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Triple Hilbert transforms along

polynomial surfaces in R*

Anthony Carbery, Stephen Wainger and James Wright

Abstract
We investigate the L? boundedness of the triple Hilbert transform
along the surface given by the graph of a real polynomial P of three
variables. We are interested in understanding the relationship be-
tween the geometric properties of the Newton polyhedron of P and
the analytic property of L? boundedness.

1. Introduction

Let P(s,t,u) be areal-valued polynomial of three real variables. Set I'(s, ¢, u)
= (s,t,u, P(s,t,u)). For z € R* and f a Schwartz function on R* set

dsdtd
—hm/// x—T stu))s 4
e—0 stu

e<|s|<1
e<|t|<1
e<Jul<1

We are interested in conditions on P so that we have the estimate

| H fll2@ey < Ol fllz2@s)-

This problem is motivated and influenced by earlier work of [2] and [4]. Our
analysis of the problem relies upon ideas and techniques developed in these
papers.

Previously, we had studied the corresponding operator in one lower
dimension. That is for P(s,t) a polynomial of two variables, I'(s,t) =
(s,t, P(s,t)), f a Schwartz function on R3 and z in R?, we considered

dsdt
) =i — —_
— //  —T(s,1)) st

e<|s|<1
<lt=1
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(Here and in what follows, the notation (Roman) H will always refer to
operators on R* while (calligraphic) H will refer to operators on R3.)

The boundedness of H (and in fact in any LP, 1 < p < c0) is determined
by the Newton polygon of P. The Newton polygon of P is obtained in
the following way. We plot the points (a,b) for each (a,b) such that the
monomial s occurs in P with a non-zero coefficient. For such an (a,b)
let R,y = {z,y € R : & > a,y > b}. Then the Newton polygon of P is
the smallest convex set containing | J R, . The Newton polygon of P is an
(unbounded) polygon. In [1] we obtained the following result:

Theorem A. Assume P(0,0) = VP(0,0) = 0. Then for anyp, 1 < p < o0,

IH flle@sy < COIfllLr@2)

if and only if for each vertex (a,b) of the Newton polyhedron of P at least
one of a and b is even.

Theorem A suggests that the boundedness of H should depend only on
the Newton polyhedron of P. For P a polynomial of three variables we form
the Newton polyhedron of P in the following manner. For each monomial
s?*u? which occurs in P with a non-zero coefficient, we set

Ripay = {(z,y,2) ER® 12 > a,y > b,z > d}.

Then the Newton polyhedron of P is the smallest convex set containing the
union of the R(,q). In fact, it transpires that the boundedness of H is not
determined by the Newton polyhedron alone; indeed it may depend upon
the actual coefficients of the polynomial in question. This means that the
the condition for boundedness of H has a much more complicated nature
than in the setting of Theorem A.

In order to understand the situation in R*, it is convenient to review the
strategy of the proof of Theorem A. For simplicity assume that P(s,0) =
P(0,t) = 0. For each vertex (a, b) of the Newton polyhedron of P we consider
the corresponding monomial V' = es*® and we set

HY (1, 29, 23) = / f(xl — 8, Ty —t, T3 — es“tb)@.
R
Here R = {(s,t) : |s|*t|® > |s|®|t|® for all exponents («, 3) arising in P }.
We then reduce the proof of the boundedness of H to the boundedness of
each H}. The boundedness of each Hy, now follows from Theorem 5.1 of [4].
It turns out that the condition for the boundedness of Hyj, — namely at least
one of a and b be even — is the same as that for H" where

dsdt
va(._'lfl,flfg,l'g) :/ f(xl —S,xg—t,xg—es“tb)—t,
R2

S
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The condition that at least one of a and b be even is equivalent to condi-
tion (i) in Theorem 5.1 of [4], and this theorem then ensures the boundedness
of Hy.

In four dimensions, we reduce matters to the study of certain “edge
operators”. Suppose Q = > e;s%t%u% where the sum is over all (a;, b;, d;)
such that e;s%t%u% is a monomial of P with (a;,b;,d;) lying on an edge of
the Newton polyhedron of P. Then we reduce the proof of the boundedness
of H to the boundedness of operators

ds dt du
Hgf(:c) = /Rf(x —Tg(s,t,u)) Sstu
where I'g(s,t,u) = (s,t,u, Q(s,t,u)), and R is a region that depends on @
and P.
To get some understanding of why Theorem 5.1 of [4] applies to the
operators H% in R® and not to Hg in R*, consider

HQf(x):/ f(x—FQ(s,t,u))detdu.
RS

stu

Both this operator and H" are homogeneous with respect to a two parameter
dilation group (assuming @ has at least two monomials). In the case of HV
the dilation group is D, ,, where

Dk,n($a Y, Z) = ()\Ilf, ny, Xlnbz)-
If the d; are distinct, the dilation group for H? is

Dy,y(w,y, 2,w) = Az, ny, X2z, APrpP)

where
a9 — aq b2 - bl
A = Ay =
! dl — dgj 2 dl - d2
CLle — a1d2 bZdl — b1d2
B, = »f1— % By = 21172
! dl — d2 7 2 dl - d2

In the case of H" almost every point in R? is a dilate of a point (z,y, 2)
such that = +1, y?> + 22 = 1, the set of which we denote by ¥. Then
the operator H" can be formed by integrating dilates of the distribution
iz — x“yb)w—z (where § is the Dirac delta) restricted to ¥. Notice that

this distribution restricted to ¥ is not singular and in fact defines a finite
measure. Now let ¥ = {(z,y,2,w) € R* : 2 = +1 and y* + 22 + w? = 1}. If
Ay, Ay, By and By are all positive then almost every point in R* is equivalent,
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under the appropriate group of dilations, to a point on . Unlike the three
dimensional case discussed above observe that the distribution

5(w - Q(x,y, z)) L

Tyz’

when restricted to Y, does not define a finite measure.

Nevertheless, the Ricci—Stein paper is very suggestive for us in two ways.
First to each dilation group, Ricci and Stein associate a matrix A. In the
case at hand this is

1 0
0 1
A= A A,
B, B,

The most nondegenerate situation is when each 2 x 2 subdeterminant is
not zero. This means that when we consider (a;, b;, d;) corresponding to an
edge (assuming the d; are distinct as above), the a; are distinct, the b; are
distinct and the projections of the line through (aj;,b;,d;) onto the z — z
plane and the y — z plane do not pass through the origin. We shall make
these assumptions to put ourselves in this nondegenerate situation and shall
also assume that all a;,b; and d; are positive in order to avoid the need for
some subsidiary arguments.!

Thus we are led to the following assumptions. If (a;, b;, d;) lie on an edge
corresponding to @,

(i) Each a;,b; and d; is positive
(77) Each sequence {a;}, {b;} and {d;} is strictly monotone
and

(1) The projection of the line through the points (a;, b;, d;) onto a coor-
dinate plane does not pass through the origin.

We shall always assume conditions (i), (74) and (¢ii) for each @) arising
from an edge of the Newton polyhedron of P.

The second point that we should learn from the Ricci—Stein paper is that
the appropriate cancellation condition for the boundedness of H? should be
expressed in terms of the vanishing of an oscillatory integral involving @), and
this suggests that the boundedness of H? may depend on the coefficients
of @) and not just the powers (a;, b;, d;).

Even under these natural assumptions, the situation is quite intricate,
and in order to facilitate our analysis we shall impose further nondegeneracy

1Such subsidiary arguments were also needed in the three-dimensional case.
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assumptions on the Newton polyhedron of P. In particular, we shall assume
that the plane determined by any three vertices of the Newton polyhedron
of P does not contain the origin.

In stating our theorems we shall use the following notation. If V' =
estPud, with e # 0, with (a,b,d) a vertex of the Newton polyhedron of P,
and I'(s,t,u) = (s,t,u, V) = (s,t,u, es*t’u?), we set

HY f(z) = / f(z —T(s, t,u)) dsdtdu‘

R stu

Here R is a subregion of R3. If Q = Zle ejs9tbiudi with e;s%tbiudi
running over the monomials of P such that (a;,b;,d;) lie on an edge of the
Newton polyhedron of P, we set

Y

dsdtdu
H2fw) = [ Fe=Tst0)
R stu
where I'(s, t,u) = (s,t,u, Q(s,t,u)).
As indicated above, we shall always make the following hypotheses on
the Newton polyhedra that we consider:

(H1) No vertex lies on a coordinate hyperplane; that is, if (a, b, d) is a vertex,
then a > 0, b > 0 and d > 0.

(H2) For each edge, if (a;, b;, d;) lies on that edge, then each of the sequences
{a;}, {b;} and {d,} is strictly monotonic, and the projection of the line
through (a;, b;, d;) onto a coordinate hyperplane does not pass through
the origin.

(H3) The plane determined by any three vertices does not contain the origin.

Remark. In (H2) above, automatically two of the sequences are monotonic
in one sense and the third monotonic in the opposite sense.

We shall prove two types of theorem in this paper. We consider a collection
of monic monomials {s%t%ud}. Let R = {(s,t,u) : |s| <1, [t| < 1|ju] < 1}.
In the first theorem we give a necessary and sufficient condition that H% be
bounded for the class of all polynomials P(s,t,u) =Y e;s%t%u% with all e;
different from zero. Secondly, with an additional nondegeneracy condition,
we give a necessary and sufficient condition that HY be bounded for an indi-
vidual P in terms of the vanishing of certain oscillatory integrals associated
to P. The condition of the first theorem is expressed solely in terms of the
Newton polyhedron while that of the second theorem is expressed in terms
of the individual coefficients of the polynomial in question.
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Theorem 1.1. Suppose {a;,b;,d;} are fized so that hypotheses (H1), (H2)
and (H3) are satisfied by the Newton polyhedron generated by the monic
monomials {s%t%u%}.  Then HE is bounded on L?* for all polynomials
P(s,t,u) = > e;s%tbiu®i with all e; different from zero if and only if the
following conditions hold:

(i) For each vertex (a,b,d) at least two of {a,b,d} are even; and

(i) If {(a;, b, dy)} are the points on any edge of the Newton polyhedron,
either all the a; are even, or all the b; are even or all the d; are even.

