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of bounded orthonormal systems
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Abstract

In this article we prove that for any orthonormal system (ϕj)nj=1 ⊂
L2 that is bounded in L∞, and any 1 < k < n, there exists a subset I
of cardinality greater than n − k such that on span{ϕi}i∈I , the L1

norm and the L2 norm are equivalent up to a factor µ(log µ)5/2, where
µ =

√
n/k

√
log k. The proof is based on a new estimate of the

supremum of an empirical process on the unit ball of a Banach space
with a good modulus of convexity, via the use of majorizing measures.

1. Introduction

We study some natural empirical processes determined by uniformly convex
Banach spaces with modulus of convexity of power type 2. Results of this
kind were extensively studied in a Hilbertian setting, and became an impor-
tant tool for investigations, for example, of the behaviour of various random
sets of vectors (as in [14, 15, 7, 16, 2, 6]). We then apply these results to ad-
dress a problem of selecting a subset of a bounded orthonormal system (for
example, a set of characters), in the spirit of a result of Bourgain (see [20])
and of Talagrand [20], that also has applications to a sparse reconstruction
([2, 16, 6]). A particular case of this result, formulated in Theorem 3, is a
so called Kashin’s splitting of a set of 2k orthonormal vectors in L2 that is
bounded in L∞.
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Theorem. There exist two positive constants c and C such that for any
even integer n and any orthonormal system (ϕj)

n
j=1 in L2 with ‖ϕj‖L∞ ≤ L

for 1 ≤ j ≤ n, we can find a subset I ⊂ {1, . . . , n} with n/2 − c
√
n ≤ |I| ≤

n/2 + c
√
n such that for every a = (ai) ∈ Cn,∥∥∥∥ ∑

i∈I

aiϕi

∥∥∥∥
L2

≤ C L
√

logn(log log n)5/2

∥∥∥∥ ∑
i∈I

aiϕi

∥∥∥∥
L1

and ∥∥∥∥ ∑
i/∈I

aiϕi

∥∥∥∥
L2

≤ C L
√

log n(log log n)5/2

∥∥∥∥ ∑
i/∈I

aiϕi

∥∥∥∥
L1

.

This result strengthens Theorem 2.4 of [6] and is almost optimal. We
have been told by J. Bourgain that the term

√
logn is necessary. We would

like to thank L. Rodriguez-Piazza for showing us the details of the proof
of this optimality in the case of the Walsh system and for allowing us to
present the argument at the end of this paper. We thank also the referee
who remarks that this construction allows to show that this bound is almost
optimal for the trigonometric system as well. The technical proof of The-
orem 1 about empirical processes will be presented in the first part. It is
based on a construction of majorizing measures developped in [14] and [7]
and the main new ideas we use are some observations on packing and cov-
ering numbers.

2. Maximal deviation of the empirical moment

We begin this section with some definitions and notation. If E is a normed
space we denote by E∗ the dual space to E and the dual norm is denoted
by ‖ ‖∗. The modulus of convexity of E is defined for any ε ∈ (0, 2) by

δE(ε) = inf

{
1 −

∥∥∥∥x+ y

2

∥∥∥∥ , ‖x‖ = 1, ‖y‖ = 1, ‖x− y‖ > ε

}
.

We say that E has modulus of convexity of power type 2 if there is a constant
c such that δE(ε) ≥ cε2 for every ε ∈ (0, 2). It is well-known (see e.g.,
[11], Proposition 2.4) that this property is equivalent to the fact that the
inequality

(2.1)

∥∥∥∥x+ y

2

∥∥∥∥
2

+ λ−2

∥∥∥∥x− y

2

∥∥∥∥
2

≤ 1

2
(‖x‖2 + ‖y‖2)

holds for all x, y ∈ E (where λ > 0 is a constant depending only on c).
If (2.1) is satisfied then we say that E has modulus of convexity of power
type 2 with constant λ (in such a case it is clear that δE(ε) ≥ ε2/2λ2).
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The notions of type (and cotype) of a Banach space were studied exten-
sively during the 70’s (see, for example, [10] and the survey [9]). A Banach
space E has type p if there is a constant C such that for every N ∈ N and
every x1, . . . , xN

(2.2) E

∥∥∥∥
N∑

i=1

gixi

∥∥∥∥ ≤ C

( N∑
i=1

‖xi‖p

)1/p

where g1, . . . , gN are standard independent gaussian variables (that is gi ∼
N (0, 1)). The smallest constant C for which (2.2) holds is called the type p
constant of E and is denoted by Tp(E).

Moreover, it is well known that if E has modulus of convexity of power
type 2 then the dual space E∗ has also modulus of smoothness of power
type 2, and therefore, E∗ has type 2 (see, for example, [8, Theorem 1.e.16]).

2.1. Results on empirical processes

Our first theorem generalizes a result of Rudelson [15], proved in a Hilbertian
setting, to the case of a Banach space with modulus of convexity of power
type 2. In fact, in Theorem 1 we solve a question left open in [7] by remov-
ing the condition on the distance of E to an Euclidean space of the same
dimension.

Theorem 1. There exists an absolute constant C for which the following
holds. Let E be a Banach space with modulus of convexity of power type 2
with constant λ. Then, for every vectors X1, . . . , Xm in E∗,

E sup
y∈BE

∣∣∣∣
m∑

j=1

εj|〈Xj, y〉|2
∣∣∣∣ ≤(2.3)

≤ C λ4 T2(E
∗)

√
logm max

1≤j≤m
‖Xj‖∗ sup

y∈BE

( m∑
j=1

|〈Xj, y〉|2
)1/2

,

where the expectation is taken over the i.i.d. Bernoulli random variables
(εj)1≤j≤m and T2(E

∗) is the type 2 constant of E∗.

