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Cyclic Blaschke products
for composition operators

Eva A. Gallardo-Gutiérrez and Pamela Gorkin

Abstract
In this work, cyclic Blaschke products for composition operators

induced by disc automorphisms are studied. In particular, we obtain
interpolating Blaschke products that are cyclic for nonelliptic auto-
morphisms and we obtain a new characterization of Blaschke products
that are not finite products of interpolating Blaschke products.

1. Introduction

Let D denote the open unit disc in the complex plane and ∂D its boundary.
Recall that the Hardy space H2 is the Hilbert space consisting of holomorphic
functions f on D for which the norm

‖f‖2 =

(
sup

0≤r<1

∫ 2π

0

|f(reiθ)|2 dθ
2π

)1/2

is finite. A classical result due to Fatou states that every Hardy function f
has radial limit at eiθ ∈ ∂D, except possibly on a set Lebesgue measure zero
(see [9], for instance). Throughout this work, f(eiθ) will denote the radial
limit of f at eiθ.

If ϕ is an analytic function on D that takes D into itself, the Littlewood
Subordination Principle [23] ensures that the composition operator induced
by ϕ

Cϕf = f ◦ ϕ, (
f ∈ H2

)
takes the Hardy space H2 boundedly into itself.

Composition operators have attracted the attention of many operator
theorists in the last decades, due, in part, to their ability to link classical
branches of mathematics such as function theory and operator theory (see
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the monographs [6] and [29] for more about the subject). In this sense, one
of the most interesting features of composition operators is their connection
with the well-known problem of Hilbert space theory: The Invariant Sub-
space Problem. This problem, which remains open in the context of infinite-
dimensional separable Hilbert spaces, consists of determining whether or
not every bounded linear operator T on a Hilbert space H has a proper,
closed (nontrivial) invariant subspace. For a good source of references and
results on invariant subspaces we refer the reader to Chalendar and Esterle’s
survey [5].

In the eighties, Nordgren, Rosenthal, and Wintrobe [27] (see also [28])
proved that the Invariant Subspace Problem is equivalent to the fact that
every minimal non-zero invariant subspace for a composition operator in-
duced by a hyperbolic automorphism of D is one dimensional. Recall that
an automorphism ϕ of D can be expressed in the form

ϕ(z) = eiθ
p− z

1 − pz

(
z ∈ D

)
,

where p ∈ D and −π < θ ≤ π. Recall that ϕ is called hyperbolic if |p| >
cos(θ/2) (thus, ϕ fixes two points on ∂D), parabolic if |p| = cos(θ/2) (so, ϕ
fixes just one point, located on ∂D) and elliptic if |p| < cos(θ/2) (therefore, ϕ
fixes two points, one in D, see [29, Chapter 0], for example).

Nordgren, Rosenthal, and Wintrobe’s result may be restated as follows:
if Cϕ is a composition operator induced by a hyperbolic automorphism, any
linear bounded operator T on a Hilbert space H has a closed (nontrivial)
invariant subspace if and only if for any Hardy function f that is not an eigen-
vector of Cϕ, there exists a nonzero function g in span{f, Cϕf, C2

ϕf, . . . },
such that

span
{
g, Cϕg, C

2
ϕg, . . .

} �= span
{
f, Cϕf, C

2
ϕf, . . .

}
.

When viewed from this perspective, the study of the orbit of Hardy
functions is seen to be of great value in the study of invariant subspaces. In
addition, it is clear that the study of invariant subspaces leads to the natural
concept of cyclicity: a linear bounded operator T on a Hilbert space H is
said to be cyclic if there is a vector f ∈ H (called a cyclic vector for T ) such
that the linear span generated by its orbit, span{T nf}n≥0, is dense in H.
Here T 0 denotes the identity operator I.

In this work, we focus on the study of the Cϕ-orbits of Hardy func-
tions whenever ϕ is an automorphism of the unit disc D. We are primarily
interested in understanding when Blaschke products are cyclic for these ope-
rators. To this end, we observe that if ϕn is the n-th iterate of the map ϕ,
that is,

ϕn = ϕ ◦ ϕ ◦ · · · ◦ ϕ (n times),
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then Cn
ϕ = Cϕn for any n ≥ 0, where ϕ0 denotes the identity function.

Therefore, the behavior of the sequence of iterates {ϕn} will play an im-
portant role in determining the localization of the zeroes of those Blaschke
products that are cyclic.

In fact, as a preliminary result we show in Section 3 that if B is a finite
Blaschke product (that is, B has a finite number of zeroes), then B is not
cyclic for any composition operator induced by a nonelliptic automorphism,
though such operators are always cyclic operators on H2 (see [4] and [12],
for instance). This reveals a difference with respect to other linear fractional
composition operators that are cyclic for which the iterates {ϕn} tend to the
boundary uniformly on compacta. For instance, B(z) = z is a cyclic vector
for Cϕ on H2 whenever ϕ is a hyperbolic nonautomorphism (see [4] and [12],
for instance).

If ϕ is an elliptic automorphism, then Cϕ is cyclic whenever ϕ is con-
jugated to a rotation through an irrational multiple of π (see [4] or [12]).
In this case, we prove the following stronger fact: For the automorphism
ϕ(z) = eiθz a Hardy function F is a cyclic vector for Cϕ in H2 if and only
if F (m) does not vanish at 0 for any m. Hence, in what follows our task
will be reduced to the study of those Blaschke products that are cyclic for
composition operators induced by nonelliptic automorphisms.

We begin by recalling important results about interpolating Blaschke
products; information that will be essential to our study of cyclic vectors.
Recall that a Blaschke product B is said to be interpolating if the zero
sequence of B is an interpolating sequence for the algebra H∞ of bounded
analytic functions on D; that is, the zero sequence {zn} has the property
that given any bounded sequence of complex numbers {wn}, there exists a
function f ∈ H∞ such that f(zn) = wn for all n. Such Blaschke products are
easier to handle than general Blaschke products, and they are surprisingly
flexible. In fact, the biggest open question in this area is whether or not
every Blaschke product can be uniformly approximated by an interpolating
Blaschke product (see [13, p. 430, Problem 5.4], and [18] for the history and
most recent work on this problem). Also, it is well known that the problem
reduces to understanding the behavior of finite products of interpolating
Blaschke products or the so-called Carleson-Newman Blaschke products.

