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A variant of compressed sensing

Basarab Matei and Yves Meyer

Abstract

The famous Nyquist-Shannon sampling theorem has been recently
improved by A. Olevskii and A. Ulanovskii. The present contribution
is aimed at bridging the gap between their advance on irregular sam-
pling and what is named “compressed sensing” in signal processing.

1. Introduction

This paper is motivated by some recent advances on what is now called
“compressed sensing”. Let us begin with a theorem by Terence Tao [8]. Let p
be a prime number and Fp be the finite field with p elements. We denote
by #E the cardinality of E ⊂ Fp. The Fourier transform of f ∈ l2(Fp)

is denoted by f̂ . Let Mq be the collection of all f ∈ l2(Fp) such that the
cardinality of the support of f does not exceed q. Then Terence Tao proved
that for q < p/2 and for any set Ω of frequencies such that #Ω ≥ 2q, the
mapping Φ : Mq �→ l2(Ω) defined by f �→ 1Ωf̂ is injective. Here and in what
follows, 1E will denote the indicator function of the set E. Tao’s theorem is
no longer true if Fp is replaced by Z/NZ and if N is not a prime.

We want to generalize this fact to functions F defined on the unit square
with applications to image processing. In a forthcoming work the hypothesis
that F is supported by the unit square will be removed. Here and in what
follows the action takes place on [0, 1]2 identified to (R/Z)2. Since the unit
square [0, 1]2 has been identified to (R/Z)2, the Fourier transform of F ∈
L1([0, 1]2) is the sequence of its Fourier coefficients defined by

(1.1) F̂ (k) =

∫ 1

0

∫ 1

0

exp(−2πik · x)F (x)dx, k ∈ Z2.
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To generalize Tao’s theorem to the continuous setting we begin with a
parameter β ∈ (0, 1/2) which will play the role of q and define a collectionMβ

of images F ∈ L2([0, 1]2) as follows : we write F ∈ Mβ if F is supported
by a compact set K ⊂ [0, 1]2 whose measure |K| does not exceed β. This
compact set K depends on F and Mβ is not a vector space. If F, G belong
to Mβ, then F +G belongs to M2β , a situation which is classical in nonlinear
approximation. It will be proved below that for every α ∈ (0, 1/2) there
exists a set Λα ⊂ Z2 with the following properties : (a) density Λα = 2α
and (b) the mapping Φ : Mβ �→ �2(Λα) defined by Φ(F ) = (F̂ (k))k∈Λα

is injective when 0 < β < α. This set Λα plays the role of Ω in Tao’s
work and the density of Λα is then playing the role of the cardinality of Ω.
Any F ∈ Mβ can be retrieved from the information given by the “irregular

sampling” F̂ (k) = a(k), k ∈ Λα, and one would like to do it by some fast
algorithm. If we a priori know that the data a(k), k ∈ Λα, are the Fourier
coefficients of some nonnegative F ∈ Mβ, then it will be proved that F is
the unique solution of the following problem

(1.2) inf{‖u‖1 ; u ∈ L1(T2), û(k) = a(k), k ∈ Λα}.
The reader recognizes the minimization algorithm which is used in com-
pressed sensing. We do not impose any condition on the support of u in (1.2).
The uniqueness of the solution of the problem (1.2) is coming from the pecu-
liar structure of the data a(k), k ∈ Λα. This is no longer true when F both
takes positive and negative values (see Lemma 6.2). We now construct the
sparse set Λα.

Definition 1.1. If α ∈ (0, 1/2) we define Λα ⊂ Z2 by

(1.3) Λα = {(m,n) ∈ Z2; ∃r ∈ Z such that |m
√

2 + n
√

3 − r| ≤ α}.
The choice of

√
2 and

√
3 is irrelevant and other irrational numbers γ1

and γ2 could be used as long as γ1, γ2 and 1 are linearly independent over Q.
We know from the theory of “model sets” [4] that the density of Λα ⊂ Z2

is uniform and equals 2α. It means that for every ε > 0 there exists a R(ε)
such that for R ≥ R(ε) and uniformly in x0 ∈ Z2

(1.4) (2α− ε)πR2 ≤ #{Λα ∩ B(x0, R)} ≤ (2α+ ε)πR2.

Here B(x0, R) is the disc centered at x0 with radius R.

Definition 1.2. As above we write F ∈ Mβ if F ∈ L2(T2) and if F is
supported by a compact set K ⊂ [0, 1]2 whose measure |K| does not exceed β.



A variant of compressed sensing 671

Theorem 1.1. We assume β < α and we have

(a) The mapping Φ : Mβ �→ l2(Λα) defined by F �→ (F̂ (k))k∈Λα is injective.

(b) If F ∈ Mβ is nonnegative, then F is the unique solution u of the
following variational problem

(1.5) inf{‖u‖1 ; u ∈ L1(T2), û(k) = F̂ (k), k ∈ Λα}.

(c) If F ∈ Mβ, u ∈ L1(T2), F ≥ 0, u ≥ 0 and û(k) = F̂ (k), k ∈ Λα, then
u = F.

Let us stress that we do not assume anything on the support of u in (1.5).
Theorem 1.1 is sharp since the hypothesis β < α cannot be replaced by
β > α. The case β = α seems to be open. If one does not assume F ≥ 0
then F is not in general the argument of the variational problem (1.5).
These two remarks will be proved later on (see Section 6). We also want
to investigate the stability in Theorem 1.1 which is given by the following
statement where the error term is measured in L∞(T2). It would have been
more natural to measure error terms in L2 but we were unable to prove
Theorem 1.2 in this context.

Theorem 1.2. Let us assume we are given a noisy sampling a(k) = F̂ (k)+
R̂(k), k ∈ Λα, where the unknown function F is nonnegative and belongs to
Mβ and where the error term R fulfils ‖R‖∞ ≤ ε. Then for any nonnega-
tive u, the property û(k) = a(k), k ∈ Λα, implies ‖u − F‖∞ ≤ Cε where
C = C(F ) only depends on the geometry of the closed support of F.

Let us say a few words on C(F ). One might hope that C(F ) be a function
of α and β. We have not been able to prove it. Indeed in our proof C(F )
will depend on a function β(ε) which is the measure of the sum K +B(0, ε)
between K (K is the closed support of F ) and the disc centered at 0 with
radius ε. The behavior of β(ε) near 0 depends on the geometry of K. This
will be detailed in Section 4 (see Proposition 4.2).

We now say a few words on the organization of this paper. Following
H. J. Landau, A. Olevskii and A. Ulanovskii, we study two properties named
“stable sampling” and “stable interpolation” in Sections 2 and 3. Up to
some obvious transformation, sampling and interpolation are proved to be
equivalent properties (see Proposition 2.1). This permits to focus on stable
interpolation in the proof of Theorem 1.1. Stable interpolation will follow
from Proposition 4.1 which is seminal in this paper. Then the proofs of
Theorems 1.1 and 1.2 will be completed in Section 4 and 5 and the last
section will be devoted to some counterexamples. We decided to focus on
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the two-dimensional case but the theorems and proofs obviously extend to
any dimension. We conclude this introduction with a few words on image
processing. A cartoon image is defined by a function F which is piecewise
constant with jump discontinuities along a finite collection K of rectifiable
curves. Then ∇F is supported by K and the measure of K is 0. Then for
any positive α, the subsampling F̂ (k), k ∈ Λα, suffices to recover F. Indeed
the Fourier transform of ∇F is given by ikF̂ (k) and Theorem 1.1 implies
our claim. One could object that Theorem 1.1 is restricted to the L2 case
while ∇F is a Radon measure. This issue is not a serious one and the details
of the argument will appear elsewhere.

