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Multiparameter singular integrals and

maximal operators along flat surfaces

Yong-Kum Cho, Sunggeum Hong, Joonil Kim
and Chan Woo Yang

Abstract

We study double Hilbert transforms and maximal functions along
surfaces of the form (t1,t2,71(t1)y2(t2)). The LP(R®) boundedness
of the maximal operator is obtained if each ~; is a convex increasing
and v;(0) = 0. The double Hilbert transform is bounded in LP(R?)
if both v;’s above are extended as even functions. If ~; is odd, then
we need an additional comparability condition on ~s. This result is
extended to higher dimensions and the general hyper-surfaces of the
form (t1,...,tn, D(t1,...,t,)) on R*HL

1. Introduction

As an extension of Calderén-Zygmund theory, singular Radon transforms
and maximal functions along the appropriate submnifolds have been inten-
sively studied. Their L? boundedness is determined by certain geometric
conditions that are described in numerous ways. In [5], Nagel, Christ, Stein,
Wainger have shown the equivalence of those finite type conditions in the
very general setting. An interesting problem is to establish the L? theory for
flat manifolds, which are in lack of the finite type condition. We have fairly
good understanding of the flat curves of the form (¢,~(¢)) in [1, 4, 6, 8],
even though appropriate extensions for general flat surfaces are not well
known. In [4, 6], the L? boundedness of the maximal operators and singu-
lar integrals associated with the convex curves of the form (t,7(t)) where
v(0) = 4/(0) = 0 has been obtained under the doubling type condition of v/,
that is, 7/(Ct) > 27/(t) for all t > 0 with some C' > 0. This condition is a
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necessary and sufficient condition for I” boundedness of singular integrals
along even curves. Singular integral for odd + was proved to be bounded
in L? if and only if for some C > 0, h(Ct) > 2h(t) for all ¢ > 0 where
h(t) = tv'(t) —~(t) in [8]. The LP boundedness with p # 2 was also obtained
in [1] if there is € > 0 such that h'(t) > eh(t)/t for all ¢ > 0. Singular
integrals associated with higher dimensional flat submanifold of the form
{(t.v(]t])) : t € R"} have been considered in [7, 11, 12, 14].

It would be natural to ask how one can set up an appropriate geo-
metric condition for the LP-boundedness of the multi-parameter singular
Radon transforms and related maximal operators. Nagel and Wainger in [9]
proved the L? boundedness of multiple Hilbert transforms associated with
k-dimensional surfaces in R™, which have a certain dilation condition. Ricci
and Stein in [10] established the n-parameter theory by using a general fam-
ily of multi-parameter dilations. Their results combined with lifting argu-
ment in [13, Chapter 11] imply the L” boundedness of the maximal operators
associated with finite type surfaces as well as polynomial surfaces. In [3],
Carbery, Wainger and Wright have found the necessary and sufficient condi-
tion for the LP(R?) boundedness of the double Hilbert transforms associated
with polynomial surfaces. It is also known that only finite type condition
does not imply L? boundedness of multiple Hilbert transform (see Remark 4
and [2]).

Next interesting question is what conditions determine the L” bounded-
ness of the multi-parameter maximal operators and singular integrals along
flat surfaces without finite type conditions. The purpose of this paper is
to establish appropriate sufficient conditions for the LP boundedness. We
begin with considering model surfaces of the form {(¢,I'(t)) : t € R?} where
[(t1,t2) = 71(t1)72(t2) and 7; is a convex function such that +;(0) =+4(0)=0.
Interestingly it turns out that we do not need any additional condition such
as the doubling type condition of 4" and h in any direction t; or t5. However
as we extend this to general I, we come up with a curvature condition which
is close to infinitesimal doubling condition of curve theory in [1].

1.1. Theorems of a model case

We shall consider the multiple Hilbert transforms and maximal operators
associated with the hypersurfaces in R?® of the form {(t1,%2,7 (t1)72(t2))}
where 7; : [0,00) — R be a C? convex function for each i = 1,2. We define
a strong maximal function M f along this surface

1 1 T2
Mf(f[)) = Sup —— / ’f(l’l - tl, To — t2,f[)3 - ”yl(tl)’)/g(tg))’ dtl dtg
0 JO

r1,r2>0 ™o
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If each v; (i = 1,2) is suitably extended on (—o00,00), then the double
Hilbert transform along this extended surface is defined by

Hf(x) = lim // Fla1 — t, @ — by, 5 — 71 (8 a(t))
I ><I62

€1,e2—0

dty dt2
t ty

where I, = {s : ¢ < s < 1}. The L” boundedness of the maximal opera-
tor M can be shown under the only convexity assumption for each ;. Also
we prove the similar result for the double Hilbert transform H when each ~;
is extended as an even function.

Theorem 1. Suppose that y; is a convex function on [0, 00) such that;(0) =
7(0) = 0 for each i =1,2. Then M is bounded on LP(R3) for 1 < p < oco.

Theorem 2. Suppose that ~y; is a convex function on [0, 00) such that ~;(0) =
v(0) = 0 for each i = 1,2. If each ; is extended as an even function in
(—00,00), then H is bounded on LP(R3) for 1 < p < co.

Theorem 3. Suppose that ~y; is a convex function on [0, 00) such that ~;(0) =
7v(0) = 0 for each i = 1,2. Let v, be extended as an odd function and s

be extended as an even function in (—00,00). If sup;g |7722((2tt))

then H is bounded on LP(R3) for 1 < p < oo.

Remark 1. (i) For the case that both of 7;’s are odd monomials, it is known
that the L” norm of H is unbounded for any 1 < p < co. Thus we are not
concerned with the case that both of ~,;’s are odd functions.

