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Triple Hilbert transforms along
polynomial surfaces in R4

Anthony Carbery, Stephen Wainger and James Wright

Abstract
We investigate the L2 boundedness of the triple Hilbert transform

along the surface given by the graph of a real polynomial P of three
variables. We are interested in understanding the relationship be-
tween the geometric properties of the Newton polyhedron of P and
the analytic property of L2 boundedness.

1. Introduction

Let P (s, t, u) be a real-valued polynomial of three real variables. Set Γ(s, t, u)
= (s, t, u, P (s, t, u)). For x ∈ R4 and f a Schwartz function on R4 set

Hf(x) = lim
ε→0

∫∫∫
ε≤|s|≤1
ε≤|t|≤1
ε≤|u|≤1

f
(
x − Γ(s, t, u)

)ds dt du

stu
.

We are interested in conditions on P so that we have the estimate

‖Hf‖L2(R4) ≤ C‖f‖L2(R4).

This problem is motivated and influenced by earlier work of [2] and [4]. Our
analysis of the problem relies upon ideas and techniques developed in these
papers.

Previously, we had studied the corresponding operator in one lower
dimension. That is for P (s, t) a polynomial of two variables, Γ(s, t) =
(s, t, P (s, t)), f a Schwartz function on R3 and x in R3, we considered

Hf(x) = lim
ε→0

∫∫
ε≤|s|≤1
ε≤|t|≤1

f
(
x − Γ(s, t)

)dsdt

st
.
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(Here and in what follows, the notation (Roman) H will always refer to
operators on R4 while (calligraphic) H will refer to operators on R3.)

The boundedness of H (and in fact in any Lp, 1 < p < ∞) is determined
by the Newton polygon of P . The Newton polygon of P is obtained in
the following way. We plot the points (a, b) for each (a, b) such that the
monomial satb occurs in P with a non-zero coefficient. For such an (a, b)
let Ra,b = {x, y ∈ R2 : x ≥ a, y ≥ b}. Then the Newton polygon of P is
the smallest convex set containing

⋃
Ra,b. The Newton polygon of P is an

(unbounded) polygon. In [1] we obtained the following result:

Theorem A. Assume P (0, 0) = ∇P (0, 0) = 0. Then for any p, 1 < p < ∞,

‖Hf‖Lp(R3) ≤ C(p)‖f‖Lp(R3)

if and only if for each vertex (a, b) of the Newton polyhedron of P at least
one of a and b is even.

Theorem A suggests that the boundedness of H should depend only on
the Newton polyhedron of P . For P a polynomial of three variables we form
the Newton polyhedron of P in the following manner. For each monomial
satbud which occurs in P with a non-zero coefficient, we set

R(a,b,d) = {(x, y, z) ∈ R3 : x ≥ a, y ≥ b, z ≥ d}.
Then the Newton polyhedron of P is the smallest convex set containing the
union of the R(a,b,d). In fact, it transpires that the boundedness of H is not
determined by the Newton polyhedron alone; indeed it may depend upon
the actual coefficients of the polynomial in question. This means that the
the condition for boundedness of H has a much more complicated nature
than in the setting of Theorem A.

In order to understand the situation in R4, it is convenient to review the
strategy of the proof of Theorem A. For simplicity assume that P (s, 0) =
P (0, t) = 0. For each vertex (a, b) of the Newton polyhedron of P we consider
the corresponding monomial V = esatb and we set

HV
Rf(x1, x2, x3) =

∫
R

f
(
x1 − s, x2 − t, x3 − esatb

)dsdt

st
.

Here R = {(s, t) : |s|a|t|b ≥ |s|α|t|β for all exponents (α, β) arising in P }.
We then reduce the proof of the boundedness of H to the boundedness of
each HV

R. The boundedness of each HV
R now follows from Theorem 5.1 of [4].

It turns out that the condition for the boundedness of HV
R – namely at least

one of a and b be even – is the same as that for HV where

HV f(x1, x2, x3) =

∫
R2

f
(
x1 − s, x2 − t, x3 − esatb

)dsdt

st
,
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The condition that at least one of a and b be even is equivalent to condi-
tion (i) in Theorem 5.1 of [4], and this theorem then ensures the boundedness
of HV

R .
In four dimensions, we reduce matters to the study of certain “edge

operators”. Suppose Q =
∑

ejs
aj tbjudj , where the sum is over all (aj , bj, dj)

such that ejs
aj tbjudj is a monomial of P with (aj , bj , dj) lying on an edge of

the Newton polyhedron of P . Then we reduce the proof of the boundedness
of H to the boundedness of operators

HQ
Rf(x) =

∫
R

f
(
x − ΓQ(s, t, u)

)ds dt du

stu

where ΓQ(s, t, u) = (s, t, u, Q(s, t, u)), and R is a region that depends on Q
and P .

To get some understanding of why Theorem 5.1 of [4] applies to the
operators HV

R in R3 and not to HQ
R in R4, consider

HQf(x) =

∫
R3

f
(
x − ΓQ(s, t, u)

)ds dt du

stu
.

Both this operator and HV are homogeneous with respect to a two parameter
dilation group (assuming Q has at least two monomials). In the case of HV

the dilation group is Dλ,η, where

Dλ,η(x, y, z) = (λx, ηy, λaηbz).

If the dj are distinct, the dilation group for HQ is

Dλ,η(x, y, z, w) = (λx, ηy, λA1ηA2z, λB1ηB2w)

where

A1 =
a2 − a1

d1 − d2

, A2 =
b2 − b1

d1 − d2

B1 =
a2d1 − a1d2

d1 − d2
, B2 =

b2d1 − b1d2

d1 − d2
.

In the case of HV almost every point in R2 is a dilate of a point (x, y, z)
such that x = ±1, y2 + z2 = 1, the set of which we denote by Σ. Then
the operator HV can be formed by integrating dilates of the distribution
δ(z − xayb) 1

xy
(where δ is the Dirac delta) restricted to Σ. Notice that

this distribution restricted to Σ is not singular and in fact defines a finite
measure. Now let Σ = {(x, y, z, w) ∈ R4 : x = ±1 and y2 + z2 + w2 = 1}. If
A1, A2, B1 and B2 are all positive then almost every point in R4 is equivalent,
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under the appropriate group of dilations, to a point on Σ. Unlike the three
dimensional case discussed above observe that the distribution

δ
(
w − Q(x, y, z)

) 1

xyz
,

when restricted to Σ, does not define a finite measure.

Nevertheless, the Ricci–Stein paper is very suggestive for us in two ways.
First to each dilation group, Ricci and Stein associate a matrix Λ. In the
case at hand this is

Λ =

⎛
⎜⎜⎝

1 0
0 1
A1 A2

B1 B2

⎞
⎟⎟⎠

The most nondegenerate situation is when each 2 × 2 subdeterminant is
not zero. This means that when we consider (aj , bj , dj) corresponding to an
edge (assuming the dj are distinct as above), the aj are distinct, the bj are
distinct and the projections of the line through (aj, bj , dj) onto the x − z
plane and the y − z plane do not pass through the origin. We shall make
these assumptions to put ourselves in this nondegenerate situation and shall
also assume that all aj , bj and dj are positive in order to avoid the need for
some subsidiary arguments.1

Thus we are led to the following assumptions. If (aj , bj, dj) lie on an edge
corresponding to Q,

(i) Each aj , bj and dj is positive

(ii) Each sequence {aj}, {bj} and {dj} is strictly monotone

and

(iii) The projection of the line through the points (aj , bj, dj) onto a coor-
dinate plane does not pass through the origin.

We shall always assume conditions (i), (ii) and (iii) for each Q arising
from an edge of the Newton polyhedron of P .

The second point that we should learn from the Ricci–Stein paper is that
the appropriate cancellation condition for the boundedness of HQ should be
expressed in terms of the vanishing of an oscillatory integral involving Q, and
this suggests that the boundedness of HQ may depend on the coefficients
of Q and not just the powers (aj , bj, dj).

Even under these natural assumptions, the situation is quite intricate,
and in order to facilitate our analysis we shall impose further nondegeneracy

1Such subsidiary arguments were also needed in the three-dimensional case.



Triple Hilbert transforms 475

assumptions on the Newton polyhedron of P . In particular, we shall assume
that the plane determined by any three vertices of the Newton polyhedron
of P does not contain the origin.

In stating our theorems we shall use the following notation. If V =
esatbud, with e �= 0, with (a, b, d) a vertex of the Newton polyhedron of P ,
and Γ(s, t, u) = (s, t, u, V ) = (s, t, u, esatbud), we set

HV
Rf(x) =

∫
R

f
(
x − Γ(s, t, u)

)ds dt du

stu
.

Here R is a subregion of R3. If Q =
∑k

j=1 ejs
aj tbjudj , with ejs

aj tbjudj

running over the monomials of P such that (aj , bj , dj) lie on an edge of the
Newton polyhedron of P , we set

HQ
Rf(x) =

∫
R

f
(
x − Γ(s, t, u)

)dsdtdu

stu
,

where Γ(s, t, u) = (s, t, u, Q(s, t, u)).
As indicated above, we shall always make the following hypotheses on

the Newton polyhedra that we consider:

(H1) No vertex lies on a coordinate hyperplane; that is, if (a, b, d) is a vertex,
then a > 0, b > 0 and d > 0.

(H2) For each edge, if (aj , bj , dj) lies on that edge, then each of the sequences
{aj}, {bj} and {dj} is strictly monotonic, and the projection of the line
through (aj , bj , dj) onto a coordinate hyperplane does not pass through
the origin.

(H3) The plane determined by any three vertices does not contain the origin.

Remark. In (H2) above, automatically two of the sequences are monotonic
in one sense and the third monotonic in the opposite sense.

We shall prove two types of theorem in this paper. We consider a collection
of monic monomials {saj tbjudj}. Let R = {(s, t, u) : |s| ≤ 1, |t| ≤ 1|u| ≤ 1}.
In the first theorem we give a necessary and sufficient condition that HP

R be
bounded for the class of all polynomials P (s, t, u) =

∑
ejs

aj tbjudj with all ej

different from zero. Secondly, with an additional nondegeneracy condition,
we give a necessary and sufficient condition that HP

R be bounded for an indi-
vidual P in terms of the vanishing of certain oscillatory integrals associated
to P . The condition of the first theorem is expressed solely in terms of the
Newton polyhedron while that of the second theorem is expressed in terms
of the individual coefficients of the polynomial in question.
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Theorem 1.1. Suppose {aj , bj , dj} are fixed so that hypotheses (H1), (H2)
and (H3) are satisfied by the Newton polyhedron generated by the monic
monomials {saj tbjudj}. Then HP

R is bounded on L2 for all polynomials
P (s, t, u) =

∑
ejs

aj tbjudj with all ej different from zero if and only if the
following conditions hold:

(i) For each vertex (a, b, d) at least two of {a, b, d} are even; and

(ii) If {(al, bl, dl)} are the points on any edge of the Newton polyhedron,
either all the al are even, or all the bl are even or all the dl are even.

Before stating our theorem of the second type, some preliminary discus-
sion is in order. First of all it is well-known (see [6]) that if N(u) is any
real-valued polynomial of one real variable, then∫ ∞

−∞
eiN(u) du

u

is finite with a bound depending only on the degree of N . Now fix a poly-
nomial P in the above class and suppose that Q(s, t, u) is a polynomial
corresponding to a bounded edge of the Newton polyhedron generated by
the monomials occurring in P . Let

F Q
a (x) =

∫ ∞

−∞

ds

s

{
eixQ(s,1,1) + eixQ(s,−1,−1) − eixQ(s,−1,1) − eixQ(s,1,−1)

}

F Q
b (x) =

∫ ∞

−∞

dt

t

{
eixQ(1,t,1) + eixQ(−1,t,−1) − eixQ(−1,t,1) − eixQ(1,t,−1)

}

and

(1.1) F Q
d (x) =

∫ ∞

−∞

du

u

{
eixQ(1,1,u) +eixQ(−1,−1,u)−eixQ(−1,1,u)−eixQ(1,−1,u)

}
.

Then F Q
a , F Q

b and F Q
d are well defined bounded functions of x. Let (aQ

1, b
Q
1, d

Q
1 )

and (aQ
2 , bQ

2 , dQ
2 ) be the two vertices of the bounded edge corresponding to Q.

Our analysis will show that if aQ
1 and aQ

2 are even, then∫ ∞

0

F Q
a (x)

dx

x

exists and similarly for the pairs (bQ
1 , bQ

2 ) and (dQ
1 , dQ

2 ).
The additional hypothesis we require is as follows:

(H4) P (s, t, u) has the form P =
∑

ejs
aj tbjudj where the ej are nonzero,

and the plane determined by any three points (aj1 , bj1, dj1), (aj2, bj2, dj2) and
(aj3 , bj3, dj3), two of which lie on one edge of the Newton polyhedron of P ,
the third of which lies on another edge of the Newton polyhedron of P , does
not contain the origin.
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Theorem 1.2. Let P be a polynomial whose Newton polyhedron satisfies
(H1), (H2) and (H3) and which also satisfies (H4).