2. L2 and Lp estimates

We return to the finite field Fp and assume that we are given two sets T ⊂ Fp

and Ω ⊂ Fp with the same cardinality. We denote by l2T the linear space of
all f ∈ l2 which are supported by T (i.e. vanish outside T ). Similarly l2(Ω)
denotes the restrictions to Ω of signals f ∈ l2. This looks pedantic but will
be adapted to functional spaces in a continuous setting. The theorem by
Tao can be split into two pieces. The first assertion says that the mapping
F : l2T �→ l2(Ω) defined by f �→ f̂ is an isomorphism. The second assertion
in Tao’s theorem says that the mapping F : Mq �→ l2(Ω) is injective when
#Ω ≥ 2q. Here T is not given. This obviously follows from the first state-
ment. It suffices to observe that f1, f2 ∈ Mq implies f = f1 − f2 ∈ M2q.
We aim at generalizing these two facts to the continuous setting. Let us
begin with the case where the set T is given. Let K ⊂ T2 be a Borel set (K
will play the role of T ) and Λ ⊂ Z2 be a set of frequencies (Λ will play the
role of Ω). Let L2

K be the Hilbert space of all square integrable functions
supported by K. In other words we write F ∈ L2

K if F belongs to L2(T2)
and vanishes almost everywhere on T2 \K. H. J. Landau defined in [3] a set
of stable sampling by the following condition

Definition 2.1. Let K ⊂ T2 be a Borel set and Λ ⊂ Z2 a set of frequencies.
We say that Λ is a set of stable sampling for L2

K if a constant C exists such
that for every F ∈ L2

K one has

(2.1) ‖F‖2 ≤ C
(∑

k∈Λ

|F̂ (k)|2
)1/2

Here and in what follows, F̂ (k), k ∈ Z2, denotes the sequence of Fourier
coefficients of F ∈ L1(T2). In other words Λ is a set of stable sampling for L2

K

if and only if the functions exp(2πik ·x), k ∈ Λ, are a frame of L2(K). Then
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the measure |K| of K cannot exceed the lower density of Λ as H. J. Landau
proved in [3].

Definition 2.2. We say that Λ ⊂ Z2 is a universal sampling set if the
following conditions hold : Λ has a uniform density d and, for every compact
set K of Lebesgue measure less that d, Λ is a set of stable sampling for L2

K .

As it was already mentioned, H. J. Landau proved that the condition
|K| ≤ d is necessary. In the definition of universal sampling sets K is
assumed to be a compact set. A. Olevskii and A. Ulanovskii who defined
universal sampling sets proved in [7] that universal sampling sets would not
exist if K was allowed to be an arbitrary Borel set of measure less than d.
We aim at constructing universal sampling sets. The most convenient way
relies on the property of stable interpolation which was also introduced by
H. J. Landau:

Definition 2.3. Let Ω ⊂ T2 a Borel set. We say that Λ ⊂ T2 is a set of
stable interpolation for L2(Ω) if for every (a(λ))λ∈Λ ∈ l2(Λ) there exists a
F ∈ L2

Ω such that F̂ (λ) = a(λ), λ ∈ Λ.

This definition can be given an equivalent form :

Lemma 2.1. Λ ⊂ Z2 is a set of stable interpolation for L2(Ω) if and only
if there exists a constant C such that for any square summable sequence
(a(k))k∈Λ one has

(2.2)
(∑

k∈Λ

|a(k)|2
)1/2

≤ C
(∫

Ω

|
∑
k∈Λ

a(k) exp(2πik · x)|2 dx
)1/2

If Λ ⊂ Z2 is a set of stable sampling and at the same time a set of stable
interpolation for L2(Ω) then the functions exp(2πik · x), k ∈ Λ, are a Riesz
basis for L2(Ω). Finding necessary and sufficient conditions for (2.1) or (2.2)
is out of reach and only necessary conditions are known. These necessary
conditions were obtained by H. J. Landau in [3]. In these conditions the
upper or lower density of Λ are compared to the measure of Ω or K.

Definition 2.4. The upper density D+(Λ) of Λ is defined as

lim sup
R→∞

sup
x

#{B(x,R) ∩ Λ}
πR2

and the lower density D−(Λ) is defined by

lim inf
R→∞

inf
x

#{B(x,R) ∩ Λ}
πR2

.
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H. J. Landau proved the implications (2.2) ⇒ D+(Λ) ≤ |Ω| and (2.1) ⇒
D−(Λ) ≥ |K|. These necessary conditions are obviously not sufficient.

Sampling and interpolation are the same problem as it will be proved
now.

Proposition 2.1. If the Borel set K is the complement of Ω in T2 and if
M is the complement of Λ in Z2, then M is a set of stable sampling for L2

K

if and only if Λ is a set of stable interpolation for L2(Ω).

For proving (2.2) ⇒ (2.1) we start with a function F ∈ L2(T2) which
is supported by K and we need to prove that ‖F‖2 ≤ C(

∑
k∈M |F̂ (k)|2)1/2.

We then split f = F̂ into the sum g + h where g = f1M and h = f1Λ. Here
and in what follows 1E denotes the indicator function of the set E. Then
g(k), k ∈ Z2, are the Fourier coefficients of G ∈ L2(T2) and h(k), k ∈ Z2,
are the Fourier coefficients of H ∈ L2(T2). We have F = G+H. From (2.2)
we know that

(2.3) ‖h‖2 ≤ C
(∫

Ω

|H(x)|2dx
)1/2

.

But G+H = 0 on Ω and

(2.4)

∫
Ω

|H(x)|2dx =

∫
Ω

|G(x)|2dx ≤ ‖G‖2
2 = ‖g‖2

2 =
∑
k∈M

|f(k)|2.

Therefore

(2.5) ‖h‖2 ≤ C
(∑

k∈M

|f(k)|2
)1/2

.

and

(2.6) ‖f‖2 =
(
‖g‖2

2 + ‖h‖2
2

)1/2

≤
√

1 + C2
(∑

k∈M

|f(k)|2
)1/2

which ends the proof.

The converse implication (2.1) ⇒ (2.2) is just as easy. We assume that
f(k) vanishes outside Λ and we consider F (x) =

∑
k∈Λ f(k) exp(2πik · x).

We want to prove (2.2). We split F (x) into the sum G(x) +H(x) where G
is the product between F and the indicator function 1K of K and H(x) =
1ΩF (x). Let g(k) and h(k), k ∈ Z2, be the Fourier coefficients of G and
H. We know that f = g + h and we have f(k) = 0 whenever k ∈ M.
Then (2.1) yields ‖G‖2

2 ≤ C2
∑

k∈M |g(k)|2. But g(k) = −h(k), k ∈ M, and
‖G‖2

2 ≤ C2
∑

k∈M |h(k)|2 ≤ C2‖H‖2
2 = C2

∫
Ω
|F |2 dx which ends the proof.

Indeed ‖F‖2
2 = ‖G‖2

2 + ‖H‖2
2 implies ‖F‖2 ≤

√
1 + C2‖H‖2.
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Definition 2.5. We say that Λ is a set of universal interpolation if Λ has
a uniform density d and is a set of stable interpolation for any open set Ω
of measure larger than d.

A.Olevskii and A.Ulanovskii proved in [7] that universal interpolation
sets would not exist if Ω was allowed to be an arbitrary Borel set of measure
larger than d.

We aim at proving the following theorem

Theorem 2.1. The set Λα of Definition 1.1 is a set of universal sampling
and also of universal interpolation.