(77) Examples. The hypotheses of Theorems 1 and 2 are satisfied by a large
class of flat surfaces, of course, including the surface of the form

(tl 3 t2a 6_1/t1 6_1/t2 )a

near the origin. Our assumption that 7; € C? can be removed by using
smooth approximation { so as to include any piecewise linear convex func-
tion 7; (see the details in Remark 3 at the end of Section 3.) Theorem 3
covers the surface which is flat along one direction such as (t1,t,, e~ 1/t1¢2™)
where m is a positive integer. In Sections 5-7, we extend Theorems 1
through 3 to more general hyper-surfaces of the form

(t1se o b, Dt t0)).

We note that I needs not be a tensor product. A model example will be

1
(tl, . ,tmeXP(_W)>
1 n

where m; is a positive integer.

| is bounded,

(13i) If T'(¢1,t2) is given as v (t1) + 72(t2), then we can easily check that
our two parameter problem reduces to one parameter case. So we need the
doubling properties of ~/(t;) or h;(t;) = ~i(t;)t; — vi(t;) as in [4, 8].
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1.2. Scheme of proofs

We briefly explain the main idea for the proof of Theorems 1 through 3.
Choose a nonnegative function ¢ € C§°[3, 1] such that [ ¢ dt = 1. It suffices
to deal with the maximal function

MSf(x) = sup | M;* * f(z)],

Jez?

where the Fourier transform of the measure M}’Q is given by

—

M}Q(f') — // ei[€12j1t1+$22j2t2+£371(2j1t1)72(2j2t2)}w(tl)¢(t2) dt, dts

for J = (j1,72) € Z* and & = (£1,&,&3) € R®. First we decompose the
operators into two parts; local and global parts based on the size of the
frequency variables & and &.

To treat the global part we make use of the decay property of M}’Z (€)
in |271&| and |272&,|. The decay estimate can be successfully obtained from
the fact that v, and v, help each other when one of them changes slowly. In
the region where v; changes slowly, one can make a measure estimate in ¢,
variable by using the convexity of 5. We shall show that this kind of multi-
dimensional Van der Corput type lemma (Lemma 1 in the next section) can
also be extended to more general surfaces in higher dimensional Euclidean
spaces in Section 6.

For the local part estimate, we subtract our original operators by opera-
tors associated with surfaces of the form (0, ta, 71 (¢1)72(%2)) and use the mean
value theorem to deal with the difference. It remains to take into account
of the maximal function or the double Hilbert transform along this sur-
face (0, to,v1(t1)72(t2)). We will see in Lemmas 2-4 that the corresponding
maximal function is reduced to the composition of Hardy-Littlewood max-
imal functions. The corresponding double Hilbert transform vanishes when
both ~;’s are even by using the cancellation property of the measure %, but
we do not have such cancellation when ~; is odd and 5 is even. For this case
we need to control the size of the frequency variables & and &3 instead of &
and &;. It is technically difficult to obtain the decay estimate for 3 without
any restrictions on the size of derivatives of 71(t1)72(t2). We are able to
obtain the L? estimates under the condition such as |y5(272)| & |y,(27211)]
in Theorem 3. It would be interesting to remove this kind of comparability
condition.

This paper consists of two parts. In the first part (Sections 2-4), we
consider the model case. In the second parts (Sections 5-7), we treat the
general n dimensional surface in R"*! where I need not be a tensor product
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form. In Section 2, we prove Van der Corput type lemma and show how the
maximal operator along (0, to, 71 (t1)72(t2)) is reduced to Hardy-Littlewood
maximal function. In Sections 3 and 4, we give the proofs of Theorems 1-3.
In Sections 5, from the observation of the previous proofs we formulate
an appropriate geometric conditions corresponding to general I' and states
Theorems 4-6. In Sections 6-7, we prove them.

We shall use the notation A < B when A < C'B with a constant C' > 0.

2. Preliminary Lemmas

2.1. Global estimates (Van der Corput type lemma)

Lemma 1. Suppose that 7y is a convex function on [0, 00) such that v, (0) =
Y% (0) =0 for each k = 1,2. Then we have

— 1 1
1,2 < :
’MJ (5)’ ~ nin { 201,12 |2026,|1/2 }

Proof. By symmetry it suffices to show that |M;*(€)| is bounded by
W. We may assume that [271&| > 10%. Let y be a smooth even func-

tion supported in [—4,—1/4] U [1/4,4] and x = 1 on [-2,—1/2] U [1/2,2].
Then we write for fixed J = (ji, jo)

=) M,(¢)

where

// i[€1291 81 +€2292 Lo +E5v1 (291 1 )2 (292 2)]

X<2J1(£1 + 53’71(22:“)72(2]%2)))@(h)‘ﬁ(t?) dty dts.