(i) If HP
R is bounded on L2, then for all edges, two of the components

of each of the two vertices (aQ
1 , bQ

1 , dQ
1 ) and (aQ

2 , bQ
2 , dQ

2 ) generating the
edge are even. If aQ

1 and aQ
2 are even then∫ ∞

0

F Q
a (x)

dx

x
= 0.

Similarly if bQ
1 and bQ

2 are even then∫ ∞

0

F Q
b (x)

dx

x
= 0,

and if dQ
1 and dQ

2 are even then∫ ∞

0

F Q
d (x)

dx

x
= 0.

(ii) Conversely, if for each Q, at least two components of {aQ
1 , bQ

1 , dQ
1 } and

{aQ
2 , bQ

2 , dQ
2 } are even, and if aQ

1 and aQ
2 are even and∫ ∞

0

F Q
a (x)

dx

x
= 0,

if bQ
1 and bQ

2 are even and∫ ∞

0

F Q
b (x)

dx

x
= 0,

and if dQ
1 and dQ

2 are even and∫ ∞

0

F Q
d (x)

dx

x
= 0,

then HP
R is bounded on L2.

Remark. If the necessary conditions that two of {aQ
1 , bQ

1 , dQ
1 } and that two

of {aQ
2 , bQ

2 , dQ
2 } are even are satisfied, it follows that both aQ

1 and aQ
2 are even

or both bQ
1 and bQ

2 are even or both dQ
1 and dQ

2 are even. Therefore if say both
aQ

1 and aQ
2 are even and both bQ

1 and bQ
2 are even and if

∫ ∞
0

F Q
a (x)dx

x
= 0,

then also we have
∫ ∞

0
F Q

b (x)dx
x

= 0.

The proof of the necessity in these theorems will proceed by a dilation
argument which requires us to analyze global variants of our theorems in
certain special cases. See Sections 7 and 8.
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The organization of this paper is as follows. In Section 2 we make some
preliminary estimates which the reader may wish to refer back to later. In
Section 3 we establish that a large portion of the Fourier multiplier for the
operators in our main theorems is under control, using methods of wide
applicability which do not use the most essential properties of the Newton
polyhedron. In Section 4 we return to the full operators and reduce matters
to the skeleton of the Newton polyhedron, that is the vertices and edges. In
Section 5, we show boundedness of edge operators imply the boundedness
in Theorems 1.1 and 1.2. In Section 6, we make a reduction in the study
of edge operators which in particular proves the sufficiency in Theorem 1.1.
In Section 9 we conclude the sufficiency part of Theorem 1.2. Many of the
arguments of this section echo those of Section 8. Sections 10 and 11 are de-
voted to the proof of the necessity parts of Theorems 1.1 and 1.2. Finally, in
Section 12 we give two examples. One shows that the cancellation conditions
in Theorem 1.2 do indeed depend upon the coefficients of the polynomial
in question. The other example is a Newton polyhedron all of whose ver-
tices have even coordinates but for which every choice of coefficients in the
polynomial gives rise to an unbounded operator.

After the submission of this manuscript, we learned of a related pa-
per Triple Hilbert transforms along polynomial surfaces by Yong-Kum Cho,
Sunggeum Hong, Joonil Kim and Chan Woo Yang, written at the same time
as ours. They prove an analogue of Theorem 1.1 in which they also obtain Lp

estimates.

2. Estimates for certain sublevel sets and oscillatory

integrals

We begin with a sublevel set estimate.

Lemma 2.1. Let
P (u) = a1u + · · ·+ anun,

aj real, be a polynomial with no constant term. Suppose J is a subinterval
of the positive reals such that P (u) and P (j)(u), 1 ≤ j ≤ n, are of constant
sign and monotonic on J. Suppose in addition for some j0, 1 ≤ j0 ≤ n, and
all u ∈ J

(2.1) |uj0P (j0)(u)| ≥ |ujP (j)(u)|, 1 ≤ j ≤ n.

Assume further that for some subinterval [a, b] of J with b ≤ C(n)a

α ≤ |P (u)| ≤ β

for all u, a ≤ u ≤ b.
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Then there exists a constant A(n) such that

(2.2)
b − a

a
≤ A(n)

(
β − α

α

)1/j0

.

A similar result holds if J is contained in the negative reals.

Proof. The proof relies on ideas from the Proof of Theorem 3.1 of [2].

ujP (j)(u) =

n∑
�=j

a�C(�, j)u�

with

C(�, j) =
�!

(� − j)!
.

We claim that for all u in [a, b],

|P (j0)(u)| ≥ A0(n)
α

aj0
.(2.3)

In fact, suppose for some u ∈ [a, b] and all 1 ≤ j ≤ n,

|ujP (j)(u)| < η

for some positive η. Then by Cramér’s rule, we see that for each �, 1 ≤ � ≤ n.

|a�u
�| ≤ A1(n)η.

This implies
|P (u)| ≤ A2(n)η.

In view of (2.1) we see that if |uj0P (j0)(u)| < |t| ≥ 1
|ξ2|η for some u ∈ J ,

|P (u)| ≤ A2(n)η.

But we are assuming
|P (u)| ≥ α

for all u in [a, b]. Thus for all u in [a, b],

(2.4) uj0|P (j0)(u)| ≥ α

A2(n)
.

Then (2.3) follows since b ≤ C(n)a. We shall see that (2.4) implies

(2.5) |P ′(u)| ≥ γ(n)
α(b − a)j0−1

aj0
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for some γ(n) > 0 and all u in a subinterval [a′, b′] of [a, b] with b′−a′ ≥ b−a
2j0

.
Let us see that (2.5) implies the conclusion of Lemma 2.1. Since P ′(u)
and P (u) are of constant sign and monotonic on [a, b]

β − α ≥ |P (b′) − P (a′)| =

∫ b′

a′
|P ′(u)|du ≥ γ(n)α|b − a|j0

2j0aj0
.

So
b − a

a
≤ 2

(
1

γ(n)

)1/j0 (
β − α

α

)1/j0

,

and the lemma is proved.
We have to see that (2.4) implies (2.5). To see this it suffices to show

that if for some �
|P (�)(u)| ≥ λ

on a subinterval [c, d] of J , then

|P (�−1)(u)| ≥ 1

2
λ(d − c)

on a subinterval [c′, d′] of [c, d] with |d′ − c′| ≥ 1
2
|d − c|.

We may assume without loss of generality that P (�)(u) ≥ 0 on [c, d]. If
P (�−1)(u) ≥ 0 on [c, d]

P (�−1)(u) − P (�−1)(c) ≥
∫ u

c

P (�)(u)du

≥ λ(u − c).

so if u > d+c
2

, P (�−1)(u) > λ
2
(d − c), and we can take c′ = d+c

2
and d′ = d. If

P (�−1)(u) ≤ 0 on [c, d]

P (�−1)(d) − P (�−1)(u) > λ(d − u).

So |P (�−1)(u)| > 1
2
λ(d − c) for c ≤ u ≤ d+c

2
. This concludes the proof of

Lemma 2.1. �
The purpose of the next lemma is to deal with the assumption that

b ≤ C(n)a in Lemma 2.1.

Lemma 2.2. Let P (u) be a polynomial of degree n with P (0) = 0. Then
there exist at most A(n) intervals I�, 1 ≤ � ≤ A(n), in the positive reals,
each of the form I� = (a(�), b(�)) with b(�) ≤ C(n)a(�) such that for u in the
complement of the union of the I�, |1 + P (u)| > 1/4. A similar conclusion
holds for the negative reals.
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Proof. Let P (u) =
∑n

j=1 aju
j. For each j and k �= j, let

Ej,k =
{
u :

1

2n
≤ |aju

j|
|akuk| ≤ 2n

}
.

Then ∪Ej,k is a union of at most n2 intervals, (a(�), b(�)), 1 ≤ � ≤ n2 with
b(�) ≤ c(n)a(�). In the complement of ∪kEj,k,

1

2
|aju

j| ≤ |P (u)| ≤ 5

4
|aju

j|.

Thus for u is in the complement of ∪kEj,k with |1 + P (u)| < 1
4
, then

3
4
≤ |P (u)| ≤ 5/4, |aju

j| ≥ 1
2

and |aju
j| ≤ 3. That is 1

2|aj | ≤ uj ≤ 3
|aj | . Thus

if we add the n intervals [( 1
2|aj |)

1/j , ( 3
|aj |)

1/j ] to the n2 intervals Ej,k, we have

the required intervals. �
Our estimates for oscillatory integrals depend on Corollary 3.6 of [2]

which we state here for the convenience of the reader.

Corollary 3.6 of [2]. Let a1, . . . , aN ∈ R. Suppose a� �= 1 for � =
1, 2, . . . , N . For λ ≥ 1 and B ≥ 1, consider

I(λ) =

∫ B

1

exp{iλs + y1s
a1 + · · · + yNsaN}ds

s
.

Then
|I(λ)| ≤ Cλ−1/(N+1).

Here C = C(a1, . . . , aN) is independent of B, y1, . . . , yN .

In our next lemma, P (s, u) is a polynomial of degree n with no linear
term, and L is a subinterval of [A,∞], where A > 1. The interval L can
depend on u, but A must be independent of u. We consider

I(L) =

∫
L

ei(s+P (s,u)) ds

s
.

Lemma 2.3. With P and L as above there are positive η1 and η2 and a
set E of u’s so that for u not in E

(2.6) |I(L)| ≤ C1(η1, η2, n)A−η1 ,

and E is contained in a bounded number of intervals Kj

Kj = [aj , aj + C2(η1, η2, n)A−η2aj].

Also the number of intervals Kj depends only on n. A similar result holds
if L ⊂ (−∞,−A).
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Proof. We may assume L = [A, B], with B perhaps depending on u. If
P (s, u) has no term linear in s, Lemma 2.3 follows from Corollary 3.6 of [2]
after making a change of variables s = Aσ. Otherwise

P (s, u) = sP1(u) + P2(s, u)

where P1 has no constant term and no monomial of P2 is linear in s. We
now change variables setting s = σA. Then

I =

∫ B′

1

eiAs(1+P1(u))+P2(As,u)ds

s
.

We let E = {u : |1 + P1(u)| < 1√
A
}. For u in the complement of E, the

estimate (2.6) follows from Corollary 3.6 of [2]. Using 2.2, we can divide the
set of u’s in E into a bounded number of intervals in which the hypotheses
of Lemma 2.1 apply. Then applying Lemma 2.1, we obtain the desired
conclusion on the set E. �

Lemma 2.4. Let P (s, t, u) be a polynomial such that each monomial of P
contains a positive power of s and a positive power of u. For t ≥ 1, let

I(t) =

∫
u≥t

du

u

∣∣∣∣
∫
|s|∈L1(u,t)

ds

s
ei(s+P (s,t,u))

∣∣∣∣ ,

where L1 is a subinterval of (u,∞). For any δ > 0 and 0 < t < 1, let

J(t) =

∫
0<u≤t

du

u

∣∣∣∣
∫
|s|∈L2(u,t)

ds

s
ei(s+P (s,t,u))

∣∣∣∣
where L2 is a subinterval of [u−δ,∞). Then for some positive η1 and η2 =η2(δ)

(2.7) I(t) ≤ C(n)

tη1

and

(2.8) J(t) ≤ C(n, δ)tη2(δ).

Proof. Consider the estimate for I(t). We divide the u integration into
dyadic intervals 2k ≤ u < 2k+1, with k ≥ log |t| − 1. For u in the interval
[2k, 2k+1], L1(u, t) ⊂ (2k,∞). We apply Lemma 2.3. For u not in E, the s
integral is at most 2−η1k, for some η1 > 0 and so

∫
2k≤u≤2k+1

u �∈E

du

u

∣∣∣∣
∫
|s|∈L1(u,t)

ei(s+P (s,t,u))ds

s

∣∣∣∣ ≤ C2−η1k.
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Since the s integral is uniformly bounded (see for example [6]),

∫
u∈E

2k≤u≤2k+1

du

u

∣∣∣∣
∫
|s|∈L1(u,t)

ei[s+P (s,t,u)]ds

s

∣∣∣∣ ≤ C sup
a

2k≤a≤2k+1

∫ a+C2−η2ka

a

du

u
≤ C2−η2k.

Summing on k, we arrive at the estimate for I(t). The estimate for J(t) is
obtained in a similar manner. �

The next lemma gives a basic estimate for an oscillatory integral which
we will find very useful on several occasions.

