τ,T )

G(z, ζ)f(ζ)dζ

is a weak solution to LVu = f in QR(ξ, τ, T ) and attains the boundary data
by continuity. The fact that u solves LVu = f is a direct consequence of
Corollary 4.3.

In order to verify that u continuously vanishes at ∂rQR(ξ, τ, T ) we first
note that

L0u(z) = f(z) − V(z)u(z),

then

u(z) = −
∫

QR(ξ,τ,T )

G0(z, η)f(η)dη +

∫
QR(ξ,τ,T )

G0(x, t, η)V(η)u(η)dη,

for every z ∈ QR(ξ, τ, T ). Since the function

u0(z) = −
∫

QR(ξ,τ,T )

G0(z, η)f(η)dη

is a solution to the boundary value problem (2.12) (which is related to L0)
it is known that it continuously vanishes at ∂rQR(ξ, τ, T ). Hence, we have
to show that

(4.9) lim
(x,t)→(x0,t0)

∫
QR(ξ,τ,T )

G0(x, t, η)V(η)u(η)dη = 0,

for every (x0, t0) ∈ ∂rQR(ξ, τ, T ).
In order to prove (4.9) we observe that u is a bounded function, by

Proposition 4.2 (i). Let us first consider a point (x0, t0) ∈ SR(ξ, τ). Since V
belongs to the Stummel-Kato class, we have∣∣∣ ∫

QR(ξ,τ,T )

G0(x, t, η)V(η)u(η)dη
∣∣∣ ≤ ‖u‖∞ηV(t) → 0 as t→ 0+.

This proves that u(x, t) → 0 as (x, t) → (x0, t0), for any (x0, t0) ∈ SR(ξ, τ).
We next consider a point (x0, t0) ∈ MR(ξ, τ, T ). For every positive ε

there exists a δ > 0 such that∣∣∣ ∫
(y,s)∈QR(ξ,τ,T ):t0−δ<s<t0

G0(x, t, y, s)V(y, s)u(y, s)dyds
∣∣∣≤ ‖u‖∞ηV(δ) < ε
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∀(x, t) ∈ QR(ξ, τ, T ), since V ∈ SK(Ω,L0). Moreover there exists a positive

constant H̃ such that G0(x, t, y, s) ≤ H̃, for every (x, t), (y, s) ∈ QR(ξ, τ, T )
such that s < t0 − δ and t > t0 − δ/2. Hence

lim
(x,t)→(x0,t0)

∫
η∈QR(ξ,τ,T ):s<t0−δ

G0(x, t, η)V(η)u(η)dη = 0,

that proves (4.9). This completes the proof that u(x, t) → 0 as (x, t) →
(x0, t0) for every (x0, t0) ∈ ∂rQR(ξ, τ, T ), thus G is a Green function for LV
in QR(ξ, τ, T ).

The proof that G∗ is a Green function for LV
∗ in QR(ξ, τ, T ) is analogous

and will be omitted. �

We next prove a lower bound for G analogous to Proposition 3.1.

Proposition 4.5. For every α0 ∈]0, 1[ there exist ε, δ0 ∈]0, 1[, and R0 > 0
such that, if R ∈]0, R0], δ ∈]0, δ0], and G is the Green function related to
QR(ξ, τ, R2) then

G(x, t, y, τ) ≥ ε

meas(SR(ξ, τ))

for every y ∈ SδR(ξ, τ) and for every (x, t) ∈ QδR(ξ, τ, R2), such that t ≥
τ + α0R

2

Proof. We claim that there exists a positive constant c such that

(4.10) |Jk(x, t, x̄, t̄)| ≤
c

(t− t̄)
Q−2

2

(ηV(t− t̄) + η∗V(t− t̄))k ,

for every k ∈ N and any (x, t), (x̄, t̄) ∈ QR(ξ, τ, R2). As a consequence,
from (4.1) and Proposition 3.1 we get

G(x, t, y, τ) ≥ G0(x, t, y, τ) −
c

(t− τ)
Q−2

2

∞∑
k=1

(ηV(t− τ) + η∗V(t− τ))k

≥ 2 ε

meas(SR(ξ, τ))
− c

(t− τ)
Q−2

2

∞∑
k=1

(ηV(t− τ) + η∗V(t− τ))k ,

for any y ∈ SδR(ξ, τ) and for every (x, t) ∈ QδR(ξ, τ, R2), such that t ≥
τ + α0R