The proof of Theorem 1 uses the same construction of a majorizing mea-
sure used in [14] and in [7], and this construction was inspired by the work of
Talagrand in [18]. The improvement in Theorem 1 compared with [7] comes
from entropy estimates that will be presented in Section 2.2. We will only
sketch the construction of the majorizing measure in Section 2.3 and explain
how the argument from [7] may be adapted using the new estimates.
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As it has been proved in [15], one can apply a symmetrization argument
due to Giné and Zinn [5] combined with Theorem 1 and deduce the following
result.

Theorem 2. There exists an absolute constant C for which the following
holds. Let E be a Banach space with modulus of convexity of power type 2
with constant λ. Let X be a random vector in E and set X1, . . . , Xm to be
independent copies of X. If

A = Cλ4 T2(E
∗)

√
logm

m

(
E max

1≤j≤m
‖Xj‖2

∗

)1/2

and σ2 = sup
y∈BE

E|〈X, y〉|2

then

E sup
y∈BE

∣∣∣∣∣ 1

m

m∑
j=1

|〈Xj, y〉|2 − E|〈X, y〉|2
∣∣∣∣∣ ≤ A2 + σ A.

We omit further details and refer the reader to one of the articles [15, 7,
16, 6].

2.2. Covering and packing numbers

The new ingredient of our proof, in comparison with [7], are estimates on
packing and covering numbers which we shall now discuss.

Definition 1. Let T and B be symmetric convex bodies in a Banach space E.
Define N(T,B) to be the minimal number of translates of B needed to
cover T , i.e.

N(T,B) = inf
{
N, ∃{x1, . . . , xN} ⊂ T such that T ⊂ ∪N

j=1xj +B
}
.

We denote by M(T,B) the maximal number of disjoint translates of B by
elements of T , i.e.

M(T,B) = sup
{
N, ∃{x1, . . . , xN} ⊂ T such that xj − xk /∈ B for j �= k

}
.

It is well known that these two quantities are related by

(2.4) N(T,B) ≤M(T,B) ≤ N(T,B/2).

Note that if E is a normed space, BE is its unit ball and B = εBE, then
M(T, εBE) is the cardinality of a maximal ε-separated subset of T with
respect to the norm in E. Also, if S : X → Y is an operator, we sometimes
denote M(SBX , εBY ) by M(S : X → Y, ε), and use a similar notation for
the covering numbers N .

The following is a combination of results that appeared in [1] and in [3]
(see Lemma 3.3 in [18]). We repeat its proof since we need precise estimates
on the dependence on the modulus of convexity of the space E.
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Lemma 1. Let E be a Banach space of modulus of convexity of power type 2
with constant λ and denote by T2(E

∗) the type 2 constant of E∗.
Let X1, . . . , Xm be vectors in E∗ such that for every 1 ≤j≤ m, ‖Xj‖∗≤L,

and define for every y ∈ E,

‖y‖∞,m = max
1≤�≤m

∣∣〈X�, y〉
∣∣.

If ε > 0 and x1, . . . , xN ∈ BE are ε-separated with respect to ‖ · ‖∞,m then

ε
√

logN ≤ Cλ2 T2(E
∗) L

√
logm

where C is an absolute constant.

Proof. Let (ei)
m
i=1 be the standard basis in �m1 and define S : �m1 → E∗ by

Se� = X� for every � = 1, . . . , m. Hence, for every � �= �′, |S∗(x� −x�′)|∞ ≥ ε
where | · |∞ denotes the norm in �m∞. Thus,

N ≤M
(
S∗ : E → �m∞, ε

)
.

Since ‖S‖ = max1≤�≤N ‖X�‖∗ ≤ L and E∗ has type 2, Proposition 1 in [3]
yields that

ε
√

logN(S : �m1 → E∗, ε) ≤ C LT2(E
∗)

√
logm

where C is an absolute constant. By (2.4), a similar estimate holds for
M(S : �m1 → E∗, ε), where C is replaced by a new constant, also denoted
by C. Define the function

f(ε) = ε
√

logM(S : �m1 → E∗, ε)

and observe that f is bounded by C LT2(E
∗)
√

logm.
Since E has modulus of convexity of power type 2 with constant λ,

Proposition 2 in [1] states that for every θ ≥ ε/5,

M
(
S∗ : E → �m∞, ε

) ≤M
(
S∗ : E → �m∞, θ

)
M

(
S : �m1 → E∗, cεδE(ε/5θ)

)
and recall that δE(ε/θ) ≥ ε2/8λ2θ2. Therefore, if

h(ε) = ε
√

logM(S∗ : E → �m∞, ε),

then the previous inequality implies that

h(ε) ≤ ε

θ
h(θ) + c′

(
λ2θ2

ε2

)
f

(
cε3

θ2λ2

)

where c, c′ are absolute constants.
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Choosing θ = 2ε and taking the supremum in ε, it follows that h is
bounded by

C ′ λ2 LT2(E
∗)

√
logm

proving the announced result. �
The next lemma is a simple application of Sudakov’s inequality [17].

Lemma 2. There exists an absolute constant C for which the following
holds. Let E be a Banach space such that E∗ has type 2. Assume that
X1, . . . , Xm are vectors in E∗ with sup1≤j≤m ‖Xj‖∗ ≤ L. Let α1, . . . , αm

such that
∑m

�=1 α
2
� ≤ 1 and for every y ∈ E set

|y|2E =

m∑
�=1

|〈X�, y〉|2α2
� .