Lemma 2.5. Let

E(s) =
k∑

j=1

ejs
�j and F (s) =

n∑
j=1

fjs
mj

with the ej and fj not zero. Assume the �j and mj are strictly increasing.
For any B > 0 set

I(λ) =

∫ B

0

eiλE(s) sin λF (s)
ds

s
.

Then if �k > mn ≥ 1

(2.9) |I(λ)| ≤ Cλδ

for some δ > 0. If 1 ≤ �1 < m1

(2.10) |I(λ)| ≤ Cλ−δ for some δ > 0.

Here, C may depend on the ej and fj.

Proof. In this lemma we are mainly interested in small λ > 0 in (2.9) and
large λ > 0 in (2.10). To prove (2.9) we write

I(λ) =

∫
0≤s≤A

+

∫
A≤s≤u0

+

∫
u0≤s≤B

:= I1 + I2 + I3

where A > 1 is to be chosen as a function of the {ej} and {fj}, and u0 =(
1
λ

) 1
mn

−ε
, where ε > 0 will be chosen small. For any fixed A,

|I1| ≤ C(A)λ.

For A > 1

|I2| ≤ Cλ

∫ u0

1

smn
ds

s
≤ Cλεmn.
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If A is sufficiently large and s > A,

| d

ds
(E(s) ± F (s))| ≥ Cs�k−1

for some positive C, so

|I3| ≤ C

λ

∫ ∞

u0

ds

slk+1
.

Thus

|I3| ≤ C

λ
λ

�k
mn

−ε�k ≤ Cλδ

if ε is sufficiently small since �k > mn. This concludes the proof of (2.9).
To prove (2.10), we write

I(λ) =

∫ u0

0

+

∫ A

u0

+

∫ B

A

= I1 + I2 + I3,

where

u0 =

(
1

λ

) 1
m1

+ε

,

with
1

m1
+ ε ≤ 1

�1
− ε,

and A is sufficiently small. For any fixed A,

|I3| ≤ Cλ−δ

for some δ > 0 by van der Corput’s lemma. (Not all the coefficients of E±F
can be zero.) If u0 < 1,

|I1| ≤ Cλum1
0 ≤ Cλ−m1ε.

For A sufficiently small, and 0 ≤ s ≤ A,∣∣∣∣ d

ds
(E(s) ± F (s))

∣∣∣∣ ≥ Cs�1−1.

So

|I2| ≤ C

λu�1
0

+
C

λ

∫ A

u0

ds

s�1+1
≤ C

λu�1
0

≤ C

λ
λ

(
�1
m1

+ε�1) ≤ C

λ
λ

�1( 1
m1

−ε) ≤ Cλ−�1ε.

This finishes the proof of Lemma 2.5. �
Our final lemma in Section 2 concerns double integrals. This lemma is

closely related to work of Patel, [3].
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Lemma 2.6. Let

Q(t, u) =

L∑
�=1

e�t
b�ud�

be a real valued polynomial in two real variables. Assume none of the e�, b�

and d� are zero, and that the sequences {b�} and {d�} are strictly monotonic.
Furthermore, suppose the points (b�, d�) lie on a line not passing through the
origin. Finally assume at least one of b1 and d1 are even and at least one
of bL and dL are even.

For a given pair of positive parameters α and β, set

∆ =
{
(t, u) : |t| ≤ A, |u| ≤ B, A′ ≤ |t|α|u|β ≤ B′}.

Set

I =

∫
∆

eiQ(t,u)dtdu

tu
,

Iτ =

∫
∆∩{t:|t|≤τ}

eiQ(t,u) dtdu

tu
,

Iv =

∫
∆∩{u:|u|≥v}

eiQ(t,u)dtdu

tu
,

and

Iv
τ =

∫
∆∩{(t,u):|t|≤τ,|u|≤v}

eiQ(t,u) dtdu

tu
.

Then

(i) |I| ≤ C,

(ii) |Iτ | ≤ Cτ δ for some δ > 0,

(iii) |Iv| ≤ C 1
vδ for some δ > 0, and

(iv) |Iv
τ | ≤ Cτ δ for some δ > 0.

Here, C may depend on the coefficients of Q, but not on A, B, A′ or B′.

Proof. The proof of all parts of Lemma 2.6 are similar, and we will content
ourselves with the proof of (iii).

Let Rp,q be that portion of ∆ for which 2−p ≤ |t| ≤ 2 · 2−p and 2−q ≤
|u| ≤ 2 · 2−q, and let I(p, q) be the contribution to Iv from Rp,q. So

Iv =
∑
p∈Z

∑
q∈Z, 2−q≥v

I(p, q) .
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Let

U(p, q) =

∫
Rp,q

exp i(eLtbLudL)
dtdu

tu

and

V (p, q) =

∫
Rp,q

exp i(e1t
b1ud1)

dtdu

tu
.

Our assumption that at least one of bL and dL is even implies U(p, q) = 0,
and our assumption that at least one of b1 and d1 is even implies V (p, q) = 0.
We shall divide the (p, q) into two sets S1 and S2. We shall prove

(2.11)
∑

(p,q)∈S1
2−q≥v

|I(p, q) − U(p, q)| ≤ C/vδ.

and

(2.12)
∑

(p,q)∈S2
2−q≥v

|I(p, q) − V (p, q)| ≤ C/vδ.

This will then prove the lemma.
It is convenient to write σ� = (b�, d�), r = (p, q) and w = σ1 − σL. Put

S1 = {r : r·w ≥ 0} and S2 = {r : r·w ≤ 0}. S1 essentially corresponds to the
region where |t|bL |u|dL ≥ |t|b1 |u|d1. We will only consider the estimate (2.11).
The estimate for (2.12) is similar. Changing variables we see

I(p, q) =

∫
Rp,q

∫
exp

(
i

L∑
�=1

e�2
−pb�2−qd�tb�ud�

)dtdu

tu

and

U(p, q) =

∫
Rp,q

∫
exp

(
ieL2−pbL2−qdLtbLudL

)dtdu

tu

where

R(p, q) =
{
(t, u) : 1 ≤ |t| ≤ 2, 1 ≤ |u| ≤ 2, A′(p, q) ≤ |t|α|u|β ≤ B′(p, q)

}
.

Thus we have two estimates

(2.13) |I(p, q) − U(p, q)| ≤ D

(2−pbL2−qdL)η

and

|I(p, q) − U(p, q)| ≤ C sup
�

1≤�≤L−1

(2−pb�2−qd�)η

≤ C(2−pbL2−qdL2−r·w)η

(2.14)

for some η > 0.
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We first sum over all (p, q) with r · w = N and 2−q ≥ v and then sum
over N . Since r · w = N we have

p(b1 − bL) + q(d1 − dL) = N

or

p =
N

b1 − bL
+ q

d1 − dL

b1 − bL
.

Then (2.13) and (2.14) become

|I(p, q) − U(p, q)| ≤ C(2γN2−αq)−η(2.15)

and

(2.16) |I(p, q) − U(p, q)| ≤ C(2(γ−κ)N2−αq)η,

where γ = − bL

b1−bL
, κ > 0 and α �= 0 since the line through the (b�, d�)

does not go through the origin. Let us assume α > 0. If we sum on q
with αq ≥ (γ − κ

2
)N , using (2.16), we get a contribution of 2−Nηκ/2. If we

use (2.15) for q with αq ≤ (γ− κ
2
)N , we get another contribution of 2−Nκη/2.

Thus ∑
r,r·w=N

|I(p, q) − U(p, q)| ≤ C2−
η
2
Nκ.

This gives the desired result if 2N > vε for any positive ε. If |v| > 1
2N/ε ,

we use only (2.16), and find

∑
r,r·w=N

|I(p, q) − U(p, q)| ≤ C
2(γ−κ)N

|v|α .

If ε > 0 is sufficiently small we can now sum in N . This completes the proof
of the lemma. �

3. Estimates for some triple integrals

The purpose of this section is to estimate some triple integrals which will in
effect show pieces of the multiplier

m(ξ1, ξ2, ξ3, ξ4) =

∫
exp

(
iξ1s + iξ2t + iξ3u + iξ4P (s, t, u)

)ds dt du

stu

are bounded. In this section, we shall assume that the coefficient of each
power of u is a monomial in s and t. Moreover we assume each monomial
of P has a positive power of each variable. All estimates are to be uniform
in the coefficients of P .
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For a given set of positive parameters {αi, βi, γi, αi, βi, γi}, let ∆ denote
the following region in R3,

∆ =
{
(s, t, u) : |s|αi|t|βi|u|γi ≤ Ai|s|αi |t|βi |u|γi, 1 ≤ i ≤ N

}
.

Here ∆ and in particular the constants Ai will change from place to place as
we make changes of variables, but our estimates will be uniform in the Ai.
For a fixed N , all estimates are to be uniform. We let

R1 =
{

(s, t, u) : |s| ≥ 1

|ξ1| , |t| ≥ 1

|ξ2| , |u| ≥ 1

|ξ3|
}

,

R2 =
{

(s, t, u) : |s| ≥ 1

|ξ1| , |t| ≥ 1

|ξ2| , |u| ≤ 1

|ξ3|
}

,

R3 =
{

(s, t, u) : |s| ≤ 1

|ξ1| , |t| ≥ 1

|ξ2| , |u| ≤ 1

|ξ3|
}

.

Let

J1 =

∫
R1∩∆

eiξ1seiξ2teiξ3ueiξ4P (s,t,u) ds dt du

stu
,

J2 =

∫
R2∩∆

eiξ1seiξ2teiξ4P (s,t,u) ds dt du

stu
,

J3 =

∫
R2∩∆

(1 − eiξ3u)eiξ1seiξ2teiξ4P (s,t,u) ds dt du

stu
,

J4 =

∫
R3∩∆

(1 − eiξ3u)eiξ1seiξ2teiξ4P (s,t,u) ds dt du

stu
,

J5 =

∫
R3∩∆

(1 − eiξ1s)eiξ4P (s,t,u)eiξ2t ds dt du

stu
.

Lemma 3.1. For � = 1, 2, 3, 4 and 5

|J�| ≤ C,

where C is independent of the coefficients of P .

Remark. Lemma 3.1 effectively reduces the analysis of the Fourier multi-
plier to the study of two types of integral, the first of the form∫

R3∩∆

eiξ2teiξ4P (s,t,u)dsdtdu

stu

and the second of the form∫
R∩∆

eiξ1seiξ2teiξ3ueiξ4P (s,t,u)dsdtdu

stu

where

R =
{

(s, t, u) : |s| ≤ 1

|ξ1| , |t| ≤ 1

|ξ2| , |u| ≤ 1

|ξ3|
}
.
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Proof. In each integral we may make a change of variables so that ξ1 =
ξ2 = ξ3 = ±1. Without loss of generality we take the case of + signs. To
bound J1 we divide the s, t, u integration into six regions according to the
size of the variables. For example in one region we have |s| ≥ |t| ≥ |u| ≥ 1.
The estimate for J1 then follows from the estimate for I(t) in Lemma 2.4.

We next consider J2. We make a change of variables in the u integral so
that

ξ4P (s, t, u) =
∑

j

ej(ξ)s
ajtbj udj

where, for at least one j0, |ej0(ξ)| = 1 and |ej(ξ)| ≤ 1 for all j. We now
perform the u integral first. Then by putting v = udj0 and applying Corol-
lary 3.6 of [2] we see the contribution from |u| ≥ 1 is at most C(N)/|st|η for
some positive η. So this contribution is bounded. For a sufficiently large ρ,
the contribution from

|u| ≤ 1

(max(|t|, |s|))ρ

is clearly bounded. So it remains to consider

∫
R4∩∆

eiseiteiP (s,t,u)ds dt du

stu
,

where

R4 =
{

(s, t, u) : |s| ≥ 1, |t| ≥ |s|, 1

|t|ρ ≤ |u| ≤ 1
}

plus a similar integral where |s| ≥ |t|. In the integral over R4 ∩ ∆ we shall
integrate first with respect to t, then u, then s. Thus this integral becomes
the sum of two integrals

∫∫∫
R5∩∆

eiseiteiP (s,t,u)dt

t

ds

s

du

u

and ∫∫∫
R6∩∆

eiseiteiP (s,t,u)dt

t

ds

s

du

u

where

R5 =
{

(s, t, u) : |s| ≥ 1, 1 ≥ |u| ≥ 1

|s|ρ , |t| ≥ |s|
}

and

R6 =
{

(s, t, u) : |s| ≥ 1, 0 ≤ |u| ≤ 1

|s|ρ , |t| ≥ 1

|u|1/ρ

}
.
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To deal with the integral over R5∩∆ we divide the s integration into dyadic
intervals Lk = {s : 2k ≤ |s| ≤ 2k+1}. Fix s. We use Lemma 2.3 to see
that for u outside a bounded number of exceptional intervals of the form
Ea = {u : a ≤ |u| ≤ a + ac2−η1k}, the t integral is at most 2−η2k. Thus
the t, u integral is at most Ck2−η2k. So

∑
k

∫
s∈Lk

∫
{1/|s|ρ≤|u|≤1}\∪aEa

∫
· · · dt du ds

tus

is bounded. On the other hand,∫
|s|≤|t|<∞

ei(t+P (s,t,u)) dt

t

is uniformly bounded. So

∑
k

∫
s∈Lk

∫
u∈∪aEa

∫
|s|≤|t|<∞

· · · dt du ds

tus

is uniformly bounded. The boundedness of the integral over R6 ∩∆ follows
from the estimate for J in Lemma 2.4.