2. Moreover, since meas(SR(ξ, τ)) = RQ−2 meas(S) and α0R
2 ≤

t− τ ≤ R2, the above inequality gives

G(x, t, y, τ) ≥ 2 ε

meas(SR(ξ, τ))
− c′

meas(SR(ξ, τ))

∞∑
k=1

(ηV(t− τ) + η∗V(t− τ))k ,

for some positive constant c′. The claim then follows by choosing R0 suitably
small.
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We next prove (4.10) by induction. We first recall (3.11), then

(4.11) G0(x, t, y, s) ≤ Γ0(x, t, y, s) ≤
C

(t− s)
Q−2

2

,

for every (x, t), (y, s) ∈ QR(ξ, τ, R2). Since

J1(x, t, x̄, τ) =

∫ t+τ
2

τ

∫
SR(ξ,τ,s)

G0(x, t, y, s)V(y, s)G0(y, s, x̄, τ)dyds+

+

∫ t

t+τ
2

∫
SR(ξ,τ,s)

G0(x, t, y, s)V(y, s)G0(y, s, x̄, τ)dyds,

we have

|J1(x, t, x̄, τ)| ≤
C(

t−τ
2

)Q−2
2

∫ t+τ
2

τ

∫
SR(ξ,τ,s)

|V(y, s)|Γ0(y, s, x̄, τ)dyds

+
C(

t−τ
2

)Q−2
2

∫ t

t+τ
2

∫
SR(ξ,τ,s)

Γ0(x, t, y, s)|V(y, s)|dyds,

so that (4.10) follows for k = 1.
For k > 1 we argue analogously: we write

Jk+1(x, t, x̄, τ) =

∫ t+τ
2

τ

∫
SR(ξ,τ,s)

Jk(x, t, y, s)V(y, s)G0(y, s, x̄, τ)dyds

+

∫ t

t+τ
2

∫
SR(ξ,τ,s)

Jk(x, t, y, s)V(y, s)G0(y, s, x̄, τ)dyds,

and we use (4.6) in the second integral. This completes the proof. �

5. Proof of the main results

In this section we prove the main results of this paper. As said in the in-
troduction, the main difficulty is in the fact that V is unbounded, then we
cannot rely on the usual maximum principle. To overcome this problem, we
first prove Proposition 2.3 and an uniqueness result for bounded solutions,
then we prove the Harnack inequality (Theorem 2.2) for a bounded func-
tion V, with the constant M depending on ηV and η∗V , but not on the L∞

norm of V. We finally remove the hypotheses of boundedness from u and V,
by using a technique due to Zhang [29]. We consider the sequence of oper-
ators

(5.1) LVm = L0 + Vm,
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where

Vm(x, t) =

⎧⎨⎩
−m if V(x, t) ≤ −m
V(x, t) if −m < V(x, t) < m,
m if V(x, t) ≥ m.

and we approximate the solution u to LV = 0 by a sequence um of solutions
to LVm = 0. Since ηVm(T ) ≤ ηV(T ), and η∗Vm

(T ) ≤ η∗V(h), the Harnack
inequality for bounded solutions extends to u.

Lemma 5.1. If u is a bounded weak solution of LVu = 0 in Ω, with V ∈
SK(Ω,L0), then u is continuous. Moreover, for any β ∈]0, 1[ there exists a
positive constant Cβ, dependent only on L0 and β, such that

|u(z) − u(z0)| ≤
(
Cβd(z, z0)

β + 2ηV(5 c2 d(z, z0)
1−β)

)
sup

B4r(z0)

|u|

for every z0 ∈ Ω, r ∈]0, 1[ such that B4r(z0) ⊂ Ω and for every z ∈ Brβ
(z0)

(where rβ = r
1

1−β and c is the constant in (2.3)).