If ε > 0 and x1, . . . , xN ∈ BE are ε-separated with respect to | · |E , then

ε
√

logN ≤ CT2(E
∗)L.

Proof . Let E1 be the ellipsoid in Rm consisting of all y ∈ Rm such that

|y|E1 := (
∑m

�=1 α
2
�〈y, e�〉2)1/2 ≤ 1. SetH = (Rm, |·|E1) and define the operator

S : H∗ → E∗ by Sei = Xi, where (ei)
m
i=1 is the standard basis in R

m. Note
that for every xi, xj,

∣∣S∗(xi − xj)
∣∣2
E1

=

m∑
�=1

α2
�〈S∗(xi − xj), e�〉2 =

∣∣xi − xj

∣∣2
E ,

and thus the points {S∗(x1), . . . , S
∗(xN)} are ε-separated in | · |E1 and be-

long to S∗(BE). By (2.4), N ≤ N(S∗(BE), (ε/2)E1). On the other hand,
E1 = T−1(Bm

2 ) where T : Rm → Rm is the diagonal operator Te� = α� e�.
Applying Sudakov’s inequality [17],

(2.5) ε
√

logN ≤ ε
√

logN(S∗(BE), (ε/2)T−1(Bm
2 )) ≤ CE sup

z∈T (S∗(BE))

〈G, z〉

where G is a canonical Gaussian vector in �m2 and C is an absolute constant.
Moreover

E sup
z∈T (S∗(BE))

〈G, z〉 = E sup
y∈BE

〈TG, S∗y〉

= E

∥∥∥∥
m∑

�=1

α�g�X�

∥∥∥∥
∗

≤ T2(E
∗)

( m∑
�=1

α2
�‖X�‖2

∗

)1/2

≤ T2(E
∗)L

where we have used the type 2 inequality for E∗ and the fact that for every
1 ≤ � ≤ m, ‖X�‖∗ ≤ L. The result now follows from (2.5). �
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2.3. Construction of a majorizing measure

The construction that we present here is the same one that was presented
in [14] and in [7]. Let X1, . . . , Xm be m fixed vectors in E∗ and define the
random process {Vy : y ∈ BE} by

Vy =

m∑
j=1

εj

∣∣〈Xj, y〉
∣∣2,

where εj are independent symmetric Bernoulli random variables.

Our aim is to show that when E has modulus of convexity of power
type 2,

E sup
y∈BE

|Vy| ≤

≤ C λ4 T2(E
∗) max

1≤j≤m
‖Xj‖∗

√
logm

(
sup
y∈BE

m∑
i=1

|〈Xj, y〉|2
)1/2

(2.6)

for a suitable absolute constant C.

It is known that the process {Vy : y ∈ BE} satisfies a sub-Gaussian tail
estimate, namely, that for every y, y ∈ E and any t > 0,

P (|Vy − Vy| ≥ t) ≤ 2 exp

(
− ct2

d̃2(y, y)

)

where

d̃2(y, y) =

m∑
j=1

(|〈Xj, y〉|2 − |〈Xj, y〉|2
)2

and c is an absolute constant.

It will be preferable to consider the following quasi-metric

d2(y, y) =

m∑
j=1

|〈Xj, y − y〉|2 (|〈Xj, y〉|2 + |〈Xj, y〉|2
)

and the quasi-norm ‖ · ‖∞,m endowed on E by

‖x‖∞,m = max
1≤j≤m

|〈Xj, x〉|.

The proof of inequality (2.6) is based on the majorizing measure theory of
Talagrand [19]. The following theorem is a combination of Proposition 2.3,
Theorem 4.1 and Proposition 4.4 of [19].
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Theorem [19] Assume that the process {Vy : y ∈ BE} is subgaussian with
respect to a metric d. Let r ≥ 2 and k0 ∈ Z be the largest integer such
that r−k0 is greater than the radius of BE with respect to the metric d. For
every k ≥ k0 let φk : BE → R+ be a family of maps satisfying the following
assumption: there exists A > 0 such that for any point x ∈ BE, any k ≥ k0

and any N ∈ N

(H)

⎧⎨
⎩

for any points x1, . . . , xN ∈ Br−k(x) with d(xi, xj) ≥ r−k−1, i �= j

we have max
i=1,...,N

φk+2(xi) ≥ φk(x) +
1

A
r−k

√
logN.

Then
E sup

y∈BE

|Vy − V0| ≤ c A · sup
k≥k0,x∈K

φk(x).

The construction requires certain properties of the quasi metric d and
the quasi norm ‖ ‖∞,m. We refer to Propositions 1 and 2 in [7] for precise
properties of these metrics and list the ones we require in the following
lemma.

Lemma 3. For every y, y ∈ Rn and every u ∈ BE,

d̃(y, y) ≤ 2 d(y, y),(2.7)

d(y, y) ≤
√

2‖y − y‖∞,m

√
M,(2.8)

‖y − y‖∞,m ≤ max
1≤j≤m

‖Xj‖∗ ‖y − y‖,(2.9)

d2(z, z) ≤ 8
(|z − z|2Eu

+M ‖z − z‖2
∞,m(‖z − u‖2 + ‖z − u‖2)

)
,(2.10)

where

|x|2Eu
=

m∑
i=1

〈Xi, x〉2〈Xi, u〉2 and M = sup
y∈BE

m∑
j=1

|〈Xj, y〉|2.

Moreover, for every x ∈ E and ρ > 0, the ball (with respect to the quasi-
metric d) centered in x and with radius ρ, denoted by Bx(ρ), is convex.