To see that J3 is bounded we note that Lemma 2.4 implies∣∣∣∣∣
∫∫

{|s|≥1,|t|≥1}∩∆

eiseiteiξ4P (s,t,u)dsdt

st

∣∣∣∣∣ ≤ C

uniformly in u.

To estimate J4, we note that we may replace eis by 1 (Recall we normal-
ized so that ξ1 = 1) and the one dimensional t integral is uniformly bounded.
Then we make a change of variables in the s integration so that

ξ4P (s, t, u) =
∑

ej(ξ)s
ajtbj udj

with |ej0(ξ)| = 1 for some j0 and |ej(ξ)| ≤ 1 for all j. The range of s inte-
gration is no longer contained in {|s| ≤ 1}, but only in some {|s| ≤ B(ξ)}.
However the contribution from 1 ≤ |s| ≤ B(ξ) is at most C/|t|δ|u|ρ for some
positive δ and ρ. Since the s integral is also uniformly bounded, we can
take ρ and δ to be arbitrarily small. This gives a bounded contribution in
the range where |s| ≥ 1. In the range of integration where |s| ≤ 1, we do
the t integral first. Clearly for δ sufficiently small (since all |ej| ≤ 1), the
contribution from |t| ≤ 1/|s|δ gives a bounded integral. For the portion of
the integral with |t| ≥ 1/|s|δ, we apply the estimate for J in Lemma 2.4.

The estimate for J5 is the same as the estimate J4. In fact the first step
in the estimate for J4 was a reduction to an integral of the type J5. �
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4. Reduction to the skeleton of the Newton polyhedron

The purpose of this section is to show that the monomials saj tbjudj arising
in a polynomial P for which (aj , bj, dj) lie in the interior of the Newton
polyhedron of P or in the interior of a face of the Newton polyhedron of P
play no role in the L2 boundedness of HP

R. We remind the reader that we are
assuming that no vertex of the Newton polyhedron of P lies in a coordinate
plane.

We begin with a lemma.

Lemma 4.1. For each triple (p, q, r) of non-negative integers, there exists
a vertex V = (v1, v2, v3) of the Newton polyhedron of P such that

v1p + v2q + v3r ≤ u1p + u2q + u3r

for all u1, u2, u3 in the Newton polyhedron of P .

Proof. Consider the function

F (x, y, z) = xp + yq + zr

on the closed Newton polyhedron of P . Since all partial derivatives of F
are non-negative, F assumes an absolute minimum on some closed face of
the Newton polyhedron. Then F restricted to a face assumes an absolute
minimum on an edge. Finally F restricted to an edge is monotonic, and
hence F assumes its minimum at a vertex. �

In the remainder of this section ∆ will be as in Section 3, and will again
change from place to place.

Let Mj = ejs
aj tbj udj , 1 ≤ j ≤ K denote the monomials of P with ej �= 0.

Assume (aK , bK , dK) is in the interior of the Newton polyhedron of P or in
the interior of a face of the Newton polyhedron of P . Let

R(p, q, r)=
{
(s, t, u) : 2−p≤|s|≤ 2−p+1, 2−q≤|t|≤ 2−q+1, 2−r≤|u|≤ 2−r+1

}
.

We then set

I(p, q, r) =

∫
R(p,q,r)∩∆

exp i{ξ1s + ξ2t + ξ3u + ξ4

K∑
j=1

ejs
aj tbjudj}ds dt du

stu
,

and

J(p, q, r) =

∫
R(p,q,r)∩∆

exp i{ξ1s + ξ2t + ξ3u + ξ4

K−1∑
j=1

ejs
aj tbjudj}ds dt du

stu

(∆ is the same in the integrals for I and J .) We then have the following
estimate:
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Lemma 4.2. Suppose the Newton polyhedron of P satisfies hypotheses (H1)
and (H3). Then ∑

p≥0
q≥0
r≥0

|I(p, q, r)− J(p, q, r)| ≤ C.

Proof. Let U = {(s, t, u) : 1 ≤ |s| ≤ 2, 1 ≤ |t| ≤ 2, 1 ≤ |u| ≤ 2}. By
changing variables, we see

I(p, q, r) =

∫
U∩∆

exp
(
iξ12

−ps + iξ22
−qt + iξ32

−ru

+ iξ4

K∑
j=1

ejs
aj tbj udj2−ajp2−bjq2−djr

)ds dt du

stu
,

and

J(p, q, r) =

∫
U∩∆

exp
(
iξ12

−ps + iξ22
−qt + iξ32

−ru

+ iξ4

K−1∑
j=1

ejs
aj tbjudj2−ajp2−bjq2−djr

)ds dt du

stu
.

For each vertex V0 = (aj0 , bj0, dj0), set

Z(V0) =
{
(p, q, r) : V0 · (p, q, r) ≤ Wj · (p, q, r) for all j, 1 ≤ j ≤ K

}

where Wj = (aj, bj , dj). Note that Wj0 = V0.
By Lemma 4.1 each (p, q, r) belongs to some Z(V0). For a fixed V0

suppose N edges, Ej , of the Newton polyhedron emanate from V0. Let
B1, . . . , BN be integer lattice points on the edges Ej emanating from V0, one
on each edge, with each Bj different from V0. Then for each j, 1 ≤ j ≤ N
and (p, q, r) in Z(V0), (p, q, r)·(Bj−V0) ≥ 0. If Bj is on a bounded edge, this
follows from the definition of Z(V0) since x �→ (p, q, r) · (x − V0) restricted
to an edge is monotone. If Bj is on an infinite edge, this follows because all
of the coordinates Bj − V0 are non-negative. Order the edges Ej emanating
from V0 so that the pairs {Ej, Ej+1}, (1 ≤ j ≤ N − 1) and {E1, EN} span
all the faces containing V0. For 1 ≤ j ≤ N − 1, let

Fj =
{
y ∈ R3 : y = λ1(Bj − V0) + λ2(Bj+1 − V0) with λ1 > 0 and λ2 > 0

}

and set

FN =
{
y ∈ R3 : y = λ1(BN − V0) + λ2(B1 − V0) with λ1 > 0 and λ2 > 0

}
.
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We claim that there is a point W ′
K such that the coordinates of WK−W ′

K

are non-negative and W ′
K lies in some Fj , 1 ≤ j ≤ N . To see this, we may

assume WK is not in one of the Fj (for otherwise we could take W ′
K = WK .)

If WK = (aK , bK , dK), let W ′′
K = (aK , bK , fK) where fK < dK and W ′′

K is in
the closure of some Fj. If W ′′

K is in Fj we can take W ′
K = W ′′

K . Otherwise,
W ′′

K lies on some edge of Fj, and then we can take W ′
K = (aK − δ1, bK −

δ2, fK ± δ3) for some small δ1, δ2 and δ3. For simplicity of notation assume
W ′

K ∈ F1.

Then

(p, q, r) · (WK − V0) ≥ (p, q, r) · (W ′
K − V0)

= λ1(p, q, r) · (B1 − V0) + λ2(p, q, r) · (B2 − V0)

for some λ1 > 0, λ2 > 0.

Now (p, q, r)·(B1−V0) ≥ 0 and (p, q, r)·(B2−V0) ≥ 0 for (p, q, r) ∈ Z(V0).
Also (p, q, r) · (Bj − V0) are integers. Now we have two estimates

(4.1) |I(p, q, r)− J(p, q, r)| ≤ A(|ξ4|2−paK2−qbK2−rdK)ρ

and

(4.2) |I(p, q, r)− J(p, q, r)| ≤ A(|ξ4|2−paj02−qbj02−rdj0 )−ρ

for some ρ > 0.
Let

SL =
{
(p, q, r) : (p, q, r) · (B1 − V0) = L

}
and

TM =
{
(p, q, r) : (p, q, r) · (B2 − V0) = M

}
.

For (p, q, r) ∈ SL ∩ TM , (4.1) becomes

(4.3) |I(p, q, r)− J(p, q, r)| ≤ A(|ξ4|2−paj02−qbj02−rdj0 )ρ2−λ1ρL2−λ2ρM .

Now B2 −V0 and B1 −V0 are not parallel. Thus if (p, q, r) is in SL ∩TM ,
(p, q, r) is on a line – namely the intersection of the planes

{x : x · (B1 − V0) = L} and {x : x · (B2 − V0) = M}.
Thus for (pj , qj, rj) ∈ SL ∩ TM , we can write

pj = G1tj + H1(L, M)

qj = G2tj + H2(L, M)

rj = G3tj + H3(L, M)
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with |tj − tj+1| bounded below and not all of G1, G2, G3 zero. Now hypo-
thesis (H3) guarantees that (G1, G2, G3) is not perpendicular to V0, and so
from (4.2) and (4.3) we see that

∑
(p,q,r)∈SL∩TM

|I(p, q, r)− J(p, q, r)| ≤ A2−ηL2−ηM

for some η > 0. Then summing over L and M , we find

∑
(p,q,r)∈Z(V0)

|I(p, q, r) − J(p, q, r)| ≤ A.

Finally summing over all V0 gives Lemma 4.2. �

Now by repeated use of Lemma 4.2 we arrive at the following conclusion:

Lemma 4.3. Let P =
∑

j ejs
aj tbjudj and P ′ =

∑′
j e�s

aj tbjudj where
∑′

denotes summation over those j for which (aj , bj, dj) lies on some edge of
the Newton polyhedron of P . Suppose the Newton polyhedron of P satisfies
hypotheses (H1) and (H3). Then the operator HP

R is bounded on L2(R4) if
and only if HP ′

R is bounded on L2(R4).

5. Reduction to edge operators

Let E be a bounded edge of the Newton polyhedron of P with V1, V2, ..., VN−1,
VN (N ≥ 2) the points on E corresponding to monomials of P numbered so
that V1 and VN are vertices of the polyhedron, V2 is closest to V1 and VN−1

is closest to VN . Suppose that Vj corresponds to the monomial ejs
aj tbj udj .

We then set QE =
∑

ejs
aj tbjudj .

To each E we shall associate a region R(E) and an operator HQE

R(E)

HQE

R(E)f(x1, x2, x3, x4) =

∫∫∫
R(E)

f
(
x1−s, x2−t, x3−u, x4−QE(s, t, u)

)ds dt du

stu
.

The object of this section is to show that if each HQE

R(E) is bounded, then H

is bounded. We shall be assuming hypotheses (H1), (H2) and (H3) on the
Newton polyhedron of P throughout this section.

In defining R(E) for an edge E we let e�s
a�tb�ud� run through all the

monomials of P . Again ejs
aj tbjudj , 1 ≤ j ≤ N , are the monomials in P such

that (aj , bj , dj) lie on an edge E ordered as above.
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We let

R1(E)=
{
(s, t, u) : |sa1tb1ud1 | ≥ |sa2tb2ud2 | and |sa2tb2ud2 | ≥ |sa�tb�ud�|
for all (a�, b�, d�) corresponding to monomials of P other

than (a1, b1, d1)
}

and

R2(E)=
{
(s, t, u) : |saN tbN udN | ≥ |saN−1tbN−1udN−1 | and |saN−1tbN−1udN−1 |
≥ |sa�tb�ud�| for all (a�, b�, d�) corresponding to monomials of P

other than (aN , bN , dN)
}
.

Then put

R(E) = (R1(E) ∪R2(E)) ∩ {(s, t, u) : |s|, |t|, |u| ≤ 1}.

Lemma 5.1. Suppose each monomial of P corresponds to a point on an edge
of the Newton polyhedron of P . Moreover assume each infinite edge contains
only one point corresponding to a monomial of P . Then each (s, t, u) with
|s|, |t|, |u| ≤ 1 is in some R(E) and the R(E) have disjoint interiors.