If V ∈ L1,λ(Ω,G) with λ ∈]Q− 2, Q[, then

|u(z) − u(z0)| ≤ Cβ

(
1 + ‖V‖L1,λ(Ω,G)

)
sup

B4r(z0)

|u| · d(z, z0)α,

where α = min {β, (1 − β)(λ−Q+ 2)}.

Proof . Let z0 ∈ Ω, r ∈ (0, 1) be such that B4r(z0) ⊂ Ω and let z ∈ Brβ
(z0).

We choose � = 2d(z0, z)
1−β and a function ϕ ∈ C∞

0 (B2�(z0)) such that
ϕ ≡ 1 in B�(z0) and that |Xjϕ| ≤ c

�
, |XiXjϕ| ≤ c

�2 , for i, j = 1, . . . , m and

|Y ϕ| ≤ c
�2 , for some positive constant c only depending on the operator L0.

Since � ≤ 2r, we have B2�(z0) ⊂ B4r(z0) ⊂ Ω and (ϕu) : B2�(z0) → R

satisfies

L0(ϕu) =

m∑
j=1

X2
j (ϕu) + Y (ϕu) = ϕL0u+ uL0ϕ+ 2

m∑
j=1

XjϕXju.

By the representation formula (3.10) we have that

u(z) = −
∫

RN+1

Γ0(z, ζ)L0ϕ(ζ)u(ζ)dζ −2
m∑

j=1

∫
RN+1

Γ0(z, ζ)〈Xjϕ,Xju〉dζ

+

∫
RN+1

Γ0(z, ζ)V(ζ)u(ζ)ϕ(ζ)dζ

= A1(z) + A2(z) + A3(z), ∀ z ∈ B�(z0).

(5.2)
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We explicitly remark that d(z0, ζ) ≥ 2d(z0, z), for every ζ ∈ B2�(z0)\B�(z0).
From the first inequality in (3.3) we estimate the two terms in A1 as follows

|A1(z) − A1(z0)| ≤
∫

RN+1

|Γ0(z, ζ) − Γ0(z0, ζ)| · |L0ϕ(ζ)u(ζ)|dζ

≤ C̃ sup
B2�(z0)

|uL0ϕ|
∫

B2�(z0)\B�(z0)

d(z1, z2)

d(z1, ζ)Q−1
dζ ≤ Cβ d(z, z0)

β sup
B2�(z0)

|u|,

for some positive constant Cβ depending on C̃ in (3.3), on L0ϕ and on β.
We next consider A2. We integrate by parts

A2(z) = 2
m∑

j=1

∫
RN+1

X
(ζ)
j (Γ0(z, ζ)Xjϕ(ζ))u(ζ)dζ

= 2

m∑
j=1

∫
RN+1

Γ0(z, ζ)X
2
jϕ(ζ) u(ζ)dζ + 2

m∑
j=1

∫
RN+1

X
(ζ)
j Γ0(z, ζ)Xjϕ(ζ) u(ζ)dζ,

(as in (3.3), the notation X
(ζ)
j means that the vector field Xj acts on the

variable ζ). We then estimate the first sum by the same argument as A1;
for the second one we use the third inequality in (3.3).

We finally consider A3. Let us first observe that, in view of (2.3), we
have d(z, ζ) ≤ c2 (d(z, z0) + 2�) ≤ 5c2d(z0, z)

1−β for every ζ ∈ supp(ϕ), and
z ∈ Br(z0). Moreover, if ζ = (ξ, τ) and z = (x, t), then |t− τ | ≤ d2(z, ζ), so
that

|A3(z)| ≤ sup
B2�(z0)

|u|
∫

B2�(z0)

Γ0(z, ζ)|V(ζ)|dζ ≤ sup
B2�(z0)

|u| · ηV
(
5c2d(z0, z)

1−β
)
,

for every z ∈ B�(z0). This proves the first claim of Lemma 5.1. The second
assertion directly follows from Proposition 3.5 (see (3.14)). �

We next prove a uniqueness result for Cauchy-Dirichlet problem (2.16).

Lemma 5.2. If u is a bounded solution to the problem

(5.3)

{
LVu = 0 in QR(ξ, τ, T )
u = 0 in ∂rQR(ξ, τ, T ),

then u ≡ 0.