Our main result about interpolating Blaschke products appears in Sec-
tion 4 and states that there exist cyclic interpolating Blaschke products for
composition operators induced by nonelliptic automorphisms in H2. The
proof is accomplished by means of a construction, which we call our basic
construction. Note that the behavior of the iterates of a hyperbolic disc
automorphism is different from the corresponding one of a parabolic auto-
morphism, since the iterates of the former one tend to the boundary of D
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more quickly than those of the latter. In any case, given the very special na-
ture of interpolating Blaschke products, this seems to be a surprising result.

In Section 5 we will present a new characterization of nonelliptic auto-
morphisms of D in terms of Blaschke products satisfying a strong form of
cyclicity. In addition, we present a new characterization of Blaschke products
that are Carleson-Newman. This representation depends on a factorization
of the Blaschke product B in the algebra H∞ + C, which is the closed sub-
algebra of L∞ generated by H∞ and z. Both proofs depend, in part, on our
basic construction.

Finally, in Section 6, we use a recent result due to Dyakonov and Nico-
lau [10] to simplify the construction of universal Blaschke products that
appeared in [15] and obtain a stronger form of the aforementioned result.

2. Preliminaries

In this section, we collect some useful facts needed throughout this paper.

2.1. Automorphisms of the unit disc

As mentioned in the introduction, the disc automorphisms, like general linear
fractional maps, can be classified according to their fixed points. One of the
most interesting features in this sense has to do with the normal forms.

If ϕ is parabolic, that is, ϕ has only one fixed point α, conjugating by
the linear fractional map T (z) = 1

z−α it follows that ϕ = T−1ψT , where

ψ(z) = z + τ (τ �= 0).

On the other hand, if ϕ has two distinct fixed points α and β, conjugating by

Tz =
z − α

z − β
,

we deduce that ϕ = T−1ψT , with ψ(z) = µz. In this case, ϕ is called elliptic
if |µ| = 1 and hyperbolic if µ > 0. Note that no other value of µ is allowed
because ϕ is an automorphism. In all of the preceding cases, the map ψ is
called the normal form.

Note that if ϕ is a hyperbolic automorphism of D, both fixed points of ϕ
are located on ∂D, while an elliptic automorphism ϕ has one of the fixed
points in D. Parabolic automorphisms have their unique fixed point on ∂D.

Using normal forms, it can be checked easily that the iterates of any
nonelliptic automorphism {ϕn} converge uniformly on compact subsets of D

to one fixed point, which is called attractive fixed point. We refer to Ahlfors’
book [1] for more details.
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Blaschke products

Given a sequence of (not necessarily distinct) points {zk} in D\{0} satisfying
the Blaschke condition ∞∑

k=1

(1 − |zk|) <∞,

the infinite product

B(z) =

∞∏
k=1

|zk|
zk

zk − z

1 − zkz
,

converges uniformly on compact subsets of D to a holomorphic function B
with the following properties:

i) B vanishes precisely at the points {zk}, with the corresponding mul-
tiplicities (that is, {zk} is the zero sequence of B).

ii) |B(z)| < 1 for every z ∈ D.

iii) |B(eiθ)| = 1 almost everywhere on ∂D.

The holomorphic function B is called the Blaschke product with zero se-
quence {zk}. A general expression for a Blaschke product is given by

eiθ zN
∞∏
k=1

|zk|
zk

zk − z

1 − zkz

where N ≥ 0 is an integer. Recall that B is said to be normalized if
B(0) > 0. For more properties about Blaschke products, we refer to Gar-
nett’s book [13].

The algebra H∞ + C
Recall that the closed subalgebra of L∞ generated by H∞ and the conju-
gate z of z is the smallest subalgebra of L∞ containing the algebra H∞

properly. This algebra will be denoted by H∞ + C. It has the very im-
portant property that its maximal ideal space, M(H∞ + C), is the same as
the maximal ideal space of H∞, M(H∞), minus the open unit disc. Thus,
M(H∞ + C) is the part of M(H∞) that is not well understood. In this sub-
section, we recall briefly some of the main results on division in this algebra
that will be useful in Section 4. The first result can be found in Hoffman’s
classic paper [22] and [11].

Lemma 2.1. A Blaschke product B is not a finite product of interpolating
Blaschke products if and only if there exists a sequence {zn} in D such that{
B ◦ (

z+zn

1+znz

)}
tends to zero uniformly on compacta as n→ ∞.
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Division and multiplication in H∞ + C is well understood ([2], [19],
and [20]). The two primary results that we will need here can be found
in [2] and [20].

Lemma 2.2. Let h ∈ H∞ + C and let b be interpolating. If h(zn) → 0 on
the zero sequence of b, then h/b = hb ∈ H∞ + C.

Lemma 2.3. Let h ∈ H∞ + C and let u be an inner function. If

lim
|z|→1

∣∣h(z)∣∣(1 − |u(z)|) = 0,

then for each n there is a function cn ∈ H∞ + C such that h = uncn.

Thus, un divides h in H∞ + C for each positive integer n. We note that
the Poisson kernel is asymptotically multiplicative on H∞ + C (

[8, p. 169]
)

in the following sense: if we have two functions u and v in H∞ + C defined
on the unit circle and write u and v again for the Poisson extension to D,
then given ε > 0, there exists r > 0 such that 0 < r < 1 and∣∣u(z)v(z) − (uv)(z)

∣∣ < ε

for |z| > r. Therefore, saying h = uncn implies that |h(z)− un(z)cn(z)| → 0
as |z| → 1. Thus, un acts like a divisor of h, asymptotically. We use this
frequently in what follows.

3. Cyclic Blaschke products

We begin this section by noting that in the study of cyclic Blaschke products
it suffices to study composition operators induced by concrete disc automor-
phisms. In fact, if ψ is any hyperbolic automorphism of D, it is not hard to
see that ψ can be conjugated under a disc automorphism T to a hyperbolic
automorphism ϕ that fixes 1 and −1; that is,

(3.1) ϕ(z) =
z + r

rz + 1

with 0 < r < 1. Since ψ = T ◦ϕ ◦ T−1, the operators Cψ and Cϕ are similar
operators. The same reasoning applies to parabolic automorphisms, and we
deduce that it is enough to consider those that fix the point 1; that is,

(3.2) ϕ(z) =
(2 − a)z + a

−az + 2 + a

with a a nonzero complex number such that the real part satisfies 	a = 0.
Finally, if ψ is an elliptic automorphism, ψ is conjugated to a rotation
ϕ(z) = eiθz.
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We remark that while any parabolic or hyperbolic automorphism induces
a cyclic composition operator on H2, elliptic automorphisms induce cyclic
composition operators on H2 if and only if they can be conjugated to a
rotation eiθz where θ is not a rational multiple of π (see [4], for instance).