If 27 > |2j1£1|1/ 2 let us apply integration by parts with respect to t;
variable for M, (&), then

231 (§1+E37] (271 81 )72 (2722))
| M, (¢ }N//' ( T )(p.(“)@(h))‘dtl dt
oty 201 (€1 + E37} (291t )7(202t5))

S2

where the second inequality follows by using the monotonicity of the function
ty > 1/(& + 74 (27181)v2(272t5)) with each fixed to. Thus we see that

(2.1) Y MO S 26l

2n>|2j1€1|1/2
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To consider the case where 2" < [271£;|Y/2) we first observe that the
convexity of the map to — Y2(t2) with 72(0) = 75(0) = 0 yields that

Yo (t2)ta > Yo(tz) for all ¢, > 0,
which implies
(22) N (27 1) (272)27 1y 2 71(2711)72(27s).
By using the support condition such that
27 (& + & (24 1)1(27R))] < 5276 |Y? < [276]/10,
we have
(2.3) €371 (27 t1)72(27212)) | = |-
From (2.2) and (2.3), we obtain
(24) 6277127 00)0(2712)27| = 652791 (27 )72 (2282)| = 274

By using (2.4), we estimate the measure of the domain of the integral in dt,
with t; fixed to obtain

}Mn<£)} < // X(le(fl + E371 (271172 (27215))

)ttt dna

2n
< 2
201|&4|
Thus we have
(2.5) > ML S 1206

<26 (/2

By (2.1) and (2.5) we complete the proof. Note that our proof is based on

the curvature condition (2.2). In order to obtain the decay factor [272£,|'/2,

we use the corresponding condition
(2.6) W(22t)m (270) 27 0 > (2t (27 ),
which follows from the convexity condition of v; and v;(0) = ~1(0) =0. W

Remark 2. We define the measure M} and M3 so that their Fourier trans-
forms are given by

(2.7) M\}(g) = // /e e (Nt (262)] o4 oty diy dt,

(2.8) ]/\4\3(5) — // ei[£22j2tz+£svl(2j1t1)72(2j2t2)]¢(t1>(p(t2> dty dts.

Then by using the same argument as above we obtain that for each v =1, 2,

1

(2.9) M| S g
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2.2. Local estimates (reduction to strong maximal function)

For local estimates we reduce a certain maximal operator into a composi-
tion of Hardy-Littlewood maximal functions. For this purpose we need the
following observation as in [6]:

Lemma 2. Let v : [0,00) — R be a conver increasing function. We define
the maximal operator M., by

M, f(x) = sup — /|fx— )| ds.

r>0 T

Then for each x € R, we have
M, f(z) < 2Mprf(z —~(0)).
where My, is the Hardy-Littlewood mazimal function.

Proof. Suppose that 7/(¢) > 0 for all £ > 0. By using change of variable
t =~(s), we write

s [ =aias = [1sa-niewa

Q) = Xp )] (f)m-

where

In view of the convexity of ~, € is a positive bounded decreasing function
and by change of variable s = v71(t), it is easy to see that [Q(t)dt = 1.
Thus we can approximate {2 by using a step function Sy of the form

Z @5 X [(0)4(0)+;] (1)

such that 0 < b; < by < --- <by <7(r) —7(0), a; >0, which satisfies

Sn(t) / Q) as N —oo forall teR,

N

and/SN(t) dt =Y ajh; < 1.

J=1
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We therefore have

[ 17 = vl9w) = / 7o = 0] Sl de
- NhggoZay (G [ st i)

(0)

< 1\}1310 2; ajb; My f(x —(0))
]:

< My f(z —~(0)).
Suppose that [0,a] = {t : 7’( ) = 0} with some a > 0. Then it suffices to

consider a < r. Since v(t) = v(0) on [0, a], we can write
/|fx— )| ds = — /|fx— )| ds+ - /|fx— )| ds
_}fﬁ— }+MHLf(x_ (0))

where the first inequality above is shown by using the approximation of step
functions as in the previous argument. |

Let I' : R® — R be a function of n variables. We define a multi-parameter
maximal function associated with I' by

1
MEf(z,2p41) = sup ni/ |f(x —t, 201 — T(2))] dt,
71,05 >0 1 Li—1 T3 J@nr_ [0,r4]
where x = (z1,...,7,). In dealing with this maximal operator, we need to
consider a maximal function for each D C {1,...,n},

n 1 .
SEP () = s i [ (fe =i - TO)] dr
140y >0 i=1 i QN 1[0 7]
where z = (z1,...,2,) and {p =t—>_, (L, e,)e, is a vector given by omit-
ting all entries in v-th coordinates of t where v € D. By repeated application
of the previous lemma, we obtain the following higher dimensional result.

Lemma 3. Suppose that t, — T'(t) is a convez increasing function for each
fixed f{l,} where v € D. Then

S?’Df(x, Tpy1) <
2card(D)

< sup

/ Mspf(a? —tp, Tpt1 — F(T?D)) dip,
ri>0 with i¢D Hi¢D Ti J®i¢pl0.ri]

where ME is the strong mazimal operator with respect to the v’s coordinates
with v € D and card(D) is the number of elements in the set D.
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From Lemma 3, we obtain the stronger result for the case I'(fp) = 0.

Lemma 4. Let I'(t) = [[;_, 7i(t;) and v; be a convex function with v;(0) =
11(0) = 0. If D £0,

SpP f (@, wnp1) < 2Ms f (2, 20t1)

where Msf is the strong maximal function defined on R™ 1.

2.3. Littlewood-Paley type inequalities

In order to sum all dyadic pieces and obtain LP estimates we need Little-
wood-Paley type inequalities. Let us define dyadic decompositions of each
frequency variable £ = (&,,...,&;) € R? by

Ly(€) = x(2%¢,),

(u) — ¥(2u) with ¢ a C*° function such

where v = 1,...,d, and x(u) =
=0on R\ [-2,2]. We also define for each v,

that v =1 on [—1,1] and ¥
PY(§) = (2.,

We write the following well known inequalities which will be used for the L?
estimates of our maximum or the square sum of dyadic pieces.

Lemma 5. For 1 < p < oo, we have for J = (j1,...,jn) andv =1,....d,
210) (S e ) S 1 e

Jen
(2.11) SUP “Pk | f } ’MHLf (z)],

i SI(Z 107

Jeznr

Lp (Rd

(2.12) )](2|s%p}lP£|*le2)

where My, is the Hardy-Littlewood mazimal operator along the v-axis.