Proof. For each (s, t, u) there is a vertex V1 = (a1, b1, d1) such that |sa1tb1ud1|
≥ |sa�tb�ud�| for all (a�, b�, d�). (The proof of this is the same as that of
Lemma 4.1.) Let L1, . . . , LK be the bounded edges emanating from V1. On
each L� let U� = (aj�

, bj�
, dj�

) be the point closest to V1. Choose E to be
that L� such that |saj� tbj� udj� | is maximal for 1 ≤ � ≤ K. Let us say � = 1.

Change notation so that U1 = (a2, b2, d2) and introduce σ = log(1/s),
τ = log(1/t) and υ = log(1/u). Observe that

(x, y, z) �→ xσ + yτ + zυ

is monotone when restricted to each edge. Thus if W = (a�, b�, d�) is a point
on any L�, 1 ≤ � ≤ K, then

|sa1tb1ud1 | ≥ |sa2tb2ud2 | ≥ |sa�tb�ud�|.

Now suppose W is not on one of the edges emanating from V1. Let Rk

denote points on the infinite edges, one Rk on each infinite edge emanating
from V1. Then since W is on some bounded edge not emanating from V1,

W − V1 =
K∑

�=1

λ�(U� − V1) +
∑

k

ηk(Rk − V1)
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where each ηk ≥ 0, and Σλ� + Σηk ≥ 1 – for if Σλ� + Σηk < 1, W would be
in the interior of the Newton polyhedron or in the interior of a face of the
Newton polyhedron or on an edge emanating from V1.

It is at this stage that we are using strongly the reduction to the 1-
skeleton of the Newton polyhedron of P in Section 4.

Next we let the Rk tend to infinity in such a way that the λ� do not
change and we see then that the ηk must tend to 0. Therefore

∑K
�=1 λ� ≥ 1,

and so

(a� − a1)σ + (b� − b1)τ + (d� − d1)υ

≥
K∑

�=1

λ�[(aj�
− a1)σ + (bj�

− b1)τ + (dj�
− d1)υ]

≥
( K∑

�=1

λ�

)
[(a2 − a1)σ + (b2 − b1)τ + (d2 − d1)υ]

≥ [(a2 − a1)σ + (b2 − b1)τ + (d2 − d1)υ].

Thus since |s| ≤ 1, |t| ≤ 1, and |u| ≤ 1

|sa�tb�ud�| ≤ |sa2tb2ud2 |,
and (s, t, u) is in R1(E). It is clear that the R(E) are disjoint and Lemma 5.1
is proved. �

Now let E be an edge, and let

P (s, t, u) = QE(s, t, u) + R(s, t, u) + eL+1s
aL+1tbL+1udL+1

where

QE(s, t, u) =
L∑

j=1

ejs
aj tbj udj ,

with (aj , bj, dj) on E for 1 ≤ j ≤ L, and where R and eL+1s
aL+1tbL+1udL+1

corresponds to monomials of P on the 1-sketeton but not on the edge E.
Then we have:

Lemma 5.2. Let

I(ξ1, ξ2, ξ3, ξ4) =

∫
R(E)

eiξ1seiξ2teiξ3ueiξ4P (s,t,u)ds dt du

stu
,

and

J(ξ1, ξ2, ξ3, ξ4) =

∫
R(E)

eiξ1seiξ2teiξ3ueiξ4(QE+R)(s,t,u) ds dt du

stu
.

Then I(ξ) − J(ξ) is uniformly bounded.
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Proof. It suffices to consider the integral over R1(E). Let us suppose
V1 = (a1, b1, d1) is a vertex of E and V2 = (a2, b2, d2) is the point on E
closest to V . For p ≥ 0, q ≥ 0, r ≥ 0, set

A(p, q, r)=
{
(s, t, u) : 2−p ≤|s|≤ 2−p+1, 2−q ≤|t|≤ 2−q+1, 2−r ≤|u|≤ 2−r+1

}
.

Put

I(p, q, r) =

∫
R1(E)∩A(p,q,r)

exp(iξ1s + iξ2t + iξ3u + iξ4P (s, t, u))
dsdtdu

stu
,

and

J(p, q, r)=

∫
R1(E)∩A(p,q,r)

exp(iξ1s + iξ2t + iξ3u + iξ4(QE + R)(s, t, u))
dsdtdu

stu
.

Arguing as in Lemma 4.2 we then have the following estimates:

(5.1) |I(p, q, r)− J(p, q, r)| ≤ A
(|ξ4|2−paL+12−qbL+12−rdL+1

)η

and

(5.2) |I(p, q, r)− J(p, q, r)| ≤ A
(|ξ4|2−pa12−qb12−rd1

)−η

for some η > 0.
We want to see that we can replace the estimate (5.1) by

(5.3) |I(p, q, r)− J(p, q, r)| ≤ A(|ξ4|2−pα2−qβ2−rδ)η

where the point W = (α, β, δ) does not lie on E, and the plane determined
by W , V1 and V2 does not contain the origin. If (aL+1, bL+1, dL+1) lies on
an edge meeting E, we may take W = (aL+1, bL+1, dL+1). For then if the
plane determined by V1, V2 and (aL+1, bL+1, dL+1) contained the origin, the
plane determined V1, (aL, bL, dL) and the other vertex of the edge containing
(aL+1, bL+1, dL+1) would determine a plane containing the origin contradict-
ing assumption (H3). (The edge containing (aL+1, bL+1, dL+1) could not be
infinite since we are assuming each infinite edge contains only one point.) If
(aL+1, bL+1, dL+1) lies on some edge not meeting E, we may take W to be
one vertex on that edge since px + qy + rz is monotone along edges.

If R1(E) ∩ A(p, q, r) �= ∅, then (p, q, r) · (V2 − V1) ≥ −B and (p, q, r) ·
(W − V2) ≥ −B for some positive B. Let

FN = {(p, q, r) : (V2 − V1) · (p, q, r) = N}
and

DM = {(p, q, r) : (W − V2) · (p, q, r) = M}.
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Now I(ξ)− J(ξ) is the sum of two terms, the first of which is dominated by∑
p,q,r≥0

|I(p, q, r)−J(p, q, r)| =
∑

N≥−B

∑
−B≤M≤N+B

∑
(p,q,r)∈FN∩DM

|I(p, q, r)−J(p, q, r)|.

We may rewrite (5.3) as

(5.4) |I(p, q, r) − J(p, q, r)| ≤ A2−ηN(|ξ4|2−(a1p+b1q+d1r))η

Since V1, V2 and W are not collinear, FN ∩ DM is a line. Arguing once
more as in Lemma 4.2 we can sum now in p, q, and r as long as the line
of intersection of the planes FN and DM is not perpendicular to (a1, b1, d1).
And this condition is satisfied since the plane through V1, V2 and W , which
is the plane determined by E and W , does not contain the origin. �

By applying Lemma 4.3, Lemma 5.1 and Lemma 5.2 many times we
obtain the following conclusion:

Proposition 5.3. Suppose the Newton polyhedron of P satisfes hypotheses
(H1), (H2) and (H3). If HQE

R(E) is bounded on L2(R4) for each bounded

edge E, then HP
R is bounded on L2(R4).

6. A further reduction for edge operators

In this section ∆ is as in Section 3. Suppose that

Q(s, t, u) =
L∑

j=1

ejs
aj tbjudj

where (aj , bj, dj) lie on some line. We assume the hypotheses (H1) and (H2),
that is each of aj , bj and dj is positive, each of the sequences {aj}, {bj}
and {dj} is strictly monotonic and that the projection of the line through
the (aj, bj , dj) onto a coordinate plane does not pass through the origin.
Furthermore we shall also assume that at least two of a1, b1 and d1 are even,
at least two of aL, bL, dL are even.

Proposition 6.1. Let R = {(s, t, u) : |s| ≤ 1, |t| ≤ 1, |u| ≤ 1} or let
R = R3. Then

m(ξ) :=

∫
R∩∆

eiξ1seiξ2teiξ3ueiξ4Q(s,t,u)ds dt du

stu

=

∫
Rξ∩∆

eiξ4Q(s,t,u)ds dt du

stu
+ O(1)

where

Rξ =
{

(s, t, u) : |s| ≤ 1

|ξ1| , |t| ≤ 1

|ξ2| , |u| ≤ 1

|ξ3|
}

.
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Remark. Proposition 6.1 together with Proposition 5.3 implies the suffi-
ciency result in Theorem 1.1. The point is that in this case the hypothesis
of Theorem 1.1 implies

∫
Rξ∩∆

eiξ4Q(s,t,u)ds dt du

stu
= 0.

By applying the lemmas of Section 3, we see that except for a bounded
error m(ξ) is a sum of an integral I(ξ) and three integrals of the type J(ξ),
where

I(ξ) =

∫
R4∩∆

eiξ1seiξ2teiξ3usiξ4Q(s,t,u)dsdtdu

stu

and

J(ξ) =

∫
R3∩∆

eiξ2ueiξ4Q(s,t,u)ds dt du

stu
,

where

R3 =
{

(s, t, u) : |s| ≤ 1

|ξ1| , |t| ≥ 1

|ξ2| , |u| ≤
1

|ξ3|
}

and

R4 =
{

(s, t, u) : |s| ≤ 1

|ξ1| , |t| ≤ 1

|ξ2| , |u| ≤ 1

|ξ3|
}
.

We begin with I(ξ).

Lemma 6.2. Assume b1 and bL are even. Then∫
R4∩∆

(eiξ1seiξ3u − 1)eiξ2teiξ4P (s,t,u)ds dt du

stu
= O(1).

Remark. Lemma 6.2 does not use the hypothesis on the parity of a1, aL, d1

or dL.

Proof. Write eiξ1seiξ3u − 1 = (eiξ1s − 1)(eiξ3u − 1) + (eiξ3u − 1) + (eiξ1s − 1)
The contribution from (eiξ1s − 1)(eiξ3u − 1) is bounded because the t

integral is uniformly bounded. The contributions from eiξ3u −1 and eiξ1s −1
are treated in a similar manner, so it suffices to deal with I1 where

I1 =

∫
R4∩∆

(eiξ1s − 1)eiξ2teiξ4Q(s,t,u)dsdtdu

stu
.

By doing the u integration first, we see we can replace eiξ2t by 1. Thus we
have to consider

I2 =

∫
R4∩∆

eiξ1s − 1

s
eiξ4Q(s,t,u)ds

dtdu

tu
.
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We shall make a change of variables. First we divide the integral into four
regions depending on the sign of s and u. For s and u positive we make the
change of variables t = t′sαuβ with α = a2−a1

b1−b2
and β = d2−d1

b1−b2
. We find

I2 =

∫
R5∩∆

eiξ1s − 1

s
eiξ4sρ1uρ2Q(1,t,1)ds

dtdu

tu

where

ρ1 =
b1a2 − a1b2

b2 − b1
and ρ2 =

b1d2 − d1b2

b2 − b1
,

and ρ1 and ρ2 are not zero because of the hypothesis that the projection
of the line through (aj , bj , dj) does not pass through the origin. R5 is con-
tained in {|s| ≤ 1

|ξ1|} and the t integration is over a finite union of intervals
symmetric around 0. Now by making a change of variables first in the s
integral and then in the u integral we may assume ξ1 = 1 and ξ4 = 1. Since
b1 and bN are even, we may apply Lemma 2.4 to the t integral to obtain the
estimates A/(sρ1uρ2)η and A(sρ1uρ2)η for some η > 0. Since the t integral is
bounded we obtain the estimates A/sδuδ and Auδ/sδ for some small δ < 1/2.
We apply the first estimate to the region u ≥ 1 and the second when u ≤ 1.
Since 0 ≤ s ≤ 1, the lemma is proved. �

Lemma 6.3. ∫
R4∩∆

eiξ2t − 1

t
eiξ4Q(s,t,u)dsdtdu

su

is bounded.

Proof. Consider t > 0. In the s, u integral we can make a change of variable
s = tασ, u = tβv so that Q(s, t, u) becomes Q(σ, 1, v). This requires α and
β to satisfy the equations

bj − b1 + α(aj − a1) + β(dj − d1) = 0

and
b1 + αa1 + βd1 = 0

or

α
aj − a1

bj − b1

+ β
dj − d1

bj − b1

= −1

and
αa1 + βd1 = 0.

These equations have a solution if

a1

d1
�= aj − a1

dj − d1
.
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Thus is just the condition that the projection of the line through the (aj, bj, dj)
onto the x − z plane does not go through the origin. Since at least one of
the a1 and d1 is even and at least one of aL and dL is even, Lemma 6.2 now
follows from Lemma 2.6. �
Lemma 6.4. J(ξ) is uniformly bounded.

Proof. By changing variables in the t-integral, we can write

J =

∫ ∞

1

eit

t

∫∫
∆

eiξ4Q(s,t,u)dsdu

su
dt.