Proof. By the maximum principle, if u and v are weak solutions of the
problem {

L0u = f in QR(ξ, τ, T )
u = 0 in ∂rQR(ξ, τ, T )

with f ∈ L1(QR(ξ, τ, T )), then u ≡ v.
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Hence, if u is a solution of the non-homogeneous problem{
L0u+Vu=f in QR(ξ, τ, T )
u = 0 in ∂rQR(ξ, τ, T )

with f ∈ L1(QR(ξ, τ, T )), then u is almost everywhere equal to

(5.4) v(z) =

∫
QR(ξ,τ,T )

G0(z, ζ)(V(ζ)u(ζ)− f(ζ))dζ.

Suppose now that u is a solution of the homogeneous problem (5.3) . We
then have

u(x, t) =

∫
QR(ξ,τ,T )

G0(x, t, y, s)V(y, s)u(y, s)dyds.

for every (x, t) ∈ QR(ξ, τ, h). Then recalling that G0(x, t, y, s) = 0 for t ≤ s
we have for t < τ + δ

‖u‖L∞(QR(ξ,τ,δ)) ≤ ηV (δ)‖u‖L∞(QR(ξ,τ,δ)).

Thus, if we choose δ such that ηV (δ) < 1, we have u ≡ 0 in QR(ξ, τ, δ). We
then conclude the proof by iterating this method. �

Arguing as above, we can easily prove the following property.

Remark 5.3. If the function V is bounded and u is a solution to the problem⎧⎨⎩
LVu = f in QR(ξ, τ, T )
u = 0 in MR(ξ, τ, T )
u = g in SR(ξ, τ)

for some f ∈ L1(QR(ξ, τ, T )) and g ∈ C0(SR(ξ, τ)), then

u(z) =

∫
SR(ξ,τ)

G(z, y, τ)g(y)dy −
∫

QR(ξ,τ,T )

G(z, η)f(η)dη.

In order to state our next result, we introduce some further notations.
For a given (ξ, τ) ∈ RN+1 and R > 0, we set

Q∗
R = Q∗

R(ξ, τ, R2) = QR(ξ∗, τ ∗, R2), where (ξ∗, τ ∗) = (ξ, τ) ◦ (0,−R2).

Note that τ ∗ = τ − R2 by (2.4), then we may consider Q∗
R as the cylinder

whose upper basis is centered at (ξ, τ). We also set

M(R) = sup
Q∗

R

u, m(R) = inf
Q∗

R

u Osc(u, ξ, τ, R) = M(R) −m(R).
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Lemma 5.4. Let u ≥ 0 be a bounded solution of LVu = 0 in Q∗
R. Then

there exist δ, � ∈ (0, 1) and a positive R0, which depend on ηV and L0, such
that

Osc(u, ξ, τ, δR) ≤ �M(R)

for every R ∈]0, R0].

Proof . The method is inspired by that in [29] (and has been used in [23]).
Let ε, δ and R0 be as in Proposition 4.5, and set

S =

{
(x, τ ∗) ∈ SR(ξ∗, τ ∗) : u(x, τ ∗) ≥ M(R) +m(R)

2

}
,

Consider two possibilities.

Case 1: meas(S) ≥ 1
2
meas(SR(ξ∗, τ ∗)) .

Define the function

v(z) =

∫
SR(ξ∗,τ∗)

G0(z, y, τ
∗)(u(y, τ ∗) −m(R))dy +

∫
Q∗

R

G0(z, ζ)V(ζ)u(ζ)dζ,

and note that it is a solution to⎧⎨⎩
L0v = −Vu in QR(ξ∗, τ ∗, R2)
v = u−m(R) in SR(ξ∗, τ ∗)
v ≤ u−m(R) in MR(ξ∗, τ ∗, R2).