Note that by combining (2.8) and (2.9) it follows that for every ρ > 0
and every x ∈ BE , infy∈Bρ(x) ‖y‖ is attained.

Proof of Theorem 1. Since there is only a finite number of points
X1, . . . , Xm then by passing to a quotient of E we can assume that E is
a finite dimensional space. We will denote its dimension by n and obviously
one can assume that m ≥ n. Also, recall that if E is a Banach space with
modulus of convexity of power type 2 with constant λ then every quotient
of E satisfies that property with a constant smaller than λ (see, e.g., [8]).
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By the homogeneity of the statement we can assume that

(2.11) sup
y∈BE

m∑
j=1

|〈Xj, y〉|2 = 1

and by inequality(2.7),Vy is a sub-Gaussian process with the quasi-metric 2d.
Therefore, if we denote

L = max
1≤j≤m

‖Xj‖∗

our aim is to show that

E sup
y∈BE

|Vy| ≤ C λ4 T2(E
∗)L

√
logm

for an absolute constant C.
By inequality (2.8), the diameter of BE with respect to the metric d is

bounded by 2
√

2L. Let r be a fixed number chosen large enough, set k0 to
be the largest integer such that r−k0 ≥ 2

√
2L and put k1 to be the smallest

integer such that r−k1 ≤ L/
√
n, where n is the dimension of E. We shall

use the same definition of the functionals φk : BE → R+ as in [14] and [7],
namely:⎧⎪⎪⎪⎨

⎪⎪⎪⎩
∀k ≥ k1 + 1, φk(x) = 1 +

1

2 log r
+

√
n

L
√

logm

k∑
�=k1

r−�
√

log(1 + 4Lr�)

∀k0 ≤ k ≤ k1, φk(x) = min
{‖y‖2, y ∈ B8r−k(x)

}
+
k − k0

logm
.

It is easy to verify using definitions of k0 and k1 that

sup
x∈BE ,k≥k0

φk(x) ≤ c,

where c is an absolute constant.
It remains to prove that our functionals satisfy condition (H) for

A = C λ4 T2(E
∗)L

√
logm,

and that will conclude the proof of Theorem 1. �
Proof of condition (H). Fix integers N and k, let x ∈ BE and x1, . . . , xN ∈
Br−k(x) for which d(xi, xj) ≥ r−k−1.

For k ≥ k1 − 1, we always have

φk+2(xi) − φk(x) ≥
√
n log(1 + 4Lrk+2)

L
√

logm
r−k−2.



1084 O. Guédon, S. Mendelson, A. Pajor and N. Tomczak-Jaegermann

Since the points x1, . . . , xN are well separated with respect to the metric d,
then by (2.8) and (2.9),

‖xi − xj‖ ≥ r−k−1/L
√

2.

By a classical volumetric estimate (see, for example [12]), N(BE , tBE) ≤
(1 + 2/t)n where n is the dimension of E. Therefore,

√
logN ≤

√
n log(1 + 2

√
2Lrk+1),

which proves the desired inequality.
The case k0 ≤ k ≤ k1 − 2 is more delicate and the main ingredients in

this part are the entropy estimates proved in part 2.2.
For j = 1, . . . , N denote by zj ∈ BE points at which min{‖y‖2, y ∈

B8r−k−2(xj)} is attained and set u ∈ BE to be a point at which min{‖y‖2, y ∈
B8r−k(x)} is attained. Put

θ = max
j

‖zj‖2 − ‖u‖2,

and then maxj φk+2(xj) − φk(x) = θ + 2
log m

. We shall prove that

θ +
2

logm
≥ r−k

√
logN/A.(2.12)

Following [7], it is evident from the properties of Bρ (see Proposition 1
and 2 in [7] and Lemma 3) that for any i �= j, d(zi, zj) ≥ cr−k−1 and that
d(x, zj) ≤ 8r−k. It implies that (zj + u)/2 ∈ B8r−k(x) and by the definition
of u, ‖u‖ ≤ ‖zj +u‖/2. Since BE has modulus of convexity of power type 2,

then for all j = 1, . . . , N ‖zj − u‖ ≤ λ
√

2θ. Thus, the set

U = u+ λ
√

2θBE

contains all the zj ’s.
Fix an absolute constant c̃ to be named later, set

δ = c̃λ−1r−kθ−1/2

and let S be the maximal number of points in U that are δ separated in
‖ · ‖∞,m. By Lemma 1,

δ
√

logS ≤ C λ2 T2(E
∗)L

√
logm λ

√
θ

where C is an absolute constant. We consider now two cases.
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First, assume that S ≥ √
N . Then by the previous estimate and the

definition of δ,

√
logN ≤ C T2(E

∗)L
√

logm λ3
√
θ/ δ ≤ C θ rk λ4 T2(E

∗)L
√

logm

which proves (2.12).

The second case is when S ≤ √
N . Since S is the maximal number of

points in U that are δ separated with respect to ‖ · ‖∞,m, U is covered by S
balls of diameter smaller than δ in ‖ · ‖∞,m. Thus, there exists a subset J of
{1, . . . , N} with cardinality |J | ≥ √

N such that

∀i, j ∈ J, ‖zi − zj‖∞,m ≤ δ.

Recall that for any y ∈ E,

|y|2Eu
=

m∑
�=1

|〈X�, y〉|2|〈X�, u〉|2 =
m∑

�=1

|〈X�, y〉|2α2
� .

It is evident from (2.11) that
∑
α2

� ≤ 1 and from (2.10) that for every
z, z, u ∈ E,

d2(z, z) ≤ 8
(|z − z|2Eu

+ ‖z − z‖2
∞,m(‖z − u‖2 + ‖z − u‖2)

)
.

