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An example related to Whitney
extension with almost minimal Cm norm

Charles Fefferman and Bo’az Klartag

Abstract

We present a counter-example to a certain conjecture that is re-
lated to Whitney’s extension problems.

1. Introduction

Suppose that F : R
n → R is a Cm-function, that is, a function all of whose

derivatives up to order m exist and are continuous. The Cm norm of F is
frequently defined as

(1.1) ‖F‖Cm = sup
x∈Rn

max
0≤|α|≤m

|∂αF(x)|.

When the function F is rotated, its Cm norm might slightly change. Nev-
ertheless, for any isometry U : R

n → R
n we always have that ‖F ◦ U‖Cm ≤

C‖F‖Cm , where C > 0 is a constant depending solely on m and n. Thus,
the Cm norm, as defined above, is rotationally-invariant up to a constant.
This is an example for a common characteristic of the use of the Cm norm:
In many cases, one is interested not in the exact quantity ‖F‖Cm , but in its
“order of magnitude”.

A result regarding the nature of the Cm norm, in the “up to order of
magnitude” scale, was recently obtained by the first named author [11]. It
will be formulated next. See also Brudnyi-Shvartsman [7], whose earlier
results and conjectures overlap with those of [11]. We write #(A) for the
cardinality of the set A.
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Theorem 1.1 Suppose m and n are positive integers. Let E ⊂ R
n be a

finite set, f : E → R and M > 0. Assume that for any subset S ⊆ E with
#(S) ≤ k# there exists a Cm-function FS : R

n → R such that

∀x ∈ S, FS(x) = f(x) and ‖FS‖Cm ≤ M.

Then, there exists a Cm-function F : R
n → R such that

∀x ∈ E, F(x) = f(x) and ‖F‖Cm ≤ CM.

Here, C, k# > 0 are constants depending only on m and n.

Theorem 1.1 pertains to Whitney’s problem, going back to Whitney [27,
28, 29], with contributions by Glaeser [22], Brudnyi-Shvartsman [5],...,[9],
[23, 24, 25], Zobin [30, 31], Bierstone-Milman-Paw�lucki [1, 2], Fefferman
[10],...,[19], A. and Y. Brudnyi [3] and Fefferman-Klartag [20, 21].

Motivated by the practical problem of multi-variate interpolation, an
attempt to study the Cm norm on a more accurate level was initiated by the
first named author in [18, 19]1. Among the positive results obtained in these
works, is an analog of the classical Whitney theorem for jets (see [27] or [26,
Section VI]), with an accurate control of the Cm norm. The investigations
in [18, 19] take into account various possible definitions of Cm norms, in
addition to the definition (1.1). For instance, the results in [18, 19] are also
applicable for the Cm norm

(1.2) ‖F‖Cm = sup
x∈Rn

max
k=0,...,m

( n∑
i1,...,ik=1

∣∣∣∣ ∂kF(x)

∂xi1 ...∂xik

∣∣∣∣
2)1/2

.

The latter definition of a Cm norm is exactly rotationally-invariant, and
hence, perhaps, is slightly more natural than the definition (1.1). Of course,
the definitions (1.1) and (1.2) are equivalent up to a constant depending
only on m and n. The finer analysis in [18, 19] has led to the formulation
of the following optimistic conjecture.

Conjecture 1.2 Fix m, n and a plausible definition of the Cm norm (say,
(1.1) or (1.2) above). Let E ⊂ R

n be a finite set, f : E → R and M, ε > 0.
Assume that for any subset S ⊆ E with #(S) ≤ k#(ε) there exists a

Cm-function FS : R
n → R such that

∀x ∈ S, FS(x) = f(x) and ‖FS‖Cm ≤ M.

Then, there exists a Cm-function F : R
n → R such that

∀x ∈ E, F(x) = f(x) and ‖F‖Cm ≤ (1 + ε)M.

Here, k#(ε) > 0 is a constant depending only on m, n, ε and the choice of
the Cm norm.

1However, we make no claims of practical significance for algorithms from [18, 19].
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Conjecture 1.2 admits a positive answer in the case m = 1, for a large
variety of C1 norms, as is explained in [18]. However, in this note we
demonstrate that Conjecture 1.2 is false already in the first non-trivial case
m = n = 2, for most reasonable choices of a C2 norm. Thus, one is forced
to look for more creative ways in order to estimate the Cm norm of the best
extension function, to an arbitrary precision.

The counter-example we present for Conjecture 1.2 takes a very simple
geometric form. A schematic drawing of our set E is shown in Figure 1.

Figure 1

For the clarity of the exposition, in most of this article we will analyze our
counter-example for a specific choice of the C2 norm, that corresponds to
the definition (1.2). In Section 6 we will comment on the adaptation of
the argument to other C2 norms. Thus, from now on and until Section 6,
by ‖F‖C2 we shall mean the following: For an open set U ⊆ R

2 and a function
F : U → R,

(1.3) ‖F‖C2(U) = sup
x∈U

max
k=0,...,2

(
2∑

i1,...,ik=1

∣∣∣∣ ∂kF(x)

∂xi1 ...∂xik

∣∣∣∣
2
)1/2

.

We abbreviate ‖F‖C2 = ‖F‖C2(R2). Thus, ‖F‖C2 is invariant under transla-
tions, rotations and reflections in R

2.

Proposition 1.3 For any positive integer k#, there exists a finite set E ⊂ R
2

and a function f : E → R with the following properties

1. For any C2-function F : R
2 → R with F|E = f we have that

‖F‖C2 > 1 + c0.

2. For any subset S ⊆ E with #(S) ≤ k#, there exists a C2-function
F : R

2 → R with
F|S = f and ‖F‖C2 ≤ 1.

Here, c0 > 0 is a universal constant.

The proof of Proposition 1.3 is discussed in Sections 2–5. Throughout
the proof, the letters C, C′, c, c̃, etc. stand for various positive universal con-
stants, whose value may change from one line to the next. We write Meas

for Lebesgue measure on the real line.
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2. Preliminaries

The construction of our counter-example involves a certain universal con-
stant from the classical Whitney extension theorem. The following lemma is
a reformulation of a very particular case of Whitney’s theorem. For x ∈ R

n

and for a C2-function F defined in a neighborhood of x, we write Jx(F) for
the 2-jet of F at x. That is, Jx(F) : R

2 → R is the Taylor polynomial of order
two of F about x.