The function u − m(R) is non-negative in Q∗
R and L0(u −m(R)) = −Vu,

then, by the comparison principle, we find

u(z)−m(R) ≥
∫

SR(ξ∗,τ∗)
G0(z, y, τ

∗)(u(y, τ ∗)−m(R))dy+

∫
Q∗

R

G0(z, ζ)V(ζ)u(ζ)dζ

for almost every z ∈ Q∗
R. We next apply Proposition 3.1 with T = R2, and

we obtain∫
SR(ξ∗,τ∗)

G0(z, y, τ
∗)(u(y, τ ∗) −m(R))dy ≥

∫
S
G0(z, y, τ

∗)(u(y, τ ∗) −m(R))dy

≥M(R) −m(R)

2

∫
S
G0(z, y, τ

∗)dy ≥M(R) −m(R)

2

∫
S

ε

meas(SR(ξ∗, τ ∗))
dy

≥ ε

4
(M(R) −m(R)), for every z ∈ Q∗

δR(ξ, τ, (δR)2).

On the other hand, we have∣∣∣ ∫
Q∗

R

G0(z, ζ)V(ζ)u(ζ)dζ
∣∣∣ ≤M(R)ηV (R2),
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where the integral is sufficiently small provided that we fix R0 such that
ηV(R2) ≤ ε

8
for any R ∈]0, R0]. Observing that

m(δR) −m(R) ≥ ε

4
(M(R) −m(R)) − ε

8
M(R)

it follows

M(δR) −m(δR) ≤
(
1 − ε

4

)
(M(R) −m(R)) +

ε

8
M(R) ≤

(
1 − ε

8

)
M(R).

This concludes the the proof in the first case, since ε ∈]0, 1[.

Case 2: meas(S) ≤ 1
2
meas(SR(ξ∗, τ ∗)). In this case we set

w(z) =

∫
SR(ξ∗,τ∗)

G0(z, y, τ
∗)(M(R) − u(y, τ ∗))dy +

∫
Q∗

R

G0(z, ζ)V(ζ)u(ζ)dζ.

Following the method used in Case 1 we find

M(R) − u(z) ≥
∫

SR(ξ∗,τ∗)\S
G0(z, y, τ

∗)(M(R) − u(y, τ ∗))dy − ε

8
M(R)

≥ ε

4
(M(R) −m(R)) − ε

8
M(R), for a. e. z ∈ Q∗

δR(ξ, τ, (δR)2)

and then
M(δR) −m(δR) ≤

(
1 − ε

8

)
M(R).

The proof of Lemma 5.4 is then accomplished. �

Proposition 5.5. Let R0 and δ0 as in Proposition 4.5. Let u ≥ 0 be a
solution of LVu = 0 in Ω, QR(ξ, τ, R2) ⊂⊂ Ω, with R ≤ R0, and let V a
bounded function. Then, for every α, β, γ, δ ∈]0, 1[ such that α < β < γ
and δ < δ0 there exists a positive M that depends on ηV , η

∗
V and on the

constants α, β, γ, δ, but does not depend on the norm ‖V‖L∞ , such that

sup
Q−

u ≤M inf
Q+

u.

Proof. We first note that the boundedness of V yields the continuity of u, by
the representation formula (3.10) and a standard bootstrap argument. Then
there exists (x̄, t̄) ∈ Q+ such that u(x̄, t̄) = minQ+ u. It is not restrictive to
assume u(x̄, t̄) = 1.

Following the line of the proof of Theorem 5.4 in [7], we consider, for
every r ∈ [0, βR2], the following function

v(x, t) =

∫
SR(ξ,τ,r)

G(x, t, y, r)u(y, r)dy , ∀(x, t) ∈ QR(ξ, τ, R2).
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By the comparison principle (recall that V is bounded and that u ≥ 0) we
obtain u(x, t) ≥ v(x, t), for every (x, t) ∈ QR(ξ, τ, R2), then

(5.5) u(x̄, t̄) ≥
∫

SR(ξ,τ,r)

G(x̄, t̄, y, r)u(y, r)dy.

Let us fix δ′ = δ+δ0
2

and consider, for any λ > 0, the set

S(r, λ) = {y ∈ Sδ′R(ξ, τ, r) : u(y, r) ≥ λ} .

Then inequality (5.5) and Proposition 4.5 (with α0 = γ − β) imply that

(5.6) 1 = u(x̄, t̄) ≥
∫
S(r,λ)

G(x̄, t̄, y, r)u(y, r)dy ≥ λ εmeas(S(r, λ))

meas(SR(ξ, τ))
.