Theorem 2.1 can be traced back to [4] where it is proved for functions of
one real variable (see Theorem 6, page 51). This little book was published in
1970 in French and remained unnoticed. A.Olevskii and A.Ulanovskii were
not aware of [4] and independently constructed sets of stable sampling and
sets of stable interpolation. For functions of one real variable, they proved
the following

Theorem 2.2. For every positive d and ε there exists a sequence Λ ⊂ R

satisfying the following conditions

(a) ‖Λ − (1/d)Z‖∞ < ε

(b) the family exp(iλx), λ ∈ Λ, is a frame in L2(S) for every compact set
S of measure < 2πd.

(c) for every open set S of measure > 2πd, any square summable sequence
a(λ), λ ∈ Λ, is the restriction to Λ of the Fourier transform of a
function F ∈ L2(S).

In this theorem, the Fourier transform is defined without 2π in the ex-
ponential. Theorem 2.1 implies (a) in Theorem 1.1. Indeed if F1, F2 ∈Mβ ,
then F = F1 −F2 is supported by a compact set K of measure less than 2β.
If F̂1(k) = F̂2(k), k ∈ Λα, we have F̂ (k) = 0, k ∈ Λα and Theorem 2.1
implies F = 0. The proof of Theorem 2.1 will be given in Section 4. This
proof relies on a generalization of sets of stable interpolation where L2 esti-
mates are replaced by L∞ estimates. These L∞ estimates will be obtained
by transference. The proof of the universal sampling property will then
follow from Proposition 2.1, Proposition 2.2 and from the fact that the com-
plement of Λα has a similar structure. The details of this proof are given
in Section 4. The L∞ estimates are defined now. It does not cost more to
treat the general case of an exponent p ∈ [1,∞]. Let K ⊂ T2 be a Borel
set. We define Lp

K as the Banach space of all F ∈ Lp which are supported
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by K. The space Lp(Ω) will consist of all restrictions to Ω of functions in Lp.
This looks pedantic since Lp(K) and Lp

K are identical. But a function in Lp
K

needs to be viewed as a function which vanishes outside K. Let Ep be the
Banach space of Fourier coefficients F̂ (k), k ∈ Z2 of functions F in Lp(T2), a
Banach space that some authors denote by FLp. For Λ ⊂ Z2, we define the
Banach space Ep(Λ) as the space of restrictions to Λ of all f ∈ Ep and we
equip Ep(Λ) with the quotient norm. We now define a set of stable sampling
for Ep

K .

Definition 2.6. We say that Λ is a set of stable sampling for Lp
K if there

exists a constant C such that one has ‖F‖p ≤ C‖F̂‖Ep(Λ) for every F ∈ Lp
K .

In other words F ∈ Lp(T2), F (x) = 0 almost everywhere on T2 \ K,
G ∈ Lp(T2), and F̂ (k) = Ĝ(k), k ∈ Λ, imply ‖F‖p ≤ C‖G‖p. This is
the most convenient formulation. If 1 ≤ p < ∞ and 1/p + 1/q = 1, then
Definition 2.6 is equivalent to the following condition

Lemma 2.2. A set of frequencies Λ is a set of stable sampling for Lp
K if

and only if every F ∈ Lq(K) is the restriction to K of a function G(x) =∑
k∈Λ a(k) exp(2πik · x) which belongs to Lq(T2).

We now define a set of stable interpolation for Lp
K . Let us denote by CΛ

the space of all continuous functions F on T2 such that F̂ (k) = 0 if k /∈ Λ.
We notice that (2.1) can be written F ∈ CΛ ⇒ ‖F‖2 ≤ C‖F‖L2(Ω). This
observation leads to the following definition

Definition 2.7. Let Ω ⊂ T2 be a Borel set and p ∈ [1,∞]. We say that Λ
is a set of stable interpolation for Lp(Ω) if

(2.7) F ∈ CΛ ⇒ ‖F‖p ≤ C‖F‖Lp(Ω)

When p = 2 this new definition is the one we gave above. If 1/p+1/q = 1
a duality argument yields the following lemma

Lemma 2.3. Λ is a set of stable interpolation for Lp
K if and only if each

sequence (a(k))k∈Λ belonging to Eq(Λ) is the restriction to Λ of the Fourier
coefficients of F ∈ Lq

K .

If p = 1 or p = ∞ this statement needs to be modified accordingly.
Keeping these definitions in mind we have

Theorem 2.3. As in Proposition 2.1, let M ⊂ Z2, let Λ be the complement
of M in Z2 and let K ⊂ T2 be a Borel set. Let Ω be the compement of
K in T2. If M is a set of stable sampling for Lp

K , then Λ is a set of stable
interpolation for Lp

Ω. Conversely if Λ is a set of stable interpolation for Lp
Ω

and if the indicator function of Λ is a multiplier for FLp, then M is a set
of stable sampling for Lp

K .
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Before proving this theorem, let us observe that the set Λα which is
defined by (1.3) has the required property. This follows from the fact that
the indicator function of an interval is a multiplier for FLp and from the
transference methods of R.Coifman and G.Weiss. The proof of Theorem 2.3
is similar to the one we gave for Proposition 2.1. We assume that M is a set
of stable sampling for Lp

K and we want to prove (2.7) when F ∈ CΛ. We have
F (x) =

∑
k∈Λ f(k) exp(2πik · x). We split F (x) into the sum G(x) + H(x)

where G is the product between F and the indicator function of K and
H(x) = 1ΩF (x). Let g(k) and h(k), k ∈ Z2, be the Fourier coefficients
of G and H. We know that f = g + h and we have f(k) = 0 whenever
k ∈ M. Then g = −h on M and the equivalent definition of a set of stable
sampling yields ‖G‖p ≤ C‖H‖p = C‖F‖Lp(Ω). The proof of (2.7) ends with
‖F‖p ≤ ‖G‖p + ‖H‖p ≤ (1 + C)‖F‖Lp(Ω).

The converse implication is as easy. We start with two functions F and G
such that F is supported by K and F̂ = Ĝ on M. We want to prove that
‖F‖p ≤ C‖G‖p. For proving it we denote by f(k) the Fourier coefficients
of F and by g(k) the Fourier coefficients of G. We write F = F1 + F2

where F1(x) =
∑

k∈M f(k) exp(2πik · x) =
∑

k∈M g(k) exp(2πik · x) and
F2(x) =

∑
k∈Λ f(k) exp(2πik · x). Since Λ is a set of stable interpolation for

Ep
Ω we obtain ‖F2‖p ≤ C‖F2‖Lp(Ω). But F1 + F2 = 0 on Ω which implies

‖F2‖Lp(Ω) = ‖F1‖Lp(Ω) ≤ ‖F1‖p. Finally the Fourier coefficients of F1 are
given by f1(k) = f(k) = g(k), k ∈M, and 0 elsewhere. If 1M is a multiplier
of FLp, we have ‖F1‖p ≤ C‖G‖p which ends the proof.

The following result will be in seminal in the construction of sets of stable
interpolation.

Proposition 2.2. Let Ω ⊂ T2 be an open set containing a compact set K.
Let us assume that q ≥ p and that Λ ⊂ Z2 is a set of stable interpolation for
Eq

K . Then Λ is a set of stable interpolation for Ep
Ω.