Proof. The first inequality follows by applying the multiparameter Mar-
cinkiwicz multiplier theorem after switching to linear sums. The second
inequality follows from the direct computation and the third follows from
the vector valued inequality for the Hardy-Littlewood maximal function. B
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Lemma 6. Suppose that o is a positive measure in R where J is a multi
index. And we assume that

| sup loy* flllroey S fllroway, and || |oy* f| |y S| f 1|21 (we

< (1421,

for some pg < 2. Then we have for % o

[(Stor+ ) ] 5 (100

Proof. Let f = {f;} be a vector valued function, and let R be an operator
defined by Rf = {o; * f;}. The hypotheses above imply that

Lr(R4)

| 935 || ro oo ey SI T Il Lro oo may), and || RF || g2 way S 1@ way) -

By the interpolation of the two vector valued spaces LP°(I°°(R%)) and
LY(IY(R%)), we complete the proof. [ ]

3. Proof of Theorem 1

Now we are ready to prove Theorem 1. We decompose M}’2 such that

M},Z _ M}]OC + Mglo + Mj;ud

where
M) = MY (€)p(206)(226),
MIP(€) = M2 (ye(276)0°(2728,),

MF(E) = MU0 (276) + MU ()0 (2).
First we show that

H 51612% lM‘l]OC * leL”(R3) N HfHLp(R's)'

Proof. For the proof we show that

(3.1) H 5‘612% |(M}2 — Mj — Mj + M3) * le1 * Pjgz * leLp(R‘«%) S HfHLP(]R3

(3.2) || sup [MY * P} x P2 « f|}|Lp(R3) < HfHLp(RS), for v =0,1,2,
JezZ?

)7

J1 J2



MULTIPARAMETER SINGULAR INTEGRAL 1057

where M} and M7 are defined in (2.7) and (2.8) respectively and MY is
defined by

]/\4\9(5) = // 6i§371(2j1t1)72(2j2t2)g0(t1)4p(t2) dt,dts.
By Lemma 3, we see that for each v =0, 1,2

(3:3) | sup [M7 * f[ [[o@sy S| f llo@s),
Jez?

which combined with (2.11) yields (3.2). For the estimate of (3.1), it suffices
to show that

Ji—ni

1/2
| (13 = My = M3 4+ M9 s Pl PReL) L2 5 f12)
J

Lp
(3.4) < gmelmbelnal) || £,

For the proof of (3.4) with p = 2, we write the Fourier transform of the
measure M, — M} — M? + MY as

[ e ey (e ) ool di dis

By applying the mean value theorem and the support condition of the fre-
quency part of the measure P} + P2 « Lj _, * L3 . we obtain (3.4) with
p = 2. For the case 4/3 < p < 2, we apply (2.10) and (2.12) in Lemma 5 and
Lemma 6 combined with the previous L? result to obtain (3.4) with ¢ = 0.
Finally the interpolation with p = 2 in (3.4) gives the desired estimate for
the range 4/3 < p < 2. Now we repeat this argument until we obtain the
full range 1 < p < 2. |

Next we prove that
| sup 125 * F1l oy S 11| ey

Proof. For the proof we show that

1/2
35) (I« (P s (PR) s Ly 512+ )
J

5 2fc(|n1\+|n2\) HfHLP‘

Lp

By applying Lemma 1 and the support condition of the frequency part of
the measure (P})°* (P})°* Lj _, * L we obtain (3.5) with p = 2. For

Ji—m J2—n2?

the case 1 < p < 2, we apply the same bootstrap argument as above. |
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We turn to the proof of
I sup 5 < Al ey 17

It suffices to prove that

| sup | My « Py, # (P)° f|HL1’(]R3) S HfHLp(RS)'

Jez?

Proof. For the proof we show that

(3.6) H §U%| M12 M) * Pl (PJZ2>C* f”‘m(u@) S HfHLp(RS)’
(B.7) [ sup (MG s (PR flll ey S 1] ooy

JeZ?

where (3.7) follows from Lemma 4 and (2.11) in Lemma 5. For the estimate
of (3.6), it suffices to show that

n n
Ji—ni J2—n2 P

(3:8) H(D MY M3) x PLw (PR % L vl % )

< g elmi+ha | g

For the proof of (3.8) with p = 2, we write the Fourier transform of the
measure M}’Q — M? as

[[ e et o)) dnde,

By applying the mean value theorem above and Lemma 1 and (2.9) and the
support condition of the frequency part of the measure

1 2 1 2
le*(PjQ) * L *x L~

Ji—n1 J2—n2’

we obtain (3.8) with p = 2. The case p # 2 is obtained similarly as above. B

Remark 3. The main assumption that 7; € C? can be removed. The con-
dition such as v/ > 0 is used for performing integration by parts in proving
Lemma 1. However we do not use the size of 7. This enables us to repeat
our previous proof with the curve replaced by the smooth approximated
curve Y5(t) = 1. * v;(t) where v is a nonegative C§° function with the sup-
port near the origin such that

/¢(t)dt =1 and 4.(t) = %@b(z)
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4. Proofs of Theorems 2 and 3

We decompose H}’z such that

H},Z — HSOC 4 Hglo + Hgnzd

where
HIp(€) =H ()i (27 ) (226,),
HY(€) =H*(€)pe(21€1)pe(2728,),
Hyi(€) =H*(€)p(276)¢° (276) + H (Y (2" &)p(226).
We show that
(4.1) Z H}IOC * f Lo (E9) S HfHLp(RB)’
Jez?
(42) Z H:z}lo * fHLP(]R3) 5 HfHLp(R?))’
Jez?
(4.3) 2 HP S| S ey
Jez2