The next result follows from the observation that if ψ and ϕ are conju-
gated disc automorphisms, ψ = T ◦ ϕ ◦ T−1, then CT−1 = C−1

T is invertible
on H2 and, therefore, has dense range.

Proposition 3.1. Let ψ and ϕ be disc automorphisms conjugated under T .
A Hardy function f is cyclic for Cψ if and only if CTf is cyclic for Cϕ.

Note that in the particular case that f is a Blaschke product, the function
CTf is also a Blaschke product, since T is an automorphism of the unit disc.

Our next result is concerned with cyclic composition operators induced
by elliptic disc automorphisms.

Theorem 3.2. Let ϕ be an elliptic automorphism conjugated to a rotation
through an irrational multiple of π. Let T conjugate ϕ to ϕ̂(z) = eiθz.
A Hardy function F is a cyclic vector for Cϕ in H2 if and only if (F ◦ T )(m)

does not vanish at 0 for any m.

Proof. We begin by noting that F ◦ T is cyclic for Cϕ̂ and if F vanishes at
the fixed point p of ϕ in D, then every function f ∈ span{F ◦T ◦ ϕ̂n : n ≥ 0}
vanishes at 0. The same is true for (F ◦ T )(m)(0). In this case, then, it is
easy to see that F cannot be cyclic.

We turn now to the other direction. By Proposition 3.1, it is enough to
prove the result when ϕ(z) = eiθz, where θ is an irrational multiple of π. In
this case, let F be a Hardy function such that F (m) does not vanish at 0.
Without loss of generality we may assume that ‖F‖2 ≤ 1.

Claim: If f ∈ H2 is orthogonal to {CϕnF : n ≥ 0}, then f(0) = 0.

Assume, for the moment, that the claim has been established. Let f ∈ H2

satisfy

(3.3)
〈
f, F ◦ ϕn

〉
= 0

for every n. We will show that f is the zero function, and therefore it will
follow that F is a cyclic vector for Cϕ.

Using the claim, we may write f(z) = zg(z). Note that g ∈ H2 and

0 =
〈
zg, F ◦ ϕn

〉
=

〈
g, M�

zCϕnF
〉
,(3.4)

where M�
z denotes the adjoint of the multiplication operator Mz on H2.

Since

M�
z h(z) =

h(z) − h(0)

z
(z ∈ D),
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for every h ∈ H2, a quick computation shows that

M�
zCϕnF = einθCϕnM

�
zF

for every n ≥ 0. Hence, using equation (3.4), we see that〈
g, CϕnM

�
zF

〉
= 0

for every n ≥ 0. Thus, g is orthogonal to the orbit of the Hardy func-
tion M�

zF under Cϕ. Because of the claim and since (M�
zF )(m)(0) �= 0, we

deduce that g(0) = 0.
Continuing in this fashion and taking into account that for all k ≥ 1, we

have
M�k

z CϕnF = einkθCϕnM
�k
z F,

for every n ≥ 0, we deduce that f is the zero function. We proceed to the
proof of the claim.

Proof of the claim. Assume that f ∈ H2 satisfies

(3.5)
〈
f, F ◦ ϕn

〉
= 0

for every n. Since F �≡ 0 on D, we may fix z0 ∈ D \ {0} such that |F (z0)| =
R0 �= 0. Let us fix ε > 0. Since the reproducing kernel, Kz0(z) = 1/(1 − z0z),
is cyclic for Cϕ (see [4]), there exist positive integers n1, . . . , nN and complex
numbers λ1, . . . , λN ∈ C (both sequences depending on z0) such that

(3.6)

∥∥∥∥
N∑
j=1

λjKz0 ◦ ϕnj
− f

∥∥∥∥
2

< ε.

From (3.5), (3.6) and the fact that ‖F‖2 ≤ 1, we deduce

(3.7)

∣∣∣∣
〈 N∑

j=1

λjKz0 ◦ ϕnj
, F ◦ ϕn

〉∣∣∣∣ < ε

for every n. Equivalently, we obtain that for every n

(3.8)

∣∣∣∣
〈
C�
ϕn

( N∑
j=1

λjKz0 ◦ ϕnj

)
, F

〉∣∣∣∣ < ε,

where C�
ϕn

denotes the adjoint of Cϕn. A computation shows that C�
ϕn

is the
composition operator induced by ϕ−n(z) = e−inθz. Moreover, Kz0 ◦ ϕnj−n is

the reproducing kernel at ei(n−nj)θ z0. Hence, from (3.8) we have∣∣∣∣∣
N∑
j=1

λjF
(
ei(n−nj)θ z0

)∣∣∣∣∣ < ε
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for every n. Since θ is an irrational multiple of π, the set {einθ z0}n≥0 is
dense in the circle {z : z = |z0|}. Therefore, for each λ ∈ ∂D there exists a
subsequence {einkθ z0}k≥0 such that einkθ z0 → λz0 as k → ∞. Thus,∣∣∣∣

N∑
j=1

λjF (0)

∣∣∣∣ ≤ max
|λ|=1

∣∣∣∣
N∑
j=1

λjF (λe−injθz0)

∣∣∣∣ < ε.

By our choice of F , it follows that
∣∣∑N

j=1 λj
∣∣ < ε/|F (0)|. Now, since the

topology induced by the H2-norm implies the topology of uniform conver-
gence on compacta, we deduce from (3.6) that

|f(0)| ≤
∣∣∣∣
N∑
j=1

λj − f(0)

∣∣∣∣ +

∣∣∣∣
N∑
j=1

λj

∣∣∣∣ <
(

1 +
1

|F (0)|
)
ε.

Since ε is arbitrary, it follows that f(0) = 0. This proves the claim, and
therefore, Theorem 3.2. �

As an immediate corollary we deduce

Corollary 3.3. Let ϕ be an elliptic automorphism conjugated to a rotation
through an irrational multiple of π. Let p be the fixed point of ϕ in D. Then
every Blaschke product B such that (B ◦T )m does not vanish at 0 is a cyclic
vector for Cϕ in H2.

Now we turn to nonelliptic automorphic composition operators.

Proposition 3.4. Let ϕ be a nonelliptic disc automorphism. Then no finite
Blaschke product is a cyclic vector for Cϕ on H2.

In the proof below, we denote by ρ(z, w) =
∣∣ w−z
1−wz

∣∣ the pseudohyperbolic
distance between two points w, z in D.

Proof. Assume that B is a finite Blaschke product with zero sequence
{zk}Nk=1. Note that for each n ≥ 0, B ◦ ϕn is also a finite Blaschke product
with zero sequence {ϕ−n(zk)}Nk=1.