Since d(zi, zj) ≥ cr−k−1,

‖zi − u‖ ≤ 2λ
√
θ and ‖zi − zj‖∞,m ≤ δ

for any i, j ∈ J , we can define c̃ small enough such that for all i �= j ∈ J ,

|zi − zj|Eu ≥ cr−k−1.

Thus, there are |J | points in u+λ
√

2θBE that are crk−1-separated for | · |Eu.
Using Lemma 2, √

log |J | ≤ CT2(E
∗)L rk λ

√
θ,

and a simple application of the arithmetic-geometric means inequality proves
that √

logN ≤ CT2(E
∗)L rk λ

√
logm

(
θ +

2

logm

)
,

completing the proof of (2.12) (because λ ≥ 1). �
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3. Selecting an arbitrary proportion of a bounded or-
thonormal system

In this section, we will prove the

Theorem 3. There exist two positive constants c, C such that for any ortho-
normal system (ϕj)

n
j=1 in L2 with ‖ϕj‖L∞ ≤ L for 1 ≤ j ≤ n, the following

holds.
1) For any 1 < k < n there exists a subset I ⊂ {1, . . . , n} with |I| ≥ n−k

such that for every a = (ai) ∈ Cn,

(3.1)

∥∥∥∥ ∑
i∈I

aiϕi

∥∥∥∥
L2

≤ C µ (logµ)5/2

∥∥∥∥ ∑
i∈I

aiϕi

∥∥∥∥
L1

where µ = L
√
n/k

√
log k.

2) Moreover, if n is an even integer, there exists a subset I ⊂ {1, . . . , n}
with n/2 − c

√
n ≤ |I| ≤ n/2 + c

√
n such that for every a = (ai) ∈ Cn,∥∥∥∥ ∑

i∈I

aiϕi

∥∥∥∥
L2

≤ C L
√

logn(log log n)5/2

∥∥∥∥ ∑
i∈I

aiϕi

∥∥∥∥
L1

and ∥∥∥∥ ∑
i/∈I

aiϕi

∥∥∥∥
L2

≤ C L
√

log n(log log n)5/2

∥∥∥∥ ∑
i/∈I

aiϕi

∥∥∥∥
L1

.

Remark. Theorem 3 is satisfactory when k is an arbitrary proportion
of n. It strengthens Theorem A from [6] and extends the result of Tala-
grand [20] which is applicable only when |I| = n − k is a sufficiently small
proportion of n. Here we get an arbitrary proportion, with the distance√

log n(log logn)5/2, which is the right power of log n as we will see at the
end of the paper.

Define ρ = ρk,n, the restricted Kolmogorov k-width of the system as
the smallest number ρ such that there exists a subset I ⊂ {1, . . . , n} with
|I| ≥ n− k satisfying

(3.2)

∥∥∥∥ ∑
i∈I

aiϕi

∥∥∥∥
L2

≤ ρ

∥∥∥∥ ∑
i∈I

aiϕi

∥∥∥∥
L1

for every a = (ai) ∈ Cn (see [6] section 3). It was proved in [2] that ρ =
O(

√
n/k log3 n). This result was improved to ρ = O(

√
n/k

√
log n log3/2 k)

in [16].
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The proof of Theorem 3 is based on a random method and follows the
argument given in [6] for proving Theorem 2.1. However, instead of working
with the space L1, which is not uniformly convex, we will approximate it by
an Lp space for p “close” to 1 and use the full strength of the estimate given
in Theorem 2.

Proposition 1. There exist two positive constants c, C such that for any
orthonormal system (ϕj)

n
j=1 in L2 with ‖ϕj‖L∞ ≤ L for 1 ≤ j ≤ n, the

following holds.
1) For any p ∈ (1, 2) and any 1 < k < n there exists a subset I ⊂

{1, . . . , n} with |I| ≥ n− k such that for every a = (ai) ∈ Cn,

(3.3)

∥∥∥∥ ∑
i∈I

aiϕi

∥∥∥∥
L2

≤ C

(p− 1)5/2
L

√
n/k

√
log k

∥∥∥∥ ∑
i∈I

aiϕi

∥∥∥∥
Lp

.

2) Moreover, if n is an even integer, there exists a subset I ⊂ {1, . . . , n}
with n/2 − c

√
n ≤ |I| ≤ n/2 + c

√
n such that for every a = (ai) ∈ Cn,∥∥∥∥ ∑

i∈I

aiϕi

∥∥∥∥
L2

≤ C

(p− 1)5/2
L

√
n/k

√
log k

∥∥∥∥ ∑
i∈I

aiϕi

∥∥∥∥
Lp

and ∥∥∥∥ ∑
i/∈I

aiϕi

∥∥∥∥
L2

≤ C

(p− 1)5/2
L

√
n/k

√
log k

∥∥∥∥ ∑
i/∈I

aiϕi

∥∥∥∥
Lp

.

Proof of Proposition 1. Let X be the random vector taking the value ϕi

with probability 1/n and denote by E the complex vectorial space spanned
by {ϕ1, . . . , ϕn}. Let 1 < k < n and let X1, . . . , Xk be independent copies
of X. We define an operator Γ : E → �k2 by

∀y ∈ E, Γy =

k∑
i=1

〈Xi, y〉ei

where (e1, . . . , ek) denotes the canonical basis of �k2. Since (ϕj)
n
j=1 is an

orthonormal system of L2, the basic properties of Γ are:⎧⎨
⎩ (i) E ‖Γy‖2

�k
2

=
k

n
‖y‖2

L2
,

(ii) ker Γ = span
{
(ϕj)

n
j=1 \ (Xi)

k
i=1

}
.