Set h(t) = x(t)/t and Hf(z) =, Hy * f(x), where
[—/]}\’2(5’) — // ei[&?jlt1+§22j2t2+§371(2j1t1)72(2j2t2)]h(t1)h(t2) dtldtg.
We also let for each v =1, 2,

ﬁ\zj(g) :// ei[£u2jm+§m(2jlt1)72(2f2t2)]h(t1)h(t2) dt,dts,

Ho(¢) = / / GEM @) 1V h(ty) dbsdi,

1059

We see that by using the dual inequality of (2.10), each of (4.1), (4.2)
and (4.3) follows from each of (3.4),(3.5) and (3.8) where M;? replaced
by H}’z and MY replaced by HY with v = 0,1, 2. For this estimate, we need

the following estimates corresponding to (3.2) and (3.7):

Lemma 7. Suppose that v1 is an odd function and 7, is an even function.

v2(2t)

If sup,. | e | is finite, then we have the estimate for each v =0, 1,2

(4-4) H ZHLI; * lel * Pj22 * f ) 5 HfHLP(R3)’
J

Lr(R3

where (4.4) holds when P} and P7, are replaced by (P})¢ and (P2)°.

J
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If both of 7, and v, are even, then (4.4) follows immediately from
(45) &) —o.

Thus the proof of Theorem 2 is completed. Since (4.5) holds for v = 0, 1, it
suffices to consider v = 2 in Lemma 7. We define

L3, 1(6) = v(Em (2 Hna(27) - v(Em (2" )a(22)).

We observe that
Z Z L?2—n2 * L?1—n1,j2 * f = Cf

ny  ni

with some constant ¢ > 0. In proving Lemma 7 we show that

A, sz,

J1 J2—n2 " j1—n1,j2 ~

(4.6) HZH?*Pl « P2« L% «L3
J
Proof of (4.6) for p = 2. For any fixed & and &3, we observe that there

exist only finitely many (ji,j2)’s so that L3, (§)L? . ;(§) is nonzero.

Thus by using this orthogonality combined with Plancherel Theorem, it
suffices to prove that for some ¢ > 0
-

(4.7) [H2(O)L2,, (€)LF . (€)] < 2-clmlinaD)

Let us rewrite
H3(€) = / / eHle2 2t Eamn ()20l (1 Yy (1, )dt dt.

In showing (4.7), we prove the following estimates

(4.8) |H3(¢)| < min {]£272]71/2, 6,27},

(4.9) [H3(6)] < min {]€371 (2771722777 €0 (27)72(27)1},
which implies (4.7). For this we need to note that [§571 (27 1)y2(2271)| 7" is
majorized by [£371(27171)2(272)| 7! since |73(22(]2:i)1)| is uniformly bounded. W

Now we prove (4.8) and (4.9).

Proof of (4.8). By using the mean value theorem and the cancellation
property such as

// ei[§37(2j1t1)72(2j2t2)}h(tl)h(tg)dtldtz =0,
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we obtain that
‘ / / a2tz (1) a(2t)] _ (ilean(21 0 (221a)] h(tl)h(tg)dtldtg‘ < |&2”]

By (2.9),
1172
[H30)| < | &2
Thus (4.8) has been proved. [ |

Proof of (4.9). We apply the mean value theorem and the cancelation
property such as

// €i£22j2t2h(tl)h(tg)dtldtg =0

to obtain that
)// (ei[522j2t2+53“(2j1t1)72(2j2t2)} — ei522j2t2)h(tl)h(tg)dhdh‘

< & (2)7(272)].
We use integration by parts with respect to ¢; variable, then by the monoto-

nicity of t; — 7;(271¢1)v9(2%2t,), we obtain the desired bound

o . . 1
1[€2272t2+E€371 (271 t1)72(272¢2)] h(t:)dt
/- W] S e @)

Thus (4.9) follows from the above two inequalities. |

Proof of (4.6) for p # 2. We observe that there is the Littlewood-Paley
inequality

(4.10) H( AR Ny et (Y T

which follows by the multi-parameter Marcinkiewicz multiplier theorem in
the same way as in the proof of (2.10) in Lemma 5. By using (4.10) and its
dual inequality, we have

J2—n2 Ji—n1 ]2 Ly

(4.11) H S H2«PLwP2sL2 L%, . xf
J

J2—n2 Jji—n1,j2

1/2
§H(Z|H2*P1*P2*L2 L2t ) )
J

Lp

1/2
SR« By e 1, Ly * 2) || SIS
J

where the second inequality follows from Theorem 1 and Lemma 6 and the
last one follows from (4.10) combined with (2.12). [ |
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5. General surface in higher dimensional space

We consider the n dimensional surface in R™™!, which is parametrized by

{#,T@®):t=(ts,....t,) ER"}

where I" need not be a tensor product form. In this section we study the
L? boundedness of multi-parameter maximal operator and singular integrals
associated with this surface.

5.1. Maximal operator
We define a multi-parameter maximal function associated with I' by

1
M?f(l’, anrl) = sup n7/ }f(l’ - t, Tnt1 — F@))‘ dt?
®?:1[07ri]

71,0 >0 | Lj—1 T

where z = (z1,...,2,). We are interested in finding an appropriate con-
dition of T" which makes the operator M? bounded in LP(R"*!). In order
to establish geometric factors that determine the LP boundedness, we need
to investigate the proofs of Theorems 1 through 3. They are based on the
multi-dimensional Van der Corput type Lemma in the high frequency part,
and the reduction to the strong maximal operator in the low frequency part.
We first describe the curvature condition called infinitesimal doubling which
is used for the high frequency estimates. A function g : [0,00) — [0, 00) is
infinitesimal doubling if there is € > 0 such that

(5.1) g'(t) >e=—= forallt > 0.