We claim that the sequence {ϕ−n(zk)}{1≤k≤N,n≥0} is a Blaschke sequence.
In fact, the key observation is that for any point p ∈ D, {ϕ−n(p)}n≥0 is a
Blaschke sequence. To check this, fix p ∈ D. Since the pseudohyperbolic
distance ρ is invariant under disc automorphisms, we deduce

∞∑
n=0

(
1 − |ϕ−n(p)|2

)
=

∞∑
n=0

1 − ρ(ϕ−n(p), 0)2 =

∞∑
n=0

1 − ρ(p, ϕn(0))2

=
∞∑
n=0

(1 − |p|2)(1 − |ϕn(0)|2)
|1 − p ϕn(0)|2

≤ 1 + |p|
1 − |p|

∞∑
n=0

(1 − |ϕn(0)|2).(3.9)
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Since ϕ is a nonelliptic automorphism, it is not hard to check (using (3.1)
or (3.2)) that {ϕn(0)} is a Blaschke sequence, and therefore the series in (3.9)
converges. Since k ranges over a finite set, {ϕ−n(zk)}{1≤k≤N, n≥0} is a Blas-
chke sequence, establishing our claim.

From this we may conclude that the linear span generated by the Cϕ-
orbit of B is not dense as follows: Consider the Blaschke product F that
vanishes at {0} ∪ {ϕ−n(zk)}{1≤k≤N,n≥0}. It is orthogonal to CϕnB for every
n ≥ 0, and therefore to its linear span. �

A closer look at the proof of Proposition 3.4 yields the following necessary
condition for an infinite Blaschke product to be cyclic.

Proposition 3.5. Let ϕ be a nonelliptic disc automorphism. Let B be a
cyclic Blaschke product for Cϕ with zero sequence {zk}. Then there exists a
subsequence {zkj

} tending to the ϕ-attractive fixed point as j → ∞.

Proof. Without loss of generality, we may assume that 1 is the fixed point
of ϕ. Suppose to the contrary that there exists a positive constant α > 0
such that |1 − zk| > α for every k ≥ 1. If we show that {ϕ−n(zk)}k≥1,n≥0 is
a Blaschke sequence, we may construct a function F as in Proposition 3.4
that is orthogonal to CϕnB for every n ≥ 0. This would contradict the fact
that B is a cyclic vector and, thereby establish our claim.

Now,

∑
n, k≥0

1 − ∣∣ϕ−n(zk)
∣∣2 =

∑
n, k≥0

(1 − |zk|2)(1 − |ϕn(0)|2)
|1 − zk ϕn(0)|2 .

Note that for any n and k we have

∣∣1 − zk ϕn(0)
∣∣ ≥ ∣∣1 − zk

∣∣ − ∣∣zk∣∣ ∣∣1 − ϕn(0)
∣∣.

From here, taking into account that {ϕn(0)} tends to the ϕ-attractive fixed
point 1, we deduce that the series above converges. Therefore, the sequence
{ϕ−n(zk)}{k≥1, n≥0} is Blaschke. �

Note that Proposition 3.5 implies, in particular, that the behavior of a
Blaschke product with zeroes far from {ϕn(0)} is irrelevant. In other words,
if B is cyclic and we multiply B by a Blaschke product C that is continuous
at the cluster point of the sequence {ϕn(0)}, then C ◦ ϕn will converge to
the unimodular constant C(1) uniformly on compacta and the function CB
will behave just like the function B. Thus, any attempt to characterize
cyclic Blaschke products must focus on the behavior of subproducts of the
Blaschke product. This observation will play an important role in the next
two sections.
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4. Cyclic interpolating Blaschke products

In this section, we exhibit interpolating Blaschke products that are cyclic
for any composition operator induced by nonelliptic automorphisms. Be-
cause of Proposition 3.5, we have to exhibit a Blaschke product B so that a
subsequence of the sequence of its zeroes tend to the attractive fixed point
of ϕ.

Given a point zn ∈ D we let αn denote the automorphism on D given by
αn(z) = (z+ zn)/(1 + znz). In order to state the main result of this section,
we introduce the following definition.

Definition 4.1. Let B be a Blaschke product. We say that b is an approx-
imate subfactor of B if b divides B in H∞ + C.

The key to this section and Section 5 is the following result.

The Basic Construction. Let B be a Blaschke product that is not Car-
leson-Newman and {cn} a sequence of finite Blaschke products. Then there
exist a sequence {zn} of points in D, a sequence of pseudohyperbolic discs
D(n,m) := D(zn,m, rn,m) and an approximate subfactor b of B with zeroes
{wn,m} such that

i) b =
∏

n,m bn,m where bn,m◦αn,m = λn,mcn for some unimodular constant

λn,m and
∏

(j,k)�=(n,m)

∣∣bj,k ◦ αn,m∣∣ tends to 1 uniformly on compacta as

max(n,m) → ∞.

ii) wn,m ∈ D(n,m);

iii) There exists a unimodular constant λn such that (some subsequence
of) b ◦ αn,m → λncn as m→ ∞;

iv) lim|z|→1 |B(z)|(1 − |b(z)|) = 0.

Before proving the result, we recall that the pseudohyperbolic discD(z0,r)
is the inverse image of D(0, r) under τ(z) = z−z0

1−z0z . Thus, since αn(z) =
z+zn

1+znz
, it follows that D(zn, r) = αn(D(0, r)). Recall ([13, p. 3]) that the

pseudohyperbolic disc D(z0, r) is a Euclidean disc with center

c =
1 − r2

1 − r2|z0|2 z0

and radius

R = r
1 − |z0|2

1 − r2|z0|2 .
In particular, given a sequence {zn} of points tending to 1, and an increasing
sequence of positive real numbers {rj} we can choose subsequences of {zn}
and {rj} converging to 1 so that the pseudohyperbolic discs are disjoint.
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We now recall the following lemma that will be useful in the rest of this
paper (see, for instance, [14]).

Lemma 4.1. Let {un} be a sequence of inner functions. If there exists a
constant γ of modulus 1 so that un(0) → γ, then un → γ uniformly on
compact subsets of D.

We include the proof of Lemma 4.1 for the sake of completeness.