This change of variables of course changes the coefficients of Q. We can
then make a further change of variables in s and u, so that we return to
the original Q. We want to return to the original Q because we want to use
Lemma 2.6 in which the estimates depend upon the coefficients of Q.
Then by making a further change of variables as in the proof of Lemma 6.3,
we see

J =

∫ ∞

1

eit

t

∫∫
∆

eiξ4Q(s,1,u)dsdu

su
dt.

By a yet further change of variables we may assume ξ4 = ±1 without chang-
ing the coefficients of Q. We shall take ξ4 = 1.

Let us consider first the region where |s| ≤ 1 and |u| ≤ 1. We see the con-

tribution for |su| ≤ 1
t

is bounded by subtracting eiQ(s,1,u). In the region
where |su| ≥ 1

t
, we do the t integral first. We are then integrating over a

bounded number of intervals in each of which t ≥ 1/|su|. Thus the contri-
bution from the t integral is at most C|su|. This finishes the discussion of
{(s, u) : |s| ≤ 1, and |u| ≤ 1}.

Let us next consider the region where |s| ≥ |u| ≥ 1. If we integrate in
|s| ≥ t, we gain a positive power of 1

t|u| , and this contribution is bounded. If

t ≥ |s| we perform the t integral first gaining 1
|s| , we then have the estimate

∫
|s|≥1

ds

|s|2
∫

1≤|u|≤|s|

1

|u|du = O(1).

It remains to consider the two “corridors”

{(s, u) : |s| ≥ 1, |u| ≤ 1} and {(s, u) : |s| ≤ 1, |u| ≥ 1}.
We consider the region {(s, u) : |s| ≥ 1, |u| ≤ 1}. The other region is similar.

∣∣∣
∫ ∫

|s|≥t,|u|≤1
∆

eiQ(s,1,u)dsdu

su

∣∣∣ ≤ C

tε



502 A. Carbery, S. Wainger and J. Wright

for some ε > 0 by Lemma 2.6. Similarly

∣∣∣
∫
|s|≤t

∫
|u|≤ 1

t
∆

eiQ(s,1,u)
∣∣∣ ≤ C

tε
.

This leaves us with ∫ ∞

1

eit dt

t

∫∫
∆

1≤|s|≤t

1≥|u|≥1
t

eiQ(s,1,u)ds

s

du

u
.

In this region we do the t integral first. The range of integration in t will
consist of a bounded union of intervals in which t ≥ |s| and t ≥ 1

|u| . So the t

integral is at most C|u|1/2/|s|1/2. This completes the proof of Lemma 6.4
and of Proposition 6.1. �

7. Vertex operators

Here we consider

HV
Rf(x1, x2, x3, x4) =

∫
R

f
(
x1 − s, x2 − t, x3 − u, x4 − satbud

)dsdtu

stu
.

Here we are supposing that R is either all of R3 or the cube {|s| ≤ 1, |t| ≤ 1,
|u| ≤ 1}.

So ĤV
Rf(ξ) = mR(ξ)f̂(ξ), where ξ = (ξ1, ξ2, ξ3, ξ4), and

mR(ξ) =

∫∫∫
R

eiξ1seiξ2teiξ3ueiξ4satbud dsdtdu

stu
.

Lemma 7.1. (i) If at least two of a, b and d are even then mR(ξ) is uni-
formly bounded.

(ii) If two of a, b and d are odd and one is even

|mR(ξ)| ≤ C log+ |ξ4|
|ξ1|a|ξ2|b|ξ3|d + O(1),

and if ξ1, ξ2, ξ3 and ξ4 positive

mR(ξ) =
abπ2

4
log+ ξ4

ξa
1ξ

b
2ξ

d
3

+ O(1).
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(iii) If all of a, b and d are odd

|mR(ξ)| ≤ C

(
log+ |ξ4|

|ξ1|a|ξ2|b|ξ3|d
)2

+ O(1)

and if ξ1, ξ2, ξ3 and ξ4 are positive

mR(ξ) =
abdπ

2

(
log+ ξ4

ξa
1ξ

b
2ξ

d
3

)2

+ O

(
log+ ξ4

ξa
1ξ

b
2ξ

d
3

)
+ O(1).

Proof. We consider the case R = R3. The case that R is a bounded cube
follows from a similar argument.

Part (i) follows from Theorem 5.1 in [4] or alternatively from Proposi-
tion 6.1.

Let us consider part (ii). Suppose a and b are odd and d is even. Then
by Lemmas 3.1 and 6.2 matters are reduced to

mR(ξ) =

∫
|s|≤ 1

|ξ1|

∫
|t|≤ 1

|ξ2|

∫
u∈R

eiξ4satbud

eiξ3u ds dt du

stu
+ O(1).

Let us assume ξ1, ξ2, ξ3 and ξ4 are positive. So

mR(ξ) =

∫
|s|≤1

∫
|t|≤1

∫
u∈R

eiλsatbud

eiu ds dt du

stu
+ O(1).

with λ = ξ4
ξa
1 ξb

2ξd
3
.

Thus

mR(ξ) =

∫ 1

0

∫ 1

0

∫ ∞

0

sin(λsatbud) sin u
ds dt du

stu
+ O(1)

= ab

∫ λ

0

ds

s

∫ 1

0

dt

t

∫ ∞

0

sin(stud) sin u
du

u
+ O(1)

= ab

∫ 1

0

+ ab

∫ λ

1

+O(1)

:= ab I + ab II + O(1).

Consider first I. The integral is

∫ 1

0

ds

s

∫ s

0

dv

v

∫ ∞

0

sin u sin(vud)
du

u
=

∫ 1

0

ds

s

∫ s

0

dv

v

∫ ( 1
v
)δ

0

sin u sin(vud)
du

u

+

∫ 1

0

ds

s

∫ s

0

dv

v

∫ ∞

( 1
v )

δ
sin u sin(vud)

du

u
.

The first integral is clearly bounded if δ is sufficiently small. The second
integral is bounded in view of the second conclusion of Lemma 2.5.
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The integral in II is∫ λ

1

ds

s

∫ s

0

dt

t

∫ ∞

0

sin u sin(tud)
du

u
.

We want to replace the range of integration in the t integral from 0 ≤ t ≤ s
by 0 ≤ t ≤ ∞, for if we can make this change, the integral will become C
log λ, where

C =

(∫ ∞

0

sin u

u
du

)2

=
π2

4

We shall show that the u integral is O(t−δ) for some positive δ which will
establish that the contribution in the range t ≥ s is bounded. Now∫ ∞

0

sin u sin(tud)
du

u
=

1

dt

∫ ∞

0

sin u
d

du
(1 − cos(tud))

du

ud

= − 1

dt

∫ ∞

0

(cosu)(1 − cos(tud))
du

ud
+

1

t

∫ ∞

0

(sin u)(1 − cos(tud))
du

ud+1

:= III + IV.

For an η > 0 to be chosen later,

|III| ≤ 1

t

∫ 1/tη

0

t2uddu +
1

t

∫ ∞

1/tη

du

ud
≤ Ct

(
1

t

)(d+1)η

+

(
1

t

)
tη(d−1)

If we choose η so that 1
d−1

> η > 1
d+1

, we see |III| ≤ C(1
t
)δ for some δ > 0.

The integral IV is shown to be O((1
t
)δ) in a similar manner. This completes

the discussion of part (ii) of Lemma 7.1.

We turn to the third part of Lemma 7.1. Then using the results of
Section 3, we see that up to a bounded error

m(ξ) =

∫
|s|≤ 1

|ξ1|

∫
|t|≤ 1

|ξ2|

∫
|u|≤ 1

|ξ3|

eiξ3ueiξ4satbud ds dt du

stu

+

∫
|s|≤ 1

|ξ1|

∫
|t|≤ 1

|ξ2|

∫
|u|≥ 1

|ξ3|

eiξ3ueiξ4satbud dsdtdu

stu

plus two integrals similar to the last one, with the roles of s, t, and u inter-
changed.

Call the two integrals I and J . We shall first show that J is O(log λ).
By the same changes of variables,

J = ab

∫ λ

0

∫ s

0

∫ ∞

1

cos u sin(tud)
dsdtdu

stu

with λ = ξ4
ξa
1 ξb

2ξd
3

.
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The contribution from 0 ≤ s ≤ 1 is bounded. To see this first note
that for a sufficiently small δ the contribution from u ≤ 1

tδ
is bounded. For

u ≥ 1
tδ

, we employ Corollary 3.6 of [2].
Also the u integral is O(1/tδ) for large t, so in the t integral we may

replace the upper limit of integration by ∞ at the expense of a bounded
error. So

J = C

∫ λ

1

ds

s
+ O(1) = C log λ + O(1)

where

C = ab

∫ ∞

0

∫ ∞

1

cos u sin(tud)
dtdu

tu
.

(The reasoning above shows the integral exists.)
We turn to I. Note that

I =

∫
|s|≤1

eis ds

s

∫
|t|≤1

eit dt

t

∫
|u|≤1

eiλsatbud

eiu du

u
.

We first want to show∫
|s|≤1

∫
|t|≤1

(eiseit − 1)
dt

t

∫
|u|≤1

eiueiλsatbud du

u
= O(log λ).

As in the proof of Lemma 6.2, it suffices to consider

∫
|t|≤1

eit − 1

t

∫
|s|≤1

ds

s

∫
|u|≤1

eiueiλsatbud du

u

=

∫
|t|≤1

eit − 1

t

∫ λ1/a

0

ds

s

∫ 1

0

cos u sin(satbud)
du

u
.

The contribution from s ≤ 1 is clearly bounded. For s ≥ 1 we can replace
cos u by 1 with an error which is O(log λ). This leaves

∫
|t|≤1

eit − 1

t
dt

∫ λ1/a

1

ds

s

∫ 1

0

sin(satbud)
du

u
.

The u integral is bounded, so the integral is O(log λ). Now it remains to
consider

V =

∫
|s|≤1

ds

s

∫
|t|≤1

dt

t

∫
|u|≤1

eiueiλsatbud du

u

= ab

∫ λ

0

ds

s

∫ s

0

dt

t

∫ 1

0

cos u sin(tud)
du

u
.
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Again the contribution from s ≤ 1 is O(1). Next∫ 1

0

(cosu − 1)
du

u

∫ λ

1

ds

s

∫ s

0

sin(tud)
dt

t
= O(logλ).

So we are down to∫ λ

1

ds

s

∫ s

0

dt

t

∫ 1

0

sin(tud)
du

u
= d

∫ λ

1

ds

s

∫ s

1

dt

t

∫ 1

0

sin(tu)
du

u

= d

∫ λ

1

ds

s

∫ s

1

dt

t

∫ t

0

sin u
du

u
= dC

∫ λ

1

ds

s

∫ s

1

dt

t
+ O(log λ)

where C =
∫ ∞
0

sin u du/u = π/2, and thus

I =
abdπ

2
(log λ)2 + O(log λ). �

8. Edge operators

In this section we let

Q(s, t, u) =

L∑
j=1

ejs
aj tbjudj .

We assume all ej , aj, bj and dj are not zero, and each sequence {aj}, {bj} and
{dj} is strictly monotonic. Further suppose that the (aj , bj, dj) lie on a line
and that no projection of that line onto a coordinate plane passes through
the origin. Finally assume d1 and dL are both even at least one of a1 and b1

are even, and at least one of aL and bL are even. Set

mQ
R(ξ) =

∫
R

eiξ4Q(s,t,u)dsdtdu

stu

where

R =

{
(s, t, u) : |s| ≤ 1

|ξ1| , |t| ≤
1

|ξ2| , |u| ≤
1

|ξ3|
}

.

Let Fd(s) be as in (1.1).

In this section we obtain the following result:

Proposition 8.1. Under the above conditions

∣∣∣mQ
R(ξ)

∣∣∣ ≤ C

[( 4∑
i=1

|log |ξi||
)

+ 1

]

and mQ
R is uniformly bounded if and only if∫ ∞

0

Fd(s)

s
ds = 0.
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Proof. Let us assume ξ1, ξ2, ξ3 and ξ4 are positive. Then mQ
R(ξ) equals

∫ 1
ξ1

0

∫ 1
ξ2

0

∫
|u|≤ 1

ξ3

{
eiξ4Q(s,t,u)+ eiξ4Q(−s,−t,u)− eiξ4Q(−s,t,u)− eiξ4Q(s,−t,u)

}dudsdt

ust
.

We set u = vsαtβ with α = aL−a1

d1−dL
and β = bL−b1

d1−dL
. Then

mQ
R(ξ) =

∫ 1/ξ1

0

∫ 1/ξ2

0

∫
|u|≤ 1

sαtβξ3

{eiξ4sρ1tρ2Q(1,1,u) + · · · }dsdtdu

stu

where neither ρ1 nor ρ2 is zero because the projection of the line through
the (aj, bj , dj) onto a coordinate plane does not pass through the origin. In
fact

ρ1 =
aLd1 − a1dL

d1 − dL
and ρ2 =

bLd1 − b1dL

d1 − dL
.