We set

(5.7) K =
1

2

(
1 +

1

�

)
r(λ) =

R

δ

(
4

ελ(1 − �)

) 1
Q−2

where � is the constant in Lemma 5.4, and we note that

Q∗
δr(λ)(ξ, τ, (δr(λ))2) ∩ SR(ξ, τ, r) = Sδr(λ)(ζ, τ)

for every r ∈ [t− (δr(λ))2, t]. Then

meas
(
Q∗

δr(λ)(ξ, τ, (δr(λ))2) ∩ SR(ξ, τ, r)
)

= meas(Sδr(λ)(ζ, τ))

(by the analogous of (2.10) for the N -dimensional measure)

= (δr(λ))Q−2 · meas(S) =
4RQ−2

ελ(1 − �)
· meas(S).(5.8)

We next prove the following statement. Let λ > 0 and (x, t) ∈ Qδ′R(ξ, τ, R2)
with t ≤ τ + βR2 be such that u(x, t) ≥ λ and that

Q∗
r(λ)(x, t, r(λ)2) ⊂ Qδ′R(ξ, τ, R2).

Then there exists (x′, t′) ∈ Q∗
r(λ)(x, t, r(λ)2) such that u(x′, t′) ≥ Kλ.

Indeed, from (5.6) it follows that

meas

(
S
(
r,
λ

2
(1 − �)

))
≤ 2RQ−2

λ ε(1 − �)
meas(S)

so that, by (5.8), there is a (ξ′, τ ′) ∈ Q∗
δr(λ)(ξ, τ, (δr(λ))2) ∩ SR(ξ, τ, r) such

that u(ξ′, τ ′) < λ
2
(1 − �). Our claim then follows from Lemma 5.4.
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We next show that there exists a positive constant M such that u(x, t)
≤M for every (x, t)∈Q−. The thesis then follows, since u(x̄, t̄)=minQ+ u= 1.

Suppose, by contradiction, that there were a z0 ∈ Q− such that u(z0) > M .
Then, repeating the arguments used above to obtain u(x′, t′) ≥ Kλ, there
exists a sequence

(
zj

)
such that

u(zj) ≥M Kj, zj+1 ∈ Q∗
rj

(zj, r
2
j ), where rj = r(M Kj),

provided that

(5.9) Q∗
rj

(zj , r
2
j ) ⊂ Qδ′R(ξ, τ, R2), for every j ∈ N.

In order to prove (5.9) we note that

d(zj+1, zj) ≤ c0rj = c0
R

δ

(
4

εM(1 − �)Kj

) 1
Q−2

where c0 = max
z∈Q∗

1(0,0,1)
d(z, (0, 0)) (recall (2.1)). Hence

d(zj , z0) ≤ c0
R

δ

(
4

εM(1 − �)Kj

) 1
Q−2

∞∑
i=1

K− i
Q−2 ,

so that we can choose a positive M , that depends on α, δ, δ0 but does not
depend on R, such that (5.9) holds. Hence the sequence u(zj) is unbounded
and we get a contradiction with the continuity of u. This accomplishes the
proof. �

In a similar way it is true the next result for the adjoint operator.

Remark 5.6. Let v ≥ 0 be a solution of L∗
Vv = 0 in QR(ξ, τ, R2), where V

is a bounded function and it is in the class SK(QR(ξ, τ, R2),L0). Then

sup
Q+

v ≤M inf
Q−

v,

for some positive constant M depending on ηV , η
∗
V and on the constants

α, β, γ, δ, but that does not depend on ‖V‖L∞.

Lemma 5.7. Let u be a solution of LVu = 0 in Ω. Then, for any z0 ∈ Ω
there exists a compact neighborhood K of z0 such that K ⊂ Ω and that u is
the limit in L1(K) of a sequence (um)m∈N, where every um satisfies

LVmum = 0 in K.