Proof of Lemma 4.1. Note that every subsequence of {un} satisfies the hy-
potheses. A normal families argument shows that each subsequence of {un}
has a subsequence that converges uniformly on compact subsets to a bounded
analytic function f with sup norm at most one. The Maximum Modulus
Theorem and the fact that un(0) → γ imply that f is the constant function γ.
Since each subsequence has a subsequence converging, in the topology of uni-
form convergence on compacta, to the constant function γ, it follows that
un converges to γ as well. This proves the statement of the lemma. �
Proof of the basic construction. Let {cn} be a sequence of finite Blaschke
products and let mn denote the number of zeroes of cn. Since B is not a
finite product of interpolating Blaschke products, Lemma 2.1 implies that
there exists a sequence {zn} such that B ◦ αn converges to 0 uniformly on
compact subsets of D. Now, we will choose sequences {rn,m} and {r′n,m}
such that

min{
∏
n,m

r′n,m,
∏
n,m

rn,m} > δ > 0

and a doubly-indexed sequence {δ(j,k),(n,m)} such that∏
(j,k)�=(n,m)

(1 − δ(j,k),(n,m)) → 1,

as max(n,m) → ∞.
We will choose a subsequence of pseudohyperbolic discs that will become

the discs D(n,m), with centers zn,m and radii rn,m such that

αn,m(D(0, rn,m)) = D(zn,m, rn,m).

We note that by choosing our zn,m very close to the boundary, we may choose
our rn,m as close to 1 as we wish.

Stage 1. Choose D(1, 1) so close to the boundary that the normalized
Blaschke product b1,1 = λ1,1c1 ◦ α1,1

−1, where λ1,1 ∈ ∂D, has the property
that its zeroes satisfy

1 − |z1,1,n| < 1/(21+1m1),

for n = 1, . . . , m1. We may increase r1,1, if necessary, in order to assume
that the zeroes of b1,1 are in D(1, 1) and |b1,1|D(1,1)c > r′1,1.
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Stage 2. Choose D(1, 2) and α1,2 so that

• D(1, 1) ∩D(1, 2) = ∅;
• |b1,1|D(1,2) > max(r1,2, 1 − δ(1,1),(1,2));

• ‖B‖D(1,2) = sup{z∈D(0,r1,2)} |B ◦ α1,2(z)| < 1/21+2;

• The Blaschke product b1,2 = λ1,2c1 ◦ α1,2
−1 for some λ1,2 ∈ ∂D, and

the zeroes, {z1,2,n}m1
n=1, of b1,2 satisfy

1 − |z1,2,n| < 1/(21+2m1)

for n = 1, . . . , m1;

• |b1,2|D(1,1) > max(r1,2, 1 − δ(1,2),(1,1)) and |b1,2|D(1,2)c > r′1,2.

(We note that the second bulleted statement above can be satisfied be-
cause b1,1 is a finite Blaschke product and D(n,m) tends to the boundary
as max(n,m) → ∞. The third bullet can be satisfied because |αn(0)| → 1
as n→ ∞ and B ◦ αn → 0 uniformly on compacta.)

Now choose D(2, 1) disjoint from the previous discs so that

• |b1,j |D(2,1) > max(r2,1, 1 − δ(1,j),(2,1)) for j = 1, 2;

• ‖B‖D(2,1) = sup{z∈D(0,r2,1)} |B ◦ α2,1(z)| < 1/22+1;

• The Blaschke product b2,1 = λ2,1c2 ◦ α2,1
−1 for some λ2,1 ∈ ∂D, where

the zeroes {z2,1,n} of b2,1 satisfy

1 − |z2,1,n| < 1/(22+1m2);

• |b2,1|D(1,1)∪D(1,2) > max(r1,1, r1,2, 1 − δ(2,1),(1,1), 1 − δ(2,1),(1,2)).

Again, we may increase r1,2 if necessary, so that we may assume that the
zeroes of b1,2 are in D(1, 2) and |b2,1|D(2,1)c > r′2,1.

General construction. Having constructed the sequence up to this point,
we choose our discs D(j, k), radii {rj,k}, sequences {1 − δ(j,k),(n,m)} and
Blaschke factors bn,m as above. Enumerating our discs diagonally (in order
(1, 1), (1, 2), (2, 1), (1, 3), and so on), we choose the next Blaschke product
bj,k and disc D(j, k) in our sequence so that D(j, k) is disjoint from the
previous discs and

a) |bn,m|D(j,k) > max(r(n,m), 1− δ(n,m),(j,k)) for all prior Blaschke products
(if (n,m) comes before (j, k));

b) ‖B‖D(j,k) = sup{z∈D(0,rj,k)} |B ◦ αj,k(z)| < 1/2j+k;
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c) The Blaschke product bj,k = λj,kcj ◦ αj,k−1 for some λj,k ∈ ∂D, and its
zeroes satisfy

1 − |zj,k,n| < 1/(2j+kmj)

for n = 1, . . . , mj ;

d) bn,m satisfies |bn,m|D(n,m)c > r′n,m and

|bn,m|D(j,k) > max(rj,k, 1 − δ(n,m),(j,k)),

on all discs D(j, k) prior to D(n,m) (if (j, k) comes before (n,m)).

By condition (c) above, we know that {zj,k,n}j,k,n forms a Blaschke se-
quence. Now form the normalized Blaschke product b with these zeroes.

Now we check facts (i) − (iv) of the basic construction.

First we check (i). Note that by (a) and (d) above, |br,s|D(j,k)>1−δ(r,s),(j,k)
on D(j, k) if (r, s) �= (j, k). Now consider b ◦ αp,q. Because the convergence
is uniform on compacta, as well as absolute, we may rearrange terms so that

∣∣b ◦ αp,q∣∣ =
∏
n,m

∣∣bn,m ◦ αp,q
∣∣ =

∣∣(bp,q ◦ αp,q)∣∣ ∏
(n,m)�=(p,q)

∣∣(bn,m ◦ αp,q)
∣∣.

Now∏
(n,m)�=(p,q)

∣∣bn,m◦αp,q(0)
∣∣ ≥ ∏

(n,m)�=(p,q)

inf
D(p,q)

∣∣bn,m∣∣
D(p,q)

>
∏ (

1−δ(n,m),(p,q)

) → 1,

as max (p, q) → ∞.
Since these functions are bounded by 1 and the Blaschke products are

normalized, it follows that ∏
(n,m)�=(p,q)

∣∣(bn,m ◦ αp,q)
∣∣ → 1

uniformly on compacta as max(p, q) → ∞. Since bp,q ◦αp,q = λp,qcp, we have
established (i).