Lemma 2.1 Let U ⊆ R
2 be an open set, and let K ⊂ U be a bounded

convex set whose closure K is contained in U. Let M > 0 and assume that
f : U → R is a C2-function with

‖f‖C2(U) ≤ M.

Then, there exists a C2-function F : R
2 → R with F(x) = f(x) for all x ∈ K,

such that
‖F‖C2 ≤ CWM.

Here, CW > 1 is a universal constant.

Proof. The functions ∂xxf, ∂xyf, ∂yyf are continuous on the compact set K.
Let ω(δ) (δ > 0) be the common modulus of continuity of those three
functions on K. Fix x, y ∈ K. By applying Taylor’s theorem for the interval
[x, y] ⊆ K we see that,

1. |∂α(Jx(f) − Jy(f))(x)| ≤ CM|x − y|2−|α| for 0 ≤ |α| ≤ 2,

2. |∂αf(x) − ∂αf(y)| ≤ ω(|x − y|) when |α| = 2 and |x − y| ≤ 1.

3. |∂αf(x)| ≤ CM for 0 ≤ |α| ≤ 2.

These are precisely the assumptions of the classical Whitney theorem
(see [27] or [26, Section VI]). By the conclusion of that theorem, there exists
a C2-function F : R

2 → R such that

1. F(x) = f(x) for all x ∈ K,

2. ‖F‖C2 ≤ C′M.

Whitney’s theorem also yields information regarding the modulus of conti-
nuity of the second derivatives of F; we do not use this information. The
function F is our desired function. The proof is complete. �

Whenever we write CW in this note, we always refer to the universal con-
stant from Lemma 2.1. We will make use of the following three elementary
lemmas.
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Lemma 2.2 Let t0, t1, x0, x
′
0, x1, x

′
1 be real numbers such that t0 < t1, and

let M > 0. Then the following are equivalent:

(a)

∣∣∣∣(x1 − x0) − δ(x′
0 + x′

1)/2

δ2

∣∣∣∣ < M

4

[
1 −

(
x′

1 − x′
0

Mδ

)2
]

, where δ = t1 − t0.

(b) There exists a C2-function x : R → R with supt∈R
|x′′(t)| < M such that

(2.1) x(t0) = x0, x
′(t0) = x′

0, x
′′(t0) = 0 x(t1) = x1, x

′(t1) = x′
1, x

′′(t1) = 0.

Proof. By translating and rescaling in the t-axis, we may assume that
t0 = 0, t1 = 1 and hence δ = 1. By rescaling in the x-axis, we may also
assume that M = 1. By adding an appropriate affine function, we may
assume that x0 = x′

0 = 0. Let x(t) be a C2-function such that (2.1) holds.
Then,

(2.2)

∫1

0

x′′(t)dt = x′
1,

∫1

0

x′′(t)tdt = x′
1 − x1

as may be verified by integration by parts. Fix λ ∈ (−1, 1). We would like
to understand the convex set

Iλ =

{∫1

0

u(t)tdt;

∫1

0

u(t)dt = λ, u(0) = u(1) = 0,

sup |u| < 1, u is continuous

}
.

Note that Iλ is the set of all possible values of x′(1) − x(1) where x(t) is a
C2-function on [0, 1], with x′(1) = λ, x(0) = x′(0) = x′′(0) = x′′(1) = 0 and
sup |x′′| < 1.

Suppose that u : [0, 1] → R is a continuous function with u(0)= u(1)= 0

that satisfies sup |u| < 1 and
∫1

0
u(t)dt = λ. Then,∫1

0

u(t)tdt =
λ(1 − λ)

2
+

∫1

0

u(t)

(
t −

1 − λ

2

)
dt

<
λ(1 − λ)

2
−

∫ (1−λ)/2

0

(
t −

1 − λ

2

)
dt +

∫1

(1−λ)/2

(
t −

1 − λ

2

)
dt

=
λ

2
+

1 − λ2

4
.(2.3)

Additionally, it is easy to find an admissible function u for which equal-
ity almost holds in (2.3). This elementary line of reasoning leads to the
conclusion that

Iλ =

{
t ∈ R;

λ

2
−

1 − λ2

4
< t <

λ

2
+

1 − λ2

4

}
.
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Equivalently, there exists a C2-function x(t) with sup |x′′| < 1 that satis-
fies (2.1) if and only if

|x1 − x′
1/2| <

1

4

[
1 − (x′

1)
2
]
.

�
For a function f : [a, b] → R we denote by f′(a), f′′(b) etc. the cor-

responding one-sided derivatives. Thus, the notion of a C2-function on a
closed interval in R is well-defined. The proof of the following elementary
lemma is very similar to that of Lemma 2.2 and it is omitted.

Lemma 2.3 Let x < y be real numbers. Suppose F : [x, y] → R is a C1-
function, that is also piecewise C2-smooth. Let M > 0, and assume that
|F′′(t)| ≤ M whenever the second derivative exists. Then,∣∣∣∣(F(y) − F(x)) − δ(F′(x) + F′(y))/2

δ2

∣∣∣∣ ≤ M

4

[
1 −

(
F′(y) − F′(x)

Mδ

)2
]

,

where δ = y − x.

Our next lemma is yet another variant of Lemma 2.2, in which we force
the first derivative to vanish on a certain set.

Lemma 2.4 Let t0 < t1, x0 < x1, ε > 0 and let t0 = p1 < p2 < ... < pk = t1

be a sequence of points. Assume that εk < 1/10. Then, there exists a C2-
function x : [t0, t1] → R with the following properties:

(a) x(t0) = x0, x(t1) = x1. Moreover, x0 ≤ x(t) ≤ x1 for all t ∈ [t0, t1].

(b) For any i = 1, ..., k,

x′(t) = 0 for t ∈ [pi − ε(t1 − t0), pi + ε(t1 − t0)] ∩ [t0, t1].

(c) |x′(t)| ≤ (1 + 10kε)(x1 − x0)/(t1 − t0) for all t ∈ [t0, t1].