Moreover, for every compact set H ⊂ int(K), there exists a positive con-
stant cH such that

(5.10) |um(z)| ≤ cH ∀z ∈ H, ∀m ∈ N.
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Proof . Consider a cylindrical set QR(ξ, τ, T ) such that QR(ξ, τ, T ) ⊂ Ω,
and suppose that ηV(T ) < 1 and η∗V(T ) < 1. Let also consider a text function
ϕ ∈ C∞

0 (QR(ξ, τ, T )) such that ϕ ≡ 1 in a compact neighborhood K of z0
such that K ⊂ QR(ξ, τ, T ). We have

LVm(uϕ) = ϕL0u+ uL0ϕ+ 2

m∑
j=1

XjϕXju+ uϕVm =

(recalling that u is solution of L0u+ Vu = 0)

= uL0ϕ+ 2
m∑

j=1

XjϕXju+ (Vm − V)uϕ.

In the sequel we will set f = 2
∑m

j=1XjϕXju+ uL0ϕ. We also consider the
Green function Gm related to LVm and set

(5.11) um(z) = −
∫

QR(ξ,τ,T )

Gm(z, ζ)f(ζ)dζ.

We have {
Lm(um − ϕu) = −(Vm − V)ϕu in QR(ξ, τ, T )
um − ϕu = 0 in ∂rQR(ξ, τ, T ),

and the function (Vm − V)ϕu belongs to L1(QR(ξ, τ, T )), then, by Re-
mark 5.3, we find

(um − ϕu)(z) =

∫
QR(ξ,τ,T )

Gm(z, ζ)(Vm − V)ϕu(ζ)dζ.

We next integrate over QR(ξ, τ, T ) and use property (i) of Proposition 4.2,
for p = 1. We obtain

‖um − ϕu‖L1(QR(ξ,τ,T )) ≤ c1‖(Vm − V)ϕu‖L1(QR(ξ,τ,T )),

for some constant c1 that does not depend on m. On the other hand

|(Vm(ζ) − V(ζ))ϕ(ζ)u(ζ)| ≤ |V(ζ)ϕ(ζ)u(ζ)|,

for almost every ζ ∈ QR(ξ, τ, T ) and the function Vϕu ∈ L1(QR(ξ, τ, T )),
then

lim
m→∞

‖um − ϕu‖L1(QR(ξ,τ,T )) = 0.

This proves the first claim.
We next prove (5.10). We set

H̃ = supp
(
(X1ϕ)2 + · · ·+ (Xmϕ)2 + (Y ϕ)2

)
and note that f(ζ) = 0 for every ζ �∈ H̃.
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We next prove that there exists a positive constant c̃, that depends on H
and H̃, but does not depends on m, such that

(5.12) Gm(z, ζ) ≤ c̃ for every z ∈ H, ζ ∈ H̃.

As a consequence, by formula (5.11) we obtain

|um(z)| ≤
∫
�H

Gm(z, ζ)f(ζ)dζ ≤ c̃‖f‖L1(QR(ξ,τ,T )),

for every z ∈ H , and the proof is concluded, since

‖f‖L1(QR(ξ,τ,T )) ≤ k
( m∑

j=1

‖Xju‖L1(QR(ξ,τ,T )) + ‖u‖L1(QR(ξ,τ,T ))

)
,

for a positive constant k that only depends on ϕ and on L0.

We prove (5.12) by using the Harnack inequality stated in Remark 5.6.

Let z be a point of H . For every ζ ∈ H̃ we consider a cylindrical open
set Q̃ ⊂ QR(ξ, τ, T ) such that ζ ∈ Q̃+ and Q̃ ∩ H = ∅. Since Gm(z, ·) is a
positive solution to L∗

Vm
v = 0, by Remark 5.6 we have

sup
�Q+

Gm(z, ·) ≤M inf
�Q−
Gm(z, ·),

for some positive constant M that does not depend on m. On the other
hand

meas(Q̃−) inf
�Q−
Gm(z, ·) ≤

∫
QR(ξ,τ,T )

Gm(z, ζ)dζ ≤ c1

∞∑
k=0

ηV(T )k,

where c1 is the constant appearing in the statement (i) of Proposition 4.2.