Our construction guarantees that (ii) occurs.
Now {λp,q} is bounded, so we may choose a subsequence {p, qn} that is

in turn a subsequence of {p− 1, qn} and such that

λp,qn → λp ∈ ∂D

as n→ ∞. Thus, as n→ ∞, there exists λ′p ∈ ∂D with

b ◦ αp,qn → λ′pcp

uniformly on compacta, establishing (iii).
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To see that (iv) holds, let ε > 0 be fixed. Note that if z /∈ ∪j,kD(j, k)
then |bj,k(z)| ≥ r′j,k. In addition,

∣∣b(z)∣∣ =
∏

1 ≤ j ≤ N,
1 ≤ k ≤ N

∣∣bj,k(z)∣∣ ∏
max{j,k}≥N

∣∣bj,k(z)∣∣ ≥ ∏
1 ≤ j ≤ N,
1 ≤ k ≤ N

∣∣bj,k(z)∣∣ ∏
max{j,k}≥N

r′j,k.

By our choice of r′j,k, we know that
∏

max{j,k}≥N r
′
j,k → 1 as N → ∞. Thus,

we may choose N sufficiently large so that
∏

max{j,k}≥N r
′
j,k ≥

√
1 − ε.

Now the finite product
∏

1≤j≤N, 1≤k≤N |bj,k(z)| → 1 as |z| → 1, so there

exists δ1 > 0 such that |z| > δ1 implies |b(z)| > 1 − ε if z /∈ ∪n,kD(n, k).
Because of the construction, we have that ‖B‖D(j,k) < 1/2j+k. Hence, if z ∈
∪j,kD(j, k), then |B(z)| < 1/2j+k. As |z| → 1, we see that max(j, k) → ∞.
Thus, there exists δ2 > 0 such that |B(z)| < ε if |z| > δ2. Let δ = max(δ1, δ2).
Then |z| > δ implies

|B(z)|(1 − |b(z)|) < ε,

which establishes (iv). �
We turn to showing that there exist cyclic interpolating Blaschke prod-

ucts for composition operators induced by nonelliptic automorphisms.
Note that once we have one cyclic interpolating Blaschke B for Cϕ we

have, at least, a denumerable set: if B is a cyclic interpolating Blaschke
product for Cϕ, then CϕB is also an interpolating Blaschke product. In
fact, the set

span{CϕnB : n ≥ 1}
is the image of the dense set span{CϕnB : n ≥ 0} under the operator Cϕ.
Since Cϕ has dense range, span{CϕnB : n ≥ 1} is also a dense set. This
means that CϕB is also cyclic.

Proposition 4.2. Let ϕ be a nonelliptic disc automorphism. There exists
a cyclic interpolating Blaschke B product for Cϕ. Moreover, CϕnB is also a
cyclic interpolating Blaschke product for every n ≥ 1.

Remark 4.3. Note that not all the interpolating Blaschke products with a
subsequence of zeroes tending to the attractive fixed point of a nonelliptic
disc automorphism ϕ are cyclic for Cϕ. In particular, if ϕ is a hyperbolic
automorphism of D, the Blaschke product with zeros at {ϕn(0)}n∈Z is an
interpolating Blaschke satisfying the required condition but it is no longer
a cyclic vector, since it is an eigenfunction of Cϕ (for the characterization of
Blaschke products that are eigenfunctions of composition operators induced
by hyperbolic automorphisms, we refer to [24] and [25]).
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Proof. If ϕ is a nonelliptic automorphism, it is clear that the iterates ϕn
may be expressed by

ϕn(z) =
z + zn
1 + znz

where zn = ϕn(0) tend to the ϕ-attractive fixed point on ∂D (note that
from (3.1) and (3.2) we know that zn = 1−µn

1+µn where µ = 1−r
1+r

if ϕ is a

hyperbolic automorphism and zn = na
2+na

if ϕ is parabolic).

For each n, let an = 1−1/n, and choose the sequence (cn) so that c1 = 1
and let cn(z) = (z − an)/(1 − anz). By the basic construction, there exists
a Blaschke product B =

∏
bn,m with properties (i) − (iv) above. We must

show that B is interpolating. To see this, note that B has precisely one zero
in D(n,m) for each n and m. So

∏
(j,k)�=(n,m)

ρ(wj,k, wn,m) =
∏

(j,k)�=(n,m)

∣∣bn,m(wj,k)
∣∣ ≥ ∏

rn,m > δ > 0,

by property (a) in the basic construction above. Thus B is interpolating.

Now we claim that B is cyclic.

First, note that by our choice of c1 there is a subsequence of {B ◦ ϕn,k}
converging to a constant function λ. Further, by the basic construction,
there exists λ = λ(k) ∈ ∂D such that B◦ϕn,k converges to λ(z−an)/(1−anz)
on compacta as k → ∞. Since a sequence in H2 converges weakly to a
function g if and only if it it is bounded in H2 and converges uniformly on
compact sets (see, for example, [30, p. 189]), we conclude that

〈
B ◦ ϕn,k, λ (z − an)

(1 − anz)

〉
→ 1 as k → ∞.

Thus ∥∥∥∥B ◦ ϕn,k − λ
z − an
1 − anz

∥∥∥∥
2

→ 0 as k → ∞.

Therefore, the closure of span{B ◦ ϕn,k} contains (z − an)/(1 − anz) for
each n and the constants. It follows that the reproducing kernel at an in H2,
that is,

Kan(z) =
1

1 − anz

also belongs to the closure of span{B ◦ ϕn,k}. Since {Kan : n ≥ 1} is a
spanning set in H2, it follows that B is cyclic. �
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5. Strong forms of cyclicity and Carleson–Newman
Blaschke products

In this section, we characterize nonelliptic automorphisms of the unit disc
as well as those Blaschke products that are finite products of interpolating
Blaschke products.

To this end, recall that given a bounded linear operator T on a Banach
space B, a function f is said to be supercyclic if its projective orbit {λT nf :
λ ∈ C, n ≥ 0} is dense in B. If the projective orbit of f is dense in the weak
topology of B, f is said to be weakly supercyclic. Note that, by Mazur’s
Theorem (see [7]), every weakly supercyclic vector is cyclic.

Theorem 5.1. Let {ϕn}n≥0 denote the iterates of an automorphism of D.
The following are equivalent:

1. ϕ is a nonelliptic automorphism;

2. There exists a Blaschke product B with zeroes at a subsequence of
{ϕn(0)} (with zeroes repeated) such that B is not a finite product of
interpolating Blaschke products.