Before stating our theorem of the second type, some preliminary discus-
sion is in order. First of all it is well-known (see [6]) that if N(u) is any
real-valued polynomial of one real variable, then

/ SN () 4
o U

is finite with a bound depending only on the degree of N. Now fix a poly-
nomial P in the above class and suppose that Q(s,t,u) is a polynomial
corresponding to a bounded edge of the Newton polyhedron generated by
the monomials occurring in P. Let

FQ(I') _ /OO @{eizQ(s,l,l) + 6izQ(s,—l,—l) . 6izQ(s,—l,l) . eizQ(s,l,—l)}

oo S

dt . A A 4
FbQ(l') _ / 7{er(l,t,l) + 6z:z:Q(—l,t,—l) . 6z:z:Q(—l,t,l) . ezzQ(l,t,—l)}

and

“du , 4 ,
(11) FC?({L') _ / _{esz(l,l,u) _l_ez:cQ(—l,—l,u) _ezzQ(—l,l,u) _ezzQ(l,—l,u)} )
u

— 00

Then FC F, bQ and F f are well defined bounded functions of x. Let (a?, b?, d?)
and (a?, b?, dg) be the two vertices of the bounded edge corresponding to Q).

Our analysis will show that if a? and a? are even, then

JED
0 X

exists and similarly for the pairs (b%,5) and (d2, d5).
The additional hypothesis we require is as follows:

(H4) P(s,t,u) has the form P = > e;s%t%u% where the e; are nonzero,
and the plane determined by any three points (a;,,b;,, d;,), (@, bj,, dj,) and
(ajy,bjs, dj,), two of which lie on one edge of the Newton polyhedron of P,
the third of which lies on another edge of the Newton polyhedron of P, does
not contain the origin.
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Theorem 1.2. Let P be a polynomial whose Newton polyhedron satisfies
(H1), (H2) and (H3) and which also satisfies (H4).

(1) If HE is bounded on L?, then for all edges, two of the components

of each of the two vertices (a2, 09, d%?) and (a$,b3,dS) generating the

edge are even. If a? and ag are even then

/OOOFQ( e

T

Simalarly if b? and b§9 are even then

LA Fo@E —o,

T

and if d and dS are even then

/0 FP(x )ix = 0.

(i) Conversely, if for each Q, at least two components of {a?, b?, d?} and
{a2,19,d3} are even, and if a¥ and S are even and

JRACER

T

if b? and b? are even and

A @)% <o,

and if d° and dS are even and

| re@ o

then HE is bounded on L*.

Remark. If the necessary conditions that two of {a?, b?, d?} and that two
of {a$, b3, dS} are even are satisfied, it follows that both a% and a¥ are even
or both bQ and bg are even or both d? and d? are even. Therefore if say both
a({? and a? are even and both le and b? are even and if fooo FQ(x)d% =0,

then also we have [ F,2(z)% = 0.

The proof of the necessity in these theorems will proceed by a dilation
argument which requires us to analyze global variants of our theorems in
certain special cases. See Sections 7 and 8.
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The organization of this paper is as follows. In Section 2 we make some
preliminary estimates which the reader may wish to refer back to later. In
Section 3 we establish that a large portion of the Fourier multiplier for the
operators in our main theorems is under control, using methods of wide
applicability which do not use the most essential properties of the Newton
polyhedron. In Section 4 we return to the full operators and reduce matters
to the skeleton of the Newton polyhedron, that is the vertices and edges. In
Section 5, we show boundedness of edge operators imply the boundedness
in Theorems 1.1 and 1.2. In Section 6, we make a reduction in the study
of edge operators which in particular proves the sufficiency in Theorem 1.1.
In Section 9 we conclude the sufficiency part of Theorem 1.2. Many of the
arguments of this section echo those of Section 8. Sections 10 and 11 are de-
voted to the proof of the necessity parts of Theorems 1.1 and 1.2. Finally, in
Section 12 we give two examples. One shows that the cancellation conditions
in Theorem 1.2 do indeed depend upon the coefficients of the polynomial
in question. The other example is a Newton polyhedron all of whose ver-
tices have even coordinates but for which every choice of coefficients in the
polynomial gives rise to an unbounded operator.

After the submission of this manuscript, we learned of a related pa-
per Triple Hilbert transforms along polynomial surfaces by Yong-Kum Cho,
Sunggeum Hong, Joonil Kim and Chan Woo Yang, written at the same time
as ours. They prove an analogue of Theorem 1.1 in which they also obtain LP
estimates.

2. Estimates for certain sublevel sets and oscillatory
integrals

We begin with a sublevel set estimate.

Lemma 2.1. Let
Pu) =au+ -+ au”,

a; real, be a polynomial with no constant term. Suppose J is a subinterval
of the positive reals such that P(u) and PY(u), 1 < j < n, are of constant
sign and monotonic on J. Suppose in addition for some j9, 1 < jo < n, and
allu e J

(2.1) |u/o PU) ()| > |/ PD(u)|, 1<j<n.
Assume further that for some subinterval [a,b] of J with b < C'(n)a
a < [P(u) <f

for allu, a <u <b.
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Then there ezists a constant A(n) such that

8- a)l/jo

«

b—a

a

(2.2) < A(n) (

A similar result holds if J is contained in the negative reals.

Proof. The proof relies on ideas from the Proof of Theorem 3.1 of [2].

w PY(u) = Z acC(¢, 5)u’
=i

with
Clt.g) = oo
’ (£=gv
We claim that for all u in [a, b],
(o) e
(2.3) |PY(u)| > Ag(n) e

In fact, suppose for some u € [a,b] and all 1 < j < n,

[w PP (u)] <1

479

for some positive n. Then by Cramér’s rule, we see that for each ¢, 1 < ¢ < n.

lagu’| < Ay(n)n.
This implies
| P(u)] < As(n)n.

In view of (2.1) we see that if |u/° PU) (u)| < |t| > £n for some u € J,

1
[€2]

| P(u)] < Az(n)n.

But we are assuming

[P(u)] =«
for all w in [a, b]. Thus for all w in [a, b],
24 wlo| PUO) ()] > — %,
(2.4 P )] > 5

Then (2.3) follows since b < C'(n)a. We shall see that (2.4) implies

a(b—a)ot

ajo

(2.5) | P'(u)] = ~v(n)
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for some v(n) > 0 and all u in a subinterval [a’, V] of [a, b] with &' —a’ > 2.
Let us see that (2.5) implies the conclusion of Lemma 2.1. Since P’(u)

and P(u) are of constant sign and monotonic on [a, b

ﬁ—azwwﬁ—PWH=/1W%mw2

boay (L)”” (% a)”f'ﬂ
a — \~v(n) « ’

and the lemma is proved.
We have to see that (2.4) implies (2.5). To see this it suffices to show
that if for some ¢

y(n)alb — al”
2j0aj0 )

So

[POu)] > A

on a subinterval [c, d] of J, then
(e-1) 1
P )| 2 Laa - o

on a subinterval [¢/,d'] of [¢,d] with |d' — /| > {|d — ¢|.
We may assume without loss of generality that P (u) > 0 on [c,d]. If
PV (y) >0 on [c,d]

PV () — P () > / PO (u)du

C

> AMu—c).

so if u > ¢ PN (u) > $(d — ¢), and we can take ¢ = € and ' = d. If
P (4) <0 on [c,d]

PEU(d) — PV () > M(d — u).

So [P V(w)| > IA(d —c¢) for ¢ < u < <. This concludes the proof of
Lemma 2.1. |

The purpose of the next lemma is to deal with the assumption that
b < C(n)a in Lemma 2.1.

Lemma 2.2. Let P(u) be a polynomial of degree n with P(0) = 0. Then
there exist at most A(n) intervals I,,1 < ¢ < A(n), in the positive reals,
each of the form I, = (a(€),b(£)) with b(¢) < C(n)a(l) such that for u in the
complement of the union of the Iy, |1 + P(u)| > 1/4. A similar conclusion
holds for the negative reals.
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Proof. Let P(u) =Y."_, a;u’. For each j and k # j, let

7j=1

1 la;u’|
E :{ — < i 2}
Jk w5 lapuk] = n

Then UE; is a union of at most n? intervals, (a(¢),b(¢)), 1 < ¢ < n? with
b(¢) < c(n)a(l). In the complement of U, E; i,

1 ) 5 .
Slagul] < [P(u)] < 2lagud].

Thus for u is in the complement of UpE} ), with |1 + P(u)| < %, then
3 <|P(u)| <£5/4, |aju’| > 5 and |a;u’| < 3. That is <! < 2. Thus
W>1/J’ <W>1/J] to the n? intervals E;, we have
J J

| il fajl"
if we add the n intervals [(
the required intervals. |

Our estimates for oscillatory integrals depend on Corollary 3.6 of [2]
which we state here for the convenience of the reader.

Corollary 3.6 of [2]. Let ay,...,an € R. Suppose a; # 1 for { =
1,2,...,N. For \>1 and B > 1, consider

7 ; ds
I()\) = / eXp{z)\s + s+ + yNsaN}?.
1
Then
[I(\)| < CAH WV,
Here C = C(ay,...,ay) is independent of B,yi, ..., yn.

