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Abstract

Using Bellman function techniques, we obtain the optimal depen-
dence of the operator norms in L2(R) of the Haar multipliers T t

w

on the corresponding RHd
2 or Ad

2 characteristic of the weight w, for
t = 1,±1/2. These results can be viewed as particular cases of es-
timates on homogeneous spaces L2(vdσ), for σ a doubling positive
measure and v ∈ Ad

2(dσ), of the weighted dyadic square function Sdσ.
We show that the operator norms of such square functions in L2(vdσ)
are bounded by a linear function of the Ad

2(dσ) characteristic of the
weight v, where the constant depends only on the doubling constant
of the measure σ. We also show an inverse estimate for Sdσ. Both
results are known when dσ = dx. We deduce both estimates from an
estimate for the Haar multiplier (T σ

v )1/2 on L2(dσ) when v ∈ Ad
2(dσ),

which mirrors the estimate for T
1/2
w in L2(R) when w ∈ Ad

2. The
estimate for the Haar multiplier adapted to the σ measure, (T σ

v )1/2,
is proved using Bellman functions. These estimates are sharp in the
sense that the rates cannot be improved and be expected to hold for
all σ, since the particular case dσ = dx, v = w, correspond to the
estimates for the Haar multipliers T

1/2
w proven to be sharp.

1. Introduction

The Haar multipliers considered in these paper, are operators of the form

T twf(x) =
∑
I∈D

(
w(x)

mIw

)t

〈f, hI〉hI(x);
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where D denotes the dyadic intervals; {hI}I∈D the Haar functions normalized
in L2(R), i.e. hI(x) = |I|−1/2

(
χIr(x)−χIl(x)

)
, Il, Ir the left and right halves

of I; 〈·, ·〉 denotes the inner product in L2(R); w is a weight, mIw denotes
the average of w on the dyadic interval I, and t ∈ R.

Necessary and sufficient conditions for boundedness of T tw on Lp(R), 1 <
p <∞, are known in most cases, see [28], [17], [29].

When tp > 1, these operators are bounded in Lp(R) if and only if w
satisfies the dyadic Reverse Hölder q condition, RHd

q , where q = tp, namely,
there exists a constant C > 0 such that for all I ∈ D,(

1

|I|
∫
I

wq
)1/q

≤ C

|I|
∫
I

w.

The smallest constant on the right hand side is denoted by [w]RHd
q
, and it is

called the RHd
q -characteristic of the weight w.

When tp < 0, these operators are bounded in Lp(R) if and only if w
satisfies the following dyadic Adq condition, where q = 1 − 1

pt
,

sup
I∈D

(
1

|I|
∫
I

w

)(
1

|I|
∫
I

w− 1
q−1

)q−1

<∞.

The left-hand-side is called the Adq-characteristic of the weight w, and is
denoted [w]Ad

q
.

When 0 < tp ≤ 1, and if we assume that w ∈ ⋃
p>1RH

d
p then the

corresponding operators are bounded in Lp(R) for 1 < p <∞.
A weight w is dyadic doubling if

sup
I∈D

w(Ĩ)

w(I)
<∞,

where Ĩ denotes the parent of I, and w(I) =
∫
I
w(x) dx. The left-hand-

side is called the dyadic doubling constant of the weight w, and is denoted
by D(w).

In the classical non-dyadic theory, w∈Ap implies doubling, and
⋃
p>1Ap

=
⋃
p>1RHp, see [7]. In the dyadic theory, w ∈ Adp implies dyadic doubling,

but w ∈ RHd
p does not. In this case,

⋃
p>1A

d
p is a strict subset of

⋃
p>1RH

d
p ,

however if we consider the dyadic doubling weights that belong to
⋃
p>1RH

d
p ,

then we recover
⋃
p>1A

d
p, see [5], [17].

In this paper we are interested in studying the dependence of the Lp-
bounds of T tw on the corresponding characteristic of the weight w, and some-
times also on the dyadic doubling constant of w. We will concentrate on the
cases p = 2, and t = 1, 1/2,−1/2.
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This work was inspired by a string of papers that have appeared in the
wake of this millennium, where sharp linear bounds in L2(w) for classi-
cal operators (square function, martingale transform, Beurling transform,
Hilbert transform, and Riesz transforms) on weighted Lebesgue spaces have
been obtained, see [16], [37], [38], [35], [34], [10], [11], [31], [32]. Very recently
the same linear bound has been proved to hold also for the dyadic parapro-
duct, see [3]. All these results use Bellman function techniques introduced
by Nazarov, Treil and Volberg [24], [25]. In [25] necessary and sufficient
conditions for two weighted estimates for the martingale transform (Haar
multiplier with symbol ±1) were found. These results were in turn used
by J. Wittwer [37] who considered one weight estimates but noticed that
the Bellman function method provided optimal (linear) estimates in terms
of the A2-characteristic of the weight. See [26] for a very lucid review on
the connections between the original Bellman functions (solutions of the
Bellman differential equation) in stochastic control theory and the Bellman
functions in harmonic analysis. These sharp estimates are not just a math-
ematical curiosity, people use them in a variety of settings, for example in
the theory of quasiconformal maps ([1], [2], [36], [34]), and when considering
Lp-solvability of elliptic problems ([13], [9]).

We use Bellman function techniques to study the sharp dependence of
the operator norm of the Haar multipliers T

±1/2
w and T 1

w in L2(R) on [w]Ad
2

and [w]RHd
2

respectively.

We will prove the following theorems:

Theorem 1. Let w ∈ Ad2 then there exists a constant C > 0 such that for
all f ∈ L2(R),

‖T−1/2
w f‖L2(R) ≤ C[w]Ad

2
‖f‖L2(R).

Denote Tw = T 1
w.

Theorem 2. Let w ∈ RHd
2 and dyadic doubling, then there exists a constant

C > 0 depending on the dyadic doubling constant of w such that for all
f ∈ L2(R),

‖Twf‖L2(R) ≤ C[w]2RHd
2
‖f‖L2(R).

The following theorem involves the case t = 1/2 and w ∈ Ad2.

Theorem 3. Let w ∈ Ad2 then there exists a constant C > 0 such that for
all f ∈ L2(R),

‖T 1/2
w f‖L2(R) ≤ C[w]

1/2

Ad
2
‖f‖L2(R).

The results are optimal in the sense that we cannot get a slower decaying
function of the corresponding characteristics of the weights.
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The proof of Theorem 3 can be found embedded in the proof of an inverse
estimate for the square function that is not stated in the language of Haar
multipliers [33]. What is interesting, is that we can deduce Theorem 1 as a
corollary of Theorem 3. This is very much in line with the beautiful operator
theory argument presented in [33].

The proof of the first two theorems will lead naturally to the study of
weighted square functions on homogeneous spaces. In fact, the results for
the weighted square functions will provide yet another proof of these results.

Verifying the boundedness of T tw in L2(R) with a particular bound is
equivalent to verifying the boundedness of its adjoint (T tw)∗ in L2(R) with
the same bound. The advantage of the adjoints is that it will be very easy
to compute L2-norms. In the first case, t = −1/2, the L2-norm of (T

−1/2
w )∗f

is equal to the L2(w)-norm of the dyadic square function Sd(w−1/2f) defined
below by (1.3) when dσ = dx. But it has been shown, by Hukovic, Treil and
Volberg [16], that

(1.1) ‖Sdf‖L2(w) ≤ C[w]Ad
2
‖f‖L2(w),

and this result is optimal. This leads to a quick proof of Theorem 1. But it
could be used, and we will, in the other direction, if we can prove Theorem 1
independently of the square function estimate, then we will get (1.1), this
idea was used in [33, Corollary 3.2].

It is well known, see [28], that if w is dyadic doubling, the boundedness
of Tw in L2(R) is equivalent to the boundedness of the weighted dyadic
square Sdw function in L2(R), defined below by (1.3) when dσ = wdx, and
either of these events happens if and only if w ∈ RHd

2 . It will be clear from
the proof of Theorem 2 that

(1.2) ‖Sdwf‖L2(R) ≤ C[w]2RHd
2
‖f‖L2(R),

where C depends on the dyadic doubling constant of w.
We claim that these square functions estimates, (1.1) and (1.2), are of

the same nature, to be explained subsequently. Let σ be a positive dyadic
doubling1 measure. We will say that v ∈ Ad2(dσ) if

sup
I∈D

(
1

σ(I)

∫
I

v dσ

) (
1

σ(I)

∫
I

v−1 dσ

)
<∞.

The quantity on the left hand side is denoted by [v]Ad
2(dσ). When dσ = dx

we simply write [v]Ad
2
.

1A positive measure σ is called dyadic doubling if there exists C > 0 such that
σ(Ĩ)/σ(I) ≤ C, for all I ∈ D, Ĩ being I’s parent, and σ(I) =

∫
I
dσ. Denote by D(σ) the

smallest such constant, which we will call the dyadic doubling constant of σ. Note that
D(σ) ≥ 2. Given a weight w let dσ = wdx, then σ is dyadic doubling if and only if the
weight w is dyadic doubling, moreover D(σ) = D(w).
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Define the σ-dyadic square function by

(1.3) Sdσf(x) :=

( ∑
j∈Z

|∆σ
j f(x)|2

)1/2

,

where the j-th σ-difference ∆σ
j := Eσ

j+1 −Eσ
j , and the j-th σ-expectation is

given by

Eσ
j f(x) :=

1

σ(I)

∫
I

f dσ =: mσ
I f, x ∈ I ∈ Dj,

where Dj denotes the dyadic intervals of length 2−j .
Define the σ-dyadic maximal function by

(1.4) Md
σf(x) := sup

j∈Z

Eσ
j |f |(x).

When dσ = dx we write Ej , ∆j , S
d, and Md and when dσ = wdx we

write Ew
j , ∆w

j , Sdw, and Md
w. It is well known that Md

σ and Sdσ are bounded
in L2(vdσ), if and only if v ∈ Ad2(dσ), see [7]. In this paper we prove the
following estimate that generalizes (1.1),

Theorem 4. Let σ be a positive dyadic doubling measure, and v ∈ A2(dσ)
then there exists a constant C depending only on the dyadic doubling constant
of σ such that for all f ∈ L2(vdσ),

‖Sdσf‖L2(vdσ) ≤ C[v]Ad
2(dσ)‖f‖L2(vdσ).

It is clear that (1.1) is a corollary of this result where dσ = dx and v = w.
We claim that (1.2) is also a corollary of this result where this time we

choose dσ = wdx and v = w−1 . There is, apparently, a discrepancy in the
nature of the constants, until one realizes the following tautology,

w ∈ RHd
2 ⇔ w−1 ∈ Ad2(wdx), moreover [w−1]Ad

2(wdx) = [w]2RHd
2
.

It is worth mentioning the following optimal inverse result due to S.
Petermichl and S. Pott [33]: assume w ∈ Ad2, then

(1.5) ‖f‖L2(w) ≤ C[w]
1/2

Ad
2
‖Sdf‖L2(w).