(d) |x′′(t)| ≤ 5ε−1(x1 − x0)/(t1 − t0)
2 for all t ∈ [t0, t1].

Proof. By translating and rescaling in the t-axis, we may assume that
t0 = 0, t1 = 1. By translating and rescaling in the x-axis, we may also
assume that x0 = 0 and x1 = 1. Consider the closed set

A =

k⋃
i=1

[pi − 2ε, pi + 2ε] ⊆ [−2ε, 1 + 2ε].
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Then A is a finite union of intervals containing [−2ε, 0] ∪ [1, 1 + 2ε], and

κ := Meas(A ∩ [0, 1]) ≤ 4kε ≤ 1/2.

Denote the interval components of A by I1, ..., I�. Each of these intervals
has length at least 4ε. We will construct a C1-function u(t) = x′(t) on
[−2ε, 1 + 2ε] as follows: First, for any t ∈ [−2ε, 1 + 2ε]

(2.4) u(t) =
1

1 − κ + (� − 1)ε
when t 
∈ A.

It remains to construct u on the intervals I1, ..., I�. In order for the function
to be C1, we will force its derivative to vanish on the endpoints of the
intervals I1, ..., I�. Fix an index 1 ≤ i ≤ �, and write Ii = [ai, bi]. We then
set

(2.5) u(t) = 0 for ai + ε ≤ t ≤ bi − ε.

On the interval [ai, ai + ε] we define u to be

u(t) =
1

1 − κ + (� − 1)ε

[
cos

(
π

t − ai

ε

)
+ 1

]
/2 (for ai ≤ t ≤ ai + ε).

Note that u(ai) = 1
1−κ+(�−1)ε

, u(ai+ ε) = 0 and u′(ai) = u′(ai+ ε) = 0. On

the interval [bi − ε, bi] we analogously define u as

u(t) =
1

1 − κ + (� − 1)ε

[
cos

(
π

bi − t

ε

)
+ 1

]
/2 (for bi − ε ≤ t ≤ bi).

Then u(bi) = 1
1−κ+(�−1)ε

, u(bi − ε) = 0 and u′(bi) = u′(bi − ε) = 0. Conse-

quently, the function u is C1-smooth on [ai, bi] with

(2.6) 0 ≤ u(t) ≤ 1

1 − κ + (� − 1)ε
, |u′(t)| ≤ π/(2ε)

1 − κ + (� − 1)ε

for ai ≤ t ≤ bi. In addition,

(2.7) ε−1

∫ai+ε

ai

u(t)dt = ε−1

∫bi

bi−ε

u(t)dt =
1

2(1 − κ + (� − 1)ε)
.

This completes the definition of the function u : [−2ε, 1 + 2ε] → R. The
function u is continuous, since it attains the right values at the endpoints
of I1, ..., I�. Moreover, u is C1-smooth, since it is C1-smooth in A, constant
on the complement of A, and its derivative vanishes at the endpoints of the
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interval components of A. By the construction, we clearly have that for
i = 1, ..., k,

(2.8) u(t) = 0 when t ∈ [pi − ε, pi + ε] ∩ [0, 1].

Note that (1 − κ + (� − 1)ε)−1 ≤ (1 − κ)−1 ≤ 1 + 10kε ≤ 2. Thus (2.6)
implies that

(2.9) 0 ≤ u(t) ≤ 1 + 10kε, |u′(t)| ≤ 5

ε
for 0 ≤ t ≤ 1.

Moreover, by (2.4), (2.5) and (2.7),

∫1+2ε

−2ε

u(t)dt =
Meas([−2ε, 1 + 2ε] \ A)

1 − κ + (� − 1)ε
+

�∑
i=1

∫bi

ai

u(t)dt

=
1 − κ

1 − κ + (� − 1)ε
+ � · 2 · ε

2(1 − κ + (� − 1)ε)

= 1 +
ε

1 − κ + (� − 1)ε
.(2.10)

However, one of the interval components of A begins with −2ε, and ad-
ditionally, one of the interval components of A ends with 1 + 2ε, since
p0 = 0, pk = 1. Consequently, by using (2.10), (2.5) and (2.7),

(2.11)

∫1

0

u(t)dt = 1+
ε

1 − κ + (� − 1)ε
−

[∫0

−2ε

u(t)dt +

∫1+2ε

1

u(t)dt

]
= 1.

Denote x(t) =
∫t

0
u(s)ds. Since u is C1-smooth, then x is C2-smooth. More-

over, x(0) = 0 and x(1) = 1, according to (2.11). The fact that u ≥ 0

(see (2.9)) implies that 0 ≤ x(t) ≤ 1 for all t ∈ [0, 1]. Hence x satisfies (a).
From (2.8) we see that (b) holds, while (c), (d) hold in view of (2.9). The
proof of the lemma is complete. �

3. The Construction

Suppose we are given a positive integer k# > 0. In this section, we construct
a certain finite set E ⊂ R

2 and a function f : E → R. The construction
depends on k#. In later sections, we will verify that E and f satisfy the
assertions of Proposition 1.3.

We begin by defining the small scales ε, δ > 0, with δ being much smaller
than ε. We first define ε = (2k#)−10, so that 1/ε is an even integer. Then
we select δ = ε20. Note that 1/δ, ε/δ and ε2/δ are all integers.
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Define

�1 = {(δi, 0); i = 0, ..., δ−1ε} ⊂ R
2, �2 = {(0, δ), (ε, δ)} ⊂ R

2.

Our set E will be simply E = �1 ∪ �2; see Figure 2.

}{δ 
δ 

ε

Figure 2

Define a function zigzag : R → R as follows:

zigzag(x) =

{
− {x}

4
+ {x}2

2
{x} ≤ 1

2

−1
4

+ 3
4
{x} − {x}2

2
{x} > 1

2

Here, {x} = x − �x
 is the fractional part of x. The function zigzag is a
1-periodic C1-function, and whenever 2x 
∈ Z,

|zigzag(x)| ≤ 1

32
, |zigzag′(x)| ≤ 1

4
, and |zigzag′′(x)| = 1.