We shall first prove that for any δ ∈ (0, 1), with probability greater than
1 − δ, the set (ϕi)i∈I = {(ϕj)

n
j=1 \ (Xi)

k
i=1} satisfies

∀(ai)i∈I ∈ C
|I|,

∥∥∥∥ ∑
i∈I

aiϕi

∥∥∥∥
L2

≤ C

δ (p− 1)5/2
L

√
n/k

√
log k

∥∥∥∥ ∑
i∈I

aiϕi

∥∥∥∥
Lp

for a universal constant C.
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Let SL2 = {y : ‖y‖L2 = 1} be the unit sphere in L2 and observe that for
any star-shaped subset T ⊂ L2 the following holds: if ρ > 0 satisfies

(3.4) sup
y∈T∩ρSL2

∣∣∣∣∣
k∑

j=1

〈Xj , y〉2 − k

n
ρ2

∣∣∣∣∣ ≤ kρ2

3n
,

then

(3.5) diam(ker Γ ∩ T ) ≤ ρ.

Indeed, condition (3.4) implies that for all y ∈ T ∩ ρSL2 ,

(3.6)
2kρ2

3n
≤ ‖Γy‖2

�k
2
≤ 4kρ2

3n
.

The homogeneity of (3.6) and the fact that T is star-shaped imply that
if the lower bound in (3.6) holds for all y ∈ T ∩ ρSL2 , then the same lower
bound also holds for all y ∈ T with ‖y‖L2 ≥ ρ. This in turn shows that if
y ∈ ker Γ ∩ T then ‖y‖L2 ≤ ρ, as required in (3.5).

Since ker Γ = span{(ϕj)
n
j=1 \ (Xi)

k
i=1}, we get for T = BLp ∩ E that

whenever ρ satisfies (3.4), then∥∥∥∥ ∑
i∈I

aiϕi

∥∥∥∥
L2

≤ ρ

∥∥∥∥ ∑
i∈I

aiϕi

∥∥∥∥
Lp

for all scalars ai, proving that (3.3) is satisfied with the constant ρ.

In order to find ρ that satisfies (3.4) with positive probability we use
Theorem 2. Denote by Ep the complex Banach space spanned by ϕ1, . . . , ϕn

endowed with the norm defined by

‖y‖ =

(‖y‖2
Lp

+ ρ−2‖y‖2
L2

2

)1/2

.

It is clear that (BLp ∩E)∩ ρBL2 ⊂ BEp ⊂ √
2(BLp ∩E)∩ ρBL2 and that the

following properties are satisfied:⎧⎨
⎩

Ep is a Banach space with modulus of convexity of power type 2
with constant λ−2 = p(p− 1)/8,

E∗
p is a Banach space of type 2 and T2(E

∗
p) ≤ C

√
q = C

√
p/(p− 1).

Indeed, the first property follows from Clarkson inequality [4], that for any
f, g ∈ Lp, ∥∥∥∥f + g

2

∥∥∥∥
2

Lp

+
p(p− 1)

8

∥∥∥∥f − g

2

∥∥∥∥
2

Lp

≤ 1

2

(‖f‖2
Lp

+ ‖g‖2
Lp

)
.

The second property is evident because for any q ≥ 2, Lq has type 2 with
constant C

√
q.
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By property (i) of Γ, we get, taking T = BLp∩E and applying Theorem 2
to Ep,

E sup
y∈T∩ρSL2

∣∣∣∣∣
k∑

j=1

〈Xj, y〉2 − k

n
ρ2

∣∣∣∣∣ = E sup
y∈T∩ρSL2

∣∣∣∣∣
k∑

j=1

(〈Xj, y〉2 − E〈Xj, y〉2)
∣∣∣∣∣

≤ E sup
y∈T∩ρBL2

∣∣∣∣∣
k∑

j=1

(〈Xj, y〉2 − E〈Xj, y〉2)
∣∣∣∣∣

≤ E sup
y∈BEp

∣∣∣∣∣
k∑

j=1

(〈Xj, y〉2 − E〈Xj, y〉2)
∣∣∣∣∣

≤ k(A2 + Aσ)

where σ = supy∈BEp
‖y‖L2/

√
n ≤ √

2ρ/
√
n and

A = C λ4 T2(E
∗
p)

√
log k

k

(
E max

j∈J
‖ϕj‖2

E∗
p

)1/2

≤ C (p− 1)−5/2 L

√
log k

k

since for every 1 ≤ j ≤ n, ‖ϕj‖E∗
p
≤ ‖ϕj‖L∞ ≤ L. By Chebychev inequality,

for any δ ∈ (0, 1), we conclude that with probability greater than 1−δ, there
exists X1, . . . , Xk such that for any positive ρ,

sup
y∈T∩ρSL2

∣∣∣∣ ‖Γy‖2
�k
2
− k

n
ρ2

∣∣∣∣ ≤ k

δ

(
A2 + Aσ

)
.

To conclude, we choose a constant c large enough such that, for

ρ = c

√
n

k

√
log k

L

δ (p− 1)5/2
,

the inequality (3.4) is satisfied with probability greater than 1 − δ.
The cardinality of the set (ϕi)i∈I = {(ϕj)

n
j=1 \ (Xi)

k
i=1} is greater than

n− k and the first part of the proposition is proven choosing δ = 1/2.