Estimate (1.5) can be seen to be equivalent to Theorem 3, this obser-
vation can be traced back to [33]. For the Lusin square function a similar
inverse estimate was known to R. Fefferman and J. Pipher (see comment at
the bottom of page 359 in [14]). It is natural to conjecture that a similar
lower bound to (1.5) can be found in the general case, that is the content of
the next theorem.
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Theorem 5. Let σ be a positive doubling measure, and v ∈ Ad2(dσ), let
dµ = vdσ. There exists a constant C depending only on the dyadic doubling
constant of σ, such that for all f ∈ L2(vdσ),

‖f‖L2(vdσ) ≤ C[v]
1/2

Ad
2(dσ)

‖Sdσf‖L2(vdσ).

Furthermore one can deduce this result from an appropriate dσ-analogue
of Theorem 3.

Theorem 6. Let σ be a positive doubling measure, and v ∈ Ad2(dσ), then
there exists a constant C depending only on the dyadic doubling constant of
σ, such that for all f ∈ L2(dσ),

‖(T σv )1/2f‖L2(dσ) ≤ C[v]
1/2

Ad
2(dσ)

‖f‖L2(dσ).

Where

(T σv )1/2f :=
∑
I∈D

(
v(x)

mσ
I v

)1/2

〈f, hσI 〉σhσI (x),

the functions {hσI }I∈D form an orthonormal basis in L2(dσ), called the weigh-
ted Haar system, and 〈·, ·〉σ denotes the inner product in L2(dσ).

To prove Theorem 6 we follow the argument that Petermichl and Pott [33]
used in the case dσ = dx. In fact we will deduce Theorem 4 as a corollary
of Theorem 6. We can also deduce as a corollary the following result for
(T σv )−1/2 that is analogous to the corresponding result stated in Theorem 1

Theorem 7. Let σ be a positive doubling measure, and v ∈ Ad2(dσ) then
there exists a constant C depending only on the dyadic doubling constant
of σ, such that for all f ∈ L2(dσ),

‖(T σv )−1/2f‖L2(dσ) ≤ C[v]Ad
2(dσ)‖f‖L2(dσ).

Where

(T σv )−1/2f :=
∑
I∈D

(
v(x)

mσ
I v

)−1/2

〈f, hσI 〉σhσI (x).

The paper is organized as follows. In Section 2 we prove Theorem 1
by showing that it is equivalent to the dyadic square function estimate on
weighted spaces. In Section 3 we prove Theorem 2, by reducing the proof
to proving a precise weighted Carleson estimate that is shown to hold in
two steps: first a so called Sawyer’s estimate that is handled using Bellman
functions, and second a weighted estimate that jump-starts the Sawyer es-
timate, and which turns out to be trivial in this case. This argument works
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for dyadic doubling weights and the numerical constant depends linearly on
the dyadic doubling constant of w. We also prove similar estimates for the
dyadic weighted maximal function Md

w. In Section 4 we reduce Theorem 3
to proving the Petermichl-Pott estimate (1.5), in fact the two estimates are
equivalent. We then deduce as corollaries of Theorem 3: Theorem 1, and
the Hukovic-Treil-Volberg estimate (1.1). In Section 5, we set up the scene
so that it is clear one can deduce from Theorem 6 (square root estimate for
(T σv )1/2) the linear estimate for (T σv )−1/2 (Theorem 7), the linear estimate for
Sdσ (Theorem 4), and the inverse estimate for Sdσ (Theorem 5), exactly in the
same way as it was done in the case dσ = dx in Section 4. In Section 6 we
prove Theorem 6. The estimate is reduced to proving a weighted Carleson
estimate. To achieve that, a Sawyer’s estimate is needed, it turns out that
the Bellman function required for this estimate is the same one used in the
proof of Theorem 2, but this time the weight lemma, necessary to jump-start
it, is not trivial and requires a proof, which we achieve using again Bellman
functions. In Section 7 we explain how to prove Theorem 2 by applying a
Bellman function argument directly to the adjoint problem for Tw, and we
use some homogeneity considerations to show the sharpness of the estimate,
by showing that no Bellman function with faster decay can exist. This proof
also requires w to be dyadic doubling, not only in RHd

2 . We learned about
this argument from Fedja Nazarov [23], the homogeneity trick that reduces
the number of variables of the Bellman function one is searching is an idea
that appeared first in [6]. In Section 8 we present some final remarks.

The author wishes to thank Fedja Nazarov for several electronic conver-
sations that made this a much better paper. The author also wishes to thank
the referee for some insightful comments that improved the presentation.

2. Sharp bound for T
−1/2
w

The formal adjoints of T tw are operators of the form

(2.1) (T tw)∗f(x) =
∑
I∈D

〈fwt, hI〉
(mIw)t

hI(x),

hence one can compute the L2-norm of the output by a direct application
of Plancherel Theorem. More precisely,

(2.2) ‖(T tw)∗f‖2
L2(R) =

∑
I∈D

|〈fwt, hI〉|2
(mIw)2t

.

Proof of Theorem 1. Set t = −1/2 in (2.2) to obtain,

‖(T−1/2
w )∗f‖2

L2(R) =
∑
I∈D

mIw|〈w−1/2f, hI〉|2.
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Remember that the dyadic square function is given by

Sdg(x) =

( ∑
I∈D

|〈g, hI〉|2
|I| χI(x)

)1/2

,

and its L2(w)-norm can be calculated directly by

(2.3) ‖Sdg‖2
L2(w) =

∑
I∈D

mIw|〈g, hI〉|2.

Hence,
‖(T−1/2

w )∗f‖2
L2(R) = ‖Sd(w−1/2f)‖2

L2(w).

Now we can use the sharp estimate (1.1) for g = w−1/2f ,

‖Sd(w−1/2f)‖L2(w) = ‖Sdg‖L2(w) ≤ C[w]Ad
2
‖g‖L2(w)

= C[w]Ad
2
‖w−1/2f‖L2(w).

Finally observing that ‖w−1/2f‖L2(w) = ‖f‖L2(R), we obtain the desired in-
equality for the adjoint operator and hence for the operator,

‖T−1/2
w f‖L2(R) ≤ C[w]Ad

2
‖f‖L2(R).

This result must be sharp otherwise estimate (1.1) for the dyadic square
function would not be sharp. In fact the two estimates are equivalent. �

3. Bounds for Tw and Sd
w

In this section we assume that w ∈ RHd
2 and that it is dyadic doubling.

We denote by D(w) the dyadic doubling constant of w. We prove that the
operator norm of Tw in L2(R) is less than or equal than a constant that
depends linearly on the doubling constant of w times [w]2

RHd
2
, more precisely

there exists C > 0 such that for all f ∈ L2(R),

(3.1) ‖Twf‖L2(R) ≤ CD(w)[w]2RHd
2
‖f‖L2(R).

Proof of Theorem 2. By (2.2) in the case t = 1 we obtain that

‖T ∗
wf‖2

L2(R) =
∑
I∈D

∣∣∣∣〈wf, hI〉mIw

∣∣∣∣2 =
∑
I∈D

|I|
∣∣∣∣mI(fw)

mĨw
− mĨ(fw)

mĨw

∣∣∣∣2 .
Where Ĩ is the parent of I.
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The weighted dyadic square function is given by

Sdwf(x) =

( ∑
I∈D

χI(x)

∣∣∣∣mI(fw)

mIw
− mĨ(fw)

mĨw

∣∣∣∣2 )1/2

.

Notice that it coincides with Sdσf(x) given by (1.3) in the case dσ = wdx.
Its L2-norm is given by,

(3.2) ‖Sdwf‖2
L2(R) =

∑
I∈D

|I|
∣∣∣∣mI(fw)

mIw
− mĨ(fw)

mĨw

∣∣∣∣2 .
It is not hard to believe now, that Tw and Sdw are bounded simultaneously in
L2(R), and, for dyadic doubling weights, this occurs if and only if w ∈ RHd

2 .
See [28] for details. We will sketch the argument so that it becomes obvious
where do we need careful estimates to pin down the dependence on [w]RHd

2

and on D(w). Adding and subtracting mIfw
mĨw

inside the absolute value in the

summands in (3.2), using that (a+ b)2 ≤ 2(a2 + b2), and that(
mIfw

mIw

)2

≤ D(w)2

(
mĨfw

mĨw

)2

,

we can see that

‖Sdwf‖2
L2(R) ≤ 2‖T ∗

wf‖2
L2(R) +D2(w)Q(w, f),

where the Carleson Embedding term Q(w, f), is given by

(3.3) Q(w, f) =
∑
I∈D

m2
I(fw)

m2
Iw

(〈w, hI〉
mIw

)2

.

On the other hand, see [28, p. 654–656],

‖T ∗
wf‖2

L2(R) ≤ ‖Md
wf‖2

L2(R) +D2(w)Q(w, f) +D(w)Q1/2(w, f)‖T ∗
wf‖L2(R),

where Md
w is the weighted dyadic maximal function, i.e.

Md
w f(x) := sup

j
Ew
j |f | (x), and Ew

j f(x) =
mI(fw)

mIw
, x ∈ I ∈ Dj.

We will check in Section 3.3 that

Lemma 1. If w ∈ RHd
2 then there exists a constant C > 0 such that for all

f ∈ L2(R),

‖Md
wf‖L2(R) ≤ C[w]2RHd

2
‖f‖L2(R).
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All together we conclude that,

‖T ∗
wf‖2

L2(R) ≤ C
(
[w]4RHd

2
‖f‖2

L2(R) +D2(w)Q(w, f)

+D(w)Q1/2(w, f)‖T ∗
wf‖L2(R)

)
.(3.4)

The Carleson Embedding termQ(w, f) is bounded by a constant depend-
ing on w times ‖f‖2

L2(R). That is sufficient to ensure the boundedness of Tw
and therefore of Sdw in L2(R) by a bootstrapping argument. However if
we get control on the constant in terms of the fourth power of the RHd

2 -
characteristic of the weight w, then the bootstrapping will give the quadratic
bound for Tw.

Lemma 2 (Carleson’s Embedding Lemma). Assume w ∈ RHd
2 , then for all

f ∈ L2(R),

Q(w, f) =
∑
I∈D

m2
I(fw)

m2
Iw

(〈w, hI〉
mIw

)2

≤ 4[w]4RHd
2
‖f‖2

L2(R).

Inserting this estimate in (3.4) we get,

‖T ∗
wf‖2

L2(R) ≤ C
(
D2(w)[w]4RHd

2
‖f‖2

L2(R)

+ D(w)[w]2RHd
2
‖T ∗

wf‖L2(R)‖f‖L2(R)

)
.

Then bootstrapping2 the above inequality we conclude that for some
other constants c, c′ > 0, independent of w,

‖T ∗
wf‖L2(R) ≤ cD(w)[w]2RHd

2
‖f‖L2(R),

‖Sdwf‖L2(R) ≤ c′D(w)[w]2RHd
2
‖f‖L2(R).