The function zigzag′(x) goes back and forth between −1
4

and 1
4
, with con-

stant speed one. Hence the term “zigzag”.

Next, we define two functions on R:

f1(x) = C′
W

(
δ

ε

)2

zigzag
(εx

δ

)
, f2(x) = x/(2CW)

where C′
W = 1 − 10−6/C4

W is a universal constant that is just slightly
smaller than one. Throughout this text, we write C′

W to denote the constant
1 − 10−6/C4

W. Finally, we set f : E → R to be

f(x, y) = f1(x) + yf2(x) for (x, y) ∈ E.

This completes the description of the set E ⊂ R
2 and the function f : E → R.
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4. Any extension has a large C2 norm

Suppose we are given an integer k#. Throughout this section, let E and
f, f1, f2, zigzag be the finite set and the functions constructed in the previous
section for k#. We will prove the following lemma.

Lemma 4.1 Suppose that k# > C, and assume that F : R
2 → R is a C2-

smooth function that satisfies F|E = f. Then,

‖F‖C2 > 1 + 10−4/C3
W,

where CW > 0 is the universal constant from Lemma 2.1, and where C > 0

is a universal constant.

The proof of Lemma 4.1 relies on several lemmas.

Lemma 4.2 Suppose that k# > C, and assume that F : R
2 → R is a C2-

smooth function with F|E = f such that

‖F‖C2 ≤ 1 + 10−4/C3
W.

Then there exists a subset A ⊆ [0, ε], whose Lebesgue measure is at least
(1 − 1

10CW
) · ε, such that

|∂xxF(t, 0)| > 1 −
1

10C2
W

for all t ∈ A.

Here, C > 0 is a universal constant.

Proof. By choosing a sufficiently large constant C > 0, we may assume that
k# > 100CW and hence ε < 10−5/C10

W and δ/ε2 < 1/(50CW). The disjoint
union

ε2/δ−1⋃
i=0

[
i
δ

ε
, (i + 1)

δ

ε

)

covers the entire interval [0, ε). Thus, to establish the lemma, it is sufficient

to show that for any 0 ≤ i ≤ ε2

δ
− 1,

(4.1)

Meas

{
t ∈

[
i
δ

ε
, (i + 1)

δ

ε

)
; |∂xxF(t, 0)| > 1 −

1

10C2
W

}
≥
(

1 −
1

10CW

)
· δ

ε
.

We will begin by showing that for any i,
(4.2)

Meas

{
t ∈

[
i
δ

ε
,

(
i +

1

2

)
δ

ε

)
; ∂xxF(t, 0) ≤ 1 −

1

10C2
W

}
<

1

10CW
· δ

2ε
.
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Fix an integer 0 ≤ i ≤ ε2

δ
− 1. Then there exist two distinct points

(p1, 0), (p2, 0) ∈ �1 such that

i
δ

ε
< p1 < p2 ≤ i

δ

ε
+ 2δ.

Since F|E = f, then

F(p2, 0) − F(p1, 0)

p2 − p1

=
f(p2, 0) − f(p1, 0)

p2 − p1

=
f1(p2) − f1(p1)

p2 − p1

≤ C′
W sup

p1≤t≤p2

(
δ

ε

)
zigzag′

(ε

δ
t
)

≤ C′
W

δ

ε
sup

i≤t≤i+2ε
zigzag′(t) ≤ δ

ε
C′

W ·
(

−
1

4
+ 2ε

)
.

By Lagrange’s theorem, there exists a point (p, 0) with iδ
ε
≤ p ≤ iδ

ε
+ 2δ

such that

∂xF(p, 0) ≤ δ

ε
· C′

W

(
−

1

4
+ 2ε

)
.

Similarly, there exists a point (q, 0) with (i + 1/2)δ
ε

− 2δ ≤ q ≤ (i + 1/2)δ
ε

such that

∂xF(q, 0) ≥ δ

ε
· C′

W

(
1

4
− 2ε

)
.

Consequently,

(4.3)
C′

W

q − p
· δ
ε

(
1

2
− 4ε

)
≤ ∂xF(q, 0) − ∂xF(p, 0)

q − p
=

1

q − p

∫q

p

∂xxF(t, 0)dt.

However, q − p ≤ δ
2ε

. Hence,

C′
W

q − p
· δ

ε

(
1

2
− 4ε

)
≥ C′

W(1 − 8ε) = (1 − 10−6/C4
W) · (1 − 8ε)(4.4)

> 1 − 10−3/C3
W

since ε < 10−5C−10
W . From (4.3) and (4.4) we obtain

(4.5) 1 − 10−3/C3
W <

1

q − p

∫q

p

∂xxF(t, 0)dt.

Recall that ∂xxF(z) ≤ ‖F‖C2 ≤ 1 + 10−4/C3
W for any z ∈ R

2, according to
our definition (1.3) of the C2 norm. We claim that

(4.6) Meas

{
t ∈ [p, q] ; ∂xxF(t, 0) ≤ 1 −

1

10C2
W

}
<

1

30CW
· (q − p).
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Indeed, if (4.6) does not hold, then

1

q − p

∫q

p

∂xxF(t, 0)dt ≤ 1

30CW

(
1 −

1

10C2
W

)
+

(
1 −

1

30CW

)
·
(

1 +
10−4

C3
W

)
< 1 − 10−3/C3

W,

in contradiction to (4.5). This completes the proof of (4.6). The interval
[p, q] is a very good approximation to the interval [iδ

ε
, (i+1/2)δ

ε
]; The mea-

sure of their symmetric difference does not exceed 4δ ≤ δ
60CW ε

. Therefore,

(4.6) implies (4.2).

This completes the proof of (4.2). The proof that for any 0 ≤ i ≤ ε2/δ−1,
(4.7)

Meas

{
t∈
[(

i +
1

2

)
δ

ε
, (i + 1)

δ

ε

)
; ∂xxF(t, 0) ≥ −1 +

1

10C2
W

}
<

1

10CW
· δ

2ε
,

is completely analogous, and it is omitted. From (4.2) and (4.7) we de-
duce (4.1). The lemma follows. �

Lemma 4.3 Suppose that k# > C, and assume that F : R
2 → R is a C2-

smooth function with F|E = f such that

‖F‖C2 ≤ 1 + 10−4/C3
W.