Let us assume first ρ1 and ρ2 are positive.
We now make a few more changes of variable and find mQ

R(ξ) equals

∫ 1
λ1(ξ)

0

dt

t

∫ t
λ2(ξ)

0

ds

s

∫
|u|≤ 1

sσ1 tσ2

{
eisQ(1,1,u)+ eisQ(−1,−1,u)− eisQ(−1,1,u)− eisQ(1,−1,u)

}du

u

where λ1(ξ) = ξρ2

2 ξγ1

3 ξγ2

4 , λ2(ξ) = ξρ1

1 ξγ3

3 ξγ4

4 , σ1 = α
ρ1

and σ2 = β
ρ2

− α
ρ1

. Once
again σ1 and σ2 are nonzero. Let us for simplicity assume σ1 > 0 and σ2 > 0.
The treatment for other choices of sign is similar.

We proceed in six steps:

Step 1: ∫ λ2(ξ)

0

| · · · · · · |dt

t

is bounded. This follows because according to Lemma 2.5, the u integral is
O(sδ). So we may assume

λ2(ξ) <
1

λ1(ξ)
.

Step 2: ∫ ∞

1

| · · · · · · |dt

t
= O(1).

From Lemma 2.5 we see the u integral enjoys the estimates O(sδ) and O( 1
sδ ).

Also |eisQ(±1,±1,u) − 1| ≤ C(|u|+ |u|ν)s for some ν > 0. So the u integral has
the estimate 1

sκtσ2
for some real κ. Thus for some positive η1 and positive η2

the u integral has the estimates sη1

tη2
and 1

sη1tη2
, and Step 2 follows.
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Step 3: ∫ 1

λ2(ξ)

dt

t

∣∣∣∣∣
∫ ∞

t
λ2(ξ)

ds

s

∫
I

{· · · · · · }du

u

∣∣∣∣∣ = O(1)

for any interval I. Step 3 follows from the fact that the u integral is O( 1
sδ )

(from Lemma 2.5).

Combining Steps 1, 2 and 3 we have:

Step 4:

mQ
R(ξ) =

∫ min(1, 1
λ1(ξ)

)

λ2(ξ)

dt

t

∫ ∞

0

ds

s

∫
|u|≤ 1

sσ1 tσ2

{· · · · · · }du

u
+ O(1).

Step 5:

∫ min(1, 1
λ1(ξ)

)

λ2(ξ)

dt

t

∫ ∞

t
λ2(ξ)

ds

s

∫
|u|≥ 1

sσ1 tσ2

{· · · · · · }du

u
= O(1).

Step 5 follows since by Lemma 2.5 the u integral is O( 1
sδ ).

Step 6:

∫ min(1, 1
λ1(ξ)

)

λ2(ξ)

dt

t

∫ t
λ2(ξ)

0

ds

s

∫
|u|≥ 1

sσ1 tσ2

{· · · · · · }du

u
= O(1).

Again we have two estimates for the u integral. First we have the esti-
mates s−δ and sδ from Lemma 2.5. Secondly by van der Corput’s lemma
we have sκtσ2 for some real κ. Therefore we have the estimates tη1s−η2 and
tη3sη4 where η1, η2, η3, and η4 are positive. This gives Step 6.

Steps 5 and 6 show that

∫ min( 1
λ1(ξ)

,1)

λ2(ξ)

dt

t

∫ ∞

0

ds

s

∫
|u|≥ 1

sσ1 tσ2

{· · · · · · }du

u
= O(1).

Thus

mQ
R(ξ) =

∫ min(1, 1
λ1(ξ)

)

λ2(ξ)

dt

t

∫ ∞

0

Fd(s)
ds

s
+ O(1).

This proves Proposition 8.1 in the case that ρ1 and ρ2 are both positive.
If ρ1 and ρ2 are both negative the argument is similar. In this case the t
integration goes from 1

λ1(ξ)
to ∞ and the s integral goes from t

λ2(ξ)
to ∞.

The slight difference arises in Step 2. Now we must show∫ 1

0

| · · · · · · |dt

t
< ∞.
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In the case ρ1 and ρ2 have opposite signs, we need an extra ingredient.
If ρ1 < 0 and ρ2 > 0, then σ2 < 0. To see this note first that for any i

diσ1 − 1 = di
α

ρ1
− 1 =

diα − ρ1

ρ1
= −ai

ρ1
> 0.

Then

di(σ1 + σ2) − 1 = di
β

ρ2
− 1 =

diβ − ρ2

ρ2
= − bi

ρ2
< 0.

Taking differences shows σ2 < 0. The integral to be bounded is now

∫ 1
λ1(ξ)

0

dt

t

∫ ∞

λ2(ξ)t

ds

s

∫
|u|≤ 1

sσ1 tσ2

{· · · · · · }du

u
.

Now the fact that σ2 < 0 allows us to have the estimate sγtη for some η > 0
which we must use for small t. After this the argument is very similar to
the argument when ρ1 and ρ2 are positive. If ρ1 > 0 and ρ2 < 0 then the
extra ingredient we need is that σ2 > 0. To see this note first

diσ1 − 1 = diσ1 − 1 = −a1

ρ1

< 0

while

di(σ1 + σ2) − 1 = − bi

ρ2
> 0,

and so diσ2 > 0. Thus σ2 > 0. �

9. Proof of sufficiency in Theorem 1.2

In this section we complete the proof of the sufficiency part of Theorem 1.2
by establishing that the cancellation condition involving the oscillatory in-
tegral F is sufficient for the boundedness of HP

R. We remind the reader that
Theorem 1.2 requires hypotheses (H1), (H2), (H3) and (H4) and these as-
sumptions will be made throughout this section. By Lemma 4.3 and Propo-
sition 5.3, matters are reduced to showing that for each bounded edge E,
HQE

R(E) is bounded on L2(R4).

We fix a bounded edge E and write Q = QE(s, t, u) =
∑L

j=1 ejs
aj tbjudj

and R = R(E) = R1 ∪ R2 as defined in Section 5. If (Ai, Bi, Di), 1 ≤
i ≤ m denote the points associated to P on the 1-skeleton of the Newton
polyhedron of P which do not lie on E, then

R1 =
{|s|a1 |t|b1|u|d1 ≥ |s|a2 |t|b2|u|d2, |s|a2 |t|b2|u|d2 ≥ |s|Ai|t|Bi |u|Di, 1 ≤ i ≤ m

}
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and similarly for R2. By (H1) and (H2) we may assume that each aj , bj and
dj is positive and each sequence {aj}, {bj} and {dj} is strictly monotonic.
Furthermore by (H3) we may suppose that the projection onto a coordinate
plane of the line on which (aj , bj, dj) lie does not pass through the origin.
Finally we recall that the sufficiency part of Theorem 1.2 makes an assump-
tion on the parity of the two vertices (a1, b1, d1) and (aL, bL, dL) of the edge
E; namely, without loss of generality, d1 and dL are even, at least one of a1

and b1 are even and at least one of aL and bL are even.
By Proposition 6.1 it suffices to bound the oscillatory integral

nQ
R =

∫
Rξ∩R

eiξ4Q(s,t,u)ds dt du

stu

uniformly in ξ = (ξ1, ξ2, ξ3, ξ4). Here Rξ =
{
(s, t, u) : |s| ≤ 1/|ξ1|, |t| ≤

1/|ξ2|, |u| ≤ 1/|ξ3|
}
. Without loss of generality we shall take all the ξi to be

positive. We decompose nQ
R = nQ

R1
+ nQ

R2
in the natural way. Our analysis

of both nQ
R1

and nQ
R2

is similar to that of mQ
R in Section 8. In fact we follow

the same argument as for mQ
R to see that

nQ
R1

=

∫
t∈T (ξ)

dt

t

∫ ∞

0

ds

s

∫
u∈U

du

u

[
eisQ(1,1,u) + · · · ] + O(1).

Here T (ξ) = {t : λ2(ξ) ≤ t ≤ min([λ1(ξ)]
−1, 1)} where λ1(ξ) and λ2(ξ) are

as in Section 8. Furthermore U = {|u| ≥ 1 : |u| ≤ µi(ξ)s
Mit∆i , 1 ≤ i ≤ m}

where

µi(ξ) = ξ
−(Ei−α)
4

[
ξ

σ1/σ2

4 ξ
−1/σ2

3

]∆i , Mi = (Ei − α)/ρ1,

∆i =
Fi − β

ρ2
− Ei − α

ρ1
, Ei =

a2 − Ai

Di − d2
, Fi =

b2 − Bi

Di − d2

and α, β, σ1, σ2, ρ1 and ρ2 are defined as in Section 8. We recall that (H2)
guarantees that α, β, σ1, σ2, ρ1, ρ2 �= 0. Furthermore (H4) implies that each
∆i �= 0 (without loss of generality, we may assume ∆i > 0).

Arguing as in Step 5 and Step 6 in Section 8, one finally arrives at the
conclusion

nQ
R1

=

∫
t∈∩m−1

i=1 Ti∩T0

dt

t

∫ ∞

0

ds

s

∫
|u|≥1

du

u

[
eisQ(1,1,u) + · · · ] + O(1).

Here

T0 =
{
t ≥ 1 : ξρ1

1 ξ−1
4 ≤ ξ

Em−α
ρ1∆m

4 t ≤ min(ξ−ρ2
2 , ξ

σ1/σ2

4 ξ
−1/σ2

3 )
}
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and for 1 ≤ i ≤ m − 1,

Ti =
{
t : t ≥ ξ

Ei−α

ρ1∆i
−Em−α

ρ1∆m

4

}
.

In a similar manner one deduces that

nQ
R2

=

∫
t∈∩m−1

i=1 Si∩S0

dt

t

∫ ∞

0

ds

s

∫
|u|≤1

du

u

[
eisQ(1,1,u) + · · · ] + O(1)

where

S0 =
{
t ≥ 1 : ξρ1

1 ξ−1
4 ≤ ξ

Gm−α
ρ1Γm

4 t ≤ min(ξ−ρ2

2 , ξ
σ1/σ2

4 ξ
−1/σ2

3 )
}

and for 1 ≤ i ≤ m − 1,

Si =
{
t : t ≥ ξ

Gi−α

ρ1Γi
−Gm−α

ρ1Γm

4

}
.

Here

Γi =
Hi − β

ρ2
− Gi − α

ρ1
, Gi =

aL−1 − Ai

Di − dL−1
, Hi =

bL−1 − Bi

Di − dL−2

Therefore if we can show that for each 1 ≤ i ≤ m,

(9.1)
Ei − α

ρ1∆i
=

Gi − α

ρ1Γi
,

then we have

nQ
R = nQ

R1
+ nQ

R2
=

∫
t∈∩m−1

i=1 Ti∩T0

dt

t

∫ ∞

0

F (s)
ds

s
+ O(1)

which will conclude the proof of Theorem 1.2. To prove (9.1), it suffices to
show

Fi − β

Ei − α
=

Hi − β

Gi − α

for each 1 ≤ i ≤ m. In other words we need to see that for all i, Ii + IIi +
IIIi = 0 where

Ii = GiFi − HiEi, IIi = α(Hi − Fi), IIIi = β(Ei − Gi).

However
Ii + IIi + IIIi = L · (K2 × KL−1)

where L = (a1, b1, d1) − (a2, b2, d2), K2 = (Ai, Bi, Di) − (a2, b2, d2) and
KL−1 = (Ai, Bi, Di)− (aL−1, bL−1, dL−1). The points (a2, b2, d2), (aL−1, bL−1,
dL−1) and (Ai, Bi, Di) form the vertices of a triangle and L is a multiple of
(aL−1, bL−1, dL−1) − (a2, b2, d2). Hence

L · (K2 × KL−1) = 0,

establishing (9.1).
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10. The necessity of the boundedness of vertex and
edge operators

If V = (sa, tb, ud) where (a, b, d) is a vertex of the Newton polyhedron of P ,
we set

HV
R3f(x) =

∫∫∫
R3

f
(
x1 − s, x2 − t, x3 − u, x4 − satbud

)dsdtdu

stu
.

Let Q = Σejs
aj tbjudj where the sum is over all monomials ejs

aj tbjudj such
that (aj , bj, dj) lie on a bounded edge, say E, of the Newton polyhedron
of P . Set

HQ
R3f(x) =

∫∫∫
R3

f
(
x1 − s, x2 − t, x3 − u, x4 − Q(s, t, u)

)ds dt du

stu
.

In this section R denotes the cube {(s, t, u) : |s| ≤ 1, |t| ≤ 1|u| ≤ 1} in R3.