This implies (3.1). �
In Section 7 we argue about the optimality of the quadratic bound on

the RHd
2 -characteristic of the weight w. The argument presented there also

features the appearance of the weight’s doubling constant through the ex-
tension of the domain. At this point it is not completely clear to the author
whether one could push these arguments without the appearance of the
doubling constant. In particular, if the weight is in RHd

2 but is not dyadic

2All we are doing here is using the fact that if A, B, C > 0, and A2 ≤ CB2 + CAB
then A ≤ cB, for some c > 0 depending only on C. In our case, A = ‖T ∗

wf‖L2(R), and
B = D(w)[w]2

RHd
2
‖f‖L2(R).
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doubling, what is the optimal dependence on [w]RHd
2
? We know that Tw is

bounded in that case, see [17] for a stopping-time proof (without keeping
track of the nature of the constant) that works in the non-dyadic doubling
case, unlike the original proof in [28] that assumes dyadic doubling, and
which is the basis for the proof in this section.

We will prove the Carleson’s Embedding (Lemma 2) in two steps, one is
the so-called Sawyer’s Estimate, the other is an appropriate weight estimate
that turns out to be trivial in this case. The weight estimate is necessary to
jump-start Sawyer’s estimate.

Lemma 3 (Sawyer’s Estimate). Given w a weight, and {λI}I∈D a sequence
of positive numbers such that there is a constant Q > 0 such that for all
J ∈ D,

1

|J |
∑

I∈D(J)

m2
I(w

2)

m2
Iw

λI ≤ QmJ(w
2),

then for all dyadic intervals J ,

1

|J |
∑

I∈D(J)

m2
I(fw)

m2
Iw

λI ≤ 4QmJ(f
2).

Proof of Lemma 2. Choosing w ∈ RHd
2 , and λI =

(
〈w,hI〉
mIw

)2

we can jump-

start Sawyer’s Estimate with Q = [w]4
RHd

2
. In fact, the following weight

estimate holds,

1

|J |
∑

I∈D(J)

m2
I(w

2)

m2
Iw

(〈w, hI〉
mIw

)2

≤ [w]4RHd
2

1

|J |
∑

I∈D(J)

|〈w, hI〉|2

≤ [w]4RHd
2
mJ(w

2),

where we are using the hypothesis w ∈ RHd
2 to obtain the first inequality,

and the fact that the collection of Haar functions {hI}I∈D(J) is an orthonor-
mal set in L2(J) to obtain the last inequality.

Applying Sawyer’s Estimate and letting J grow we conclude that

∑
I∈D

m2
I(fw)

m2
Iw

(〈w, hI〉
mIw

)2

≤ 4[w]4RHd
2
‖f‖2

L2(R).

�
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3.1. Sawyer’s Estimate

We will prove Sawyer’s Estimate using the technique of Bellman functions.

Lemma 4. Suppose there exists a real-valued function of 5 variables, B(s) =
B(x, y, w, v,M) whose domain D is given by those s = (x, y, w, v,M) ∈ R

5

such that

x, y, w, v,M ≥ 0,

M ≤ v,

y2 ≤ xv;

whose range is given by 0 ≤ B(s) ≤ x, s ∈ D, and such that the following
convexity property holds: for all s, s± ∈ D such that s− s++s−

2
= (0, 0, 0, 0, α)

then

(3.5) B(s) − B(s+) +B(s−)

2
≥ 1

4

(y
v

)2

α.

Then Sawyer’s Estimate (Lemma 3) holds.

Proof. Without loss of generality can assume f ≥ 0. Fix a dyadic interval J .
Let sJ = (xJ , yJ , wJ , vJ ,MJ), where xJ = mJ(f

2), yJ = mJ(fw), wJ =
mJw, vJ = mJ(w

2), and

MJ =
1

Q

1

|J |
∑

I∈D(J)

(
mI(w

2)

mIw

)2

λI .

Clearly for each J ∈ D, sJ belongs to the domain, these are all positive
quantities, MJ ≤ vJ is the hypothesis of Lemma 3, and y2

J ≤ xJvJ is noth-
ing more than Cauchy-Schwarz inequality. Let now s± = sJ± ∈ D. By

definition, sJ − sJ+
+sJ−
2

= (0, 0, 0, 0, αJ), where αJ = 1
Q|J |

(
mJ (w2)
mJw

)2

λJ .

We are assuming a function B exists, such that B(sJ) ≤ mJ(f
2), and

such that the convexity property (3.5) is satisfied, namely

B(sJ) − B(sJ+) +B(sJ−)

2
≥ 1

4

(
yJ
vJ

)2

αJ =
1

4Q|J |
(
mJ(fw)

mJw

)2

λJ .

Hence,

|J |mJ(f
2) ≥ |J |B(sJ)

≥ 1

4Q

(
mJ(fw)

mJw

)2

λJ + |J |B(sJ+) +B(sJ−)

2

=
1

4Q

(
mJ(fw)

mJw

)2

λJ + |J+|B(sJ+) + |J−|B(sJ−).
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Applying the convexity property (3.5) toB(sJ±), and iterating the argument,
we obtain that

|J |mJ(f
2) ≥ 1

4Q

∑
I∈D(J)

(
mI(fw)

mIw

)2

λI .

We are done proving Sawyer’s estimate, provided such function B exists. �

3.2. Existence of Bellman function

The function

(3.6) B(x, y, w, v,M) = x− y2

v +M

is defined on the domain D, satisfies range property, 0 ≤ B ≤ x, and
furthermore the following differential properties hold,

∂B

∂M
≥ y2

4v2
, −d2B ≥ 0.

The boundedness and differential properties of the given function B on
the domain are left as an exercise for the reader, see Lemma 11 for similar
computations.

The convexity of the domain together with the infinitesimal differential
properties, imply the discrete convexity property (3.5).

Notice that for s=(x, y, v, w,M), s±=(x±, y±, v±, w±,M±), and s++s−
2

=
s− (0, 0, 0, 0, α) = (x, y, v, w,M − α), by the Mean Value Theorem and the
Fundamental Theorem of Calculus,

B(s) − B(s+) +B(s−)

2
= [B(s) −B(s0)] +

[
B(s0) − B(s+) +B(s−)

2

]
=
∂B

∂M
(x, y, v, w,M ′)α−

∫ 1

−1

(1 − |t|)b′′(t)dt,(3.7)

where s0 = s++s−
2

, M ′ = M(T ) = (1−T )M+T (M−α) for some 0 < T < 1,
and

b(t) = B
(
s(t)

)
, s(t) =

1 + t

2
s+ +

1 − t

2
s−, −1 ≤ t ≤ 1.

Notice that s(1) = s+, s(−1) = s−, and s(0) = s0 = s++s−
2

.

The differential properties together with (3.7) imply (notice that b′′(t) =
d2B(s(t))).

B(s) − B(s+) +B(s−)

2
≥ y2

4v2
α,

which is what we wanted to prove.
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We are entitled to use (3.7) as long as s, s± ∈ D imply that (i)
(
x, y, v, w,

M(T )
) ∈ D for all 0 ≤ T ≤ 1, and (ii) s(t) ∈ D for all −1 ≤ t ≤ 1. These

are the convexity properties that the domain must satisfy, and they are not
difficult to prove. We leave the proof as an exercise in convex analysis for
the reader. Similar calculations have been done in detail in other papers,
see for example [26], [16], [37], [31]. A similar argument will be used in
Section 6.4 and in Section 7. In the first case, the non-convex domain is
distorted according to the doubling constant D(σ) of an underlying dou-
bling measure σ, and the differentiability domain is enlarged by a parameter
depending on D(σ). In the second case, the domain is non-convex, and the
differentiability domain is enlarged by a parameter depending on D(w), the
doubling constant of the weight w.

3.3. Weighted maximal function

It is well known that the dyadic weighted maximal function Md
w is bounded

in Lq(R) if and only if w ∈ RHd
p ,

1
p

+ 1
q

= 1, see [30] and [28]. We will show
in this section Lemma 1, that is the estimate,

‖Md
wf‖L2(R) ≤ C[w]2RHd

2
‖f‖L2(R).

The following related optimal estimate for the Hardy-Littlewood maxi-
mal function on weighted Lp-spaces due to S. Buckley (see [4]) is well known:

‖Mf‖Lp(w) ≤ C[w]
max {1, 1

p−1
}

Ap
‖f‖Lp(w).

See [27] and [20] for corresponding Lp-estimates for Mw.

Proof of Lemma 1. For the proof we will use a sharp weak boundedness
result of Muckenhoupt [21] and Gehring’s self-improvement theorem for Re-
verse Hölder classes [15]. More precisely, Muckenhoupt proved the following
weak (q, q) estimate, for 1 ≤ q <∞, 1

p
+ 1

q
= 1,

(3.8) |{x ∈ R : Mwf(x) > λ}| ≤
(

[w]RHp

λ
‖f‖Lq(R)

)q

,

this estimate is sharp in the sense that φ(t) = tq, for t = [w]RHp, cannot
be replaced by a faster decaying function of t. Notice that this sharp es-
timate automatically gives at least a linear bound in terms of [w]RH2 for
the operator norm of the weighted maximal function, that is it shows that
if ‖Mwf‖L2(R) ≤ C[w]αRH2

‖f‖L2(R), then α ≥ 1. Same result holds in the
dyadic setting.

Gehring’s self-improvement result states that w ∈ RHp implies that
there exists an 0 < ε0 ∼ [w]−pRHp

, such that for all ε < ε0, w ∈ RHp+ε.



Haar multipliers meet Bellman functions 813

Furthermore, there exists a constant C > 0 such that [w]RHp+ε ≤ C[w]RHp

whenever ε ∼ [w]−pRHp
.

It is a simple consequence of Hölder’s inequality that if w ∈ RHp then
for all ε < p − 1, w ∈ RHp−ε, and [w]RHp−ε ≤ [w]RHp (with constant 1).
Same results hold in the dyadic setting.

We will now concentrate in the case p = 2.
We are going to interpolate Muckenhoupt’s weak bounds with end-points

(q1, q1), (q2, q2), with q1, q2 dual exponents of p1 = 2 + ε, p2 = 2 − ε, ε ∼
[w]−2

RHd
2
, i.e. q1 = 2+ε

1+ε
< 2, q2 = 2−ε

1−ε > 2. Interpolation guarantees that if our

operator obeys weak bouds of the type∣∣∣{x ∈ R : Md
wf(x) > λ

}∣∣∣ ≤ (
Bi

λ
‖f‖Lqi (R)

)qi

, i = 1, 2;

then Md
w is bounded in L2(R) (q1 < 2 < q2), furthermore,

‖Md
wf‖L2(R) ≤ CtB

1−t
1 Bt

2‖f‖L2(R),

where 1
2

= 1−t
q1

+ t
q2

, and C2
t = 2q2

q2−2
+ 2q1

2−q1 . We can write all these variables
in terms of ε,

t =
2 − ε

4
, Ct =

2
√

2√
ε
.