3. There exists a Blaschke product b such that b is weakly supercyclic
for Cϕ.

Proof. First suppose that ϕ is nonelliptic. Then |ϕn(0)| → 1 as n→ ∞. For
each k choose nk so that 1− |ϕnk

(0)| < 1/k3. Thus
∑
k(1− |ϕnk

(0)|) <∞.
Let B be the Blaschke product with zeroes {ϕnk

(0)} and the zero ϕnk
(0)

repeated k times. Writing zk = ϕnk
(0), we note that if c < 1 and |z0| < c,

then ∣∣∣∣B ◦
(
z0 + zk
1 + zkz0

)∣∣∣∣ ≤
∣∣∣∣ (z0 + zk)/(1 + zkz0) − zk
1 − zk(z0 + zk)/(1 + zkz0)

∣∣∣∣
k

= |z0|k ≤ ck.

Since c < 1, we see that a subsequence of B ◦ (z + zk)/(1 + zkz) tends
to zero uniformly on compacta as k → ∞. By Lemma 2.1, we see that B is
not a finite product of interpolating Blaschke products.

Now suppose that B exists. Let {cn} be a sequence of finite Blaschke
products so that {cn} is dense in the ball of H∞ in the topology of local
uniform convergence.

Property (iii) of the basic construction ensures that there exists a Blas-
chke product b such that that b◦ϕn,m converges locally uniformly to λncn as
m→ ∞, for some λn ∈ ∂D. Since pointwise bounded convergence coincides
with weak convergence in H2, the result follows.

Now we show that the existence of a weakly supercyclic Blaschke product
for Cϕ implies that ϕ is nonelliptic. Our proof is based on an argument that
appears in [12, Theorem 5.2].
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Suppose that ϕ is an elliptic automorphism and let p ∈ D denote the
fixed point of ϕ. Since b is assumed to be a weakly supercyclic Blaschke
product, we see that b(p) �= 0. Since ϕ ∈ H2 and b is weakly supercyclic,
there exists a net such that

λα(b ◦ ϕα) → ϕ.

In particular,
λαb(p) = λα(b ◦ ϕα)(p) → ϕ(p).

Thus, λα → p/b(p) and
b ◦ ϕα → (p/b(p))ϕ.

By extracting a subnet, if necessary, we may assume that there is an elliptic
automorphism ψ such that

ϕα → ψ.

Then b ◦ ψ = (p/b(p))ϕ. So b must be a nonconstant multiple of an auto-
morphism. By Hurwitz’s theorem [1, p. 178] we see that b cannot be weakly
supercyclic. This contradiction completes the proof of this theorem. �

We present our first characterization of Carleson-Newman Blaschke pro-
ducts.

Theorem 5.2. A Blaschke product B is not a finite product of interpolating
Blaschke products if and only if there is a sequence {αn} = {(z + zn)/(1 +
znz)} of automorphisms with |αn(0)| → 1 and a Blaschke product b such
that b divides B in H∞ + C and {λ(b ◦ αn) : n ≥ 0, λ ∈ C} is dense in the
topology of local uniform convergence.

Proof. First suppose that B is not a finite product of interpolating Blaschke
products. By the basic construction, there exists a Blaschke product b with
properties (i) − (iv). By Lemma 2.3 and property (iv), B is divisible by b
in H∞ + C. The density follows from property (iii).

For the other direction, note that B = bu for some u ∈ H∞ + C. Now,
b ◦ αnk

→ 0 uniformly on compacta for some subsequence {αnk
}. Thus

B ◦ αnk
(z) = (bu) ◦ αnk

(z).

Since |αn(0)| → 1, passing to a subsequence if necessary, we may apply
Lemma 4.1 and assume that there exists λ ∈ ∂D such that αnk

→ λ uni-
formly on compact subsets of D. So |αnk

(z)| → 1 as well. Using the as-
ymptotic multiplicative property of the Poisson kernel, we conclude that
B ◦ αnk

→ 0 pointwise on D, and therefore some subsequence converges to
zero uniformly on compacta. By Lemma 2.1, B is not a finite product of
interpolating Blaschke products. �
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6. Universal Blaschke products

The study of cyclicity is related to the study of universality, a subject we now
investigate in a particular situation. In the more general context, given two
topological vector spaces X and Y and bounded linear maps Tl : X → Y ,
an element x ∈ X is universal for {Tl} if {Tlx : l ∈ I} is dense in Y . We will
study universal Blaschke products; that is, a Blaschke product b is said to be
universal for the ball of H∞ with respect to a sequence {αn} if {b◦αn : n ∈ N}
is dense in the ball of H∞ in the local uniform topology. Universality, like
cyclicity, has received a lot of attention and the interested reader is referred
to [3], [15], [21], and [26] for results specific to universal Blaschke products
or inner functions, as well as the survey works [16] and [17].

To obtain a result on universal Blaschke products, we apply a theorem
of Dyakonov and Nicolau [10]. For the reader’s convenience, we quote the
results we need below. Recall that an interpolating sequence is said to be
thin if

lim
k→∞

∏
n �=k

ρ(zn, zk) = 1.

Theorem 6.1 (Theorem 1.5, [10]). Given a thin sequence {zn}, there is a
sequence {mj} with mj → 1 such that for every sequence {wj} satisfying
|wj| ≤ mj there is a solution F ∈ H∞ such that ‖F‖∞ ≤ 1 and F (zj) = wj
for all j.

Dyakonov and Nicolau note that the function that is actually constructed
is, in fact, a Blaschke product with thin zero sequence, and there exists a
sequence {τj} with 0 < τj < 1 and τj → 1 such that the zeroes of the
Blaschke product, denoted {ζj}, can be chosen so that ρ(ζj , zj) ≤ τj for all j.
They note that this can be verified in the same way as Earl’s proof ([11],
[13, p. 309], [10, Lemma 2.3]).

We will also need the following lemma, known as Hoffman’s lemma
(see [22] and [13, p. 404]).

Lemma 6.1 (Hoffman’s Lemma). Let B be an interpolating Blaschke prod-
uct with zeroes {zn} satisfying

inf
n

(1 − |zn|2)|B′(zn)| ≥ δ > 0.

Then there exist λ > 0 and r > 0 such that 2λ/(1 + λ2) < δ and the set
{z : |B(z)| < r} is the union of pairwise disjoint domains Vn with zn ∈ Vn
and

Vn ⊂ {z : ρ(z, zn) < λ}.
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We remark that if {z : ρ(z, zk) ≤ λ} ∩ {z : ρ(z, zm) ≤ λ} �= ∅, then for
some z ∈ D we have [13, p. 4]

ρ(zm, zk) ≤ ρ(zm, z) + ρ(z, zk)

1 + ρ(zm, z)ρ(z, zk)
≤ 2λ

1 + λ2
< δ.

But ∏
n �=k

ρ(zn, zk) = (1 − |zk|2)|B′(zk)| ≥ δ,

a contradiction.