Then there exists a subset A ⊆ [0, ε], whose Lebesgue measure is at least
ε

9CW
, such that

∂xyF(t, 0) >
1

3CW

for all t ∈ A.

Here, C > 0 is a universal constant.

Proof. Fix i = 0, 1. Then both points (iε, 0) and (iε, δ) belong to the
finite set E. Since F|E = f, then F(iε, δ) − F(iε, 0) = δf2(iε). By Lagrange’s
theorem, ∂yF(iε, θδ) = f2(iε) for some 0 ≤ θ ≤ 1. Since ‖F‖C2 ≤ 1 +

10−4/C2
W ≤ 2, then |∂yyF(z)| ≤ 2 for all z ∈ R

2, by (1.3). Hence,

(4.8) |∂yF(iε, 0) − f2(iε)| ≤ 2δ for i = 0, 1.

However,

(4.9) f2(0) = 0 and f2(ε) = ε/(2CW).

We assume that k# exceeds a certain universal constant, so that δ < ε2/(8CW)
and ε < 1/10. Then (4.8) and (4.9) imply

(4.10)
1 − ε

2CW
≤ ∂yF(ε, 0) − ∂yF(0, 0)

ε
=

1

ε

∫ε

0

∂xyF(t, 0)dt.
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By our definition (1.3) of the C2 norm, 2(∂xyF)2 ≤ ‖F‖2
C2 . Since ‖F‖2

C2 ≤
1+10−3 ≤ 2, we have that |∂xyF(z)| ≤ 1 for all z ∈ R

2. To prove the lemma,
we need to show that

(4.11) Meas

{
t ∈ [0, ε]; ∂xyF(t, 0) >

1

3CW

}
≥ ε

9CW

.

Assume by contradiction that ∂xyF(z) > 1
3CW

for at most 1
9CW

-portion of the

interval [0, ε] × {0}. Then,

1

ε

∫ε

0

∂xyF(t, 0)dt ≤
(

1 −
1

9CW

)
· 1

3CW
+

1

9CW
· 1 ≤ 4

9CW
<

1 − ε

2CW

as ε < 1/10, in contradiction to (4.10). Thus (4.11) is proved. The lemma
follows. �

Proof of Lemma 4.1. Assume, by contradiction, that F : R
2 → R is a

C2-smooth function with F|E = f such that

(4.12) ‖F‖C2 ≤ 1 + 10−4/C3
W.

We combine Lemma 4.2 and Lemma 4.3 to conclude that there is a point
t ∈ [0, ε] such that

|∂xyF(t, 0)| ≥ 1

3CW
, and |∂xxF(t, 0)| ≥ 1 −

1

10C2
W

(actually, at least 1
90CW

-portion of [0, ε] have this property). Consequently,

from our definition (1.3) of the C2 norm,

‖F‖2
C2 ≥ |∂xxF(t, 0)|2 + 2|∂xyF(t, 0)|2 ≥

(
1 −

1

10C2
W

)2

+
2

9C2
W

≥ 1 +
1

45C2
W

,

in contradiction to our assumption (4.12) that ‖F‖C2 ≤ 1 + 10−4/C3
W. �

5. Functions that agree with f on k# points

Suppose we are given an integer k#. Throughout this section, let E and
f, f1, f2 be the finite set and the functions constructed in Section 3 for k#.
In this section, we will construct a C2-function on R

2, with a small C2 norm,
that agrees with f on given k# points of E.

Thus, suppose we are given a subset S ⊆ E whose cardinality is bounded
by k#. Let T = {x; (x, y) ∈ S} ∪ {0, ε}.
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Lemma 5.1 Suppose that k# > C. Then there exists a C2-smooth function
F : R

2 → R with the following properties:

1. F(x, 0) = f(x, 0) for all x ∈ T ,

2. F(0, δ) = f(0, δ) and F(ε, δ) = f(ε, δ).

3. ‖F‖C2 ≤ 1.

Here, C > 0 is a universal constant.

Note that, in particular, a function F as in Lemma 5.1 agrees with f on the
set S.

The construction of the desired function F requires a few steps, and it is
described in the following series of lemmas. Denote k = #(T) ≤ k# +2. Let
0 = p1 < p2 < ... < pk = ε be an enumeration of the points of T . Recall
the definition of the set �1 and the function f1 from Section 3. Recall that
C′

W = 1 − 10−6/C4
W.

Lemma 5.2 Suppose that k# > C. Then there exists a C2-function F1 :
R → R with the following properties:

(a) F1(pi) = f1(pi) for i = 1, ..., k.

(b) |F1(t)| < 5δ/ε2, |F′
1(t)| < 5δ/ε2 and |F′′

1(t)| ≤ C′
W + ε for all t ∈ R.

(c) |F′′
1(t)| < ε whenever t ∈ [pi−1, pi] with pi − pi−1 ≥ 2δ/ε2 for i =

2, ..., k.

(d) |F′′
1(t)| < ε if t < 0 or t > ε.

Proof. The function f1 is C1-smooth and piecewise C2-smooth. For any
t ∈ [0, ε], except for finitely many points, we have that

(5.1) |f1(t)| ≤ 1

32
·
(

δ

ε

)2

, |f′1(t)| ≤
δ

4ε
and |f′′1(t)| ≤ C′

W.

(we used the fact that C′
W ≤ 1.) Fix 2 ≤ i ≤ k. We begin by constructing

a C2-function Fi
1 : [pi−1, pi] → R such that

(5.2) Fi
1(pj) = f1(pj), (Fi

1)
′(pj) = f′1(pj), (Fi

1)
′′(pj) = 0 for j = i − 1, i.

Later on, we will define F1 so that it will agree with Fi
1 on the interval

[pi−1, pi]. The definition of Fi
1 is divided into two cases.
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Case 1: Suppose pi−pi−1 ≥ 2δ/ε2. Let M > 0 be such that pi−pi−1 =
2δ/(εM). Then M ≤ ε, and by (5.1),∣∣∣∣(f1(pi) − f1(pi−1)) − (pi − pi−1) · [f′1(pi−1) + f′1(pi)]/2

(pi − pi−1)2

∣∣∣∣
≤ (2/32) · (δ/ε)2

(2δ/(εM))2
+

δ/(4ε)

2δ/(εM)
<

M

4

(
1 −

1

4

)

<
M

4

[
1 −

(
f′1(pi) − f′1(pi−1)

M(pi − pi−1)

)2
]

.