We are assuming that ε ∼ [w]−2
RHd

2
, hence Ct ∼ [w]RHd

2
, and by Muckenhoupt’s

weak bounds we know that B1 = [w]RHd
2+ε

≤ C[w]RHd
2
, and B2 = [w]RHd

2−ε
≤

[w]RHd
2
. All together we conclude that

‖Md
wf‖L2(R) ≤ C[w]2RHd

2
‖f‖L2(R),

which is what we wanted to show. �
What we have shown so far is that if ‖Mwf‖2 ≤ C[w]α

RHd
2
‖f‖L2(R), then

1 ≤ α ≤ 2. The quadratic upper bound is the sharp bound, as Kabe Moen
very recently proved [20].

4. Sharp bound for T
1/2
w and corollaries

Verifying the boundedness of T
1/2
w in L2(R) is equivalent to verifying the

boundedness of its adjoint, furthermore the operator norms are the same.
With this in mind, our problem is to obtain the following estimate,

(4.1) ‖(T 1/2
w )∗f‖2

L2(R) =
∑
I∈D

|〈w1/2f, hI〉|2
mIw

≤ C[w]Ad
2
‖f‖2

L2(R).
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Let g = w1/2f , and observe that f ∈ L2(R) if and only if g ∈ L2(w−1),
furthermore, ‖f‖L2(R) = ‖g‖L2(w−1), therefore the estimate we are seeking is
equivalent to verifying that there exists a constant C > 0 such that for all
g ∈ L2(w−1)

(4.2)
∑
I∈D

|〈g, hI〉|2
mIw

≤ C[w]Ad
2
‖g‖2

L2(w−1).

This is exactly what Petermichl and Pott proved [33, see equation (3.2)].
Let us first introduce some operator notation for multiplication in space,

and dyadic multiplication, the building blocks of the Haar multipliers. De-
note by Mt

w, t ∈ R, w a weight, the linear operator (possibly unbounded)
of multiplication by wt, and Dt

w the linear operator of dyadic multipli-
cation also possible unbounded, defined by its action on Haar functions,
hI → (mIw)t hI . That is,

Mt
wf = wtf, Dt

wf =
∑
I∈D

(mIw)t〈f, hI〉hI .

When denoting an operator T followed by multiplication by wt we will often
write directly wtT instead of Mt

wT , similarly we will often write Twt instead
of TMt

w when this will not cause any confusion. Notice that with this
notation, the Haar multipliers we have been studying are given by

T tw = Mt
wD

−t
w = wtD−t

w .

Also notice that these operators, Mt
w and Dt

w, are positive operators, forma-
lly selfadjoint, and formally invertible with formal inverses given by (Mt

w)−1

= M−t
w and (Dt

w)−1 = D−t
w . Also notice that formally we can compute

adjoints and inverses for the Haar multipliers,

(T tw)∗ = D−t
w w

t, (T tw)−1 = (D−t
w )−1(Mt

w)−1 = Dt
ww

−t = (T−t
w )∗.

Note that if w ∈ Ad2, then both T
1/2
w and T

−1/2
w are bounded operators in

L2(R), so are their adjoints, and the inverse of T
1/2
w is (T

−1/2
w )∗.

To be safe when handling the possibly unbounded multiplication and
dyadic multiplication operators, we consider the following truncated weights:
for n ∈ N, wn(x) = min{max{w(x), 1/n}, n}. If w ∈ Ad2, then wn ∈ Ad2 (this
is true of any weight bounded away from zero and from infinity, except that
the Ad2-characteristic can depend on the upper and lower bounds), and fur-
thermore [wn]Ad

2
≤ C[w]Ad

2
. The multiplication and dyadic multiplication

corresponding to these truncations are positive, selfadjoint, invertible and
bounded operators (the inverses are also bounded), although not uniformly
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on n. However the Haar multipliers T
±1/2
wn will be uniformly bounded (by an

appropriate power of the [w]Ad
2
), and for g in the dense subspace of finite lin-

ear combinations of Haar functions we know that T
±1/2
wn g → T

±1/2
w g in L2(R),

therefore by the uniform boundedness principle this holds for all f ∈ L2(R)
and moreover the same uniform bound that works for the truncated Haar
multipliers will hold for the non-truncated Haar multipliers. We will prove
all estimates with bounds independent of the truncation parameter, then
take appropriate limits as n → ∞. To ease the notation, we will not write
down the truncation parameter.

The following observation will be useful:

Lemma 5. Given w ∈ Ad2 then the operator w1/2SdD
−1/2
w is an isometry in

L2(R).

Proof. A direct calculation shows that

‖w1/2SdD−1/2
w f‖2

L2(R) =

∫
R

∑
I∈D

|〈f, hI〉|2
mIw

χI(x)

|I| w(x) dx

=
∑
I∈D

|〈f, hI〉|2
mIw

mIw = ‖f‖2
L2(R)

�
Assuming (1.5), that is the inverse estimate for the square function,

we can now present a proof of Theorem 3. In fact we will show that both
estimates are equivalent.

Lemma 6 (Theorem 3 is equivalent to (1.5)). There exists a constant C > 0
such that for all w ∈ Ad2,

(4.3) ‖T 1/2
w f‖L2(R) ≤ C[w]

1/2

Ad
2
‖f‖L2(R)

if and only if there exists a constant C > 0 such that for all w ∈ Ad2,

(4.4) ‖f‖L2(w) ≤ C[w]
1/2

Ad
2
‖Sdf‖L2(w).

Proof. (⇒) The first observation is that (4.4) is equivalent to showing

(4.5) ‖g‖L2(R) ≤ C[w]
1/2

Ad
2
‖w1/2Sdw−1/2g‖L2(R).

Let g = T
1/2
w f , then f = (T

1/2
w )−1g = D

1/2
w w−1/2g, and substitute into (4.3)

to get,
‖g‖L2(R) ≤ C[w]

1/2

Ad
2
‖D1/2

w w−1/2g‖L2(R).
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Now we use Lemma 5 to force the square function into the right hand side,

‖g‖L2(R) ≤ C[w]
1/2

Ad
2
‖w1/2SdD−1/2

w D1/2
w w−1/2g‖L2(R)

= C[w]
1/2

Ad
2
‖w1/2Sdw−1/2g‖L2(R).

This is exactly what we wanted to prove.

(⇐) Let f = (T
1/2
w )−1g, then g = T

1/2
w f = w1/2D

−1/2
w f , substituting into (4.5)

we get

‖T 1/2
w f‖L2(R) ≤ C[w]

1/2

Ad
2
‖w1/2Sw−1/2w1/2D−1/2

w f‖L2(R)

= C[w]
1/2

Ad
2
‖w1/2SD−1/2

w f‖L2(R)

= C[w]
1/2

Ad
2
‖f‖L2(R)

Where we used the isometry in Lemma 5 for the last equality. �
We will now show how to deduce Theorem 1, and the Hukovic-Treil-

Volberg inequality (1.1) as simple corollaries of Theorem 3. Of course at
some point there should be a proof of either the Petermichl-Pott Theorem
or of Theorem 3 independent of each other, this was done in [33]. We will
present a generalization of their argument for the σ-case in Section 6.

Corollary 1 (Theorem 1). Given w ∈ Ad2 then

‖T−1/2
w f‖L2(R) ≤ C[w]Ad

2
‖f‖L2(R).

Proof. A direct calculation for the adjoint, using the fact thatmIwmI(w
−1)

≤ [w]Ad
2

shows that,

‖(T−1/2
w )∗f‖2

L2(R) =
∑
I∈D

|〈w−1/2f, hI〉|2mIw

≤
∑
I∈D

|〈w−1/2f, hI〉|2
[w]Ad

2

mI(w−1)
.

= [w]Ad
2
‖(T 1/2

w−1)
∗f‖2

L2(R)

≤ C[w]2Ad
2
‖f‖2

L2(R).

for the last inequality we used Theorem 3 applied to w−1 instead of w, and
the fact that w ∈ Ad2 implies w−1 ∈ Ad2 with the same Ad2-characteristic,
[w−1]Ad

2
= [w]Ad

2
. This gives us the estimate for the adjoint, hence the same

estimate holds for the operator. �
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Corollary 2 (Hukovic-Treil-Volberg inequality (1.1)). Given w ∈ Ad2 then

‖Sdf‖L2(w) ≤ C[w]Ad
2
‖f‖L2(w).

Proof . The first observation is that what we want to prove is equivalent to
showing

‖w1/2Sdw−1/2g‖L2(R) ≤ C[w]Ad
2
‖g‖L2(R).

We now estimate the left-hand side taking advantage of the isometry in
Lemma 5, and the linear estimate already proven for T

−1/2
w in Corollary 1,

‖w1/2Sdw−1/2g‖L2(R) = ‖w1/2SdD−1/2
w D1/2

w w−1/2g‖L2(R)

= ‖D1/2
w w−1/2g‖L2(R)

= ‖(T−1/2
w )∗g‖L2(R)

≤ C[w]Ad
2
‖g‖L2(R).

This is exactly what we wanted to prove. �
A few more observations are in order. First of all, we can verify that the

following equalities hold,

‖f‖2
L2(w) = 〈Mwf, f〉, ‖Sdf‖2

L2(w) = 〈Dwf, f〉.
In the language of operators we can rephrase, as Petermichl and Pott did
in [33], the direct and inverse estimates for the square function as follows,

Dw ≤ C[w]2Ad
2
Mw, Mw ≤ c[w]Ad

2
Dw,

where it is understood that for two operators, A ≤ B if and only if 〈Af, f〉 ≤
〈Bf, f〉, for all f ∈ L2(w). Theorem 3 or its equivalent formulation (4.2)
can also be restated in operator language,

D−1
w ≤ C[w]Ad

2
M−1

w .

In fact we have just shown that for this very special pair of operators, Dw

and Mw (positive, selfadjoint, invertible) that

Mw ≤ C[w]Ad
2
Dw if and only if D−1

w ≤ C[w]Ad
2
M−1

w .

This was the departure point in [33]. This statement always holds for
any pair of positive, self-adjoint and invertible operators. If the operators
commute this is trivial, if they don’t, like in our case, it requires a small
argument. This is a standard result in the theory of C∗-algebras, see for
example [22, Thm 2.2.5]), for a proof using spectral theory, in particular the
Gelfand representation.
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5. Direct and inverse bounds for Sd
σ in L2(vdσ)

In this section we will see that one can deduce Theorem 4, Theorem 5 and
Theorem 7 as corollaries of Theorem 6, following the same scheme as in
Section 4.

We will assume in this section that v ∈ Ad2(dσ), and σ is a doubling
measure.