In our next lemma, P(s,u) is a polynomial of degree n with no linear
term, and L is a subinterval of [A, oo|, where A > 1. The interval L can
depend on u, but A must be independent of u. We consider

d
)= [ et
L

s
Lemma 2.3. With P and L as above there are positive 11 and ny and a
set E of u’s so that for u not in E

(2.6) [(L)| < Cr(m,ma,m)AT™,
and E is contained in a bounded number of intervals K
Kj = [CL]‘, a; + CQ(nla 2, n)A_n2aj]'

Also the number of intervals K; depends only on n. A similar result holds

if L C (—o0, —A).
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Proof. We may assume L = [A, B], with B perhaps depending on u. If
P(s,u) has no term linear in s, Lemma 2.3 follows from Corollary 3.6 of [2]
after making a change of variables s = Ao. Otherwise

P(s,u) = sPi(u) + Py(s,u)

where P; has no constant term and no monomial of P, is linear in s. We
now change variables setting s = 0 A. Then

Bl
I— / iAs(1+P1(w)+Pa(Asu) @
. s

We let £ = {u: |1+ Pi(u)| < ﬁ} For w in the complement of E, the
estimate (2.6) follows from Corollary 3.6 of [2]. Using 2.2, we can divide the
set of u’s in F into a bounded number of intervals in which the hypotheses
of Lemma 2.1 apply. Then applying Lemma 2.1, we obtain the desired
conclusion on the set E. ]

Lemma 2.4. Let P(s,t,u) be a polynomial such that each monomial of P
contains a positive power of s and a positive power of u. Fort > 1, let

I(t) :/ d_u / §€i(s+P(s,t,u))
u>t U |s|€Ly(ut) S

where Ly is a subinterval of (u,00). For any d >0 and 0 <t < 1, let

J(t) = / du / 45 (st P(s)
o<u<t U |s|€La(u,t) S

where Ly is a subinterval of [u=°,00). Then for some positive 1, and 1, =mn2()

Y

1) 1 < S
and
(2.8) J(t) < C(n, o)t

Proof. Consider the estimate for I(t). We divide the u integration into
dyadic intervals 2¥ < u < 281 with & > log|t| — 1. For u in the interval
(28, 28] Ly(u,t) C (2%, 00). We apply Lemma 2.3. For u not in E, the s
integral is at most 27"*  for some 1; > 0 and so

du
2k§u§2k+l u

ugE

/ ei(s—}—P(s,t,u))@ S C2—mk‘
|s|€ L (u,t) S
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Since the s integral is uniformly bounded (see for example [6]),

a+C2 n2kq
/ d_u / 6i[s+P(s,t,u)]§ S C Sup / d_u S 027772]6‘
€E u |s|€L1(u,t) S a

" u
2k§u§2k+1

Summing on k, we arrive at the estimate for I(¢). The estimate for J(t) is

obtained in a similar manner. |

a
2k3a32k+1

The next lemma gives a basic estimate for an oscillatory integral which
we will find very useful on several occasions.

Lemma 2.5. Let
k n
E(s) = Z e;s' and F(s) = Z fis™
j=1 j=1

with the e; and f; not zero. Assume the {; and m; are strictly increasing.
For any B > 0 set

I(\) = /OB M) gin )\F(s)%.
Then if £, > m,, > 1
(2.9) [TV < X
for some 6 > 0. If 1 <l <my
(2.10) I\ < CAX™° for some > 0.

Here, C' may depend on the e; and f;.

Proof. In this lemma we are mainly interested in small A > 0 in (2.9) and
large A > 0 in (2.10). To prove (2.9) we write

I(/\)z/ +/ +/ Sy
0<s<A A<s<ug ug<s<B

where A > 1 is to be chosen as a function of the {e;} and {f;}, and uy =

(%)'%"_E, where € > 0 will be chosen small. For any fixed A,
|| < C(A)N.

For A >1
“o ds
|15 < C)\/ sm"? < O\
1



484 A. CARBERY, S. WAINGER AND J. WRIGHT

If A is sufficiently large and s > A,

d

T(E(s) £ F(s))] = O™

C [ ds

uo

for some positive C| so

Thus
1 < Samt < oy

if € is sufficiently small since ¢, > m,,. This concludes the proof of (2.9).
To prove (2.10), we write

uo A B
I()\):/ +/ +/ — L+ L+ 1,
0 uo A

where )
1\ ™t
Uy = X )
with
1 1
— +€ S - — 6
mi 61

and A is sufficiently small. For any fixed A,
|I5] < CA7°

for some 0 > 0 by van der Corput’s lemma. (Not all the coefficients of £+ F
can be zero.) If ug < 1,

L] < Chulrt < CA™e,

For A sufficiently small, and 0 < s < A,

d
—(E(s) £ F(s))| > Os"™1.
ds

So

cC C (" ds C _C (4iuyy _ C oy y
L < — e < < A T N T < O
|2|_)\u€1+)\/u0 le_Mél_AA <A < O\
This finishes the proof of Lemma 2.5. |

Our final lemma in Section 2 concerns double integrals. This lemma is
closely related to work of Patel, [3].
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Lemma 2.6. Let ;

Q(t,u) = Z et ude
=1
be a real valued polynomial in two real variables. Assume none of the ey, by
and dy are zero, and that the sequences {b,} and {d,} are strictly monotonic.
Furthermore, suppose the points (bg, dy) lie on a line not passing through the
origin. Finally assume at least one of by and dy are even and at least one
of by, and dy, are even.
For a given pair of positive parameters o and 3, set

A={(tu):|t| <A |ul<B, A <|t|*u|’<B'}.

Set
I / it dtdu
tu ’
A
[ Q) dtdu
T tu )
An{t:|t| <7}
j Q) dtdu
tu
An{u:|u|>v}
and
v it dtdu
T tu
AN{(t,u):|t|<7,|u|<v}
Then
(@) |1l <C,

(i) |I.] < CT° for some § > 0,
(i) |1°] < C% for some § >0, and
(iv) |I°] < CT° for some § > 0.
Here, C' may depend on the coefficients of Q, but not on A, B, A" or B'.

Proof. The proof of all parts of Lemma 2.6 are similar, and we will content
ourselves with the proof of (ii7).

Let R,, be that portion of A for which 277 < [t| < 2.27P and 277 <
|u] <2-279 and let I(p, q) be the contribution to IV from R, ,. So

r=y Y Ibpq.

PEL GEZ, 2-1>v
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Let g
Up,q) = / expi(epttrutt) S

Rop.q tu

and i
V(p,q) :/ expz’(eltbludl)—u.

R tu

P,q
Our assumption that at least one of b, and dj, is even implies U(p, q) = 0,
and our assumption that at least one of b; and d; is even implies V(p, ¢) = 0.
We shall divide the (p, ¢) into two sets S; and S;. We shall prove

(2.11) > e —Up.q) <C/e.
(p,9)€S1

and

(2.12) > p.g) = Vip,q) < C/°.
(p,a)€Sy

This will then prove the lemma.

It is convenient to write o, = (by, dy), r = (p,q) and w = o1 — 0. Put
Sy ={r:r-w>0}and Sy = {r: rw < 0}. S; essentially corresponds to the
region where [¢|°2|u|?t > [t]* |u|®. We will only consider the estimate (2.11).
The estimate for (2.12) is similar. Changing variables we see

- dtdu
I(p7 Q) = /ﬁ / exp (z Z engpbezfqdetbgudz) -
P (=1

and

dtdu
tu

U<p7 Q> :/ /eXp (ieLQ_prQ_qutbLudL)
ﬁp’q
where
Rip.a) = {(tw): 1<l <2 1< ful <2, A(p.g) < |1]*ul” < B'(p.9)}

Thus we have two estimates

D
(2.13) 11(p,q) — U(p,q)| < ERTERTAT
and
|](p, Q) - U(p, q)| <C sup (2—P522—qd5)n
(2.14) ety

< C(Q*Pb[/ Q*qu Q*T-U))??

for some n > 0.
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We first sum over all (p,q) with r-w = N and 277 > v and then sum
over N. Since r - w = N we have

p(b1 — bL) + Q(dl — dL) =N

. N di—dy
Ly "
Then (2.13) and (2.14) become
(2.15) 11(p,q) = U(p.q) < C(27270)7"
and
(2.16) 11(p,q) = Ulp,q)| < C(20- N2y,
where 7 = —blb_—LbL,li > 0 and o # 0 since the line through the (by,dy)

does not go through the origin. Let us assume o > 0. If we sum on ¢
with ag > (v — £)N, using (2.16), we get a contribution of 2-¥™/2. If we
use (2.15) for ¢ with ag < (y—§)N, we get another contribution of 2~ Nwkn/2
Thus

> (p.q) = Ulp,q)| < C272"%.

rrw=N

This gives the desired result if 2V > v¢ for any positive e. If |v] > 2]\1,7,
we use only (2.16), and find

9(y—k)N

> |Ip.g) - Ulp,g) <C

rrw=N |v|0‘

If € > 0 is sufficiently small we can now sum in N. This completes the proof
of the lemma. [ ]

3. Estimates for some triple integrals
The purpose of this section is to estimate some triple integrals which will in
effect show pieces of the multiplier

ds dt du
stu

m(&1,&2,83,84) = /CXP (i&1s + it + i€su + &4 P (s, t,u))

are bounded. In this section, we shall assume that the coefficient of each
power of u is a monomial in s and t. Moreover we assume each monomial
of P has a positive power of each variable. All estimates are to be uniform
in the coefficients of P.
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For a given set of positive parameters {as, 3, v, @i, 35, 7; }, let A denote
the following region in R3,

A={(s,t,u): s ul < Ayls[® [P, 1< i < NY.

Here A and in particular the constants A; will change from place to place as
we make changes of variables, but our estimates will be uniform in the A;.
For a fixed N, all estimates are to be uniform. We let

Lo
& T

1

&l |’5'—|£| = )
1

Ro = {tnt bl < g 2 . = )

Bi

o7}

ait

Rlz{(s,t,U)¢|5|Z |§2| fu |—|g|}

Ry = {(stu) Is| >

Let
J1 = / pi€15 pibat pi€au LiEa P (s,tu) M ’
rana stu
Jo :/ pi€18 gikat i€a P (s tu) M’
RanA stu
J3 = / (1 — 6i§3u)6i§156i52t6i§4P(57t7u) M’
ens stu
J4 = / (1 — ei£3u>€i£136i52t€i£4P(s,t,u) M’
ns stu

ds dt du

J5 _ / (1 . 6i£13)6i54P(s,t,u)ei§2t
RsNA stu

Lemma 3.1. For{=1,2,3,4 and 5
|JZ| S Ca
where C' 1s independent of the coefficients of P.

Remark. Lemma 3.1 effectively reduces the analysis of the Fourier multi-
plier to the study of two types of integral, the first of the form

/ it i€a P (s, ) dsdtdu
R3NA stu
and the second of the form
/ i€18 pibat pikau ila P(s,t,u) M
RNA stu
where

1
R={(stwslol < g < . < ger}
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Proof. In each integral we may make a change of variables so that & =
& = & = +1. Without loss of generality we take the case of + signs. To
bound J; we divide the s, ¢, u integration into six regions according to the
size of the variables. For example in one region we have |s| > [t| > |u| > 1.
The estimate for .J; then follows from the estimate for /(¢) in Lemma 2.4.