Thus Gm(z, ζ) ≤ k̃, for every z ∈ H and ζ ∈ Q̃+, where the constant k̃
depends on M, c1 and ηV(T ). The estimate (5.12) then follows from a

standard covering argument for the compact set H̃. This completes the
proof. �
Proof of Proposition 2.3. Let u be a solution of the equation LVu = 0
in Ω. By Lemma 5.7, u is the limit, in L1

loc(Ω) of a sequence of bounded
functions (um)m∈N such that LVmum = 0 in a suitable compact set K ⊂ Ω.
We then apply Lemma 5.1 to every function um, then there exists a subse-
quence (umk

)k∈N
that converges uniformly to u in K. Thus the estimate of

the modulus of continuity stated in Lemma 5.1 extends to u. This completes
the proof. �
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Proof of Theorem 2.1. Let QR(ξ0, τ0, T ) be any cylindrical set. If ηV (T )
< 1 and η∗V (T ) < 1, the result immediately follows from Proposition 4.2.

If otherwise ηV (T ) ≥ 1, or η∗V (T ) ≥ 1, we choose h > 0 such that
ηV (h) < 1, η∗V (h) < 1. Consider the cylinders

Q(s)(T0) = O×]s, s+ T0[, Q
(s)
R (ξ0, τ0, T0) = (ξ0, τ0) ◦ δRQ(s)(R−2T0)

S(s) = O ×
{
s
}
, S

(s)
R (ξ0, τ0) = (ξ0, τ0) ◦ δRS(s),

and let G(s) denote the Green function related to Q
(s)
R (ξ0, τ0, h) (we can

employ the argument used in Proposition 4.2 without any change). We then
extend the definition of G given in Proposition 4.2 as follows: for every
(x, t) ∈ QR(ξ0, τ0, T ) such that s+ h < t ≤ s+ 2h, we set

G(x, t, y, s) =

∫
S

(s)
R (ξ0,τ0)

G(s+h)(x, t, w, s+ h)G(s)(w, s+ h, y, s)dw.

It is easy to verify that G is a Green function for the set QR(ξ0, τ0, 2h) and
that G∗(ζ, z) = G(z, ζ) is a Green function for the adjoint operator LV

∗.
For (x, t) ∈ QR(ξ0, τ0, T ) such that s+ 2h < t ≤ s+ 4h we repeat the above
argument and define the Green function in the set QR(ξ0, τ0, 4h) as

G(x, t, y, s) =

∫
S

(s)
R (ξ0,τ0)

G(s+2h)(x, t, w, s+ 2h)G(s)(w, s+ 2h, y, s)dw.

After a finite number of iterations we obtain a Green function for the
QR(ξ0, τ0, T ). This completes the proof. �
Proof of Theorem 2.2. As in Proposition 2.3, we obtain the result by
using Lemma 5.7 and Proposition 5.5. �
Acknowledgments. We wish to thank E. Lanconelli for his interest in this
problem and for many helpful discussions.
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Fourier (Grenoble) 19 (1969), 277–304.

[4] Bramanti, M. and Brandolini, L.: Estimates of BMO type for singular
integrals on spaces of homogeneous type and applications to hypoelliptic
PDEs. Rev. Mat. Iberoamericana 21 (2005), no. 2, 511–556.



Harnack inequality for hypoelliptic ultraparabolic equations 1045

[5] Citti, G., Garofalo, N. and Lanconelli, E.: Harnack’s inequality for
sum of squares of vector fields plus a potential. Amer. J. Math. 115 (1993),
no. 3, 699–734.

[6] Fabes, E. B. and Stroock, D.W.: The Lp−integrability of Green’s func-
tions and fundamental solutions for elliptic and parabolic equations. Duke
Math. J. 51 (1984), no. 4, 997–1016.

[7] Fabes, E. B. and Stroock, D.W.: A new proof of Moser’s parabolic
Harnack inequality using the old ideas of Nash. Arch. Rational Mech. Anal.
96 (1986), no. 4, 327–338.

[8] Folland, G. B.: Subelliptic estimates and function spaces on nilpotent
Lie groups. Ark. Mat. 13 (1975), no. 2, 161–207.

[9] Garofalo, N. and Lanconelli, E.: Level sets of the fundamental solu-
tion and Harnack inequality for degenerate equations of Kolmogorov type.
Trans. Amer. Math. Soc. 321 (1990), no. 2, 775–792.
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