Recall that for a doubling measure σ, we define the σ-dyadic square
function by

Sdσf(x) =

( ∑
j∈Z

|∆σ
j f(x)|2

)1/2

=

( ∑
I∈D

|mσ
I f −mσ

Ĩ
f |2χI(x)

)1/2

,

where the j-th σ-difference is ∆σ
j = Eσ

j+1 − Eσ
j , and the σ-expectation is

given by

Eσ
j f(x) =

1

σ(I)

∫
I

f dσ = mσ
I f, x ∈ I ∈ Dj.

It is well known that Sdσ is bounded in L2(vdσ) if and only if v ∈ A2(dσ).
Let dµ = vdσ, it is easy to check that

‖Sdσf‖2
L2(dµ) =

∑
I∈D

µ(I)|mσ
I f −mσ

Ĩ
f |2.

Given a doubling measure σ, one can construct Haar functions {hσI }I∈D
that form an orthonormal basis in L2(dσ), sometimes called weighted Haar
system, see [8]. Such functions are step functions similar to the Haar func-
tions except that the weights on each half are different. More precisely,

hσI (x) = aσI+χI+(x) − aσI−χI−(x),

where aσI =
√

σ(I∗)

σ(I)σ(Ĩ )
, Ĩ is the parent of I, and I∗ is the sibling of I. With

this choice, it is not hard to check that,

(5.1) ∆σ
j f(x) = 〈f, hσ

Ĩ
〉σhσĨ (x) = mσ

I f −mσ
Ĩ
f, x ∈ I ⊂ Ĩ ∈ Dj.

For dµ = vdσ, we can now compute the L2(dµ)-norm of Sdσf in terms of the
system {hσI }I∈D,

‖Sdσf‖2
L2(dµ) =

∑
I∈D

µ(I)|〈f, hσ
Ĩ
〉σhσĨ (xI)|2

=
∑
Ĩ∈D

(
µ(I)σ(I∗)

σ(Ĩ)σ(I)
+
µ(I∗)σ(I)

σ(Ĩ)σ(I∗)

)
|〈f, hσ

Ĩ
〉σ|2,

where xI denotes a point in I.
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But σ is doubling, and if we denote by D(σ) its doubling constant, then

D−1(σ) ≤ σ(I∗)
σ(I)

≤ D(σ), and we conclude that

D−1(σ)mσ
Ĩ
v ≤ µ(I)σ(I∗)

σ(Ĩ)σ(I)
+
µ(I∗)σ(I)

σ(Ĩ)σ(I∗)
≤ D(σ)mσ

Ĩ
v.

Therefore

(5.2) D−1(σ)
∑
I∈D

mσ
I v|〈f, hσI 〉σ|2 ≤ ‖Sdσf‖2

L2(dµ) ≤ D(σ)
∑
I∈D

mσ
I v|〈f, hσI 〉σ|2.

Denote by (Dσ
v )

−1/2 the discrete multiplication, a possibly unbounded
operator densely defined to map hσI into (mσ

I v)
−1/2hσI .

Now we can reproduce almost verbatim what we did in Section 4. Esti-
mate (5.2) applied to (Dσ

v )
−1/2f implies the analogue of Lemma 5 in this

context, namely

Lemma 7. Let v ∈ A2(dσ) then

D−1/2(σ)‖f‖L2(dσ) ≤ ‖v1/2Sdσ(D
σ
v )

−1/2f‖L2(dσ) ≤ D1/2(σ)‖f‖L2(dσ).

The corollaries and their proofs are very similar to the corresponding
ones we did in Section 4 (we omit their proofs), modulo the appearance
of a dependence of constants on the doubling constant of σ each time we
use Lemma 7, and each time we use Theorem 6, in particular the precise
estimate (6.1) to be proved in Section 6. We obtain the following direct and
inverse estimates for Sdσ in L2(vdσ),

Corollary 3 (Theorem 4). Given σ a doubling measure, v ∈ Ad2(dσ) then
there exists a constant C > 0, independent of v and σ, such that for all
f ∈ L2(vdσ),

(5.3) ‖Sdσf‖L2(vdσ) ≤ CD2(σ) [v]Ad
2(dσ)‖f‖L2(vdσ).

Corollary 4 (Theorem 5). Given σ a doubling measure, v ∈ Ad2(dσ) then
there exists a constant C > 0, independent of v and σ, such that for all
f ∈ L2(vdσ),

(5.4) ‖f‖L2(vdσ) ≤ CD2(σ) [v]
1/2

Ad
2(dσ)

‖Sdσf‖L2(vdσ).

Both for the direct and the inverse estimates the constants depend not
only on the Ad2(dσ) characteristic of the weight v (at the rates advertised in
Theorem 4 and Theorem 5), but also on D(σ). The dependence on D(σ)
comes from Theorem 6, more precisely (6.1) (responsible for a power 3/2 in
both estimates) and from Lemma 7 (responsible for a power 1/2 in both esti-
mates). An intermediate estimate needed to get Corollary 3 is the following
estimate, which also follows almost verbatim the proof of Corollary 1.
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Corollary 5 (Theorem 7). Given σ a doubling measure, v ∈ Ad2(dσ) then
there exists a constant C > 0, independent of v and σ, such that for all
f ∈ L2(dσ),

‖(T σv )−1/2f‖L2(dσ) ≤ CD3/2(σ)[v]Ad
2(dσ)‖f‖L2(dσ).

Notice also that if we specialize to the case dσ = wdx and v = w−1, and
remember that [w−1]Ad

2(wdx) = [w]2
RHd

2
, we obtain the following direct and

inverse estimates for Sdw in L2(R),

(5.5) ‖Sdwf‖L2(R) ≤ CD2(w) [w]2RHd
2
‖f‖L2(R),

(5.6) ‖f‖L2(R) ≤ CD2(w) [w]RHd
2
‖Sdwf‖L2(R).

In both cases the constants depend on D(w). Note that in Section 3 we got
linear dependence on the doubling constant for the direct estimate of Sw,
whereas the argument just presented yields the larger quadratic power.

6. Sharp bounds for (T σ
v )1/2

In this section we will prove an estimate of the form

(6.1) ‖(T σv )1/2f‖L2(dσ) ≤ CD3/2(σ)[v]
1/2
A2(dσ)‖f‖L2(dσ).

Note that the dependence on the A2(dσ)-characteristic of v is like a square
root, and the dependence on the dyadic doubling constant of σ is like a
power 3/2.

Proof of Theorem 6. Suffices to prove the following estimate

(6.2)
∑
I∈D

1

mσ
I (v)

|〈f, hσI 〉σ|2 ≤ CD3(σ)[v]Ad
2(dσ)‖f‖2

L2(v−1dσ).

Notice that the left hand side of (6.2) is ‖(T 1/2
σ )∗(v−1/2f)‖2

L2(dσ), and that

‖f‖2
L2(v−1dσ) = ‖v−1/2f‖2

L2(dσ). So (6.2) is equivalent to the square root

estimate (6.1) for T
1/2
σ . Estimate (6.2) is exactly what was proved in [33]

for the case dσ = dx and v = w, and we will follow their proof very closely.
The weighted Haar system {hσI }I∈D satisfies the following identity,

hI = δσI h
σ
I + γσI χI ,

where δσI =
√

mI+
(dσ)mI− (dσ)

mI (dσ)
, and γσI = 〈dσ,hI 〉

|I|mI(dσ)
.

The same holds for another doubling measure µ,

hI = δµI h
µ
I + γµI χI .
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Combining these two we can obtain a similar relation between hσI and hµI
when dµ = vdσ, namely

(6.3) hσI = δv,σI hµI + γv,σI χI ,

where

δv,σI =

√
mσ
I+

(v)mσ
I−(v)

mσ
I (v)

, γv,σI =
〈v, hσI 〉σ
σ(I)mσ

I (v)
.

Switching in (6.2) to the weighted Haar system {hµI }I∈D, which is an
orthonormal basis in L2(dµ), where dµ = vdσ, the left hand side becomes,∑

I∈D

1

mσ
I (v)

∣∣〈f, δv,σI hµI + γv,σI χI〉σ
∣∣2 = (I) + (II) + (III),

where

(I) =
∑
I∈D

1

mσ
I (v)

|δv,σI |2|〈f, hµI 〉σ|2,

(II) =
∑
I∈D

1

mσ
I (v)

δv,σI γv,σI 〈f, hµI 〉σ〈f, χI〉σ,

(III) =
∑
I∈D

1

mσ
I (v)

|γv,σI |2|〈f, χI〉σ|2,

The following estimates will hold:

(I) ≤ CD(σ)‖f‖2
L2(v−1dσ),(6.4)

(III) ≤ CD3(σ)[v]Ad
2(dσ)‖f‖2

L2(v−1dσ), .(6.5)

With those estimates in hand, we can control the second term by Cauchy-
Schwarz,

|(II)| ≤
√

(I)
√

(III) ≤ CD2(σ)[v]
1/2

Ad
2(dσ)

‖f‖2
L2(v−1dσ).

All together these imply,∑
I∈D

1

mσ
I (v)

|〈f, δv,σI hµI + γv,σI χI〉σ|2 ≤ CD3(σ)[v]Ad
2(dσ)‖f‖2

L2(v−1dσ).

Which is what we wanted to prove. �
The first estimate (6.4) is not difficult, it is in estimating term (III),

inequality (6.5), where we will have to prove a Carleson’s Lemma. To esti-
mate term (III) we will follow the scheme described in Section 3: first prove
a Sawyer’s estimate which boils down to finding exactly the same Bellman
function we found before, second we will need a weight lemma to jump-start
properly the Sawyer’s estimate, this time such lemma is not trivial.
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6.1. Estimate for term (I)

Proof of estimate (I). Note that

|δv,σI |2
mσ
I (v)

=
mσ
I+

(v)mσ
I−(v)

mσ
I (v)m

σ
I (v)

,

and that

mσ
I (v) =

σ(I+)

σ(I)
mσ
I+

(v) +
σ(I−)

σ(I)
mσ
I−(v),

σ(I+)

σ(I)
+
σ(I−)

σ(I)
= 1.

Denote by s = σ(I+)
σ(I)

, which will be uniformly bounded away from 1 and 0
because σ is dyadic doubling, more precisely, ε ≤ s, 1 − s ≤ 1 − ε, for
0 < ε = D(σ)−1 ≤ 1/2. The geometric-arithmetic inequality implies that,

√
mσ
I+

(v)mσ
I−(v) ≤ 1

2
√
s(1 − s)

mσ
I (v) ≤

√
D(σ)

2
mσ
I (v).

Therefore, for dµ = vdσ,

(I) ≤ D(σ)

2

∑
I∈D

|〈f, hµI 〉σ|2 =
D(σ)

2

∑
I∈D

|〈v−1f, hµI 〉µ|2

=
D(σ)

2
‖v−1f‖L2(dµ) =

D(σ)

2
‖f‖L2(v−1dσ).

Which is what we wanted to prove. �

6.2. Estimate for term (III)

We are trying to show the following Lemma, which can be thought as a
Carleson’s Embedding Lemma after noticing that 〈f, χσI 〉 = σ(I)mσ

I f .