We next consider J,. We make a change of variables in the u integral so
that

E4P(s,t,u) = Zej(f)s“jtbjudj
J

where, for at least one jy, |e;,(§)] = 1 and |e;(§)| < 1 for all j. We now
perform the w integral first. Then by putting v = u%o and applying Corol-
lary 3.6 of [2] we see the contribution from |u| > 1 is at most C(N)/|st|" for
some positive 7. So this contribution is bounded. For a sufficiently large p,
the contribution from

1
Juf <

— (max([z], [s))”

is clearly bounded. So it remains to consider

ds dt du

/ ezseztezP(s,t,u ’
RuNA stu

Ry ={(s.tw): |s| = L1 > |sl, —

where
<l <1}

plus a similar integral where |s| > |¢|. In the integral over Ry N A we shall
integrate first with respect to ¢, then u, then s. Thus this integral becomes
the sum of two integrals

/// is zt zP (s,t,u) dtdeu
t s u

RsNA
and
/// s zt zPstu dtdeu
t S U
ReNA
where .
Ro = {(s,t,u) 1 |s| 21, 1> Ju| = e 2 51}
s
and
Re = t >1,0< < — 1 t 1
o= {(st 1o ol < 1o 12 i
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To deal with the integral over R5NA we divide the s integration into dyadic
intervals L, = {s: 2F <|s| < 2¥1}. Fix s. We use Lemma 2.3 to see
that for v outside a bounded number of exceptional intervals of the form
E, ={u:a < |ul <a+ac2 ™k} the t integral is at most 27"*. Thus
the t,u integral is at most Ck27™*. So

3 / / / dt du ds
- JseLy J{1/lsl<ul<1}\Ua Ea tus

is bounded. On the other hand,

/ gilt+Plsta) 4
] <Jtl<o0 t
is uniformly bounded. So

Z/ / / dt du ds
&/ s€EL, JueUaEq Js|<[t|<oo tus

is uniformly bounded. The boundedness of the integral over Rg N A follows
from the estimate for J in Lemma 2.4.
To see that J3 is bounded we note that Lemma 2.4 implies

eiseit6i§4P(s,t,u) dsdt
st

<C

{Is[=1,[¢[=13nA

uniformly in w.

To estimate J4, we note that we may replace e’ by 1 (Recall we normal-
ized so that £; = 1) and the one dimensional ¢ integral is uniformly bounded.
Then we make a change of variables in the s integration so that

EaP(s,t,u) = Zej(g)sajtbjudj

with |ej,(§)] = 1 for some jy and |e;(§)| < 1 for all j. The range of s inte-
gration is no longer contained in {|s| < 1}, but only in some {|s| < B(£)}.
However the contribution from 1 < |s| < B(&) is at most C/|t|°|ul? for some
positive ¢ and p. Since the s integral is also uniformly bounded, we can
take p and ¢ to be arbitrarily small. This gives a bounded contribution in
the range where |s| > 1. In the range of integration where |s| < 1, we do
the t integral first. Clearly for ¢ sufficiently small (since all |e;| < 1), the
contribution from [t| < 1/|s|° gives a bounded integral. For the portion of
the integral with |t| > 1/|s|°, we apply the estimate for J in Lemma 2.4.

The estimate for J5 is the same as the estimate Jy. In fact the first step
in the estimate for J, was a reduction to an integral of the type J;. |



TRIPLE HILBERT TRANSFORMS 491

4. Reduction to the skeleton of the Newton polyhedron

The purpose of this section is to show that the monomials s%t%u% arising
in a polynomial P for which (a;,b;,d;) lie in the interior of the Newton
polyhedron of P or in the interior of a face of the Newton polyhedron of P
play no role in the L? boundedness of H. We remind the reader that we are
assuming that no vertex of the Newton polyhedron of P lies in a coordinate
plane.

We begin with a lemma.

Lemma 4.1. For each triple (p,q,r) of non-negative integers, there exists
a vertex V = (vy,va,v3) of the Newton polyhedron of P such that

V1P + Vaq + vsr < Ugp + Usq + usr
for all uy,us, uz in the Newton polyhedron of P.

Proof. Consider the function
F(z,y,2) =xp+yq+ 2r

on the closed Newton polyhedron of P. Since all partial derivatives of F
are non-negative, F' assumes an absolute minimum on some closed face of
the Newton polyhedron. Then F restricted to a face assumes an absolute
minimum on an edge. Finally F' restricted to an edge is monotonic, and
hence F' assumes its minimum at a vertex. |

In the remainder of this section A will be as in Section 3, and will again
change from place to place.

Let M; = ejs“ftbjudf, 1 < j < K denote the monomials of P with e; # 0.
Assume (ak, bg, dk) is in the interior of the Newton polyhedron of P or in
the interior of a face of the Newton polyhedron of P. Let

R(p,q,r)={(s,t,u) : 277 <[s] < 27PFL, 279 <[t < 277, 27" < u < 2777 )

We then set
= ds dt du
I(p,q,r) = / expi{&is + &t + Gu + & ejsttiut———
R(p,g,r)NA = stu
and
K—1
. o odsdtdu
J(p,q,7) = / exp i{&1s + &at + Eu + &y Z e;s% iy}~ ———
R(p,g,r)NA = stu

(A is the same in the integrals for I and J.) We then have the following
estimate:
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Lemma 4.2. Suppose the Newton polyhedron of P satisfies hypotheses (H1)
and (H3). Then

> p.g.r) = J(p.q.r)| < C.

p=>0
q20
r>0

Proof. Let U = {(s,t,u) : 1 < |s|] < 2,1 < |t|] < 2,1 < |u|] < 2}. By
changing variables, we see

I(p,q,7) = / exp (i§12_ps + 1627 + €327
UnA

+ i€y é gttty ery iy ) d‘gizd“,
and
Hoar) = [ e (1620 + i+ ig2
UNA
~1
+ 1€y fz_; ejs“jtbfudj2*“fp2’qu2’djr) Lizdu.

For each vertex Vy = (Cljm bjoa djo), set

Z(%) = {(p7q7,r) : ‘/()'(p7Q7r> SWJQ),Q,T) for all]al S.] SK}

where W; = (a;, b;,d;). Note that W, = V4.

By Lemma 4.1 each (p,q,r) belongs to some Z(V;). For a fixed V}
suppose N edges, F;, of the Newton polyhedron emanate from V;. Let
By, ..., By be integer lattice points on the edges E; emanating from Vj, one
on each edge, with each B; different from V. Then for each 5, 1 < j < N
and (p,q,r)in Z(Vp), (p,q.7)-(Bj—V,) > 0. If B; is on a bounded edge, this
follows from the definition of Z(Vj) since x +— (p,q,r) - (x — V) restricted
to an edge is monotone. If B; is on an infinite edge, this follows because all
of the coordinates B; — Vj are non-negative. Order the edges F; emanating
from V; so that the pairs {E;, E;11},(1 < j < N —1) and {E}, Ex} span
all the faces containing V5. For 1 <7 < N — 1, let

and set

FN:{yGRSZy:)\l(BN—‘/Q)—{—)\Q(Bl—‘/Q) with )\1 > (0 and )\2>0}.
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We claim that there is a point W} such that the coordinates of Wy — W},
are non-negative and Wi lies in some F},1 < j < N. To see this, we may
assume Wi is not in one of the F; (for otherwise we could take W}, = Wg.)
If Wy = (CLK,bK,dK), let W[,é- = (aK,bK,fK) where fK < dg and Wllé is in
the closure of some Fj. If Wy is in F; we can take Wy, = Wy.. Otherwise,
Wi lies on some edge of Fj, and then we can take Wy = (ax — 61,bx —
0o, fx £ d3) for some small 01,02 and 3. For simplicity of notation assume
Wi € Fi.

Then

(pa(Jar) ’ (WK - ‘/0) > (pa%r) ' (WI/( - VE))
=Ai(p,q,7) - (Br = Vo) + Aa(p, ¢ 7) - (B2 — Vo)

for some Ay > 0, Ay > 0.

Now (p7 q, r)(Bl_VE)) > 0 and (pa q, r)(B2_VE)) > 0 for (pa q, T) S Z(‘/O)
Also (p,q,7) - (B; — Vo) are integers. Now we have two estimates

<41) |I(p7 q, T) - J(p, q, 7’)| < A(|§4|2*PGK2*qu27rdK>p
and
(42) |]<p, q, T) — <]<Z)7 q7 7’)| S A(|£4|27paj02*qu0277‘dj0)7p
for some p > 0.
Let
Sp={(a.r): (p.g,r) (Bi—Vp) = L}
and

Ty = {(pac.Iar) : (paQ7r) : (B2 _‘/0) = M}
For (p,q,r) € Sp N Ty, (4.1) becomes

(4.3) [I(p,q,7) — J(p,q,7)| < A(]&4|27P%0 9~ 4bio 2”'dj0)p2’)‘1pL2’)‘2pM.

Now By — Vy and By — Vj are not parallel. Thus if (p, q,r) is in Sp N7y,
(p,q,r) is on a line — namely the intersection of the planes

{z:z-(By—Vo)=L} and A{z:z-(By—Vy) =M}
Thus for (pj,q;,7;) € Sy N1y, we can write

pj = Gltj + Hl(L, M)
q; = thj + HQ(L, M)
’f‘j = thj + Hg(L, M)
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with |t; — t;41| bounded below and not all of Gy, G2, G zero. Now hypo-
thesis (H3) guarantees that (G, G, G3) is not perpendicular to Vp, and so
from (4.2) and (4.3) we see that

> )= Jpgr) < A2

(p,g,r)ESLNTM

for some 77 > 0. Then summing over L and M, we find

> pgr) - Jpgr) <A

(p,q,m)€Z (Vo)

Finally summing over all V gives Lemma 4.2. ]

Now by repeated use of Lemma 4.2 we arrive at the following conclusion:

Lemma 4.3. Let P = Y . e;s%t%u®% and P' = Z; ers®tbiudi where Y
denotes summation over those j for which (a;,b;,d;) lies on some edge of
the Newton polyhedron of P. Suppose the Newton polyhedron of P satisfies
hypotheses (H1) and (H3). Then the operator H% is bounded on L*(R*) if
and only if HE is bounded on L*(R*).

5. Reduction to edge operators

Let E be a bounded edge of the Newton polyhedron of P with Vi, V5, ..., Vy_y,
Vn (N > 2) the points on E corresponding to monomials of P numbered so
that V7 and Vi are vertices of the polyhedron, V5 is closest to Vi and Vy_;
is closest to V. Suppose that V corresponds to the monomial e;s% thiu .
We then set Qp = > e;s%tbiu®,

To each E we shall associate a region R(E) and an operator H%EE)

ds dt du
Hng)f(xl,xz,zs,m) = ///f(xl—sa952—75,$3—U,$4—QE(3715,U)) .
R(E)

stu

The object of this section is to show that if each Hg(EE) is bounded, then H
is bounded. We shall be assuming hypotheses (H1), (H2) and (H3) on the
Newton polyhedron of P throughout this section.