The proof is not difficult and will be detailed if q = ∞ and p = 2. Let
one denote by B(0, ε) the ball centered at 0 with radius ε where ε is fixed
such that K+B(0, ε) ⊂ Ω. Next one denotes by g ∈ L2(B(0, ε)) an arbitrary
function satisfying ‖g‖2 ≤ 1. Then if ‖F‖L2(Ω) ≤ 1, one has ‖F ∗g‖L∞(K) ≤ 1
and the spectrum of F ∗ g is included in that of F . Then (2.7) implies
‖F ∗ g‖∞ ≤ C, i.e. | ∫ F (x)g(x0 − x)dx| ≤ C, for every x0. Optimizing in g
one obtains

(2.8)
(∫

B(x0,ε)

|F (x)|2dx
)1/2

≤ C.

It suffices to cover T2 with ε−2 such discs to obtain ‖F‖2 ≤ Cε−1. The
same proof shows that a set of stable interpolation for Eq

K is a set of stable
interpolation for Ep

Ω when p ≤ q.
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The following theorem will be proved in Section 4.

Theorem 2.4. If ≤ p ≤ ∞ and if the measure of the compact set K is
less than 2α, then the set Λα of Theorem 2.1 is a set of stable sampling
for Lp(K).

Let us stress that 2α is the density of Λα.

3. Extension to lp−norms

The extension to lp−norms, p ∈ [1,∞], of the definition of a set of stable
sampling will be discussed in this section. The reader may wish to skip this
section which is not needed in the proof of Theorem 2.1. Let us assume
that K ⊂ T2 is a compact set. Given an exponent p we would like to know
whether or not there exists a constant C = C(K,M, p) such that

(3.1)
( ∑

k∈Z2

|f(k)|p
)1/p

≤ C
( ∑

k∈M

|f(k)|p
)1/p

whenever f(k) are the of Fourier coefficients of a function or a distribution F
supported by K. Let us stress that in general F is no longer a function when
p > 2. Therefore the support of F is the closed support of a distribution.
That is why K is closed in (3.1). The estimate (3.1) says that M is a set of
stable sampling for a space that we define now. We let Y p be the Banach
space consisting of the functions or distributions (when p > 2) whose Fourier
coefficients belong to lp. Then the left-hand side of (3.1) is the norm in Y p

of F (x) =
∑

k∈Z2 f(k) exp(2πik · x).
Definition 3.1. Let Y p

K denote the space of all functions or distributions
in Y p which are supported by K. If (3.1) holds for every F ∈ Y p

K we say
that M is a set of stable sampling for the space Y p

K .

Let now Ω ⊂ T2 be an open set. We define the Banach space Y p(Ω) as
the space of restrictions to Ω of all generalized functions F ∈ Y p, the norm
being the obvious quotient norm.

Definition 3.2. A set Λ of stable interpolation for Y p(Ω) is defined by the
existence of a constant C such that F ∈ CΛ ⇒ ‖F‖Y p ≤ C‖F‖Y p(Ω).

We then have

Proposition 3.1. Let 1 ≤ p ≤ ∞, Ω ⊂ T2 be an open set and K a compact
set contained in Ω. If we have F ∈ CΛ ⇒ ‖F‖∞ ≤ C‖F‖L∞(K), then F ∈
CΛ ⇒ ‖F‖p ≤ C‖F‖Y p(Ω). Moreover the complement M of Λ in T2 is a set
of stable sampling for Y p

R where R is the complement of Ω in T2.
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The proof of the second statement (“interpolation implies sampling for
the complementary set”) is similar to the one we gave in the L2 setting (see
Proposition 2.1) and we leave the details to the reader. We now prove the
first statement in Proposition 3.1. First we observe that Y p is the dual of
Y p′ when p and p′ are conjugate exponents (with an obvious modification
if p = 1). Moreover a function on T2 belongs to Y p if and only if it locally
belongs to Y p. We assume that ε is small enough to ensure K+B(0, ε) ⊂ Ω.
We then pick a test function g supported in B(0, ε) and belonging to the
unit ball of Y p′. If ‖F‖Y p(Ω) ≤ 1, then ‖F ∗ g‖L∞(K) ≤ 1. We then use the
hypothesis to obtain ‖F ∗g‖∞ ≤ C. We optimize in g as we did before. Then
all local Y p norms of F are controlled. This implies the required estimate
on the full Y p norm of F.

4. A proof of Theorem 2.1

We now prove Theorem 2.1. An alternative proof of Theorem 2.1 can be
found in [4] (pages 39 to 50). As was already announced, the proof of
the L∞ interpolation property (Proposition 4.1) is the easiest one and will
be obtained by transference. We then use Proposition 2.2 to obtain the
interpolation property and finally the sampling property will result from
Proposition 2.1.

We now introduce the tools which will be used for the transference
method. Let us define Π : R �→ T = R/Z by Π(t) = t (mod 1). Then Z2

can be embedded in T by γ∗ : Z2 �→ T which is defined by

(4.1) γ∗(m,n) = Π(m
√

2 + n
√

3)

This mapping γ∗ is injective with a dense range. With an obvious abuse of
notations we still denote by Π the canonical mapping from R2 to T2. Then
the dual mapping γ : Z �→ T2 is given by γ(k) = Π(k

√
2, k

√
3) and the

range of γ will be denoted by Γ. Then Γ is dense in T2.

One denotes by I ⊂ T an arbitrary interval (or arc) of the circle. This
arc is not necessarily centered in 0 and the complement of I in T is also an
interval. Then we define ΛI ⊂ Z2 by

(4.2) ΛI = {(m,n) ∈ Z2; γ∗(m,n) ∈ I}.
If I = [a, b] where 0 < a < b < 1, ΛI = {(m,n) ∈ Z2; ∃r ∈ Z such that a ≤
m
√

2+n
√

3−r ≤ b}. The density of ΛI is uniform and equals |I|. A compact
set K ⊂ T2 is Riemann integrable if the measure of the boundary of K is 0.
Let us then define MK as the set of all k ∈ Z such as γ(k) ∈ K. Then the
density of MK is uniform and equals the Lebesgue measure |K| of K as it
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is proved in [4]. As it was announced the following result is seminal in the
proof of Theorem 2.1.

Proposition 4.1. Let us assume that Ω is an open set of measure |Ω| > |I|.
Then ΛI is a set of stable interpolation for E∞

Ω .

In other words there exists a constant C = CΩ,I such that for any function
F ∈ C(T2) whose Fourier coefficients vanish outside ΛI one has

(4.3) ‖F‖∞ ≤ C sup
x∈Ω

|F (x)|.

Before proving it, let us observe that one cannot replace the open set Ω by
a compact set K in Proposition 4.1. Indeed |K| > |I| does not suffice to
obtain (4.3).

We now prove Proposition 4.1. For proving (4.3) it suffices to assume
that F is a finite trigonometrical sum. Then one has

(4.4) F (x1, x2) =
∑

(m,n)∈ΛI

a(m,n)e
2πi(mx1+nx2).

It implies

(4.5) F (k
√

2, k
√

3) =
∑

(m,n)∈ΛI

a(m,n)e
2πik(m

√
2+n

√
3) = µ̂(−k)

where µ is the measure on T which is the sum of the Dirac masses a(m,n) at

the points m
√

2 + n
√

3 which belong to I, modulo 1. If Π(k
√

2, k
√

3) ∈ Ω
then k ∈MΩ. Since Γ = γ(Z) is dense in T2 we have

(4.6) sup
Ω

|F | = sup
k∈MΩ

|µ̂(−k)|.

Before stating our next lemma we return to the definition of the lower den-
sity. Here and in Lemma 4.1, M ⊂ Z is any set of integers.