Lemma 8. If v ∈ Ad2(dσ), and σ is a doubling dyadic measure, then there
exists a constant C > 0, independent of σ and v, such that for all f ∈
L2(v−1dσ),

∑
I∈D

σ2(I)

mσ
I (v)

|γv,σI |2|mσ
I (f)|2 ≤ CD3(σ)[v]Ad

2(dσ)‖f‖2
L2(v−1dσ).

To prove this Carleson’s Embedding Lemma, it will suffice to prove a
Sawyer’s Estimate, and a Weight Lemma to jump-start it with the right
constant. This was exactly the scheme followed in the proof of Lemma 2
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Lemma 9 (σ-Sawyer’s Estimate). Given a dyadic doubling measure σ, Q>0,
and a sequence of positive numbers {λI}I∈D. Suppose that for all dyadic in-
tervals J

1

σ(J)

∑
I∈D(J)

|mσ
I (v)|2λI ≤ Qmσ

J (v),

then
1

σ(J)

∑
I∈D(J)

|mσ
I (f)|2λI ≤ 4Qmσ

J(f
2v−1).

Lemma 10 (Weight Lemma). If v ∈ Ad2(dσ), and σ is a doubling dyadic
measure, then

1

σ(J)

∑
I∈D(J)

|〈v, hσI 〉σ|2
mσ
I (v)

≤ 18D3(σ)[v]Ad
2(dσ)m

σ
J(v).

This Weight Lemma is known to hold in the case dσ = dx, a proof can
be found in [37], and it is a refinement of Buckley’s characterization of Ad∞
by summation conditions, in the case the weight is in the subset Ad2, see [5].

We will prove the σ-Sawyer’s Estimate (Lemma 9) in Section 6.3, and
the Weight Lemma (Lemma 10) in Section 6.4.

Proof of Lemma 8. Apply σ-Sawyer’s Estimate (Lemma 9 ) with Q =
18D3(σ)[w]Ad

2(dσ) > 0, and

λI = σ2(I)
|γv,σI |2
mσ
I (v)

=
|〈v, hσI 〉σ|2(
mσ
I (v)

)3 .

By Weight Lemma 10, the hypothesis of σ-Sawyer’s Estimate are satisfied,
namely,

1

σ(J)

∑
I∈D(J)

|mσ
I (v)|2λI =

1

σ(J)

∑
I∈D(J)

|〈v, hσI 〉σ|2
mσ
I (v)

≤ 18D3(σ)[v]Ad
2(dσ)m

σ
J(v)

≤ Qmσ
J(v).

Therefore the conclusion of σ-Sawyer’s Estimate holds, namely, for each
J ∈ D,

1

σ(J)

∑
I∈D(J)

|mσ
I (f)|2λI =

∑
I∈D

σ2(I)

mσ
I (v)

|γv,σI |2|mσ
I (f)|2

≤ 72D3(σ)[v]Ad
2(dσ)

1

σ(J)

∫
J

f 2(x)v−1(x) dσ.

Cancel σ(J) and let J grow to [0,∞) and to (−∞, 0]. Finally add both
estimates to obtain Lemma 8 with C = 72. �
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6.3. σ-Sawyer’s Estimate

Proof of Lemma 9. Let us write σ-Sawyer’s estimate in term of Lebesgue
averages, the hypothesis (or Carleson condition) now reads,

(6.6)
1

|J |
∑

I∈D(J)

∣∣∣∣mI(vdσ)

mI(dσ)

∣∣∣∣2 λI ≤ QmJ(vdσ),

and the conclusion will now read,

(6.7)
1

|J |
∑

I∈D(J)

∣∣∣∣mI(fdσ)

mI(dσ)

∣∣∣∣2 λI ≤ 4QmJ(f
2v−1dσ),

where here mI(dσ) := σ(I)/|I|, mI(fdσ) := 1
|I|

∫
I
f dσ.

Notice that if dσ = wdx and v = w, then this is exactly Lemma 3 (our
first Sawyer’s Estimate), for which we have a Bellman function. In fact,
we proved in Section 3.2 that there exists a real-valued function of 5 vari-
ables, B(s) = B(x, y, w, v,M) whose domain D is given by those s =
(x, y, w, v,M) ∈ R

5 such that

x, y, w, v,M ≥ 0, M ≤ v, y2 ≤ xv;

whose range is given by 0 ≤ B(s) ≤ x, s ∈ D, and such that the following
convexity property holds: for all s, s± ∈ D such that s− s++s−

2
= (0, 0, 0, 0, α)

then

B(s) − B(s+) +B(s−)

2
≥ 1

4

(y
v

)2

α.

Fix a dyadic interval I. Let sI =(xI , yI , wI , vI ,MI), where xI =mI(f
2v−1dσ),

yI = mI(fdσ), wI = mI(dσ), vI = mI(vdσ), and

MI =
1

Q

1

|I|
∑

K∈D(I)

(
mK(vdσ)

mK(dσ)

)2

λK .

Clearly for each J ∈ D, sJ belongs to the domain, these are all positive quan-
tities, MJ ≤ vJ is the hypothesis of Lemma 9, and y2

J ≤ xJvJ is nothing
more than Cauchy-Schwarz inequality. Let now s± = sJ± ∈ D. By defini-

tion, sJ − sJ+
+sJ−
2

= (0, 0, 0, 0, αJ), where αJ = 1
Q|J |

(
mJ (vdσ)
mJ (dσ)

)2

λJ .

Hence, B(sJ) ≤ mJ(f
2v−1dσ), and since the convexity property holds,

B(sJ) − B(sJ+) +B(sJ−)

2
≥ 1

4

(
yJ
vJ

)2

αJ =
1

4Q|J |
(
mJ(fdσ)

mJ (dσ)

)2

λJ .
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Iterating, we obtain that

mJ(f
2v−1dσ) ≥ 1

4Q|J |
∑

I∈D(J)

(
mI(fdσ)

mI(dσ)

)2

λI .

And we are done proving Sawyer’s estimate. �

6.4. Weight Lemma

Janine Wittwer proved Lemma 10 in the case dσ = dx, her proof uses Buck-
ley’s characterization of weights by summation conditions [5], Gehring’s self-
improvement theorem [15], Hölder’s inequality, see [37]. There is a proof also
using Bellman functions (although we have not been able to find a full refe-
rence, but modifications of other proofs lead to it). We will adapt the later
for dyadic doubling positive measures σ. We present a Bellman function
that gives the linear bound Cε[v]A2(dσ), where ε is the dyadic doubling con-
stant of σ. The Bellman function that gives linear dependence in the case
dσ = dx has been kindly provided by F. Nazarov [23], a small variation of
it works for the doubling measure case.

Proof of Lemma 10. Fix 0 < ε ≤ 1/2. Define the domain

DQ = {(u, v) ∈ R
2
+ : 1 ≤ uv ≤ Q}.

Suppose we can find a function of two variables B(u, v) defined on DQ,
such that

(i) 0 ≤ B(u, v) ≤ Qv for all (u, v) ∈ DQ,

(ii) if for all triplets (u, v), (u±, v±) ∈ DQ such that u = su+ + (1 − s)u−
and v = sv+ + (1 − s)v− where ε ≤ s ≤ 1 − ε, then the following
convexity condition holds for all such s, with Cε > 0,

∆sB(u, v) = B(u, v) − sB(u+, v+) − (1 − s)B(u−, v−)

≥ C−1
ε

|v+ − v−|2
v

.(6.8)

Then the lemma will be proved with bound Cε[w]Ad
2(dσ).

Let vI = mσ
I v, uI = mσ

I (v
−1), and v+ = vIr , v− = vIl, similarly for u±.

Let Q = [v]Ad
2(dσ), then (uI , vI), (u±, v±) ∈ DQ. For each I ∈ D, let s =

sI = σ(Ir)
σ(I)

(note that 1 − s = σ(Il)
σ(I)

), then the dyadic doubling condition

on σ implies that there is an 0 < ε ≤ 1/2 such that ε ≤ s, 1 − s ≤ 1 − ε,
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such ε is nothing more than the reciprocal of D(σ), the doubling constant
of σ. Fix J ∈ D, by the convexity and the range conditions (i) and (ii), we
conclude that

σ(J)Qmσ
Jv ≥ σ(J)B(uJ , vJ)

≥ σ(J)sJB(uJr , vJr) + σ(J)(1 − sJ)B(uJl
, vJl

) + C−1
ε

|mσ
Jr
v −mσ

Jl
v|2

mσ
Jv

σ(J)

= σ(Jr)B(uJr , vJr) + σ(Jl)B(uJl
, vJl

) + C−1
ε

|mσ
Jr
v −mσ

Jl
v|2

mσ
Jv

σ(J).

The last equality because by definition of sJ , σ(J)sJ = σ(Jr), σ(J)(1−sJ) =
σ(Jl). We can now iterate, to conclude that

σ(J)Qmσ
Jv ≥ C−1

ε

∑
I∈D(J)

|mσ
Irv −mσ

Il
v|2

mσ
I v

σ(I).

The last thing to notice is that

|〈v, hσI 〉σ|2 =
σ(Ir)σ(Il)

σ(I)
|mσ

Irv −mσ
Il
v|2 ≤ σ(I)|mσ

Irv −mσ
Il
v|2.

All together these imply that

1

σ(J)

∑
I∈D(J)

|〈v, hσI 〉σ|2
mσ
I v

≤ CεQm
σ
Jv,

which is exactly what we wanted to prove: a linear bound multiplied by a
positive constant C = Cε > 0 depending only on ε, the reciprocal of D(σ),
the dyadic doubling constant of σ.

All these will work provided we can construct the function B(u, v) with
the desired properties. �

Here is such a function (a small variation over the corresponding function
when dσ = dx that was provided by Nazarov in [23]),

(6.9) B(u, v) = Qv − Q

u
− ε

3
v ln(uv).

Let 0 < ε ≤ 1/2. Define the domain

Dε,Q =
{
(u, v) ∈ R

2
+ : 1 ≤ uv ≤ 3ε−1Q

}
.
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Lemma 11. The function B given by (6.9) is defined on Dε,Q, 0 ≤ B(u, v) ≤
Qv, for all (u, v) ∈ DQ, and satisfies the following differential inequality
in Dε,Q,

−d2B(u, v) ≥ 2ε

9

|dv|2
v

.

Furthermore these imply the convexity condition (6.8) on DQ with constant
Cε = 18

ε3
= 18D(w)3.

Proof. By definition (6.9) it is clear that

B(u, v) ≤ Qv.

The fact that B(u, v) ≥ 0 is nothing more than a calculus exercise, which
we now describe,

B(u, v) = Qv − Q

u
− ε

3
v ln(uv) = v

(
Q− Q

uv
− ε

3
ln uv

)
.

Suffices to show that the function f(x) = Q
(
1 − 1

x

) − ε
3
ln x is positive for

1 ≤ x < 3ε−1Q. One can check that in that range f ′(x) > 0, therefore f is
an increasing function, hence f(x) ≥ f(1) = 0, and we are done.