In defining R(E) for an edge E we let e,s*t*u% run through all the
monomials of P. Again e;s%t%u% 1 < j < N, are the monomials in P such
that (a;, b;,d;) lie on an edge E ordered as above.
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We let

Ri(E)={(s,t,u) : [s"t"u™| > [s"t"u®| and [s*t?u®| > |s*t"u’|
for all (ay, by, d;) corresponding to monomials of P other

than (al, bl, dl)}
and

Ro(E)={(s,t,u): [sVt"NuIN| > |s*N-1PN-1yIN—1] and [s*N -1V -1y N1
> |s*t*u%| for all (ay, by, dy) corresponding to monomials of P
other than (ay, by, dN)}.

Then put
R(E) = (Ri(E) UR2(E)) N {(s,t,u) : |s], 2], [u] < 1}.

Lemma 5.1. Suppose each monomial of P corresponds to a point on an edge
of the Newton polyhedron of P. Moreover assume each infinite edge contains
only one point corresponding to a monomial of P. Then each (s,t,u) with
|s], |t], [u| <1 isin some R(E) and the R(E) have disjoint interiors.

Proof. Foreach (s,t,u) thereis a vertex V; = (ay, by, dy) such that |s® Py |
> [sutbyde| for all (ag,be,dy). (The proof of this is the same as that of
Lemma 4.1.) Let Ly, ..., Lx be the bounded edges emanating from V;. On
each L, let Uy = (ay,,b;,,d;,) be the point closest to V;. Choose E to be
that L, such that |s%et%equ®e| is maximal for 1 < ¢ < K. Let us say ¢ = 1.

Change notation so that U; = (ag,bs,ds) and introduce o = log(1/s),
7 =log(1/t) and v = log(1/u). Observe that

(r,y,2) — xo +y7 + 2v

is monotone when restricted to each edge. Thus if W = (ay, by, dy) is a point
on any Ly, 1 </{ < K, then

|s“1tb1ud1| > |s“2t1’2ud2| > |s“‘tb‘ud‘|.

Now suppose W is not on one of the edges emanating from V;. Let Ry
denote points on the infinite edges, one R on each infinite edge emanating
from V. Then since W is on some bounded edge not emanating from V7,

K
W=Vi=Y " MU= Vi) + > (R = V)
k

(=1
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where each 7, > 0, and XA, + X, > 1 — for if XA, 4 X < 1, W would be
in the interior of the Newton polyhedron or in the interior of a face of the
Newton polyhedron or on an edge emanating from V;.

It is at this stage that we are using strongly the reduction to the 1-
skeleton of the Newton polyhedron of P in Section 4.

Next we let the Ry tend to infinity in such a way that the A\, do not
change and we see then that the 7, must tend to 0. Therefore Zle A > 1,
and so

(ag — ay)o + (bg — b)) + (dp — dy)v

> Al(ag, — ar)o + (b, = bi)7T + (dj, — )]

> <i )\5) [(az — a1)o + (b2 — b1)T + (dy — dy)v]

Z [(0,2 - (1,1)0' + (bg - bl)T + (dg - dl)’U].
Thus since |s| < 1,]t] <1, and |u| <1
|s‘”tb‘ud2 | < s b2, %2 |,

and (s,t,u)isin Ry (F). It is clear that the R(E) are disjoint and Lemma 5.1
is proved. |

Now let E be an edge, and let
P(s,t,u) = Qp(s,t,u) + R(s,t,u) 4 ep s -+ Pr+iq

where

(s,t,u) E e; saﬂtbﬂu

with (aj,bj,d;) on E for 1 < j < L, and where R and ey s%+1¢P+1qd0+
corresponds to monomials of P on the 1-sketeton but not on the edge F.
Then we have:

Lemma 5.2. Let

ds dt du
I<£17 527 537 54) = / Zﬁls Z§2t Z§3U Z§4P s,tu) et
R(E) stu
" dsdtd
S U
J(€1, &2, 83, 64) :/ pi€1s piat it Li€s(Qu-+R) (s tu) 45 AL AU
R(E) stu

Then I(&) — J(§) is uniformly bounded.
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Proof. It suffices to consider the integral over Ri(FE). Let us suppose
Vi = (a1,b1,dy) is a vertex of E and Vo = (ag,bs,dy) is the point on F
closest to V. For p > 0,q¢ > 0,7 > 0, set

Ap,q,r)={(s,t,u) : 277 <|s| < 27PFL 270 <J¢| < 279 277 < Ju < 277

Put
) ) . ) dsdtdu
I(p.q,r) = / exp(2€15 + it + i€su + 1€ P (s, t, u)) ;
R1(E)NA(p,q,r) stu
and
) ) : ) dsdtdu
J(paQ,T):/ exp(i&1s + 1ot + iésu + i€4(Qr + R)(s,t,u)) ]
R1(E)NA(p,q,m) stu

Arguing as in Lemma 4.2 we then have the following estimates:

(5'1) |](p, CLT) - J(p, q,r)| <A (|€4|2—PGL+12—qu+12—rdL+1)77
and
(5.2) [I(p,q,7)— J(p,q,7)| <A (|§4|2—pa12—qb12—rd1)—n

for some n > 0.
We want to see that we can replace the estimate (5.1) by

(53) |I(pa q, T) - J(p, q, ’f‘)l < A(|§4|2_P02—q62—r6)n

where the point W = (a, 3, d) does not lie on E, and the plane determined
by W, Vi and V, does not contain the origin. If (ary1,br41,dr+1) lies on
an edge meeting F, we may take W = (apy1,br41,dry1). For then if the
plane determined by Vi, V5 and (ary1,br41,drp 1) contained the origin, the
plane determined V3, (ar, by, dr) and the other vertex of the edge containing
(ar41,br41,dr+1) would determine a plane containing the origin contradict-
ing assumption (H3). (The edge containing (ar1,br+1,dr+1) could not be
infinite since we are assuming each infinite edge contains only one point.) If
(ar41,br41,dr41) lies on some edge not meeting E, we may take W to be
one vertex on that edge since px + qy + rz is monotone along edges.

If Ry(E) N A(p,q,7) # 0, then (p,q,7) - (Vo = Vi) > =B and (p,q,7) -
(W —V,) > —B for some positive B. Let

Fy={(p,q,r): Va—Vi)-(p,q,r) = N}

and
Dy = {(pa(Jar) : (W_ ‘/é) ' (pa%r) = M}
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Now (&) — J(§) is the sum of two terms, the first of which is dominated by

Z |I(p7Qar)_J(paQ7r)| :Z Z Z |I(p7Qar)_J(paQ7r)|'

p,q,7>0 N>-—B —B<M<N+B (p,q,r)eFNNDs
We may rewrite (5.3) as
(5.4) 1(p,q,7) = J(p, g, )| < A27W([gg|27 (P ttratdm))n

Since Vi, Vo and W are not collinear, Fy N Dy, is a line. Arguing once
more as in Lemma 4.2 we can sum now in p,q, and r as long as the line
of intersection of the planes Fly and D), is not perpendicular to (aq, by, dy).
And this condition is satisfied since the plane through Vi, Vo and W, which
is the plane determined by E and W, does not contain the origin. |

By applying Lemma 4.3, Lemma 5.1 and Lemma 5.2 many times we
obtain the following conclusion:

Proposition 5.3. Suppose the Newton polyhedron of P satisfes hypotheses
(H1), (H2) and (H3). If H%EE) is bounded on L*(R*) for each bounded
edge E, then HE is bounded on L*(R").

6. A further reduction for edge operators

In this section A is as in Section 3. Suppose that
L

Qs t,u) = Zejs“jtbjudj
j=1
where (a;, b;, d;) lie on some line. We assume the hypotheses (H1) and (H2),
that is each of a;,b; and d; is positive, each of the sequences {a;},{b;}
and {d,} is strictly monotonic and that the projection of the line through
the (aj,b;,d;) onto a coordinate plane does not pass through the origin.
Furthermore we shall also assume that at least two of a1, b; and d; are even,
at least two of ar, by, d; are even.

Proposition 6.1. Let R = {(s,t,u) : |s| < L, |t| < 1,|u] < 1} or let
R =TR3. Then
yds dt du

m(€) = o138 pikat i&3u ,i€aQ(s,tu
t
RNA Stu

_ / i Qs ) ds dt du +o(1)
RgﬂA

stu

where . .
R:{s,t,u: sg—,tg—,ug—}.
e={lst) 1< b < o
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Remark. Proposition 6.1 together with Proposition 5.3 implies the suffi-
ciency result in Theorem 1.1. The point is that in this case the hypothesis
of Theorem 1.1 implies

/ Qs ) ds dt du _o.
RéﬂA

stu

By applying the lemmas of Section 3, we see that except for a bounded
error m(&) is a sum of an integral (£) and three integrals of the type J(&),
where

1(§) = / €i§1sei§2t€i§3uSi&;Q(s,t,u)M
Rand stu
and
J(g):/ €i£2u€i£4Q(s,t,u)M’
RanA stu
where
o o = L s L )
N el |£| 1|
and 1
Ro= {0 W< g < g bl < e}

We begin with ().

Lemma 6.2. Assume b; and by, are even. Then

/ (eiflseifgu o 1>€i§2t€i§4P(s,t,u) dS dt du — O(1>
R4NA stu

Remark. Lemma 6.2 does not use the hypothesis on the parity of ay,ar, d;
or dj,.