Definition 4.1. The lower density D−(M) of M ⊂ Z is the upper bound
of the set of nonnegative numbers d such that for every ε > 0 there exists a
R(ε) such that for R ≥ R(ε) we have, uniformly in m ∈ Z,

(4.7) d(R− ε) ≤ #{M ∩ [m,m+R]}

Proposition 4.1 is now an easy consequence of the following lemma
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Lemma 4.1. Let M ⊂ Z be any set of integers and let d be the lower density
of M. If |I| denotes the length of the arc I ⊂ T and if d > |I|, then there
exists a constant C = C(M, I) such that

(4.8) sup
k∈Z

|µ̂(k)| ≤ C sup
k∈M

|µ̂(k)|
for any measure µ carried by I. If we are given a positive number d and a
sequence Mj of sets of integers for which (4.7) holds uniformly in j, and if
d > |I|, then we have C(Mj, I) ≤ C.

A proof of Lemma 4.1 can be found in [4]. Let us sketch the argument
for the reader’s convenience. The fact that µ is a measure does not play
any role. Indeed, Lemma 4.1 remains true if µ is replaced by a pseudo-
measure σ carried by I. A pseudo-measure is a distribution whose Fourier
transform belongs to l∞(Z). The proof of Lemma 4.1 relies on the following
observations. If Mj ⊂ Z, j ∈ N, is a sequence of sets of integers, we say that
Mj weakly converges to M if for each integer R, we have M ∩ [−R,R] =
Mj ∩ [−R,R] when j ≥ jR. The limit set may be the empty set. Let us
assume that Mj satisfy (4.7) uniformly in j which means that R(ε) does not
depend on j. If these Mj converge to a limit set M, then d ≤ D−(M). We
now return to the proof of Lemma 4.1 and denote by d the lower density of
M ⊂ Z. We now embed the vector space of all measures supported by I into
the larger space WI consisting of all pseudo-measures supported by I. The
topology of WI is the weak-star topology defined by the duality between l∞

and l1. Then from any sequence nj , j ∈ N, one can extract a subsequence
n′

j such that the sequence of sets Mj = M − n′
j weakly converges to a limit

set M ′. The lower density of this set M ′ is still larger than or equal to d.
We then argue by contradiction. If (4.8) does not hold, one can find a
sequence µj of measures carried by I and a sequence nj of integers such that
|µ̂j(nj)| ≥ 1 − 1/j and ‖µ̂j‖l∞(Z) = 1 while ‖µ̂j‖l∞(M) ≤ 1/j. Multiplying µj

by a suitable constant c of modulus 1 we can assume µ̂j(nj) ≥ 1 − 1/j. Let
ν̂j(x) = µ̂j(x + nj) and let ν be a weak limit of a subsequence of these νj .
Then ν is a pseudo-measure supported by I, ν̂ = 0 onM ′ while ν̂(0) = 1 and
ν̂ ∈ l∞. This contradicts the classical results on the density of zeros of entire
functions of exponential type. The reader may consult “Gap and density
theorems” by Norman Levinson, Chapter III, Theorem VIII. Here the entire
function is the Fourier-Stieljes transform F (z) =

∫
exp(−2πzx)dν(x) of ν.

The same proof yields the second statement in Lemma 4.1.
We now complete the proof of Proposition 4.1. Once again we use the

fact that Γ is dense in T2 and we have

(4.9) sup
k∈Z

|µ̂(−k)| = sup
k∈Z

|F (k
√

2, k
√

3)| = ‖F‖∞.

Then (4.6), (4.8), and (4.9) yield the required estimate (4.3).
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For studying the dependence in Ω of the constant CΩ,I , we introduce a
new definition

Definition 4.2. Let W be a sequence of positive numbers wj, j ∈ N. We
say that an open set Ω ⊂ T2 is W -thick if one can find a sequence of pairwise
disjoint discs Qj ⊂ Ω s.t. |Qj | > wj > 0, j ∈ N.

For a given Ω one can always find a sequence W such that Ω is W−thick.
When W is given, if an open set Ω is W−thick, then Ω contains “W -large
discs”.

Proposition 4.2. We have C = CΩ,I ≤ CW,I in Proposition 4.1 if there
exists a sequence W = (wj)j∈N with the following properties:

(a)
∑∞

0 wj > |I|
(b) Ω is W -thick.

We now check Proposition 4.2. We set E = Q1 ∪ . . . ∪ QN where w1 +
. . .+wN > |I|. Now N is fixed as everything else but the centers of the discs
Qj . The arguments used in Proposition 4.1 apply here with E replacing Ω
and the proof of Proposition 4.2 ends with the following lemma

Lemma 4.2. If r > 0 is given, x ∈ T2 is arbitrary, then the set of integers
defined by M = {k ∈ Z, γ(k) ∈ B(x, r)} has a uniform density given by πr2.
Moreover the estimates (2.16) are uniform in x.

We turn to L2 estimates.

Proposition 4.3. We still assume that Ω ⊂ T2 is an open set whose measure
satisfies |Ω| > |I|. Then there exists a constant C = C(Ω, I) such that for
any continuous function F on T2 whose spectrum is included in ΛI , one has

(4.10) ‖F‖2 ≤ C‖F‖L2(Ω)

Moreover C(Ω, I) ≤ C(W, I) if there exists a sequence W = (wj)j∈N with
the following properties: (a)

∑∞
0 wj > |I| and (b) Ω is W -thick.

Proposition 2.2 and Proposition 4.2 imply Proposition 4.3. We now state
our main theorem which contains Theorem 2.1.

Theorem 4.1. With the preceding notations, let K ⊂ Z2 be a compact set
such that |K| < |I|. Then ΛI is a set of stable sampling for Y p

K for 1 ≤ p ≤
∞. In other words for any sequence f ∈ lp(Z2) of Fourier coefficients of a
function F is supported by K, one has

(4.11)
(∑

k∈Z2

|f(k)|p
)1/p

≤ C
(∑

λ∈ΛI

|f(λ)|p
)1/p

.

Moreover C = CK,I ≤ CW,I when the complement Ω of K satisfies:(a)∑∞
0 wj > 1 − |I| and (b) Ω is W -thick.
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For proving Theorem 4.1 we denote by J = Ic the complement of I in T.
We observe that J ⊂ T is still an arc. It suffices now to observe that the
complement of ΛI in Z2 is M = ΛJ and to apply Proposition 3.1. The last
assertion in Theorem 4.1 is following from the corresponding statement in
Lemma 4.1. One cannot hope for a uniform estimate where C = C(a1, a2)
would only depend on the positive numbers a1 = |K| and a2 = |I|. A
counterexample will be given in Section 4.

We are ready to prove Theorem 2.4. The organization of the proof is the
same as for Theorem 4.1. Once more Proposition 4.1 is being used together
with Theorem 2.3. As it was said before, we use the fact that the indicator
function of ΛI is a multiplier for for FLp when 1 < p <∞. This comes from
the transference arguments developed by Coifman and Weiss in [2].