A direct computation of the Hessian of B for all (u, v) ∈ Dε,Q, shows
that,

−d2B − 2ε

9

|dv|2
v

=
(
du dv

)(
2Q
u3 − ε

3
v
u2

ε
3

1
u

ε
3

1
u

ε
3

1
v
− 2ε

9
1
v

) (
du
dv

)
≥ 0.

Hence

−d2B ≥ 2ε

9

|dv|2
v

,

as we wanted to show.
As for the convexity condition (6.8) on DQ, it is a calculus exercise to

check that
(6.10)

∆sB(u, v) = −
∫ 0

−1+s

(
s(1− s) + st

)
b′′(t)dt−

∫ s

0

(
s(1− s)− (1− s)t

)
b′′(t)dt,

where b(t) = B(u(t), v(t)), and

u(t) = (s− t)u+ + (t+ (1 − s))u−,

v(t) = (s− t)v+ + (t+ (1 − s))v−.

Notice that v(0) = v, v(−1+s) = v+, v(s) = v−, and dv = v−−v+; similarly
for u(t). Furthermore, if (u, v), (u±, v±) ∈ DQ, then

(
u(t), v(t)

) ∈ Dε,Q for
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all −1+s ≤ t ≤ s. The convexity of the lower boundary of the domain gives
the lower estimate 1 ≤ u(t)v(t). It is not hard to check that v± ≤ ε−1v,
similarly u± ≤ ε−1u (remember 0 < ε ≤ 1/2), therefore, v(t) ≤ ε−1v and
u(t) ≤ ε−1u, which in turn implies u(t)v(t) ≤ ε−2uv ≤ ε−2Q. however this is
not sufficient to be in the domain, doing more carefully the estimate we get
that u(t)v(t) ≤ 3ε−1Q. Here are the details: uv = s2u+v+ + (1− s)2u−v− +
s(1 − s)(u+v− + u−v+), thus,

(6.11) u+v− + u−v+ =
uv

s(1 − s)
− s

1 − s
u+v+ − 1 − s

s
u−v−.

Similarly, setting α = s− t, 0 ≤ α ≤ 1, and using (6.11), we get

u(t)v(t) = α2u+v+ + (1 − α)2u−v− + α(1 − α)(u+v− + u−v+)

=
α(−t)
1 − s

u+v+ +
(1 − α)t

s
u−v− +

α(1 − α)

s(1 − s)
uv.

Notice that the third summand is always positive and bounded above by
2ε−1Q (by hypothesis uv < Q and s(1 − s) > ε/2). The sign of the first
two summands is dictated by the sign of t, and one is always positive while
the other is negative. Dropping the negative term, and observing that the
positive term is always bounded byQ, we conclude that for all −1+s ≤ t ≤ s,
u(t)v(t) ≤ (2ε−1 + 1)Q ≤ 3ε−1Q, as claimed.

So we are entitled to integrate b′′(t) from t = −1 + s to t = s.
Finally notice that since u′′(t) = v′′(t) = 0 then

−b′′(t) = −d2B(u(t), v(t)) ≥ 2ε

9

|dv|2
v(t)

≥ 2ε2

9

|v+ − v−|2
v

> 0.

Therefore, if we now integrate according to (6.10) and use the lower
bound just found for −b′′(t), we obtain

∆sB(u, v) ≥ 2ε2

9

|v+ − v−|2
v

s(1 − s)

2

≥ ε3

18

|v+ − v−|2
v

.

In the second inequality s(1−s)
2

is nothing more than the area under the tri-
angle with base the interval [−1+s, s] and height s(1−s), which is bounded
from below by ε/2. �

This argument provides an operator bound for (T σv )1/2 of the order

D3/2(σ)[v]
1/2
A2(dσ). The square root dependence on the A2(dσ) characteristic

of v is optimal, one could try to verify whether the 3/2 power dependence on
the doubling constant of σ can be improved or not, but we will not pursue
this issue further in this paper.
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7. Sharpness of the bounds for Tw

F. Nazarov, in a personal communication [23], observed that one can ap-
proach the problem of the boundedness of Tw in L2(R) using a Bellman
function argument directly on the adjoint problem.

Lemma 12. Suppose there is a function B = B(x, y, w, v) defined on the
domain

D =
{
s = (x, y, w, v) ∈ R

4
+ : y2 ≤ xv, w2 ≤ v ≤ Q2w2

}
,

where Q > 1, such that, for some M > 0,

(i) 0 ≤ B(s) ≤ Mx for all s = (x, y, w, v) ∈ D.

(ii) Convexity: for all s0, s± ∈ D such that s0 = s++s−
2

, then

∆2B := B(s0) −
(
B(s+) +B(s−)

2

)
≥ c

(
∆y

w

)2

,

where ∆y = y+−y−
2

.

Then

‖(Tw)∗f‖2
L2(R) =

∑
I∈D

∣∣∣∣〈wf, hI〉mIw

∣∣∣∣2 ≤ c−1M‖f‖2
L2(R).

Proof. We can deduce boundedness of Tw in L2(R) from this lemma by
the same type of arguments we have presented in the previous sections.
Consider the function whose existence is claimed in Lemma 12. For I ∈ D,
f ∈ L2(R), w ∈ RHd

2 with RHd
2 -characteristic Q. Let sI = (xI , yI , wI , vI),

where xI = mI(f
2), yI = mI(fw), wI = mIw, and vI = mI(w

2), then

sI ∈ D. Denote sI+ = sIr , sI− = sIl , then sI± ∈ D and sI =
sI++sI−

2
. Fix

J ∈ D, iterating over the convexity condition (ii) we conclude that,

1

|J |
∑

I∈D(J)

∣∣∣∣〈wf, hI〉mIw

∣∣∣∣2 ≤ c−1MxJ = c−1M
1

|J |
∫
J

|f(x)|2 dx.

Cancel |J |, let J grow to [0,∞) and to (−∞, 0], and add the estimates
to obtain ∑

I∈D

∣∣∣∣〈wf, hI〉mIw

∣∣∣∣2 ≤ c−1M‖f‖2
L2(R).

�
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Note that if w is dyadic doubling, all we need is the convexity condi-
tion (ii) to hold for those triplets s0, s± in D such that s0 = s++s−

2
and such

that

(7.1) w ≤ ε−1 min {w+, w−}, for ε−1 = D(w).

When w ∈ RHd
2 and dyadic doubling, we can find B like in Lemma 12

with c−1M ∼ ε−2Q4 = D2(w)[w]4
RHd

2
, because we proved in Section 3 that

‖Twf‖2
L2(R) ≤ CD2(w)[w]4

RHd
2
‖f‖2

L2(R). If we can show that there is no Bell-

man function with c−1M growing slower than Q4 then this will show that
the quartic bound [w]4

RHd
2

is optimal. There are reasons to believe the dyadic

doubling constant of w should not be in the estimate, since the boundedness
of Tw requires only w ∈ RHd

2 and not the dyadic doubling condition, see [17].
However, all the arguments presented in this paper require at some point or
another the use of the doubling conditions.

To find a Bellman function one reduces the convexity condition (ii) to
an infinitesimal condition.

Lemma 13. If we can find a function B such that the range condition (i)
holds and the following infinitesimal condition holds,

(ii′) − d2B ≥ c′
(
dy

w

)2

,

on the larger domain

Dε =
{
s = (x, y, w, v) ∈ R

4
+ : y2 ≤ xv, w2 ≤ v ≤ ε−1Q2w2

}
.

Then convexity condition (ii) will hold for those triplets s0, s± in D, such
that s0 = s++s−

2
and such that w0 ≤ ε−1 min {w+, w−},

Proof of Lemma 13. The fact that the differential condition (ii′) holds
on the larger domain implies now that condition (ii) holds by the usual
integration argument. Parametrize the segment joining s+ and s− by

s0(t) =
1 − t

2
s+ +

1 + t

2
s−, for −1 ≤ t ≤ t,

note that s(1) = s+, s(−1) = s−, and s(0) = s0,
dy
dt

= ∆y = y+−y−
2

, similarly
for dw

dt
= ∆w, and w(t) = w0 + t∆w.

∆2B = −
∫ 1

−1

(1 − |t|)d2B(s(t)) dt ≥ c′
(

∆y

w0

)2 ∫ 1

−1

1 − |t|
(1 + t∆w

w0
)2
dt.
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The right-hand-side integral can be computed explicitly and is identical to

f
(

∆w
w0

)
, where f(x) = − ln(1−x2)

x2 . The function f(x) ≥ 1 for 0 < x < 1, and

by doubling x = ∆w
w0

is bounded away from 1, in fact, ∆w
w0

≤ 1 − ε/2. This
argument gives a constant c = c′ in (ii).

The larger domain will guarantee that if

s0, s± ∈ D and w0 ≤ ε−1 min {w+, w−}

then

s(t) =
1

2
[(1 + t)s+ + (1 − t)s−] ∈ Dε for all t ∈ [−1, 1].

Thus the integration argument just described can be carried away.
In the application the parameter 0 < ε ≤ 1/2 will be the reciprocal of

D(w). We will sketch the argument so that the appearance of the larger
domain and its dependence on ε become clear.

The non-convexity of the domain D is an issue only for the variables
v and w. We will concentrate on them, consider in the (w, v)-plane the
closed region D′ in the first quadrant trapped between the parabolas v = w2

and v = Q2w2. Without loss of generality, assume w+ < w−, and assume
that the points (w+, v+) and (w0, v0) are on the graph of the parabola v =
Q2w2, where w0 = w++w−

2
and v0 = v++v−

2
, and by hypothesis the point

(w−, v−) is inside D′. With these choices, the segment L− joining (w−, v−)
and (w0, v0) must be completely inside the region D′, and the segment L+

joining (w+, v+) and (w0, v0) must lie completely outside D′. Our job is to
find δ > 0 such that the segment L+ lies completely inside D′

δ, where D′
δ

is the region in the (w, v)-plane trapped between the parabolas v = w2 and
v = δ−1Q2w2. Notice that at the origin, all three parabolas have horizontal
tangent, so if we choose (w+, v+) arbitrarily close to the origin, independently
of (w0, v0) , then no δ will do the job. However, that scenario can be ruled out
if we take advantage of the additional constraint (7.1) imposed on w0, w±.
In fact, given 0 < w+, then w0 ≤ ε−1w+. With that information at hand,
we can now explicitly calculate and bound the slope m of the segment L+,

m =
Q2w2

0 −Q2w2
+

w0 − w+

= Q2(w0 + w+) ≤ (ε−1 + 1)Q2w+ ≤ 2ε−1Q2w+.