Proof. Write e®1%e®3% — 1 = (%15 — 1)(e%3% — 1) + (€% — 1) + (€15 — 1)

The contribution from (e®* — 1)(e®* — 1) is bounded because the t
integral is uniformly bounded. The contributions from e*** — 1 and e*** — 1
are treated in a similar manner, so it suffices to deal with I; where

I = / (115 — 1)i€eteitsQstn) deth‘
RaNA

stu

By doing the u integration first, we see we can replace €*2* by 1. Thus we
have to consider

€18 __
I, :/ - —1€iS4Q(S’t’“)ds—dtdu.
RuNA S tu
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We shall make a change of variables. First we divide the integral into four
regions depending on the sign of s and u. For s and u positive we make the

change of variables t = s%u” with o = Pt and 8 = %. We find
1—02 1—02

I = / et — 1€i§4spluﬁ2Q(1,t,1)d8%
R5NA S tu
where
b1a2 — CleQ d b1d2 - dle
=—= - an =
P1 by — by P2 by — by

and p; and py are not zero because of the hypothesis that the projection
of the line through (a;, b;,d;) does not pass through the origin. Rs is con-
tained in {|s| < ‘51—1|} and the t integration is over a finite union of intervals
symmetric around 0. Now by making a change of variables first in the s
integral and then in the u integral we may assume & = 1 and & = 1. Since
by and by are even, we may apply Lemma 2.4 to the ¢ integral to obtain the
estimates A/(s”*u”?)" and A(s”uf?)" for some i > 0. Since the t integral is
bounded we obtain the estimates 4/s%u’ and Au’/s? for some small § < 1/2.
We apply the first estimate to the region v > 1 and the second when u < 1.
Since 0 < s < 1, the lemma is proved. [ |

Lemma 6.3.

i€at
/ et 1ei§4Q(5’t’“) dsdtdu
R4NA t su

1s bounded.

Proof. Consider ¢ > 0. In the s, u integral we can make a change of variable
s = t%, u = tPv so that Q(s,t,u) becomes Q(o,1,v). This requires o and
[ to satisfy the equations

bj = b1+ afa; — ar) + B(d; — di) =0

and
by + aay + Bd; =0
or g
a; —ai j — @1
=-1
S "
and

aay + Bdy = 0.
These equations have a solution if

aq a; —a

dy 7 dj—dy
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Thus is just the condition that the projection of the line through the (aj, b;, d;)
onto the x — z plane does not go through the origin. Since at least one of
the a; and d; is even and at least one of a;, and d;, is even, Lemma 6.2 now
follows from Lemma 2.6. [ ]

Lemma 6.4. J(§) is uniformly bounded.

Proof. By changing variables in the ¢-integral, we can write

0o it
_ / e / / pi€sQ(sta 450U 4
1t su
A

This change of variables of course changes the coefficients of ). We can
then make a further change of variables in s and wu, so that we return to
the original ). We want to return to the original ) because we want to use
Lemma 2.6 in which the estimates depend upon the coefficients of Q).

Then by making a further change of variables as in the proof of Lemma 6.3,

we see o it
:/ e_// 67{4@(5717”)%dt.
1t su
A

By a yet further change of variables we may assume &, = 1 without chang-
ing the coefficients of ). We shall take &, = 1.
Let us consider first the region where |s| < 1 and |u] < 1. We see the con-

tribution for |su| < 1 is bounded by subtracting e

n In the region

where |su| > , we do the ¢ integral first. We are then integrating over a

bounded number of intervals in each of which ¢ > 1/|su|. Thus the contri-

bution from the ¢ integral is at most C'|su|. This finishes the discussion of
{(s,u) :|s] <1, and |u| < 1}.

Let us next consider the region Where |s| > |u| > 1. If we integrate in

|s| > t, we gain a positive power of and this contribution is bounded. If

s,1,u)

t\ I’
t > |s| we perform the ¢ integral first gaining ﬁ, we then have the estimate

/|>1 |2 /1<u|< " |u|d“ =0(1).

It remains to consider the two “corridors”
[sw):lsl = Ll <1} and  {(s,u):]s] < 1, Jul = 1},
We consider the region {(s w) : |s| > 1, |u| < 1}. The other region is similar.

// Qs L) dsdu g
su |~ t¢

|s |>t |u]<1
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for some ¢ > 0 by Lemma 2.6. Similarly

‘ / / (s 1)
|s| <t |u|<{
A

<

This leaves us with

[ [ oot
1 t s u

A
1<]s|<t
1>|ul>4

In this region we do the t integral first. The range of integration in ¢ will
consist of a bounded union of intervals in which ¢ > |s| and ¢t > X.. So the ¢

|ul
integral is at most C|u|'/2/|s|'/2. This completes the proof of Lemma 6.4

and of Proposition 6.1. |

7. Vertex operators

Here we consider

dsdtu
H;?,/f(x17x27x37x4) = / f(xl — §,T2 — t,l’g — U, Ty — Satbud) + -
R Stu

Here we are supposing that R is either all of R3 or the cube {|s| < 1, |¢| <1,
uf <1}

So HY () = mr(€) f(€), where & = (&1, &, &, €1), and

e e g dSdtdu
mg(§) = /// €18 it gibsu pikastuc e
R

Lemma 7.1. (i) If at least two of a,b and d are even then mg(&) is uni-
formly bounded.

(i) If two of a,b and d are odd and one is even

|4l

+ AL
|m73(£)| < ClOg |£1|a|£2|b|£3|d + 0(1)7
and if &1, &, &3 and &4 positive
mr(§) = abr” log™ & + O(1).

goghed
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(#i1) If all of a,b and d are odd

|€4]
1€1]21&2/° €3]

and if &, &9, &3 and &4 are positive

mg(§) = abdm <logJr & )2 + 0 <logJr 3 ) +O(1)
R - a a :
2 §1€568 §1€568
Proof. We consider the case R = R3. The case that R is a bounded cube
follows from a similar argument.
Part (7) follows from Theorem 5.1 in [4] or alternatively from Proposi-
tion 6.1.
Let us consider part (7). Suppose a and b are odd and d is even. Then
by Lemmas 3.1 and 6.2 matters are reduced to

a ds dt du
5 _/ / / 7{45 thyd zfgu +O].
sl < ke JJt]< stu @

TEal
Let us assume &1, &, &5 and €, are positive. So

ettt s dtd
mﬂ@):/ [ e o)
[s|<1J[t]<1 JueR stu

with A = =54,
€1 5

Thus

ma(9)] < C (1og’ ) +oq)

Terl

/ / / sin(As®t"u? smudsitdu—l—O(l)
:ab/ Q/ @/ sin(stud)sinud—+0(1)
u
—ab/ +ab/ +0(1

=abl +abIl+O(1

Consider first 1. The integral is

/ds/dv/ du/ds/dv/% o du
sin u sin(vu? sin u sin(vu®)—
u
+/ Q/ d_v/ sinusin(vud)d—u.
o s vy u

The first integral is clearly bounded if ¢ is sufficiently small. The second
integral is bounded in view of the second conclusion of Lemma 2.5.
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The integral in II is

/A ds / dt/oo N
— | — sin u sin(tu®) —.
1 S Jo t o u

We want to replace the range of integration in the ¢ integral from 0 <t < s
by 0 < t < oo, for if we can make this change, the integral will become C'

log \, where
O </°° sinudu)2 _ 7r_2
0 U 4

We shall show that the u integral is O(t~?) for some positive § which will
establish that the contribution in the range ¢t > s is bounded. Now

o d Y d d
/0 sinusin(tud);u == i sin u%(l — cos(tud))u—s
I d 1 [ d
= [ om0 = costeut) 5+ 3 [ simun(n — costeut)
=111+ 1V.

For an n > 0 to be chosen later,

Lo J @y
<t / Puldu + - / < m( ) N (_) a1
t Jo t 1/tn U t t

d+1’ we see |[11| < C(1)° for some & > 0.
The integral IV is shown to be O((7)°) in a similar manner. This completes
the discussion of part (i) of Lemma 7.1.

If we choose 7 so that =5 >n >

We turn to the third part of Lemma 7.1. Then using the results of
Section 3, we see that up to a bounded error

/ / / 2£3u z£4satb ddS dt du
ls1< s < Jlul<

€21 Tes]
[t]<

/|< Ju|> L stu

Tésl
plus two integrals similar to the last one, with the roles of s, ¢, and u inter-
changed.
Call the two integrals I and J. We shall first show that J is O(log\).

By the same changes of variables,

A s oo
dsdtd
J = ab/ / / cosusin(tud)u
o Jo J1 stu

31

IE [ 2]

with A =

& 5353
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The contribution from 0 < s < 1 is bounded. To see this first note
that for a sufficiently small § the contribution from v < & is bounded. For
u > tl(s, we employ Corollary 3.6 of [2].

Also the u integral is O(1/t%) for large ¢, so in the t integral we may
replace the upper limit of integration by oo at the expense of a bounded
error. So

té

J = C’/ —+O =ClogA+ O(1)

<[ dtd
C= ab/ / Cos U sin(tud)—u.
o J1 tu

(The reasoning above shows the integral exists.)
We turn to /. Note that

]:/ 62‘3@ eit@/ ei)\s“tbudeiud_u
i<t S St s u

We first want to show

o dt i ixsatbud d
/ / (ezsezt o 1)_ ezuez)\s tbud_u — O(lOg )\)
sl<t J <1 t Jju<t u

As in the proof of Lemma 6.2, it suffices to consider

/ e“ — 1/ / zu Z)\satb ddu
<t b Jis<r 8 < u
_/ e’
S

The contribution from s < 1 is clearly bounded. For s > 1 we can replace
cosu by 1 with an error which is O(log A). This leaves

t_1q Aa d 1 d
/ ¢ dt/ —S/ sin(s“tbud)—u.
t|<1 1 S Jo u

The u integral is bounded, so the integral is O(logA). Now it remains to
consider

:/ / / zu z)\s“tb ddu
sl<t S Jig<t t Jju<a u
ds [*dt [* d
:ab/ —S/ —/ cosusin(tud)—u.
o s Jo t Jo U

where

A du

cos u sin(st"u®) —
u
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Again the contribution from s < 1is O(1). Next

1
/ (cosu —1) du/ dS/ sin(tu?)— = O(log \).

So we are down to

A s 1 A s 1
/§/ @/ sin(tud)d—u:d/ ﬁ/ ﬁ/ sin(tu)d—u
1
—d/ ds/ dt/smu——dC’/ ds/ ——I—Olog)\)

where C' = [ sinu du/u = 7/2, and thus

[ abdﬂ

(log \)? + O(log \).