By Lemma 2.2 we can construct a C2-function Fi
1 : [pi−1, pi] → R such that

|(Fi
1)

′′(t)| < M ≤ ε for t ∈ [pi−1, pi], and such that (5.2) holds. Note that,
thanks to (5.1) and (5.2), for t ∈ [pi−1, pi],

|(Fi
1)

′(t)| ≤ |(Fi
1)

′(pi−1)| + (pi − pi−1) · sup
t∈[pi−1,pi]

|(Fi
1)

′′(t)|

≤ δ

4ε
+ M(pi − pi−1) <

3δ

ε
.

Additionally, for any t ∈ [pi−1, pi],

|Fi
1(t)| ≤ |Fi

1(0)| + (pi − pi−1) · 3δ

ε
<

5δ

ε
.

To summarize, when pi − pi−1 ≥ 2δ/ε2, the C2-function Fi
1 : [pi−1, pi] → R

satisfies (5.2) and also

(5.3) |Fi
1(t)| < 5δ/ε, |(Fi

1)
′(t)| < 5δ/ε and |(Fi

1)
′′(t)| < ε for all t ∈ [pi−1, pi].

Case 2: Suppose pi − pi−1 < 2δ/ε2. The function f1 is C1-smooth and
piecewise C2-smooth on [pi−1, pi]. Moreover, its second derivative does not
exceed C′

W in absolute value, whenever it exists, according to (5.1). By
applying Lemma 2.3 and Lemma 2.2 we find that there exists a C2-function
Fi

1 : [pi−1, pi] → R such that

|(Fi
1)

′′(t)| < C′
W + ε for t ∈ [pi−1, pi]

and such that (5.2) holds.
Since |(Fi

1)
′(pi−1)| ≤ δ/(4ε) by (5.1), then for any t ∈ [pi−1, pi],

|(Fi
1)

′(t)| ≤ |(Fi
1)

′(pi−1)|+(C′
W + ε)(pi −pi−1) ≤ δ/(4ε)+

2δ

ε2
(C′

W + ε) ≤ 4δ

ε2
.

Similarly, we see that |Fi
1(t)| ≤ 10δ2/ε4 ≤ 5δ for t ∈ [pi−1, pi].
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To summarize, when pi−pi−1< 2δ/ε2, the C2-function Fi
1 : [pi−1, pi] → R

satisfies (5.2) and also

|Fi
1(t)| < 5δ/ε2, |(Fi

1)
′(t)| < 5δ/ε2 and(5.4)

|(Fi
1)

′′(t)| ≤ C′
W + ε for all t ∈ [pi−1, pi].

This completes the construction of the C2-function Fi
1 : [pi−1, pi] → R in

all cases. Note that Fi
1 satisfies (5.2) for all 2 ≤ i ≤ k.

Next, we shall define two functions, in [ε, 1] and in [−1, 0], as follows:
We define G : [ε, 1] → R to be a C2-function such that |G′′(t)| ≤ 5δ/ε for
t ∈ [ε, 1] and

(5.5) G(ε) = f1(ε), G
′(ε) = f′1(ε), G′′(ε) = G(1) = G′(1) = G′′(1) = 0.

The existence of such G is guaranteed by (5.1) and Lemma 2.2. Note that
necessarily |G′| ≤ 10δ/ε and |G| ≤ 20δ/ε on [ε, 1].

Similarly, we define H : [−1, 0] → R to be a C2-function with |H′′| ≤ 5δ/ε

such that

H(0) = f1(0),(5.6)

H′(0) = f′1(0),

H′′(0) = H(−1) = H′(−1) = H′′(−1) = 0.

The existence of such H is again guaranteed by (5.1) and Lemma 2.2, and
again |H′| ≤ 10δ/ε and |H| ≤ 20δ/ε. Finally, we define

F1(t) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

0 t ≤ −1

H(t) −1 < t < 0

Fi
1(t) pi−1 ≤ t ≤ pi

G(t) ε < t < 1

0 t ≥ 1

The function F1 is defined on the entire real line. Since G, H, Fi
1 (i = 2, ..., k)

are C2-smooth on their domain of definition, and since (5.2), (5.5) and (5.6)
hold, then F1 is C2-smooth. Next, we verify the desired properties (a),...,(d)
from the formulation of the lemma. Property (a) holds in view of (5.2).
Property (c) follows from (5.3), while property (d) is evident from the de-
finitions of G and H. Property (b) holds because of (5.3), (5.4) and the
corresponding properties of G and H. The proof is complete. �

Recall from the beginning of this section the list of points 0 = p1 < ... <

pk = ε. Recall also the function f2(t) = t/(2CW).
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Lemma 5.3 Suppose that k# > C. Then there exists a C2-function F2 :
[−ε2, ε + ε2] → R such that

(i) F2(εi) = f2(εi) for i = 0, 1.

(ii) For all t ∈ [−ε2, ε + ε2],

|F2(t)| < 5ε, |F′
2(t)| ≤

1 + 10ε

2CW
and |F′′

2(t)| < 5/ε4.

(iii) Suppose t ∈ [pi−1, pi] with pi − pi−1 < 2δ/ε2. Then F′
2(t) = 0.

Proof. Let

A = {0, ε} ∪ {pi; i = 2, ..., k, pi − pi−1 < 2δ/ε2}.

Then #(A) ≤ k. Let 0 = q1 < q2 < ... < q� = ε be an enumeration of the
points of A, with � ≤ k. We begin by constructing the function F2 on the
interval [0, ε]. To that end, we employ Lemma 2.4 for t0 = 0, t1 = ε, for the
function values x0 = f2(0), x1 = f2(ε), for ε3, and for the points q1, ..., q�.
Note that

�ε3 ≤ kε3 ≤ ε2 < 1/10.