We can observe that the proof of Lemma 1 is based on (2.2) and (2.6). These
inequalities in the general form I' can be rewritten as for some € > 0,

'ar’l(tl,tg) - ‘P’l(tl,tg)

Ot9 to ’

I (t.t T0(t.t

Ot ta) | o (Taltnta) | o oo g
Oty t1

Thus in higher dimensional situation it is natural to assume that for each
k =1,--- n, there exists at least one ¢ € {1,...,n} such that the map
t¢ — I'.() is infinitesimal doubling such that

I, (¢)
7]

I (t
(5.2) 3 ¢>0 such that ’aa];( )' > €
¢

K2
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We next consider the condition of I' in order to treat the low frequency
part. In view of (3.3), we see that a parameter restriction is an essential idea
for the local part estimate. Let D be a nonempty subset of {1,...,n}. To
the restricted surface {(¢,I'(¢)) : t, = 0,v € D} we associate the maximal
function

M?’Df(:a xn+1)

1
= sup

/ | f(x = ip, 1 — D(ip))| dip,
r;>0 with i¢D H1¢D T ®¢¢D[0,7’i]

where tp = t — Y veplt,ey)e,. Since I' is not of tensor product, we see
that I'(fp) does not identically vanish in general. This implies that Sp”
in Lemma 3 is not reduced to the strong maximal function as in Lemma 4.
Instead, Si” is controlled by M*" as we have seen in Lemma 3. Thus we
need to assume that MP” is bounded in LP(R"*!) for each D # @. Now
we state the theorem for maximal functions.

Theorem 4. Suppose that t+—T'(t) is a convex increasing function on [0, 0o)
for each fized t, with k = 1,...,n. In particular, for each k = 1,...,n,
there exists £ € {1,...,n} such that t, — T is infinitesimal doubling
in (5.2). Then the LP(R™™) boundedness of MEP for each D # @ im-
plies the LP(R™™Y) boundedness of M} for 1 < p < oo.

By inductive application of Theorem 4 and the fact that 4" infinitesimal
doubling implies h (where h(t) = v/(t)t — v(t)) infinitesimal doubling in [1],
we obtain that

Corollary 1. Suppose that t;, — T'(t) is a convex increasing function on
[0, 00) for each fized t), with k = 1,...,n. Ift, — T is infinitesimal doubling
fork=1,...,n. Then MZ} is bounded in LP(R™) for 1 < p < oco.

Examples. If g is convex increasing function such that g(0) = 0, then
the condition (5.1) is satisfied with e = 1. Thus it is enough to check that

e the map ¢ — I'}(t) is convex increasing,
o T%(®)lt=0 =0,

for the LP(R™™) boundedness of the maximal operator M% by Corollary 1.
We easily see that these conditions are satisfied for the surfaces associated
with the following functions I

1. for a polynomial with nonnegative coefficients P

L(ty,...,t,) =Ple fr,...,e ),
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2. for a finite subset S of the set of all monomials with positive coefficients

D(ty, ... ty) = Z Gyl

If T'(¢) is defined as a tensor product form []}_; vi(¢;), we can easily check
the hypotheses of Theorem 4 hold under the only convexity assumption of ~;
and 7;(0) =~/(0) =0 for each i = 1,...,n.

Corollary 2. Suppose thatT'(t) = [[;, 7(t:). If each~y; is a convex function
with v;(0) = +4(0) = 0, then MZ} is bounded in LP(R™™) for 1 < p < oco.

5.2. Multiple Hilbert transform

Let the map
o> Tt ot )

be extended as an odd or even function in (—oo, o) for each fixed #;, with k =
1,...,n. Then we define a multiple Hilbert transform associated with I" as

H?f(x,xnﬂ):p.v./.../f(x—t,ggnﬂ_F(t))%...dﬁ

t tn

Let us state the LP result of H{t. Suppose that t; — I'(¢) is a convex in-
creasing function on [0, co) for each fixed tr with £ = 1,...,n. In particular,
for each k = 1,...,n, there exists £ € {1,...,n} such that t, — I is
infinitesimal doubling.

Theorem 5. Ift; — T'(t) is an even function for each k =1,...,n, then H}.
is bounded on LP(R™™!) for 1 < p < oo.

Theorem 6. Suppose that t;, — I'(t) is an odd function and t; — T'(t) is an
even function for each i # k. Then under the condition that

T(2t1, .. 251, e 2y, - 260)
NS

T}, = sup
t

is bounded, H} is bounded on LP(R™') for 1 < p < co.

Remark 4. It is interesting to weaken the hypothesis of (5.2) by using the
appropriate h function of I' and making a general theorem corresponding to
curve theory in [1, 8. It is known in [2] that the double Hilbert transform
corresponding to (1, ta, t1t2 + v(t2)) with odd ~ is not bounded in L?*(R3?)
unless v does not satisfy h-doubling condition.
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6. Proof of Theorem 4

6.1. Higher dimensional Van der Corput type lemma
Let Q, ={1,...,n}. For A={vy,...,vu} CQ, and J = (j1,...,jn) € Z",

we define a measure M4 by using the Fourier transform
@(5) — \/6’i[§V12jV1 tu1+“‘+€uk2jyk tuk+€n+lr(2j1tl7---72jntn)}gp(t) dt’

where we abuse the notation to write ¢(t) = @(t1) - - - ¢(t,) for simplicity.
In order to obtain the L? boundedness for Mp in Theorem 4, it suffices to
deal with the maximal function defined by sup jcz. |M$" * f|. In controlling
the high frequency parts we need the following decay estimate.