5. Completion of the proof of Theorem 1.1

As above γ : Z �→ T2 is defined by γ(k) = Π(k
√

2, k
√

3). We denote by
Γ = γ(Z) the range of γ. The proof of assertion (b) of Theorem 1.1 relies on
the following theorem:

Theorem 5.1. Let K ⊂ T2 be a compact set such that |K| < α. If x0 belongs
to Γ\K, there exists an atomic measure σ on T2 enjoying the following three
properties

σ ≥ 0 and σ({x0}) = 1(5.1)

σ(K) = 0(5.2)

the Fourier transform σ̂ of σ is supported by Λα.(5.3)

A bound on the total mass ‖σ‖ of σ will be given below. We postpone
the proof of Theorem 5.1 and prove (c) in Theorem 1.1. Let K be the closed
support of F. We know that F ≥ 0 and |K| < α. We want to compare F to
a competitor u which verifies u ≥ 0 and û = F̂ on Λα. Our first claim is that
the proof reduces to the case where F and u are continuous functions. For
proving this remark let us consider ϕj(x) = j2ϕ(jx) where ϕ ∈ C∞

0 , ϕ ≥ 0
and

∫
ϕ(x)dx = 1. Replacing F and u by Fj = F ∗ ϕj and uj = u ∗ ϕj,

we have F̂j(k) = ûj(k), k ∈ Λα. Moreover the support of Fj is contained
in Kj = {x; dist(x,K) ≤ C

j
} where C depends on the support of ϕ. We

have lim |Kj | = |K| < α which implies |Kj | < α for j ≥ j1. If we can
prove that Fj = uj for j ≥ j0 then we can conclude. We now restrict our
attention to Fj, uj and Kj . We forget the subscript j and assume that F and
u are smooth. Replacing K by a slightly larger set we can assume that K
is Riemann integrable.
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We have Λα = −Λα. Then if x0 /∈ K we use Theorem 5.1 and write

0 ≤
∫

T2

udσ =
∑
k∈Z2

û(k)σ̂(−k) =
∑
k∈Λα

û(k)σ̂(−k)(5.4)

=
∑
k∈Λα

F̂ (k)σ̂(−k) =

∫
T2

Fdσ

But F vanishes on T2 \K and σ(K) = 0. Therefore
∫

T2 Fdσ = 0 which
together with (5.4) implies

∫
T2 udσ = 0. Finally we use again the fact that

u and σ are nonnegative. We have

(5.5) 0 ≤ u(x0) = σ({x0})u(x0) ≤
∫

T2

udσ = 0

and u(x0) = 0. Since the subgroup Γ = {Π(k
√

2, k
√

3), k ∈ Z} is dense
in T2, we obtain u = 0 on T2 \ K. Therefore u is supported by K and
Theorem 2.1 yields the required result.

The proof of (b) in Theorem 1.1 is almost trivial. Indeed let us assume
that a competitor u exists with ‖u‖1 ≤ ‖F‖1. We decompose u into a sum
u = u1−u2+iu3 where u1 and u2 are nonnegative functions or measures with
disjoint supports and u3 is real valued. Since 0 ∈ Λα and F is nonnegative
we have

û1(0) − û2(0) + iû3(0) = û(0) = F̂ (0) = ‖F‖1 ≥ ‖u‖1(5.6)

≥ ‖u1 − u2‖1 = û1(0) + û2(0).

Therefore û3(0) = û2(0) = 0 which implies u2 = 0 since u2 is nonnegative.
Finally the first and the last term in (5.6) are equal. Therefore all terms
in (5.6) are equal and ‖u‖1 = ‖F‖1. Then (5.6) reduces to ‖u1‖1 = û1(0) =
û(0) = ‖F‖1 = ‖u‖1 which implies u3 = 0. Finally u is nonnegative and it
now suffices to use (c) in Theorem 1.1.

We now prove Theorem 5.1. Let S = {k ∈ Z; γ(k) ∈ K}. Since K is
Riemann integrable S has a uniform density d which is given by d = |K|.
We forget T2 and focus on T and Z. The Fourier coefficients of a function
F ∈ L1(T) are defined by c(k) =

∫
T
F (x) exp(−2πikx) dx. The proof relies

on the following lemmas.

Lemma 5.1. Let us assume that S ⊂ Z has a uniform density d ∈ (0, 1).
Let J ⊂ T be an interval centered at 0 with length |J | > d. Then there exists
a constant C such that if k0 /∈ S there exists a function h ∈ L2(J) such that
ĥ(k) = 0 for every k ∈ S, ĥ(k0) = 1 and ‖h‖L2(J) ≤ C.
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We then have

Lemma 5.2. Let us assume that S ⊂ Z has a uniform density d ∈ (0, 1/2).
Let I ⊂ T be an interval centered at 0 with length |I| > 2d. Then there
exists a constant C such that if k0 /∈ S there exists a continuous func-
tion φ supported by I such that φ̂(k) ≥ 0, k ∈ Z, φ̂(k) = 0 for every
k ∈ S,

∑+∞
−∞ φ̂(k) ≤ C, and φ̂(k0) = 1.

The proof of Lemma 5.2 is obvious if Lemma 5.1 is accepted. It suffices
to define φ by φ = h∗ h̃ where h̃(x) = h̄(−x). We now return to Lemma 5.1.
The proof is based on the following estimate.

Lemma 5.3. Let us assume that S ⊂ Z has a uniform density d ∈ (0, 1).
Let J ⊂ T be any interval of length larger than d. Then there exists a positive
constant β such that for any l /∈ S and for any sequence c(k) ∈ l2(S), we
have

(5.7)
∥∥∥ exp(2πilx) −

∑
k∈S

c(k) exp(2πikx)
∥∥∥

L2(J)
≥ β.

This estimate implies Lemma 5.1 with C = 1/β.We now prove Lemma 5.3
using the simplest form of Beurling’s theorem [1]. Here is the statement

Theorem 5.2. Let Λ ⊂ Z and let D+(Λ) = limR→+∞R−1 supk∈Z
#{Λ ∩

[k, k + R]} be the upper density of Λ. Then if the length |J | of an interval
J ⊂ T satisfies |J | > D+(Λ) there exists a constant C such that for every
sequence c(k), k ∈ Λ,

(5.8)
∑
k∈Λ

|c(k)|2 ≤ C2

∫
J

∣∣∣ ∑
k∈Λ

c(k) exp(2πikx)
∣∣∣2 dx.

For proving Lemma 5.3 we mimic the proof of Lemma 4.1 and argue by
contradiction. Let us denote by H the Hilbert space L2(J). Let us assume
that one can find a sequence lj /∈ S and some coefficients c(k, j) such that

(5.9)
∥∥∥ exp(2πiljx) −

∑
k∈S

c(k, j) exp(2πikx)
∥∥∥

H
≤ 1/j.

The triangle inequality gives

(5.10)
∥∥∥ ∑

k∈S

c(k, j) exp(2πikx)
∥∥∥

H
≤ 2

Then Beurling’s theorem yields

(5.11)
(∑

k∈S

|c(k, j)|2
)1/2

≤ 2C.
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This being said, we rewrite (5.9) as

(5.12)
∥∥∥1 −

∑
k∈Sj

c(k + lj , j) exp(2πikx)
∥∥∥

H
≤ 1/j.

with Sj = S − lj.

We now use the fundamental assumption that S has a uniform density.
Therefore we can replace the sequence Sj by a subsequence such that Sj ⇀
S ′. It means that for each R ≥ 1 and j ≥ j(R) we have Sj ∩ [−R,R] = S ′ ∩
[−R,R]. The density of S ′ is still d and is uniform. Similarly we set cj(k) =
c(k+ lj , j) and we can also assume that cj(k) weakly converges to c′(k), k ∈
Z. These two convergences imply the weak convergence Fj(x) =

∑
k∈Sj

c(k+

lj , j) exp(2πikx) ⇀ F (x) =
∑

k∈S′ c′(k) exp(2ikx) as j tends to infinity. This
weak convergence refers to the weak topology in the Hilbert space H. But
0 /∈ S ′ since 0 /∈ Sj. Finally (5.12) yields 1 =

∑
k∈S′ c′(k) exp(ikx) in L2(J)

which contradicts Beurling’s theorem applied to S ′ ∪ {0}.
We now return to Theorem 5.1. We have |K| < α. This compact set K

is replaced by a slightly larger compact set L which is Riemann integrable
of measure |L| < α. Then the set S = {k ∈ Z ; γ(k) ∈ L} has a uniform
density d = |L| < α. Lemma 5.2 is applied to I = [−α, α] when k0 is defined
by γ(k0) = x0. The atomic measure σ is defined by

(5.13) σ =

∞∑
−∞

φ̂(k)δγ(k)

where δa is the Dirac mass at a. Then σ is nonnegative. We have φ̂(k) = 0
whenever γ(k) ∈ L. This implies σ(L) = 0. We also have σ ≥ δx0 since
φ̂(k0) = 1. Finally

σ̂(−p,−q) =
∞∑
−∞

φ̂(k) exp [2πi(p
√

2 + q
√

3)k](5.14)

= φ(p
√

2 + q
√

3) = 0 when (p, q) /∈ Λα.