To prove the second part of the proposition, we make two more obser-
vations. First, if ρ > 0 satisfies (3.4) then we have proved that (3.6) holds
true. The upper estimate of this inequality implies that for all y ∈ T ∩ρSL2 ,

∑
i∈I

〈ϕi, y〉2 ≥
n∑

i=1

〈ϕi, y〉2 −
k∑

j=1

〈Xj, y〉2 ≥ ρ2

(
1 − 4k

3n

)
.
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Since T is star shaped, we conclude as before that this inequality holds for
all y ∈ T for which ‖y‖L2 ≥ ρ. If k < 3n/4 then we have proved that if
y ∈ T and 〈ϕi, y〉 = 0 for all i ∈ I (i.e. y ∈ T ∩ (ker Γ)⊥), then ‖y‖L2 ≤ ρ.
But (ker Γ)⊥ = span{(ϕi)i/∈I} and we conclude that if ρ > 0 satisfies (3.4)
with k < 3n/4 and T = BLp ∩E then for any (ai)

n
i=1 ∈ Cn,

∥∥∥∥ ∑
i∈I

aiϕi

∥∥∥∥
L2

≤ ρ

∥∥∥∥ ∑
i∈I

aiϕi

∥∥∥∥
Lp

and ∥∥∥∥ ∑
i/∈I

aiϕi

∥∥∥∥
L2

≤ ρ

∥∥∥∥ ∑
i/∈I

aiϕi

∥∥∥∥
Lp

.

Secondly, it is not difficult to prove with a combinatorial argument (see
Lemma 1.3 in [6]) that if k = [λn] with λ = log 2 < 3/4 then with probability
greater than 3/4,

(3.7) n/2 − c
√
n ≤ |I| = n− |{X1, . . . , Xk}| ≤ n/2 + c

√
n,

for some absolute constant c > 0. Choosing δ = 1/2, we get that with
a positive probability, both inequalities (3.4) and (3.7) are satisfied. This
concludes the proof of the second point of the Proposition 1. �

Proof of Theorem 3. For any p ∈ (1, 2), Hölder inequality states that for
θ = (2 − p)/p,

‖f‖Lp ≤ ‖f‖θ
L1
‖f‖1−θ

L2
.

Let µ = L
√
n/k

√
log k and choose p = 1 + 1/ logµ. Using Proposition 1,

there is a subset I of cardinality greater than n− k for which

∥∥∥∥ ∑
i∈I

aiϕi

∥∥∥∥
L2

≤ Cp µ

∥∥∥∥ ∑
i∈I

aiϕi

∥∥∥∥
Lp

where Cp = C/(p− 1)5/2. By the choice of p and Hölder inequality,

∥∥∥∥ ∑
i∈I

aiϕi

∥∥∥∥
L2

≤ µCp/(2−p)
p µ2(p−1)/(2−p)

∥∥∥∥ ∑
i∈I

aiϕi

∥∥∥∥
L1

≤ C µh(µ)

∥∥∥∥∑
i∈I

aiϕi

∥∥∥∥
L1

where h(µ) = (logµ)5/2 and C is an absolute constant.

The same argument works for the second part of the Theorem 3. �
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Appendix

As we mentioned in the Introduction, from a result of J. Bourgain Theorem 3
is “almost” optimal. We would like to thank L. Rodriguez-Piazza for showing
us the details of the proof of this optimality in the case of the Walsh system.
We consider the Walsh system on L2[0, 1] and take the n first functions with
n = 2N . In that case, it is well known that (ϕ1, . . . , ϕn) form a commutative
multiplicative group that we denote by (G, ·). The main result is based
on constructing in any subset of a group a translate of a subgroup of big
cardinality.

Lemma 4. Let (G, ·) be the multiplicative group generated by the 2N first
Walsh functions. For any c ∈ (0, 1) and for any subset Λ ⊂ G with
|Λ| ≥ c 2N , we can find b ∈ G and a subgroup Γ of G such that, when-
ever log(1/c) ≥ 1/ 2N/2,{

1. |Γ| = 2p ≥ N log 2
/

(3 log(1/c))

2. b · Γ ⊂ Λ.

Assuming this result, we are able to prove the almost optimality of The-
orem 3 in the case of the Walsh system (ϕ1, . . . , ϕn) with n = 2N . Let I be
a subset of cardinality n − k with k ≥ √

n. Taking c = 1 − k/n, we have
log(1/c) ≥ k/n ≥ 1/

√
n and Lemma 4 states that there exists b ∈ (φi)

n
i=1

and a subgroup Γ of G such that b · Γ ⊂ (φi)i∈I and |Γ| ≥ (n log n)/(20k).
However, on any subgroup Γ of G, the L1 norm and the L2 norm can not
be compared with a better estimate than

√|Γ| since∥∥∥∥ ∑
γ∈Γ

γ

∥∥∥∥
L2

=
√

|Γ|
∥∥∥∥ ∑

γ∈Γ

γ

∥∥∥∥
L1

.

Therefore, inequality (3.1) can not be satisfied with a better constant than√
n logn/20k. In particular when k is proportional to n, the factor

√
log n

is necessary in (3.1).

Proof of Lemma 4. We will prove the result in the case of the abelian
additive group G = ({0, 1}N ,+). Note that this lands to a minor change of
notation. Let n = 2N be the cardinality of this group.

Let γ1 ∈ G \ {0} be such that |(γ1 + Λ) ∩ Λ| is maximal and define
Λ1 = (γ1 + Λ) ∩ Γ. Applying convolution, it is evident that

∑
g∈G

|(g + Λ) ∩ Λ| = |Λ|2



1092 O. Guédon, S. Mendelson, A. Pajor and N. Tomczak-Jaegermann

and thus

|Λ1| ≥ 1

n− 1

∑
g∈G\{0}

|(g + Λ) ∩ Λ| =
|Λ|2 − |Λ|
n− 1

≥ c2n
1 − 1/cn

1 − 1/n

≥ c2n

(
1 − 1

cn

)
.