Lemma 8. Under the same hypothesis of Theorem 4, we have for A =
{vi,.. ., v} CQy,

— 1 1
A < mi
(6.1) |M7(E)] Nmm{ujylgylp/z’ ' |2juk§,/k|1/2}'

Proof. Our proof will be just following the proof of Lemma 1 in the general

setting. By symmetry it suffices to show that |M4(¢)] < [21€,,|7Y/2. Thus
we may assume that |21, | > 103. We write the phase function

(&, t) =&, 21ty + - 4 &2y, + & D(27 4, .., 20m8,).
Fix J and decompose ]\/4?(5) = > ez Mi(§) such that

; 2 (&, + &l (27, ..., 20,
Mz<£>=/ew’“x( S ;E : Dy .

If 20 > |27v1¢&,, |2, let us apply integration by parts with respect to t,,
variable, then

2jy1 (su +§n+1r‘;/ (2j1 tl""’2jntn))

) < |12 I C— JeW | gy < ot
0 ~ jyl / 71 In ~ !
Oty \ 271 (&, + &1, (2010, ..., 200,))

where the second inequality follows by using the monotonicity of the function
ty = 1/(E +E&n D, (27, ..., 2771,)) with each fixed #,,. Thus we see that

(6.2) Yo M| S [20mg,, T2

22>‘2u1&/1 ‘1/2
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If 2¢ < [27%1€,,11/2, then by the hypothesis of Theorem 4, there exists i
such that

‘arLl(letl, e 2Jn

£ ) |
atZ 2 tz‘ > €|F:/1(2] tl,...,23"tn)|.

(6.3)

By using the support condition such that
12721 (&, + EuaD), (240, 2070,)| < 5|20, V2 < [271€,,1/10,
we see that
(6.4) | &na T, (278, ... 27, & | &)
From (6.3) and (6.4),

or,, (2'ty,. .., 2",)
gn—i—l a
t;

> €|l (27, ..., 270 ,)20 | & 271, ).

(6.5) 2Ji 20

By using (6.5), we estimate the measure of the integral in dt; with each
fixed #; to obtain that

T < /’X <2m (& + gnﬂrgégml, L 2jntn)>> o0 < 2],”12'2 —

Thus we have

; ~1/2
(6.6) ST | Mue) S |2
2£§|21'u1&/1|1/2
Therefore (6.1) follows from (6.2) and (6.6). |

6.2. Proof of Theorem 4

We decompose

M () = M) T (0(276,) +ve(26.)

veQn
- 3 1 (¢) [T v@e) T v 2¢)
AUB=Q,, ANB=2,A#<2 veA veB

- 3 )

AUB=Q,, ANB=0,A#>
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where
MfB Mﬂn H ¢ 2]U€V H 'QDC 2]1/5"/
vEA veB
We write
(6.7) PP = (®,eaPl) * (®ep(PL)°)

where we used the notation ®)_, Fj, = F} *---* F},. Then we can write
MyF = M« PP

In order to prove Theorem 4, we show that for any AUB =Q,, ANB=9g
and A # O,

AB
(68) H Sup |MJ * leLp(]RnJrl) S HfHLP(]R"+1)'
Jezn
Proof. Let us fix a nonempty set A = {v1,...,v,,} and define a mea-
sure N4 by

NA(E) = [ elenti D@t 2 )45 @2 t] T (¢ Svea &2 v
(6.9) N7 (&) 1)p(t)dt,

VGA
where B = (), — A. Note that
(6.10) NHE) = MF (&) + D +MPP(©),

DeP(A)

where P(A) is a family of nonempty subset of A. Thus we can write

AB _ aTA A,B Qp— A,B
MJ —NJ*PJ — E iM *PJ .
DeP(A

By Lemma 3 and the LP boundedness of M?’D with D # @ in the last
hypothesis of Theorem 4, we obtain that for D # &

(6.11) I jélzfi | M7 leLp(]RnH) ~ HSI@DfHLp(RnH)

N HM?DfHLP(]R”“)

S F oy

Therefore combined with (2.11), we obtain that

Z H iug |MLS]2"7D * Pfl’B * f|HLp(Rn+1) 5 HfHLP(Rn+1)‘
pep(a) €L
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Thus it suffices to prove that

(6.12) | sup INF 5 P72 lll ogsny S (1] ounny

We make a dyadic decomposition for the frequency variable (£, ...,&,) by
using the measure

(6.13) Lyt =L ke L7

In showing (6.12) we prove that

(6.14) H(Z }NJ * PAB *‘C_]l —l1seein—Ln f‘2> v

< o—clta]+Feal)

Lp(R+1)
1] oy

By applying Lemma 7 and the mean value theorem for (6.9) on the support

of the frequency parts of PA By /L;; 21 in—t,» We have

(6.15) INA()] < gellakt+t,
By (6.15) and the orthogonality of the Littlewood-Paley decomposition of

Lt cx LT

J1— 0 ¥ Jn—4n?

we obtain (6.14) with p = 2. For p # 2, we can apply the bootstrap argument
as in the previous sections. |

7. Proof of Theorem 5 and Theorem 6

Let Q, = {1,...,n}. For any A = {v,...,1nx} C ,, we define a mea-
sure H4' so that the Fourier transform H4(¢) is given by

Y

/ pil, 27 by Ao tEuy 277K tuk+£n+1F(2ﬂ'1t17---,2jntn)}h(t) dt

where we write
h(t) = h(ty) - - - h(t,).