Thus the appeal to Lemma 2.4 is legitimate. By the conclusion of that
lemma, there exists a C2-function F2 : [0, ε] → R that satisfies:

(a) F2(εi) = f2(εi) for i = 0, 1.

Moreover, f2(0) ≤ F2(t) ≤ f2(ε) for t ∈ [0, ε].

(b) For any i = 1, .., �,

F′
2(t) = 0 for t ∈ [qi − ε4, qi + ε4] ∩ [0, ε].

(c) For any t ∈ [0, ε],

|F′
2(t)| ≤ (1 + 10�ε3) · (f2(ε) − f2(0))/ε ≤ 1 + 10ε2

2CW
.

(d) For any t ∈ [0, ε],

|F′′
2(t)| ≤ 5ε−3(f2(ε) − f2(0))/ε2 ≤ 5ε−4.

It remains to construct the function F2 in the intervals [−ε2, 0) and (ε, ε+ε2].
We set F2 to be constant in these two intervals. That is,

F2(t) = 0 for − ε2 ≤ t < 0, and

F2(t) = f2(ε) for ε < t ≤ ε + ε2.



440 C. Fefferman and B. Klartag

This completes the definition of the function F2 : [−ε2, ε+ ε2] → R. The
function F2 is C2-smooth in [0, ε]. Moreover, F′

2 = 0 on [0, ε4] ∪ [ε − ε4, ε].
Since F2 is constant on [−ε2, 0) and (ε, ε + ε2], then F2 is a C2-function on
the entire interval [−ε2, ε + ε2].

The function F2 satisfies properties (i) and (ii) from the conclusion of
the present lemma, because of (a), (c) and (d). Note that F′

2 vanishes on an
ε4-neighborhood of any qi, according to (b). Clearly, ε4 > 2δ/ε2. Therefore,
F′

2(t) = 0 if t ∈ [pi−1, pi] with pi − pi−1 < 2δ/ε2. Hence property (iii) holds
true. The proof is complete. �

Proof of Lemma 5.1. Define U = (−ε2, ε + ε2) × (−ε5, ε5) and V =

(−ε3, ε + ε3) × (−ε6, ε6). Then V ⊂ U ⊂ R
2. We define a C2-function

F̃2 : U → R by setting

(5.7) F̃2(x, y) = yF2(x) for (x, y) ∈ U,

where F2 is the function constructed in Lemma 5.3. From Lemma 5.3 we
know that for any z ∈ U,

|F̃2(z)|, |∂
xF̃2(z)|, |∂

yyF̃2(z)| ≤ ε5,

|∂yF̃2(z)|, |∂
xxF̃2(z)| ≤ 5ε,

|∂xyF̃2(z)| ≤ 1 + 10ε

2CW
.

Consequently, our function F̃2 : U → R satisfies ‖F̃2‖C2(U) ≤ 1√
2CW

+ Cε,

by the definition (1.3) of the C2 norm. We will use Whitney’s theorem to
extend F̃2 to the entire R

2. According to Lemma 2.1, there exists a C2-
function F̄2 : R

2 → R such that

(5.8) ‖F̄2‖C2 ≤ CW‖F̃2‖C2(U) ≤ 1√
2

+ C′ε, and F̄2|V = F̃2|V.

Let I : R → [0, 1] be a C2-smooth cutoff function with the following proper-
ties:

1. I(t) = 1 for |t| ≤ 1
2

√
δ/ε2.

2. I(t) = 0 for |t| >
√

δ/ε2.

3. |I′(t)| < Cε2/
√

δ, |I′′(t)| < Cε4/δ for all t ∈ R.

There clearly exists such a function I. Next we define

F̄1(x, y) = F1(x)I(y) for (x, y) ∈ R
2,

where F1 is the function from Lemma 5.2.



Example related to Whitney extension with almost minimal Cm norm 441

Finally, we set for (x, y) ∈ R
2,

F(x, y) = F̄1(x, y) + F̄2(x, y).

Let us verify that F satisfies the three assertions of the lemma. Recall the
definition of the set T from the beginning of this section. Suppose that
z = (x, 0) ∈ T . Then (x, 0) ∈ V and hence

F(x, 0) = F̄1(x, 0) + F̄2(x, 0) = F1(x)I(0) + F̃2(x, 0) = F1(x) = f1(x) = f(x, 0)

by Lemma 5.2. This proves the first assertion of the lemma.

Next, suppose that z = (x, δ) ∈ �2. Then x = 0 or x = ε. Also, δ < ε6

and 0 ≤ x ≤ ε, hence (x, δ) ∈ V. Now,

F(x, δ) = F̄1(x, δ) + F̄2(x, δ) = F1(x)I(δ) + F̃2(x, δ) = f1(x) + δf2(x) = f(x, δ)

according to Lemma 5.2 and Lemma 5.3, where I(δ) = 1 as δ ≤ 1
2

√
δ/ε2.

This proves the second assertion of the lemma.

It remains to show that
‖F‖C2 ≤ 1.

That is, we need to prove that

|F(z0)|
2+|∂xF(z0)|

2 + |∂yF(z0)|
2 + |∂xxF(z0)|

2(5.9)

+ 2|∂xyF(z0)|
2 + |∂yyF(z0)|

2 ≤ 1

for all z0 = (x0, y0) ∈ R
n. To that end, we will use the estimates from

Lemma 5.2 and from Lemma 5.3. Fix a point z0 = (x0, y0) ∈ R
2.

Case 1: Suppose that z0 ∈ V. Then for z = (x, y) in a neighborhood
of z0,

F(z) = F̄1(z) + F̄2(z) = I(y)F1(x) + yF2(x).

We know that |F(z0)| < Cε, as |F1(x0)|, |F2(x0)|, |y0| < C′ε while |I(y0)| ≤ 1.
Regarding first derivatives, note that

∂xF(z0) = I(y0)F
′
1(x0) + y0F

′
2(x0), ∂yF(z0) = I′(y0)F1(x0) + F2(x0).

We have |F1(x0)|, |F
′
1(x0)| < 5δ/ε2 while |y0| < ε6, |I(y0)| ≤ 1, |I′(y0)| <

Cε2δ−1/2 and |F2(x0)| < 5ε, |F′
2(x0)| < 1. Therefore, the contribution of the

first derivatives to the sum in (5.9) is bounded by Cε2.