Proposition 10.1. If HP
R is bounded on L2, then HV

R3 is bounded on L2 for

all vertices V , and HQ
R3 is bounded on L2 for all bounded edges E.

Remark. Lemma 7.1, Proposition 8.1 and Proposition 10.1 together show
the necessity part of Theorem 1.2, and hence concludes the proof of Theo-
rem 1.2. Furthermore, Lemma 7.1 and Proposition 10.1 show the necessity of
the evenness of at least two of the exponents of each vertex in Theorem 1.1.

Proof. For λ = (λ1, λ2, λ3, λ4) set

Pλ = λ4P

(
s

λ1

,
t

λ2

,
u

λ3

)

and

Hλf(x1, x2, x3, x4) =

∫
|s|≤λ1
|t|≤λ2
|u|≤λ3

f
(
x1 − s, x2 − t, x3 − u, x4 − Pλ(s, t, u)

)dsdtu

stu
.

If HP
R is bounded, so is Hλ, with the same bound uniformly in λ. Also

Hλf = Dλ∗f+Hλf where Hλf is a truncation of the triple Hilbert transform
of f in the first three variables and Dλ is a distribution, which acting on a
test function φ is given by

〈φ, Dλ〉 =

∫
|s|≤λ1
|t|≤λ2
|u|≤λ3

∫ 1

0

∂φ

∂x4

(s, t, u, ρPλ(s, t, u))dρPλ (s, t, u)
ds dt du

stu
.
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The latter integral is absolutely convergent since each monomial of P con-
tains positive powers of all variables.

So to prove Proposition 10.1 it suffices to find for each vertex (a, b, d) a
sequence of λ’s with each component tending to infinity in such a way that

|Pλ (s, t, u)| ≤
∑

j

Cj |s|Aj |t|Bj |u|Dj , Aj, Bj , Dj > 0

and Pλ (s, t, u) → satbud.

(10.1)

Also for each edge we need to find a sequence of λ’s with each component
tending to infinity in such a way that

|Pλ (s, t, u)| ≤
∑

j

Cj |s|Aj |t|Bj |u|Dj , Aj, Bj , Dj > 0

and Pλ (s, t, u) → Q(s, t, u).

(10.2)

The existence of this sequence of λ’s follows from the following lemma:

Lemma 10.2. (i) Let V = (sa, tb, ud) where (a, b, d) is a vertex of the
Newton polyhedron of P . There exist positive numbers (α, β, γ) such
that αa + βb + dγ < αA + βB + γD for every (A, B, D) �= (a, b, d) in
the Newton polyhedron of P such that esAtBuD is a monomial of P .

(ii) If Q = Σeis
aitbiudi is the polynomial corresponding to an edge of the

Newton polyhedron of P , there exist positive α, β, γ such that

αai + βbi + γdi

is independent of i, and

αai + βbi + γdi < αA + βB + γD

for all A, B, D that occur as exponents of a monomial of P not lying
on the edge corresponding to Q.

Remark. Given the lemma, we can achieve (10.1) and (10.2) by taking λ1 =
ηα, λ2 = ηβ, λ3 = ηγ and λ4 = ηaαηbβηγd for (10.1) and λ4 = ηaiαηbiβηγdi

for (10.2). This concludes the proof of Proposition 10.1.

Proof of Lemma 10.2. To prove (i), we choose a plane π that intersects
the closed Newton polyhedron only in V . Then since the Newton polyhedron
is convex it lies entirely on one side of π. Let N be the normal to π pointing
into the Newton polyhedron. Say N = (α, β, γ). We take this (α, β, γ) for
the proof of (i). Clearly

aα + βb + dγ < αA + βB + γD

for every (A, B, D) �= (a, b, d) since

((A − a), (B − b), (D − d)) · N > 0.
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It remains to show that α, β, and γ are positive. To see this note that if
x− a, y− b, z − d, are all non-negative with at least one of x− a, y− b, z − d
positive, (x, y, z) is in the interior of the Newton polyhedron. So

α · (x − a) + β · (y − b) + γ(z − d) > 0

whenever x− a ≥ 0, y− b ≥ 0, z − d ≥ 0 with strict inequality in one of the
three cases. Thus α, β and γ are positive.

The proof of (ii) is similar. We take a plane π which contains the line
through the points (ai, bi, di) and intersects the closed Newton polyhedron
in no other points. Again we take (α, β, γ) so that N = (α, β, γ) is a normal
to π pointing into the Newton polyhedron. We just remark that we are
using the assumption that the edge does not lie in a plane parallel to a
coordinate plane to assert that if (u, v, w) is an interior point on that edge
and x ≥ u, y ≥ v, and z ≥ w, with at least one of the inequalities strict
(x, y, z) is in the interior of the Newton polyhedron. This implies as above
that α, β and γ are positive. �

11. Conclusion of the proof of the necessity in Theo-
rems 1.1 and 1.2

We let, as usual,

Q(s, t, u) =

L∑
j=1

ejs
aj tbjudj

with each sequence {aj}, {bj} and {dj} strictly monotone and positive. We
assume at least two of (a1, b1, d1) even and at least two of (aL, bL, dL) even,
say, d1 and dL are even. Then with Fd(s) as in (1.1), the following proposition
will complete the proof of Theorem 1.1.

Proposition 11.1. If ∫ ∞

0

Fd(s)
ds

s
= 0

for all choices of ej with ej �= 0, then either all aj are even, all bj are even
or all dj are even.

We may assume L ≥ 3. We shall need the following lemma:

Lemma 11.2. Suppose d1 and dL are even and a1 is even. Then aj has the
same parity as dj for all j or all dj are even or all aj are even. Similarly is
a1 is odd, then aj and dj have opposite parity for all j or all dj are even.
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Proof. Suppose for some j0, aj0 is odd and dj0 is even. So aj0 − a1 = 2k +1
and dj0 − d1 = 2� for some integers k and �. Take a third pair (aj1, dj1).
Then

aj0 − a1

aj1 − a1
=

dj0 − d1

dj1 − d1
.

Hence (2k + 1)(dj1 − d1) = 2�(aj1 − a1). Thus dj1 − d1 is even. So if for any
j0, aj0 − a1 is odd and dj0 − d1 is even then all dj are are even. This proves
the lemma. �

Proof of Proposition 11.1. We are assuming that d1 and dL are even.
Then we may assume without loss of generality that a1 is even. Then there
are two cases, b1 is even or b1 is odd. Assume first that b1 is even. In this
case by Lemma 11.2, we may assume in each monomial saj tbjudj of Q that
aj , bj and dj are even or aj , bj and dj are odd. We write

Q(s, t, u) = E(s, t, u) + H(s, t, u)

where the exponents of all monomials in E are even and the exponents of
all monomials of H are odd. We wish to show that H is identically zero.

Then the condition that
∫ ∞
0

Fd(s)
ds
s

= 0 is just

∫ ∞

0

ds

s

∫ ∞

−∞
eisE(1,1,u) sin(sH(1, 1, u))

du

u
= 0.

By looking at the imaginary part of the integral, we find

I =

∫ ∞

0

ds

s

∫ ∞

0

[sin(sE(1, 1, u)) sin(sH(1, 1, u))]
du

u
= 0.

If now b1 is odd, then in each monomial of Q aj and dj are even and bj is odd
or aj and dj are odd and bj is even (unless all dj are even). A computation
then shows that unless all dj are even, we again find I = 0.

We now consider I. We interchange the order of integration and use an
argument in [5], (pages 40 and 41). First note that I equals

∫ ∞

0

du

u

∫ ∞

0

ds

s

{
cos(s[(E(1, 1, u)+H(1, 1, u))])−cos(s[(E(1, 1, u)−H(1, 1, u))])

}
.

Let

A = |E(1, 1, u) + H(1, 1, u)|−1 and B = |E(1, 1, u)− H(1, 1, u)|−1.
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Then we write∫ ∞

ε

ds

s
{cos(s[E(1, 1, u) + H(1, 1, u)])} =

=

∫ A

ε

{cos(s[E(1, 1, u) + H(1, 1, u)])− 1}ds

s

+

∫ ∞

A

{cos(s[E(1, 1, u) + H(1, 1, u)])}ds

s
+

∫ A

ε

ds

s

and∫ ∞

ε

ds

s
{cos(s[E(1, 1, u)− H(1, 1, u)])} =

=

∫ B

ε

{cos(s[E(1, 1, u)− H(1, 1, u)])− 1}ds

s

+

∫ ∞

B

{cos(s[E(1, 1, u) − H(1, 1, u)])}ds

s
+

∫ B

ε

ds

s
.

So we have

I =

∫ ∞

0

du

u
log

∣∣∣∣E(1, 1, u) + H(1, 1, u)

E(1, 1, u)− H(1, 1, u)

∣∣∣∣ .

But if we take all ej positive then

|E(1, 1, u) + H(1, 1, u)| ≥ |E(1, 1, u)− H(1, 1, u)|
and at least for some interval of u

|E(1, 1, u) + H(1, 1, u)| > |E(1, 1, u)− H(1, 1, u)|
unless H is identically zero. If H is not identically zero, then since I = 0 we
arrive at a contradiction. This completes the proof of Proposition 11.1 and
also of Theorem 1.1. �

12. Two Examples

In this section we consider two examples of edge operators. The polynomials
are

Q1 = As30t29u2 + Cs27t28u3 + Ds21t26u5 + Bs18t25u6

and
Q2 = As2t2u4 + Bs3t5u3 + Ds4t8u2.
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We consider

H1f(x) =

∫∫∫
R3

f(x1 − s, x2 − t, x3 − u, x4 − Q1(s, t, u))
ds dt du

stu
,

and

H2f(x) =

∫∫∫
R3

f(x1 − s, x2 − t, x3 − u, x4 − Q2(s, t, u))
ds dt du

stu
.

We shall show that for H1, there is a choice of (A, C, D, B) for which none
of A, C, D, B are zero and H1 is bounded on L2(R4) while if A > 0, C > 0,
D > 0, and B > 0, H1 is not bounded on L2. On the other hand for every
choice of A, B, D with A �= 0, B �= 0, and D �= 0, H2 is unbounded on L2.

By Proposition 8.1 in each case it suffices to see whether
∫ ∞
0

Fd(s)ds/s=0.
Moreover, in Section 11, we showed that if all of the coefficients are positive
then

∫ ∞
0

Fd(s)ds/s �= 0.

We shall first show that if A = B and C = −D in Q1, then
∫ ∞
0

Fd(s)ds/s
= 0. With the notation of Section 11,

E(u) = Au2 + Bu6 and H(u) = Cu3 + Du5,

and∫ ∞

0

F (s)

s
ds =

∫ ∞

0

ds

s

∫ ∞

0

sin(sE(u)) sin(sH(u))
du

u

=

∫ ∞

0

log
|E(u) + H(u)|
|E(u) − H(u)|

du

u

=

∫ 1

0

log
|E(u) + H(u)|
|E(u) − H(u)|

du

u
+

∫ 1

0

log
|E( 1

u
) + H( 1

u
)|

|E( 1
u
) − H( 1

u
)|

du

u

:= I + II.

Now

II =

∫ 1

0

log
|u8(E( 1

u
) + H( 1

u
))|

|u8(E( 1
u
) − H( 1

u
))|

du

u
.

Since A = B and C = −D, we see that

II =

∫ 1

0

log
|E(u) − H(u)|
|E(u) + H(u)|

du

u
= −I.

This completes the analysis of H1.
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For H2, ∫ ∞

0

F (s)

s
ds =

∫ ∞

0

ds

s

∫ ∞

0

ei(Au4+Du2)s sin(Bu3s)
du

u
.

After a change of variables one sees that for some non-zero λ depending
on A, B and D,

∫ ∞

0

F (s)

s
ds =

∫ ∞

0

sin λs

s

∫ ∞

0

ei(u+ 1
u
)s du

u
ds

or ∫ ∞

0

F (s)

s
ds =

∫ ∞

0

sin λs

s

∫ ∞

0

ei(u− 1
u
)s du

u
ds

depending on the signs of A and D. The imaginary part of the first integral
reduces to∫ ∞

0

ds

s
sin(λs)

∫ 1

0

sin((
1

u
+ u)s)

du

u
=

∫ 1

0

log

∣∣∣∣λ − (u + 1
u
)

λ + (u + 1
u
)

∣∣∣∣ du

u

which is non-zero for any λ �= 0.
The second integral reduces to

∫ ∞

0

ds

s
sin λs

∫ 1

0

cos((u−1

u
)s)

du

u
=

=

∫ 1

0

{
sgn((

1

u
− u) + λ) + sgn(λ − (

1

u
− u))

}du

u

which is non-zero for any λ �= 0.
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