For notational convenience, we define γ0 = 0 and Λ0 = Λ. We iterate
this procedure to construct a family of points γj and sets Λj such that⎧⎪⎪⎪⎨

⎪⎪⎪⎩
(i) γj /∈ gr{γ1, . . . , γj−1},
(ii) Λj = (γj + Λj−1) ∩ Λj−1 has maximal cardinality,

(iii) |Λj| ≥ c2
j

n

(
1 − 2j−1

n

(
1/c+ · · · + 1/c2

(j−1)
))

,

where gr{γ1, . . . , γj−1} is the group generated by {γ1, . . . , γj−1}. Once γj−1

and Λj−1 are constructed, we again use the fact that∑
g∈G

|(g + Λj−1) ∩ Λj−1| = |Λj−1|2

and deduce that∑
g∈G\gr{γ1,...,γj−1}

|(g + Λj−1) ∩ Λj−1| ≥ |Λj−1|2 − 2j−1|Λj−1|.

Therefore, there exists γj /∈ gr{γ1, . . . , γj−1} and Λj = (γj + Λj−1) ∩ Λj−1 of
maximal cardinality such that

|Λj| ≥ |Λj−1| |Λj−1| − 2j−1

n− 2j−1

and (iii) follows from a straightforward computation.
This construction can be continued as long as

1 − 2p−1

n

(
1/c+ . . .+ 1/c2

(p−1)
)
> 0.

This means that if p is an integer such that

(3.8) n > p2(p−1)/c2
(p−1)

then Λp �= ∅. Let b ∈ Λp, we shall prove that

b+ gr{γ1, . . . , γp} ⊂ Λ.
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Indeed let x ∈ b + gr{γ1, . . . , γp} and define (ε1, . . . , εp) ∈ {0, 1}p such that
x = b+

∑
εiγi. Since b ∈ Λp = Λp−1 ∩ (γp + Λp−1), there exists λp−1 ∈ Λp−1

such that b = εpγp+λp−1. If one repeats the same argument for λp−1 instead
of b, then at the last step, we get λ1 ∈ Λ1 = Λ ∩ (γ1 + Λ) and again, there
exists λ ∈ Λ such that λ1 = ε1γ1 + λ. Summarizing, we have found λ ∈ Λ
such that

b = λ+

p∑
i=1

εiγi.

Therefore

x = b+

p∑
i=1

εiγi = λ ∈ Λ.

To conclude, we have to notice that if p is chosen to be the integer such that

2p ≥ N log 2

3 log(1/c)
> 2p−1 then

p2(p−1)

(
1

c

)2(p−1)

<
N2 log 2

3 log(1/c)

(
1

c

)N log 2/3 log(1/c)

≤ N22N/2+N/3 ≤ 2N

using the fact that log(1/c) ≥ 1/ 2N/2. The inequality (3.8) is satisfied and
Lemma 4 holds true. �

Remark. We would like to thank the referee for pointing out to us that the
bound of Theorem 3 is almost optimal for the trigonometric system as well.
Indeed, let n = 2N and let φj(t) = exp(2iπjt) for j = 0, . . . , n− 1. Define a
one-to-one mapping F : {0, 1}N → {0, . . . , n− 1} by

F (ε1, . . . , εN) =

N∑
j=1

εj2
j−1.

Let I ⊂ {0, . . . , n − 1} be a subset of cardinality n − k. By Lemma 4, the
set Λ = F−1(I) contains b · Γ where Γ = gr(γ1, . . . , γp). This means that for
any set J ⊂ {1, . . . , p}, F (b) +

∑
j∈J F (γj) ∈ I. Therefore, the function

ψ(t) = φF (b)

p∏
j=1

(
1 + φF (γj)

)

is contained in span(φj , j ∈ J). Obviously,

‖ψ‖L2 =
√

|Γ|‖ψ‖L1.
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indépendantes et propriétés géométriques des espaces de Banach. Studia
Math. 58 (1976), no. 1, 45–90.

[11] Pisier, G.: Martingales with values in uniformly convex spaces. Israel J.
Math. 20 (1975), no. 3-4, 326–350.

[12] Pisier, G.: The volume of convex bodies and Banach space geometry.
Cambridge Tracts in Mathematics 94. Cambridge University Press, Cam-
bridge, 1989.

[13] Rodriguez-Piazza, L.: Personal communication.
[14] Rudelson, M.: Random vectors in the isotropic position. MSRI preprint

(1996).
[15] Rudelson, M.: Random vectors in the isotropic position. J. Funct. Anal.

164 (1999), no. 1, 60–72.
[16] Rudelson, M. and Vershynin, R.: On sparse reconstruction from

Fourier and Gaussian measurements. Comm. Pure Appl. Math. 61 (2008),
no. 8, 1025–1045.



Majorizing measures and subsets of bounded orthonormal systems 1095

[17] Sudakov, V.N.: Gaussian random processes and measures of solide angles
in Hilbert spaces. Soviet. Math. Dokl. 12 (1971), 412–415.

[18] Talagrand, M.: Sections of smooth convex bodies via majorizing mea-
sures. Acta Math. 175 (1995), no. 2, 273–300.

[19] Talagrand, M.: Majorizing measures: the generic chaining. Ann.
Probab. 24 (1996), no. 3, 1049–1103.

[20] Talagrand, M.: Selecting a proportion of characters. Israel J. Math. 108
(1998), 173–191.

Recibido: 7 de noviembre de 2007

Olivier Guédon
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