Theorem 6.2. A Blaschke product B is not a finite product of interpolating
Blaschke products if and only if there is a Blaschke product D and a sequence
of automorphisms {αn}, where αn(z) = (z + zn)/(1 + znz) and |αn(0)| → 1,
such that D divides B in H∞ +C and D is universal for the ball of H∞ with
respect to {αn}.
Proof. First suppose that there is a Blaschke product D and a sequence
of automorphisms {αn} with |αn(0)| → 1 such that D is universal for the
ball of H∞ with respect to {αn} and B = Du for some u ∈ H∞ + C. Since
D is universal, there exists a subsequence of αn (also denoted αn) such that
D ◦ αn → 0 locally uniformly on compact subsets of D. Now |αn(0)| → 1,
so (passing to a subsequence, if necessary) there is a unimodular constant
λ such that αn → λ uniformly on compact subsets of D. Since the Poisson
kernel is asymptotically multiplicative on H∞ + C, we see that B = Du
implies that B ◦ αn → 0 uniformly on compacta. By Lemma 2.1, we know
that B is not a finite product of interpolating Blaschke products, completing
the proof in this direction.

Now let {dn} denote a sequence of finite Blaschke products that is dense
in H∞ in the local uniform topology.

Choose a thin sequence {zn} = {zj,k} converging to a point of ∂D so
that B ◦ ((z + zj,k)/(z + zj,kz)) tends to zero uniformly on compact sets as
max(j, k) → ∞. Let {τj,k} be the sequences we obtain from Theorem 6.1
and the comments following it. We use the basic construction to choose
(successively) sequences D(j, k), (rj,k), and (1 − δ(j,k),(l,m)) so that

1. |B(z)| < 1/(j + k) on D(j, k) for all j, k.

2.
∏

j,k rj,k > 0;

3. rj,k > τj,k;

4.
∏

j,k rj,k → 1 as k → ∞, for fixed j;

5. The Blaschke product d with zeroes {wj,k} has a subsequence such
that d ◦ αj,k → λjdj , where |λj| = 1 and k → ∞;

6. lim|z|→1 |B(z)|(1 − |d(z)|) = 0.
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Using Theorem 6.1 and noting that mj,k → 1, we may choose w′
j,k → λj

as k → ∞ and |w′
j,k| ≤ mj,k. Let b1 denote the Blaschke product we obtain

from Theorem 6.1 with zeroes {ζj,k} satisfying ρ(ζj,k, zj,k) < τj,k < rj,k and
b1(zj,k) = w′

j,k for all j and k.
Now consider the Blaschke product D1 = b1d. Let αn denote the au-

tomorphism given by αn(z) = (z + zn)/(1 + znz) (where {zn} = {zj,k} is
chosen so that B ◦ αn → 0). Then (b1 ◦ αj,k)(0) = b1(zj,k) → λj as k → ∞
uniformly on compacta. Since |λj| = 1, b1 ◦ αj,k tends to λj uniformly on
compacta. Thus

D1 ◦ αj,k = (b1 ◦ αj,k)(d ◦ αj,k) → λj(λjdj) = dj

as k → ∞. Since dj is dense in the ball of H∞, we see that D1 is a universal
Blaschke product for {αn}.

In addition, we have established that b1 is interpolating, b1(zj,k) = wj,k,

and since the zeroes {ζj,k} of b1 are in D(j, k), we see that |B(ζj,k)| ≤
1/(k + j). By Lemma 2.2, we know that Bb1 ∈ H∞ + C. We claim that

lim
|z|→1

|Bb1(z)|(1 − |d(z)|) = 0.

Choose a sequence {vn} in D with |vn| → 1 and a positive number α such
that sup |d(vn)| ≤ α < 1. We claim that (Bb1)(vn) → 0.

By Schwarz’s lemma, there exist δ1 > 0 and r1 > α such that |d(v)| ≤ r1
if v ∈ D(vn, δ1). Let γn(z) := (z + ζn)/(1 + ζnz). Passing to a subsequence,
we may suppose that there exists λ ∈ ∂D such that vn → λ and the nor-
mal family B ◦ γn converges uniformly on compacta to a bounded analytic
function. Since Bb1 ∈ H∞ + C, there exist h ∈ H∞ and c ∈ C such that

Bb1 = h+ c.

Since c is continuous, we know that {c(vn)} converges to c(λ). Adding and
subtracting a constant, if necessary, we may assume that c(λ) = 0.

Suppose first that b1(vn) → 0. Then, by [22], there exists a subsequence
of ζn (which we denote by ζn again) such that ρ(vn, ζn) → 0. Since b1 is
interpolating, Hoffman’s lemma implies that there exist δ and r such that
the set {z : |b1(z)| < r} is the union of pairwise disjoint domains Vn with
ζn ∈ Vn and

Vn ⊂ {z : ρ(z, ζn) < δ}.
Now B = (Bb1)b1 and the Poisson kernel is asymptotically multiplicative.
Since sup |d(vn)| ≤ α < 1 and ρ(ζn, vn) → 0, there exists β < 1 such that

sup
|z|=δ

|d ◦ γn(z)| ≤ β
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for n sufficiently large. By property (iv), B◦γn tends to zero on {z : |z| = δ}.
Since b1 ◦ γn is bounded away from zero, we see that {(Bb1) ◦ αn} tends to
zero on {z : |z| = δ}. In other words,

(h+ c) ◦ γn = (Bb1) ◦ γn → 0

pointwise on {z : |z| = δ}. Now c is continuous and we assume that
c(vn) → 0, so c(wn) → 0 whenever wn → λ. Thus h◦γn → 0 on {z : |z| = δ}
and, by the maximum modulus theorem, this also holds on {z : |z| ≤ δ}.
Thus Bb1 ◦ γn → 0 uniformly on {z : |z| ≤ δ}. But ρ(ζn, vn) → 0, so for n
sufficiently large ρ(ζn, vn) < δ. Thus Bb1(vn) → 0, as desired.

If {b1(vn)} does not converge to zero, then we can find a subsequence of
vn (which we denote again by vn) on which b1 is bounded away from zero.
But

B(vn) = (Bb1b1)(vn).

Since Bb1 ∈ H∞ + C and |vn| → 1, we use the fact that the Poisson ker-
nel is multiplicative to conclude that (Bb1)(vn)b1(vn) → 0. Consequently
(Bb1)(vn) → 0. Since every subsequence of {Bb1(vn)} has a subsequence
that converges to 0, we may conclude that Bb1(vn) → 0. Now we may apply
Lemma 2.3 to conclude that Bb1d ∈ H∞ + C, completing the proof. �
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