We repeat the proof of (6.8) by replacing MJA’B by H j"B and supremum by
summation, where

Hjx B HQn H w 2]u ) H wc(zjugy)

veEA veB
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It suffices to show that for any AUB =€,, ANB =g and A # &,

(7.1) H S HPM f’

Jeznr

Let us fix the set A= {v1,...,v,,} and B = Q, — A. We define R4 by

(7.2) }?j(g) — / ol Suep 2 H(eizyeﬂmt“ — 1) h(t) dt.

veA

Lp(Rn+1) ’S HfHLp(Rn+1)-

As we have seen in (6.10), we can write
RJ() = HF"(€) + Y +H}7"(©),
DeP(A)

where P(A) is a family of nonempty subset of A. Thus we can write

Hi"P = R}« PP — " £HP P« PP
DeP(A)

where we P;? is defined in (6.7). In the same way as (6.12), we obtain that

(7.3) H ST REx P f‘

Jeznr

Lp(Rn+1) ’S HfHLp(Rn+1)-

Thus it suffices to show the corresponding estimate of (6.11) for any D # &:

(7.4) H STHY P s PR f
J

Lp(Rn+1) S HfHL”(R"H)'

Now we prove (7.4) for the rest of our paper. Suppose that the hypothesis
of Theorem 5 is true, that is, t, — I'(t1,...,t,) is an even function for each
v=1,...,n. Then for any £ =Q, — D ¢ Q,

(7.5) HE() =0.

which completes the proof of Theorem 5. Suppose that the hypothesis of
Theorem 6 is true. Then without loss of generality we may assume that
the map ¢, — ['(¢1,...,t,) is an even function for each v = 2,...,n, and
an odd function for v = 1. We can easily check that if card (F)< n — 2,
then (7.5) holds. Thus we consider the case card (E)= n — 1 only. We can
see that (7.5) holds for all £ = Q,, — {v} with v =2,... n. However (7.5)
is not true if F is given by E; = Q,, — {1} = {2,...,n}, that is

HE Q) = [ e eon) ar
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where

QL(E, 1) = 627ty + -+ + £,20mt, + £, 1T (20, ..., 207,).

Thus in order to complete (7.4), it suffices to prove that

Lemma 9. Suppose that the map defined by t, — T'(t1,...,t,) is an even
function with v # 1. If Ty in Theorem 6 is finite,

| S PPy
J

Lp(Rn+1) ’S HfHLp(RnH)-

7.1. Proof of Lemma 9

As in (6.13) we make a dyadic decomposition for the frequency variable
(&, ..., &) by using the measure

.....

For each fixed J = (j1,...,7,) and M = (mq,...,m,) in Z" | we put
Loy =Lm o * L]
Then we see that for each fixed J € Z"

Z Lyvu*f=cf with c#0.

Mezn

In proving Lemma 9, let us show that

St |,

Rn+l) .

(7.6) HZH? « PP s Lo f
7

Lr (Rn+1)

Proof of (7.6) for p = 2. For any fixed £ = (§,...,&,+1), observe that
there exist only finitely many J = (ji, ..., j,) so that (L))" (€) is nonzero.
Thus by using this orthogonality combined with Plancherel Theorem, it
suffices to prove

(7.7) [(HF) MO (Lar) (€] S 27emabesimab,
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We see that (7.7) follows from the support condition and the estimates:
(7.8) [(HM)" ()< min {6,272, |&,27] : v =2,...,n},
(7.9) [(HF)" ()] < min{[&, D277, .. 20 )7L gD, 27|}

Note that since T} is finite in the hypothesis of Theorem 6,

1

Y

|G D 2279l e, (20 2 2|

which combined with (7.8) and (7.9) gives the desired bound in (7.7). There
remains to show (7.8) and (7.9). [ |

Proof of (7.8). Each ¢, — I'(f) is an even function for v # 1, so we have
(7.10) / (P ED-2 6] () it — )

By using (7.10) and the mean value theorem, we obtain that for all v # 1,

(711) ‘ HEI } — )/ DL (&,t)— 2j”5”t”])h(t)dt‘ g ‘€V2ju )
By Lemma 8, we have
(7.12) ’Hfl(g)’ 5min{|§,,2j”|_l/2 cv=2,...,n}.

Hence (7.8) follows from (7.11) and (7.12). [
Proof of (7.9). By using fh(tl)dtl =0,

(7.13) ‘/ ez<1>J(§t AP (€ —En 1 D211,y zintn)}) h(t) dt‘
< &l (@7, ..., 20).

Let us apply integration by parts with respect to t; variable, and use the
monotonicity of ¢; — I'}(271¢1,...,2/"t,). Then we obtain the desired bound

| 1
7.14 ‘ @Y ED (1) dt| < _ _
(7.14) /e (B)at| < G 2 T (271, 20T

Now (7.9) follows from (7.13) and (7.14). |
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Proof of (7.6) for p # 2. As (4.11) we obtain that

1/2
HZH?*PﬁB*chM*fH S)’(Z|H§1*Pf7B*£J7M*f|2) )
Lr
J J

Lr

Lp

< H(Z“DJAB *£J,M*f|2>1/2‘
J

S 1l

The first inequality follows from the duality of the last inequality, and
the second from Theorem 4 and Lemma 6. The last inequality follows

from (2.12) and the same estimate as in (4.10). |
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