8. Edge operators

In this section we let

(s,t,u) E e; %ty

We assume all e, a;, b; and d; are not zero, and each sequence {a;}, {b;} and
{d;} is strictly monotonic. Further suppose that the (a;, b;, d;) lie on a line
and that no projection of that line onto a coordinate plane passes through
the origin. Finally assume d; and dj, are both even at least one of a; and b,

are even, and at least one of a;, and b;, are even. Set

A dsdtdu
m%(g):/7€625462(s7t7u)7

stu

where | | .
R = {(s,t,u) sl < — |t < —, Ju| < —}
Let Fy(s) be as in (1.1).

In this section we obtain the following result:

Proposition 8.1. Under the above conditions
4
o) <c|(Snmelel) +1]
i=1

and m% is uniformly bounded if and only if

*F
/ d<$)d$ =0.
0 S
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Proof. Let us assume &1, &, &3 and &4 are positive. Then mg(f) equals

11
/51/52/ {6i§4Q(s,t7u)+ piaQ(=s,~tu) _ Li€aQ(=s,tu) _ €i§4Q(s,_t7u)}dUdet'
0 \u|<€L

ust

We set u = vs°t? with a = ‘;L X and = bL bl . Then

/1/61 /1/52 / z§4sﬂlt92Q(1,1,u) L }dsdtdu
\u|< stu

s ,653

where neither p; nor p, is zero because the projection of the line through
the (aj, bj,d;) onto a coordinate plane does not pass through the origin. In

fact
aLd1 — aldL del — bldL

pu— d pu—
1 dl — dL an P2 dl - dL
Let us assume first p; and po are positive.
We now make a few more changes of variable and find m%(f ) equals

/mé) dt/xz(@ ds/ {e“Q(l’l’“)—i— o1Q(—1,—Lu)_ isQ(~1,1u)_ ,isQ(1,~1u }du

u

1
[ul< $01¢92

where A1(§) = °657¢% Ae(§) = {'&7°¢L 01 = o~ and 0 = L _ @ Once

p2 p1
again o1 and o9 are nonzero. Let us for simplicity assume o7 > 0 and o9 > 0.

The treatment for other choices of sign is similar.
We proceed in six steps:

Step 1:

is bounded. This follows because according to Lemma 2.5, the u integral is
O(s%). So we may assume

Step 2:

From Lemma 2.5 we sce the u integral enjoys the estimates O(s°) and O(%).
Also |e?*@ELELY 1] < C(Ju| + |ul?)s for some v > 0. So the u integral has
the estimate — for some real K. Thus for some positive 7, and positive 7y

Ht02
the u integral has the estimates 5~ and and Step 2 follows.

tng SN2 tnz )
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Loat] [~ ds du
[
)\2(0 >\2t(5) § I U

for any interval I. Step 3 follows from the fact that the u integral is O(%)
(from Lemma 2.5).

Step 3:

Combining Steps 1, 2 and 3 we have:

Step 4:
m3z(€) :/mln / ds /u|< RGHE }(Z_“+O(1).

m1n(1,>\ (E) /oo dS/ du
...... Y — o).
/w Jul> u

01t°'2

Step 5 follows since by Lemma 2.5 the u integral is O(=5).

Step 6:
min(1, 577) =@ ds du
/ / / ...... 12— o).
lu|> U

Ult‘72

Again we have two estimates for the u integral. First we have the esti-
mates s~° and s° from Lemma 2.5. Secondly by van der Corput’s lemma
we have s%t?2 for some real k. Therefore we have the estimates ¢ s~ and
"5 where 1y, 12, 13, and 14 are positive. This gives Step 6.

Steps 5 and 6 show that

min(37g 1) ds du
[ e Vo,
[ul> u

Ult02

Thus

min(1, 5 <s> dt ds
ml(€) = / L[ R % o)
A2(8) 13 0

This proves Proposition 8.1 in the case that p; and p, are both positive.
If p; and p, are both negative the argument is similar. In this case the ¢
integration goes from # to oo and the s integral goes from ﬁ(g) to oo.
The slight difference arises in Step 2. Now we must show

! dt
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In the case p; and py have opposite signs, we need an extra ingredient.
If py <0 and ps > 0, then o5 < 0. To see this note first that for any ¢

diov — i
dzgl—lzdzg—]_ = M:—a—>0
P1 P1 P1
Then
d;3 — b;
Qo o) —1 = a0 =0 by
P2 P2 P2

Taking differences shows oo < 0. The integral to be bounded is now

/T dt/oo ds/ ( }du
ot S S u

71192

Now the fact that o5 < 0 allows us to have the estimate s7¢"7 for some 7 > 0
which we must use for small ¢. After this the argument is very similar to
the argument when p; and p, are positive. If p; > 0 and py < 0 then the
extra ingredient we need is that oo > 0. To see this note first

digl—lzdi01—12—2<0
P1
while !
di(O'l +0'2) —1l=—"> 0,
P2
and so d;oo > 0. Thus oy > 0. |

9. Proof of sufficiency in Theorem 1.2

In this section we complete the proof of the sufficiency part of Theorem 1.2
by establishing that the cancellation condition involving the oscillatory in-
tegral F'is sufficient for the boundedness of HL. We remind the reader that
Theorem 1.2 requires hypotheses (H1), (H2), (H3) and (H4) and these as-
sumptions will be made throughout this section. By Lemma 4.3 and Propo-
sition 5.3, matters are reduced to showing that for each bounded edge FE,
Hng) is bounded on L?(R%).

We fix a bounded edge E and write Q = Qg(s,t,u) = Zle e;8% tbiydi
and R = R(E) = R; U Ry as defined in Section 5. If (A4;, B;, D;),1 <
1 < m denote the points associated to P on the 1-skeleton of the Newton
polyhedron of P which do not lie on E, then

Ry={Is| [t ul™ = |s|2[t]*[ul®, [s|™[tul®™ = [s|[t]7ul” 1 < i < m}
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and similarly for R,. By (H1) and (H2) we may assume that each a;, b; and
d; is positive and each sequence {a;},{b;} and {d;} is strictly monotonic.
Furthermore by (H3) we may suppose that the projection onto a coordinate
plane of the line on which (a;,b;,d;) lie does not pass through the origin.
Finally we recall that the sufficiency part of Theorem 1.2 makes an assump-
tion on the parity of the two vertices (ay, b1, d;) and (ar, br,dy) of the edge
FE; namely, without loss of generality, d; and dj, are even, at least one of a;
and b; are even and at least one of a;, and b;, are even.
By Proposition 6.1 it suffices to bound the oscillatory integral

Réf-‘l'R Stu

llIlifOI'Hlly in 5 = (51752753754)' Here R§ = {(87t7 u) : |8| S 1/|£1|7 |t| S
1/]&], [u| < 1/]&]}. Without loss of generality we shall take all the & to be
positive. We decompose n% = n%l + n% in the natural way. Our analysis
of both n%l and n% is similar to that of m% in Section 8. In fact we follow

the same argument as for m% to see that

dt d
/‘ / S/ sz(LLU) _|_:| —|—O(1)
teT(€) uelU u

Here T'(&) = {t : Xo(&) <t <min([M\(€)]71, 1)} where A (€) and \y(€) are
as in Section 8. Furthermore U = {|u| > 1: |u| < pui(&)sMit? 1 < i < m}
where

(€)= & e NN M = (B — o)/,

Azzﬂ_ﬁ—Ez_a’ E_CL—AZ Z:bQ—BZ
P2 P1 D; —dy’ D; —d,
and «, 3,01, 09, p1 and ps are defined as in Section 8. We recall that (H2)
guarantees that a, 3, 01, 09, p1, po # 0. Furthermore (H4) implies that each
A; # 0 (without loss of generality, we may assume A; > 0).
Arguing as in Step 5 and Step 6 in Section 8, one finally arrives at the
conclusion

d
n%:/ / s/ szl,l,u)_F‘”] +O(1).
T TiNTy lu|>1 u

Em—«a

TO = {t > 1: 54 < £P1Am t < m1n(§2 2 501/0253 1/02>}

Here
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and for 1 <7 <m —1,

Ei—a Em-o
T — {t > EpB s }
In a similar manner one deduces that
ng, = — — —[e " +] +O(1)
tenlsns tJo 8 Ju<t U

where

Gm—«a

So={t>1: e < 1 < min(g™ &g )

and for 1 <7 <m —1,

Gi—«a _Gm—«a

g, = {t: > g A }

Here
Fi:Hi_ﬁ_Gi_a’ Gi:aLfl_Ai’ Hi:bLfl_Bi
P2 p1 Di—dp—y Di —dp—
Therefore if we can show that for each 1 <i < m,

EZ‘—OZ . Gi—Oé

9.1 = ’
(5-1) P1A; Pl
then we have
dt [ ds
ng=nd+nf,= [ L FeT o
ten; " T;NTo 0

which will conclude the proof of Theorem 1.2. To prove (9.1), it suffices to
show

F—§ _Hi—p

Ei — N Gz —
for each 1 <7 < m. In other words we need to see that for all 7, I; + II; +
111, = 0 where

I; = GiF; — H;E;, 1I;=o(H; — F;), 111, = B(E; — G;).

However L
L+ 1L+ 111=L(Kyx Kp )
Khere z - (a17blad1> - (a27b27d2>7 FZ - <A27B27DZ> - (a27627d2> and
K= (A, Bi, Di) — (ag—1,br—1,dr—1). The points (az,bz_,d2), (ar—1,br-1,
dr—1) and (A;, B;, D;) form the vertices of a triangle and L is a multiple of
(ap—1,br—1,dr—1) — (ag, b, ds). Hence
Z . (Fg X ?L71> = 0,

establishing (9.1).
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10. The necessity of the boundedness of vertex and
edge operators

If V = (s52t° u?) where (a,b,d) is a vertex of the Newton polyhedron of P,
we set

dsdtd
1) = [ 10— s.ms 1y oty B2
stu
R3
Let Q = Ye;s% tu®% where the sum is over all monomials ;5% iy such
that (a;,b;,d;) lie on a bounded edge, say E, of the Newton polyhedron
of P. Set

ds dt du

Hggf(x):///f(xl—s,xz—t,xg—u,m—cg(s,t,u)) :
&

stu

In this section R denotes the cube {(s,t,u): |s| < 1,[t] < 1|u| <1} in R3.

Proposition 10.1. If H% is bounded on L*, then Hy; is bounded on L* for
all vertices V', and HH% is bounded on L? for all bounded edges E.