This concludes the proof of Theorem 5.1.

We now prove Theorem 1.2. This proof relies on an estimate of the total
mass of the measure σ in Theorem 5.1. This estimate will depend on the
growth of the function β(ε) of ε > 0 defined by β(ε) = |K + B(0, ε)|. We
begin with a few remarks.

Lemma 5.4. For every positive number η there are finitely many Riemann
integrable compact sets L ∈ L such that for every compact set K ⊂ T2 one
can find L ∈ L such that K ⊂ L ⊂ K +B(0, η).
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The proof of Lemma 5.4 is trivial. One uses a “fine grid” on T2 with
step size η/2 and L is simply the collection of all finite unions of squares
delimited by this grid.

Proposition 5.1. With the preceding notations, we let η be small enough
so that the measure β(2η) of K + B(0, 2η) is less than α. We also assume
that η is smaller than the distance from x0 to K. Then in Theorem 5.1 the
total mass of σ does not exceed C(α, β(η)).

The value of η depends on the geometrical structure of the compact set
K and not only on the measure of K. The proof of Proposition 5.1 is not
difficult. We first use Lemma 5.4 and enlarge K into L ∈ L with K ⊂ L ⊂
K +B(0, η) where η is small enough to ensure β(2η) = |K +B(0, 2η)| < α.
If η is small enough we also have x0 /∈ L. Finally it suffices to rewrite the
proof of Theorem 5.1 and to keep track of the constants which come out.
As η tends to 0, the cardinality of L blows up and so does the mass of σ.

We now return to the proof of Theorem 1.2. As we did in the proof of
Theorem 1.1, we can assume that u and F are continuous. Let K be the
closed support of F. We define L by Lemma 5.4 and let x0 /∈ L. The total
mass of the measure σ provided by Theorem 3.1 does not exceed C(α, β)
which is defined by Proposition 5.1. Keeping notations as simple as possible,
we write Λ for Λα.

Then u ≥ 0 implies:

0 ≤ u(x0) ≤
∫
u dσ =

∑
Λ

û(λ)σ̂(−λ) =
∑

Λ

f̂(λ)σ̂(−λ) +
∑

Λ

R̂(λ)σ̂(−λ)

=

∫
f dσ +

∫
Rdσ = I1 + I2.

Then I1 = 0 since F is supported by L and σ(L) = 0. Moreover ‖R‖∞ ≤ ε
and ‖σ‖ ≤ C imply |I2| ≤ Cε. We obtain 0 ≤ u(x0) ≤ C ′ε. This estimate
is uniform in x0 /∈ L. We now write u = u1 + u2 where u2 is the product
between u and the indicator function of L. We then have ‖u1‖∞ ≤ C ′ε. This
implies û2(λ) = f̂(λ) + r̂2(λ), λ ∈ Λ, where ‖r2‖∞ ≤ C ′′ε. Theorem 1.2
results from the following lemma applied to u = u2 − f and v = r2

Lemma 5.5. If K is a compact set of measure |K| < 2α, then there exists
a constant C such that for any function u supported by K we have

(5.15) ‖u‖∞ ≤ CK inf{‖v‖∞; û(λ) = v̂(λ), λ ∈ Λα}
where the infimum runs over all competitors v without any restriction on
their supports. In other words Λα is a set of stable sampling for E∞

K .
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By duality Lemma 5.5 implies the following. Every measure µ on K
is the restriction to K of a measure ν whose Fourier expansion is given
by ν =

∑
k∈Λα

a(k) exp(2πk · x). This is almost Theorem 5.1 when K is
replaced by K ∪ {x0}. But Theorem 5.1 says more since it says that that
ν is nonnegative. That explains why another proof was used for proving
Theorem 5.1. Let us observe that in Theorem 5.1 the measure |K| is less
than α while here it suffices to assume |K| < 2α.

We now prove Lemma 5.5. We write Λ for Λα and we know that û1Λ =
v̂1Λ. As we did in proving Theorem 2.3, we split u into a sum u1 +u2 where
û1 = û1Λ. This crude definition of u1 will be modified at the end of the proof.
Let us denote by M the complement of Λ in Z2 and by Ω the complement of
K in T2. Then û2 is supported by M. The measure of Ω exceeds the density
of M and Proposition 4.1 yields ‖u2‖∞ ≤ C‖u2‖L∞(Ω). But u1 + u2 = 0 on
Ω which implies ‖u2‖∞ ≤ C‖u1‖L∞(Ω) ≤ C‖u1‖∞. The proof would finish
if we could believe that û1 = v̂1Λ implies ‖u1‖∞ ≤ C‖v‖∞. This cannot be
true since the indicator function of Λ is not the Fourier-Stieljes transform of
a measure on T2. For facing this issue we introduce a function β on T which
is 1 on [−α + ε, α − ε], is smooth and is supported by [−α, α]. We define
B(p, q) = β(p

√
2 + q

√
3), (p, q) ∈ Z2, on Z2. Then B(p, q), (p, q) ∈ Z2,

are the Fourier coefficients of an atomic measure ν. Finally we define u1 by
û1(p, q) = B(p, q)û(p, q) and proceed as above. The support of u2 = u−u1 is
contained in M ′ which is defined as the set of all pairs (p, q) ∈ Z2 such that
there exists a r ∈ Z with |p√2 + q

√
3− r| > α− ε. Therefore the density of

M ′ is given by 1− 2α+2ε which is smaller than the measure of Ω when ε is
sufficiently small. This being said, the argument used in the “wrong proof”
is valid and yields Lemma 5.5.

6. Counterexamples

The following counterexamples show that Theorem 1.1 is sharp.

Lemma 6.1. There exist two nonnegative continuous functions u and v
on T2 such that u �= v while û(k) = v̂(k), k ∈ Λα.

This lemma says that we cannot have uniqueness in (c) of Theorem 1.1
if the information concerning the measure of the support of F is dropped.
The proof is simple. Let θ(t) be the triangle function on T = R/Z defined by
θ(1/2) = 1, θ(α) = θ(−α) = 0, θ being affine on [α, 1/2] and on [1/2, 1−α].
Then

θ(t) =
∞∑
−∞

(−1)kτk exp (2πikt),

where τk > 0.
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We now consider the atomic measure τ =
∑∞

−∞ (−1)kτkδγ(k) and we have,
as above, τ̂(p, q) = 0 on Λα. The atomic measure τ can be written as the
difference σ − ρ where σ =

∑∞
−∞ τ2kδγ(2k). Then we have σ > 0, ρ > 0. To

prove Lemma 6.1 it suffices to use the same approximation to the identity
as in Section 5 and to define uj and vj by uj = σ ∗ ϕj, vj = ρ ∗ ϕj where
ϕ ≥ 0. We have ûj = v̂j on Λα but uj �= vj if j is large enough.