We move to the second derivatives. Firstly,

∂yyF(z0) = I′′(y0)F1(x0).

Since |I′′(y0)| < Cε4/δ with |F1(x0)| < Cδ/ε2, then |∂yyF(z0)| < C′ε2.
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Next,

|∂xyF(z0)| = |I′(y0)F
′
1(x0) + F′

2(x0)| ≤ Cε + |F′
2(x0)|

since |I′(y0)| < Cε2/
√

δ with |F′
1(x0)| < Cδ/ε2.

In addition,

|∂xxF(z0)| = |I(y0)F
′′
1(x0) + y0F

′′
2(x0)| ≤ Cε + |F′′

1(x0)|

because |y0| < ε6, |F′′
2(x0)| < 5ε−4 and |I(y0)| ≤ 1. By combining the esti-

mates obtained so far, we conclude that the sum in (5.9) is bounded by

(Cε + |F′′
1(x0)|)

2
+ 2 (Cε + |F′

2(x0)|)
2
.

Therefore, to establish (5.9) in the case z0 ∈ V, it is sufficient to show that

(5.10) |F′′
1(x0)|

2 + 2|F′
2(x0)|

2 ≤ (C′
W + Cε)

2
.

Indeed, C′
W = 1 − 10−6/C4

W and C′
W + Cε ≤ 1 under the legitimate as-

sumption that k# exceeds a certain universal constant. Thus, we focus on
proving (5.10).

Suppose first that x0 ∈ [pi−1, pi] with pi − pi−1 < 2δ/ε2. In this case

F′
2(x0) = 0, and |F′′

1(x0)| ≤ C′
W + ε,

so (5.10) holds.

It remains to deal with the case where one of the following three possi-
bilities holds true: Either x0 > ε, or else x0 < 0 or else x0 ∈ [pi−1, pi] with
pi − pi−1 ≥ 2δ/ε2. In all three possibilities, we have that |F′′

1(x0)| < ε. Since
always

|F′
2(x0)| <

1

2CW
(1 + 10ε) <

3

5
,

then (5.10) holds also in this case (recall that C′
W > 9/10). Therefore (5.10)

holds in all cases. This completes the proof of (5.9) in the case where z0 ∈ V.

Case 2: Suppose z0 = (x0, y0) is such that |y0| ≥ ε6. Then I(y) vanishes
in a neighborhood of y0. Consequently, F = F̄2 in a neighborhood of z,
and (5.9) follows from the bound

‖F̄2‖C2 ≤ 1√
2

+ Cε

in (5.8).
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Case 3: Suppose z = (x0, y0) is such that x0 < 0 or x0 > ε. In this case,
Lemma 5.2 states that |F′′

1(x0)| ≤ ε. Therefore, |∂xxF̄1(z0)| ≤ ε. The other
derivatives of F̄1 are bounded as well; reasoning as in Case 1 we see that

(5.11) |F̄1(z0)|, |∂
xF̄1(z0)|, |∂

yF̄1(z0)||∂
yyF̄1(z0)||∂

xyF̄1(z0)| < Cε.

Recall that F = F̄1 + F̄2, and that ‖F̄2‖C2 ≤ 1√
2
+ Cε, by (5.8). We therefore

conclude from our bounds on the derivatives of F̄1 that the sum in (5.9) is
controlled by (‖F̄2‖C2 + Cε

)2 ≤ 1

2
+ C′ε.

Therefore (5.9) holds.

Note that any z0 ∈ R
2 falls into Case 1, Case 2 or Case 3. Hence (5.9)

is established in all cases, and the lemma is proven. �

Proof of Proposition 1.3. We may assume that k# is a sufficiently
large integer. Given k#, we have constructed in Section 3 a certain fi-
nite set E ⊂ R

2 and a function f : E → R. In section 4, the first asser-
tion of the present proposition was verified, with the universal constant
c0 = 10−4/C3

W > 0. In the present section, we verified the second assertion;
see Lemma 5.1 and the sentence following it. This completes the proof. �

6. Comments

Proposition 1.3 was stated and proved for a particular choice of the C2 norm.
Namely,

‖f‖2
C2 = sup

z∈R2

{
|f(z)|2 + |∂xf(z)|2 + |∂yf(z)|2 + |∂xxf(z)|2

+ 2|∂xyf(z)|2 + |∂yyf(z)|2
}

.

Nevertheless, the counter-example we presented is quite general and robust,
with respect to modifications of the definition of the C2 norm.

The zero-derivative and the first-derivative parts of the C2 norm did not
have much influence here: Throughout all of the analysis, their contribution
to the C2 norm was bounded by Cε. Thus, any reasonable modification of
the zero-derivative and the first-derivative parts in the definition of the C2

norm should not affect the proof.
The main term in the C2 norm is the second derivatives. Essentially, we

used only the following property of the C2 norm: For z ∈ R
2 close to the
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origin, with respect to some orthogonal coordinates in R
2,∥∥∥∥

(≈ 1 ≈ 0

≈ 0 ≈ 0

)∥∥∥∥ ≈ 1,

∥∥∥∥
(≈ 0 ≈ c

≈ c ≈ 0

)∥∥∥∥ < 1 − c0,(6.1)

but

∥∥∥∥
(≈ 1 ≈ c

≈ c ≈ 0

)∥∥∥∥ > 1 + c0

for some small universal constants c, c0 > 0 where ‖A‖ stands for the con-
tribution of the hessian matrix A = Hess(F)(z) to the C2 norm.

There are plenty of C2 norms that satisfy (6.1) with respect to an ap-
propriate choice of an orthogonal basis in R

2; Thus, our counter-example
should work for many reasonable C2 norms, including, for instance, the de-
finition (1.1).

Our finite set E was defined as the union of �1 and �2. The set �1 consists
of many equidistant points on a line, while �2 has only two points in it.
What happens if we remove these two points from the set E? We conclude
this article by remarking that there is no counter-example for the regular,
one-dimensional set �1, if we confine ourselves to the specific definition (1.3)
of the C2 norm. The details are omitted.
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