Remark. Lemma 7.1, Proposition 8.1 and Proposition 10.1 together show
the necessity part of Theorem 1.2, and hence concludes the proof of Theo-
rem 1.2. Furthermore, Lemma 7.1 and Proposition 10.1 show the necessity of
the evenness of at least two of the exponents of each vertex in Theorem 1.1.

Proof. For A = ()\1, )\2, )\3, )\4) set

s t u
Py=MP |~ — —
A 4 ()\17)\27)\3)

and
dsdtu
Hyf(xy, 29, 73,24) = /501 fz1— s, —t, x5 — u, 34 — Pr(s,t,u)) -
ltl<x2 st
[ul<Ag

If HE is bounded, so is Hy, with the same bound uniformly in A. Also
Hyf = Dyxf+H,f where H, f is a truncation of the triple Hilbert transform
of f in the first three variables and D, is a distribution, which acting on a
test function ¢ is given by

1

0 ds dt du
D)= [, [ 5ot pPils )P (s.t.0) .
on Jo O

stu
Jul<Ag
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The latter integral is absolutely convergent since each monomial of P con-
tains positive powers of all variables.

So to prove Proposition 10.1 it suffices to find for each vertex (a,b,d) a
sequence of \’s with each component tending to infinity in such a way that

[P (s,t,u)] <D Cyls| Mt [ul, A, Bj, D; >0
(10.1) j
and Py (s,t,u) — s*t"u?.
Also for each edge we need to find a sequence of \’s with each component
tending to infinity in such a way that
|P)\ (S7 l u)| < Z Cj|S|Aj|t|Bj|u|Dj7 Aj7 Bj7 Dj >0
(10.2) j
and P (s,t,u) — Q(s,t,u).
The existence of this sequence of \’s follows from the following lemma:
Lemma 10.2. (i) Let V = (s t°,u?) where (a,b,d) is a vertex of the
Newton polyhedron of P. There exist positive numbers (a, 3,7) such
that aa + fb+ dy < A+ B +~D for every (A, B, D) # (a,b,d) in
the Newton polyhedron of P such that esAtPuP is a monomial of P.
(i) If Q = Segs%tbiudi is the polynomial corresponding to an edge of the
Newton polyhedron of P, there exist positive «, 3,7 such that
aa; + b + vd;
is independent of i, and
Ckaz+ﬁbz+’}/dz < OéA"‘ﬁB—i‘”}/D

for all A, B, D that occur as exponents of a monomial of P not lying
on the edge corresponding to Q).

Remark. Given the lemma, we can achieve (10.1) and (10.2) by taking A\; =
N X = 1% A3 = 07 and Ay = nn®n? for (10.1) and Ay = ponbifydi
for (10.2). This concludes the proof of Proposition 10.1.

Proof of Lemma 10.2. To prove (i), we choose a plane 7 that intersects
the closed Newton polyhedron only in V. Then since the Newton polyhedron
is convex it lies entirely on one side of w. Let N be the normal to 7 pointing
into the Newton polyhedron. Say N = («, 3,7). We take this («, 3,7) for
the proof of (7). Clearly

ac+ b+ dy < aA+ B+ D
for every (A, B, D) # (a,b,d) since
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It remains to show that «, 3, and ~ are positive. To see this note that if
r—a,y—b,z—d, are all non-negative with at least one of xt —a,y — b,z —d
positive, (x,y, z) is in the interior of the Newton polyhedron. So

a-(x—a)+F-(y—>b)+v(z—d)>0

whenever z —a >0, y —b > 0, 2 —d > 0 with strict inequality in one of the
three cases. Thus «, 3 and ~ are positive.

The proof of (ii) is similar. We take a plane 7 which contains the line
through the points (a;, b;, d;) and intersects the closed Newton polyhedron
in no other points. Again we take (a, 3,7) so that N = («, 3,7) is a normal
to m pointing into the Newton polyhedron. We just remark that we are
using the assumption that the edge does not lie in a plane parallel to a
coordinate plane to assert that if (u, v, w) is an interior point on that edge
and x > u,y > v, and z > w, with at least one of the inequalities strict
(x,y, z) is in the interior of the Newton polyhedron. This implies as above
that o, 8 and ~ are positive. |

11. Conclusion of the proof of the necessity in Theo-
rems 1.1 and 1.2

We let, as usual,

L
Q(s, t,u) = Z e;s“tiub
j=1

with each sequence {a;}, {b;} and {d;} strictly monotone and positive. We
assume at least two of (aq,b1,d;) even and at least two of (ar,br,dy) even,
say, di and d, are even. Then with Fy(s) asin (1.1), the following proposition
will complete the proof of Theorem 1.1.

©
/ Fy(s)2 =0
0 S

for all choices of ej with e; # 0, then either all a; are even, all b; are even
or all d; are even.

Proposition 11.1. If

We may assume L > 3. We shall need the following lemma:

Lemma 11.2. Suppose d; and d;, are even and a, is even. Then a; has the
same parity as d; for all j or all d; are even or all a; are even. Similarly is
ay 18 odd, then a; and d; have opposite parity for all j or all d; are even.
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Proof. Suppose for some jy, a;, is odd and d;, is even. So a;, —a; = 2k +1
and d;, — dy = 2¢ for some integers k and ¢. Take a third pair (a;,,d;,).

Then
ajo— a1  dj, —dy

aj, —ar dj, —dy

Hence (2k +1)(d;j, — dq) = 2¢(a;, — a1). Thus d;, — d; is even. So if for any
Jo, aj, — a1 is odd and d;, — d; is even then all d; are are even. This proves
the lemma. [}

Proof of Proposition 11.1. We are assuming that d; and dj are even.
Then we may assume without loss of generality that a; is even. Then there
are two cases, b; is even or by is odd. Assume first that b; is even. In this
case by Lemma 11.2, we may assume in each monomial s%t%u% of Q) that
a;, b; and d; are even or a;, b; and d; are odd. We write

Q(s,t,u) = E(s,t,u) + H(s,t,u)

where the exponents of all monomials in F are even and the exponents of
all monomials of H are odd. We Wish to show that H is identically zero.

Then the condition that fo Fy(s)% =0 is just

*ds [* . d
/ —S/ eSELLW gin (s H (1,1, u))—u = 0.
o S Jow u

By looking at the imaginary part of the integral, we find

I—/ / sin(sE(1,1,u)) sin(sH(1,1,u)] 2 = 0.

u

If now b, is odd, then in each monomial of ) a; and d; are even and b; is odd
or a; and d; are odd and b; is even (unless all d; are even). A computation
then shows that unless all d; are even, we again find I = 0.

We now consider I. We interchange the order of integration and use an
argument in [5], (pages 40 and 41). First note that I equals

/OOdu/w@ {COS (1, 1, U)+H(17 17 u))D_COS(S[(E(L 17 u)_H<17 17 u))])}

=B, L)+ H1,Lu)|™  and  B=|[E(1,1,u) - H(1,1,u)|™"
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Then we write

/OO %{COS(S[E(L Lu)+H(1,1,u)])} =
:/ {cos(s[E(1,1,u)+ H(1,1,u)]) — 1}%

S Ads
/ {cos(s| 1,1,u)+H(1,17U)])}d§+/ d?
and
ds
/ ?{cos( s[E(1,1,u) — H(1,1,u)])} =
~ [ eostslE (1 1w — 1L 1w — 1}
+ Boo{cos(s[E(l,l,u) (LLU)])}_ / %
So we have
du . |E(1,1,u)+ H(1,1,u)
I:/O w8\ BTy — H( Lu

But if we take all e; positive then

|E(1,1,u)+ H(1,1,u)| > |E1,1,u) — H(1,1,u)|
and at least for some interval of u

|E(1,1L,u)+ H(1,1L,u)| > |E(1,1,u) — H(1,1,u)|

unless H is identically zero. If H is not identically zero, then since I = 0 we
arrive at a contradiction. This completes the proof of Proposition 11.1 and
also of Theorem 1.1. [ |

12. Two Examples

In this section we consider two examples of edge operators. The polynomials
are

Ql _ A330t29u2 +C'527t28u3 —I—D521t26u5 +BSlSt25u6

and
Qo = As*t*u* + Bs3t5u® + DstPu?.
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We consider

ds dt du
x) = // flzy — 8,29 — t, x5 — u,xq — Q1(s,t,u))
RS

stu

)

and

Hyf (x ///f Ty — S, X2 — 1,03 — U, Ty — Qz(sata“»detdu-

stu

017

We shall show that for Hy, there is a choice of (A, C, D, B) for which none
of A,C, D, B are zero and H is bounded on L?*(R?*) while if A > 0,C > 0,
D > 0, and B > 0, H; is not bounded on L?. On the other hand for every
choice of A, B, D with A # 0, B # 0, and D # 0, H, is unbounded on L?.

By Proposition 8.1 in each case it suffices to see whether [“Fy(s)ds/s=0.
Moreover, in Section 11, we showed that if all of the coefficients are positive

then [;° Fy(s)ds/s # 0.

We shall first show that if A = B and C' = —D in )1, then fo Fy(s)ds/s

= 0. With the notation of Section 11,
E(u) = Au? + Bu® and H(u) = Cu® + Du®,

and

I

/ dS/ sin(sE(u)) sin(sH (u ))d_u
i
|

|

() + 1) du B(L) + H() du
/log (w)— ()u+/010g D H(L

u

Now

! S(E(L)+ H(1))ld
1= [ g IO+ TG
Since A = B and C = —D, we see that

II:/Ollog |E(u)—H(u):du — I

This completes the analysis of Hj.
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For Ho,

> F *d X d
/ (S) ds — / _S / 6z(Au +Du?)s sin(Bu?’s)—u.
0 S o S Jo u

After a change of variables one sees that for some non-zero A depending
on A, B and D,

/OOF(s)ds:/"osin)\s/ma(w%)sd_uds
0 § 0 § 0 u

/OOF(s)dS:/"Osin)\s/mei(u%)Sd_uds
0 § 0 § 0 u

depending on the signs of A and D. The imaginary part of the first integral
reduces to

o 1 1
/0 %Sin()\s)/o sin((%%—u)s)i—u:/o log

which is non-zero for any A # 0.
The second integral reduces to

*d ! 1NN
/ % sin )\3/ cos((u——)s)—u =
0 0 U

S u

or

A= (u+12)

u

= /0 {sgn((% —u)+ ) +sgn(A — (% — u))}d—u

u

which is non-zero for any A # 0.
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