In the same spirit we have

Lemma 6.2. For every positive ε there exist a compact set K ⊂ T2 of
measure not exceeding ε and a continuous function F supported by K such
that F is not the argument of the problem

(6.1) inf{‖u‖1 ; û(λ) = F̂ (λ), λ ∈ Λα}.

This lemma says that F ≥ 0 is playing a key role in (b) of Theorem 1.1.
We use the same atomic measure τ as before and split it into τN +ρN where
τN =

∑
|k|≤N (−1)kτkδγ(k). Next we set FN = τN ∗φN , rN = −ρN ∗φN where

φN(x) = N2φ(Nx). The function F we are looking for is FN .We let K = KN

be the closed support of FN . Then the measure of KN does not exceed 2/N.
Moreover

(6.2) F̂N(λ) = r̂N (λ), λ ∈ Λα.

Finally we have ‖FN‖1 > ‖rN‖1 when N is large enough since the latter
tends to 0 as N tends to infinity while ‖FN‖1 ≥ c > 0. To prove this
last remark, we write FN = τ ∗ φN − rN and the triangle inequality yields
‖FN‖1 ≥ ‖τ ∗ φN‖1 −‖rN‖1. It now suffices to show that ‖τ ∗ φN‖1 ≥ c > 0.
Arguing by contradiction we would obtain ‖τ ∗ φNj

‖1 → 0 as j tends to
infinity. This would imply τ = 0. Therefore the challenger rN is winning
against FN . This ends the proof of Lemma 6.2.

The requirement α > β in Theorem 1.1 is sharp. It cannot be replaced
by α < β as our next lemma shows. However this does not settle the case
α = β in Theorem 1.1.

Lemma 6.3. If 0 < α < α1 < 1/2, there exist two nonnegative functions F
and G such that:

• F̂ (k) = Ĝ(k), k ∈ Λα

• the measure of the closed support K of F does not exceed α1

• F �= G.
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We start with the rectangle K ⊂ T2 defined by −1/2 ≤ x1 ≤ 1/2 and
−α1 ≤ x2 ≤ α1. We let Z ⊂ Z be the set of all k ∈ Z such that γ(k) /∈ K.
Then Z = −Z and the uniform density of Z is 1 − 2α1 < 1 − 2α. If k0 /∈ Z,
Lemma 5.1 yields a function θ ∈ L2([α, 1−α]) which is supported by [α, 1−α]
and such that θ̂(k) = 0 if k ∈ Z and θ̂(k0) = 1. We then replace θ by
ψ(t) = θ(t) + θ(−t) in such a way that θ̂(k) is replaced by ψ̂(k) = 2�θ̂(k).
The interval [α, 1 − α] viewed as an arc in T is symmetric with respect
to 0. Therefore this function ψ is still supported by [α, 1 − α]. Moreover
ψ̂(k0) = 2 and ψ̂ is real valued. By regularization ψ can be assumed to
belong to C∞

0 ([α, 1 − α]). Indeed the above construction can be applied to
the interval [α′, 1−α′] where α < α′ < α1. This is letting enough room for a
convolution with a smooth approximation of the identity. We now consider
the atomic measure

(6.3) τ =

∞∑
−∞

ψ̂(k)δγ(k).

Then τ is supported by K. Indeed ψ̂(k) = 0 if γ(k) /∈ K. By construction
τ̂ (p, q) = 0 when (p, q) ∈ Λα. We then define Tj ∈ C∞(T2) by Tj = τ ∗ ϕj

where ϕj is defined as above. Then Tj is supported by Kj = {−1/2 ≤ x1 ≤
1/2;−α1 − 1/j ≤ x2 ≤ α1 + 1/j}. Let Aj = {x ∈ Kj; Tj(x) > 0} and
Bj = {x ∈ Kj ; Tj(x) ≤ 0}. Since Aj and Bj are partitioning Kj we either
have |Aj | ≤ α1 + 1/j or |Bj | ≤ α1 + 1/j. Let Fj = Tj1Aj

, Gj = −Tj1Bj
.

Then Tj = Fj − Gj and F̂j = Ĝj on Λα by construction. Moreover Fj ≥ 0
and Gj ≥ 0. One of the two functions Fj or Gj is the counterexample. We
cannot have Fj = Gj for infinitely many j′s since it would imply Tj = 0 for
infinitely many j′s and τ = 0.

We now turn to the issue discussed in Theorem 4.1. We wanted to know
if the contant C in (4.11) depends only on |I| − |K|. A counterexample is
given by the following theorem where Λ = Λα. This theorem shows that the
geometry of K enters in C.

Theorem 6.1. For every η > 0 and every integer N there exist a compact set
K ⊂ T2 whose measure does not exceed η and a function F ∈ L2(T2) which
is supported by K and fulfils the following two conditions ‖F‖2=1 while

∑
λ∈Λ

|F̂ (λ)|2 ≤ N−2.

Let M be the complement of Λ in Z2. The proof of Theorem 6.1 begins
with the following lemma
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Lemma 6.4. Keeping the same notations as above, there exist a compact
set K of measure not exceeding η and a function g such that

• the Fourier transform of g is supported by M

• ‖g‖2 = 1

• ∫
Kc |g|2 dx ≤ N−2.

Here Kc = T2 \K. We first accept this lemma and prove Theorem 6.1.
We let F be the product between g and the indicator function of K. Then
‖F − g‖2 ≤ N−1 which implies

∑
λ∈Λ |F̂ (λ)− ĝ(λ)|2 ≤ N−2. But ĝ(λ) = 0 if

λ ∈ Λ. Therefore F is enjoying the properties listed in Theorem 6.1.
We now prove Lemma 6.4. Let θ and the atomic measure τ be defined as

in Lemma 6.1. We consider the atomic measure τ =
∑∞

−∞ (−1)kτkδγ(k) and
we have, as above, τ̂ (p, q) = 0 on Λ. As we did in the proof of Lemma 6.2,
we split τ into τN +ρN . We now consider g = gε = τ ∗φε = uN,ε +vN,ε where
uN,ε = τN ∗φε and vN,ε = ρN ∗φε with φε(x) = ε−1φ(x/ε), φ being supported
by |x| ≤ 1 and normalized in L2. Then uN,ε is supported by the union KN,ε

of 2N +1 discs of measure πε2. Therefore the measure of K does not exceed
π(2N + 1)ε2. We now write u = uN,ε, v = vN,ε and K = KN,ε for easing
notations. We then observe that the total mass of ρN is less than C/N. It
implies ‖v‖2 ≤ C/N uniformly on ε. Once N is fixed, ε can be chosen small
enough so that the supports of the 2N + 1 terms in the expansion of u have
disjoint supports. Then C ≤ ‖u‖2 ≤ C ′ where C and C ′ are two positive
constants. The triangle inequality implies the same conclusion for g. Finally
the norm in L2(Kc) of g coincides with that of v since u is supported by K.
But ‖v‖2 ≤ C/N which ends the proof.

The following issues will be discussed in some forthcoming work. To our
opinion the most exciting problem is to invert the mapping Φ : Mβ �→ �2(Λα)
through an efficient algorithm. Theorem 1.1 gives only a partial answer. The
second problem is the generalization of our work to the case where images are
not delimited by the unit square. A third problem consists in understanding
what is happening in the limiting case where the measure of K equals the
density of Λ. The authors are greatly indebted to the anonymous referee.
His supportive criticism was a valuable help.
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