We can also calculate the slope mδ of the tangent line to the graph of v =
δ−1Q2w2, at the point (w+, δ

−1Q2w2
+), namely, mδ = 2δ−1Q2w+. If we now

choose δ = ε, we conclude that m ≤ mε, and this is sufficient to guarantee
that the segment L+ lies completely inside D′

ε (the reader is encouraged to
draw her own picture illustrating what we just described in words). Now
the integration argument can be carried out safely. �
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7.1. Reducing the number of variables

A nice trick that we learned from F. Nazarov [23], together with obvious
homogeneity considerations allows to restrict ourselves to functions of certain
type, more precisely,

Lemma 14. If B is a Bellman function satisfying the range and convexity
properties (i) and (ii) on D, then there is a function B̃ of the form

(7.2) B̃(x, y, w, v) = Mx − y2

v
ψ

(
w√
v

)
where ψ : [Q−1, 1] → R is a non-negative function, that is also a Bellman
function satisfying the same range and convexity properties (i) and (ii) on D
with the same constant M . Furthermore, the function ψ is bounded by M ,
namely

(7.3) M ≥ max
Q−1≤u≤1

ψ(u) ≥ 0 .

If we denote −y2

v
ψ

(
w√
v

)
by Ψ(y, w, v), then Ψ must satisfy the same con-

vexity condition as B and B̃ do, namely, for all s = (x, y, w, v), s± =
(x±, y±, w±, v±) ∈ D, such that s = s++s−

2
,

(7.4) ∆2Ψ(y, w, v) ≥
(

∆y

w

)2

,

where ∆y = y+−y−
2

, and

∆2Ψ(y, w, v) := Ψ(y, w, v)−
(

Ψ(y+, w+, v+) + Ψ(y−, w−, v−)

2

)
.

If we can locate a function ψ : [Q−1, 1] → R, such that 0 ≤ ψ ≤ M ,

and if Ψ(y, w, v) := −y2

v
ψ

(
w√
v

)
satisfies condition (7.4) in the appropriate

domain then the function B(x, y, w, v) = Mx+ Ψ(y, w, v) defined on D is a
Bellman function satisfying conditions (i) and (ii) with c = 1.

If the function ψ is twice differentiable, then we can replace the convexity
condition (7.4) by the following infinitesimal condition on the larger domain
[
√
εQ−1, 1]

(7.5) −d2Ψ(y, w, v) = d2

[
y2

v
ψ

(
w√
v

)]
≥ (dy)2

w2
.



Haar multipliers meet Bellman functions 833

Proof of Lemma 14. Let B be the true Bellman function for the problem.
Assume that M is a constant such that B(x, y, w, v) ≤ Mx. Since multipli-
cation of the function and the weight by a positive constant changes nothing
in the problem, the function B must obey the following homogeneity rule,

B(α2x, αβy, βw, β2v) = α2B(x, y, w, v), for all α, β > 0.

Notice that the domain remains invariant under the above scaling, that is,
(x, y, w, v) ∈ D if and only if (α2x, αβy, βw, β2v) ∈ D for all α, β > 0.

Now consider the function of 3 variables, defined for all triplets (y, w, v) ∈
R

3
+ such that there exists x > 0 such that (x, y, w, v) ∈ D,

Ψ(y, w, v) := sup
{x : (x,y,w,v)∈D}

[B(x, y, w, v)−Mx]

Note that Ψ(y, w, v) ≤ 0, and for any x such that (x, y, w, v) ∈ D, we have

Mx+ Ψ(y, w, v) ≥Mx +B(x, y, w, v)−Mx = B(x, y, w, v) ≥ 0.

Note also that for all α, β > 0,

Ψ(αβy, βw, β2v) = α2Ψ(y, w, v)

(this follows almost immediately from the corresponding property of B) and,

therefore, (using α =
√
v
y

, β = 1√
v
)

Ψ(y, w, v) =
y2

v
Ψ

(
1,

w√
v
, 1

)
= −y

2

v
ψ

(
w√
v

)
for some non-negative function ψ. So, if we could show that Ψ satisfies the
same finite difference inequality as B, then

B̃(x, y, w, v) := Mx + Ψ(y, w, v) = Mx − y2

v
ψ

(
w√
v

)
would be another Bellman type function yielding the same constant M as
the original Bellman function B. Consider any three triples in the domain
of definition of Ψ such that

(y, w, v) =
1

2
[(y−, w−, v−) + (y+, w+, v+)]

By definition of Ψ as a supremum, given δ > 0 we can always choose x±, so
that (x±, y±, w±, v±) are in the domain D and

Ψ(y±, w±, v±) ≤ (1 + δ) [B(x±, y±, w±, v±) −Mx±] .
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Since the function (y, v) �→ y2

v
is convex, the point x := 1

2
[x− + x+] satisfies

x ≥ y2

v
and, (x, y, w, v) ∈ D, therefore, by the definitions of Ψ, x, and the

dyadic convexity of B, for all δ > 0,

Ψ(y, w, v) ≥ B(x, y, w, v)−Mx

≥ (∆y)2

w2
+

1

2
[B(x−, y−, w−, v−) −Mx−]

+
1

2
[B(x+, y+, w+, v+) −Mx+]

≥ (∆y)2

w2
+

(1 + δ)−1

2
[Ψ(y−, w−, v−) + Ψ(y+, w+, v+)].

Let δ → 0, then

Ψ(y, w, v) ≥ (∆y)2

w2
+

1

2
[Ψ(y−, w−, v−) + Ψ(y+, w+, v+)].

So, indeed, Ψ satisfies the same convexity condition as B and we are done. �

7.2. Non-existence of certain Bellman function

To prove that the estimate obtained so far is sharp (in terms of its depen-
dence in Q), it is enough to show that there cannot exist a non-negative
function B(x, y, w, v) of the form (7.2) that is bounded from above by
o(Q4)x and such that it satisfies the convexity property (ii) in the domain
w2 ≤ v ≤ Q2w2, y2 ≤ xv. Thus, it is enough to show that condition (7.4) is
incompatible with 0 ≤ ψ ≤ o(Q4). We will show here that when ψ is twice
differentiable on [

√
εQ−1, 1], then the infinitesimal convexity condition (7.5)

on the larger domain is incompatible with 0 ≤ ψ ≤ o(Q4).

Lemma 15. There does not exist a function ψ ∈ C2([
√
εQ−1, 1] such that

0 ≤ ψ ≤ o(Q4) and (7.5) hold on [
√
εQ−1, 1].

Proof . We will first explicitely calculate the Hessian matrix of Ψ, and
reduce condition (7.5) to verifying the positive definiteness of a three by
three matrix parametrized by u ∈ [

√
εQ−1, 1], with entries depending on ψ,

ψ′ and ψ′′.
As F. Nazarov said: “A nice thing is that we have here only one variable

u = w√
v
. A bad thing is that we have a 3 × 3 rather than 2 × 2 matrix.

Fortunately, the matrix turns out to be fairly nice and easy to analyze though
the computations are somewhat boring.”
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Denoting y2

v
ψ

(
w√
v

)
by Ψ(y, w, v) (notice that in Ψ denoted −Ψ), we find

Ψy =
2y

v
ψ

Ψv = −y
2

v2
ψ − 1

2

y2w

v5/2
ψ′

Ψw =
y2

v3/2
ψ′

and, therefore

Ψyy = 2
v
ψ Ψvv = 2y2

v3
ψ + 7

4
y2w
v7/2ψ

′ + 1
4
y2w2

v4
ψ′′

Ψyv = −2y
v2
ψ − yw

v5/2ψ
′ Ψvw = −3

2
y2

v5/2ψ
′ − 1

2
y2w
v3
ψ′′

Ψyw = 2y
v3/2ψ

′ Ψww = y2

v2
ψ′′

Condition (7.5) means that the matrix⎛⎜⎝
2
v
ψ − 1

w2 −2y
v2
ψ − yw

v5/2ψ
′ 2y

v3/2ψ
′

−2y
v2
ψ − yw

v5/2ψ
′ 2y2

v3
ψ + 7

4
y2w
v7/2ψ

′ + 1
4
y2w2

v4
ψ′′ −3

2
y2

v5/2ψ
′ − 1

2
y2w
v3
ψ′′

2y
v3/2ψ

′ −3
2
y2

v5/2ψ
′ − 1

2
y2w
v3
ψ′′ y2

v2
ψ′′

⎞⎟⎠
must be non-negative definite in the domain.

Multiplying the first row and column by w, the second row and column
by v3/2

y
and the third row and column by v

y
, we get the matrix in the variable

u, where u2 = w2/v.⎛⎝ 2u2ψ − 1 −2uψ − u2ψ′ 2uψ′

−2uψ − u2ψ′ 2ψ + 7
4
uψ′ + 1

4
u2ψ′′ −3

2
ψ′ − 1

2
uψ′′

2uψ′ −3
2
ψ′ − 1

2
uψ′′ ψ′′

⎞⎠
Now add u/2 times the third row to the second row and then u/2 times the
third column to the second column. We get the matrix⎛⎝2u2ψ − 1 −2uψ 2uψ′

−2uψ 2ψ + 1
4
uψ′ −3

2
ψ′

2uψ′ −3
2
ψ′ ψ′′

⎞⎠
Now add u times the second row to the first row and then u times the second
column to the first column. We obtain the matrix

(7.6) A(u) =

⎛⎝1
4
u3ψ′ − 1 1

4
u2ψ′ 1

2
uψ′

1
4
u2ψ′ 2ψ + 1

4
uψ′ −3

2
ψ′

1
2
uψ′ −3

2
ψ′ ψ′′

⎞⎠
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At this point to verify that a function B̃ given by (7.2) is a Bellman
function for the problem all we need to do is verify that the given function
ψ(u) ∈ C2([

√
εQ−1, 1]), 0 ≤ maxQ−1≤u≤1 ψ(u) ≤ M , and the matrix A(u)

is positive definite for each u in [
√
εQ−1, 1]. This is equivalent to verifying

that detA(u) ≥ 0, and the 2 × 2 submatrix

A1(u) =

(
1
4
u3ψ′ − 1 1

2
uψ′

1
2
uψ′ ψ′′

)

must be itself positive definite for all
√
εQ−1 ≤ u ≤ 1. The matrix A1 is

positive definite if and only if ψ′′(u) ≥ 0 and detA1 = ψ′′ (1
4
u3ψ′ − 1

) −
1
4
u2(ψ′)2 ≥ 0.

To show that there is no twice differentiable function ψ such that 0 ≤
ψ ≤ o(Q4), and the above matrix A is positive definite, we will proceed by
contrapositive. If such function ψ existed, then the 2 × 2 submatrix A1 of
A must be itself positive definite for all

√
εQ−1 ≤ u ≤ 1. Looking at A1

we see that we must have ψ′′ > 0, moreover, ψ′(u) ≥ 4u−3, and (from the
determinant condition)

(7.7) uψ′′(u) > ψ′(u).

Note that since ψ′′(u) > 0 implies that ψ′ is increasing, a lower bound for ψ′

must be attained at u =
√
εQ−1, therefore ψ′(u) ≥ ψ′(

√
εQ−1) ≥ 4ε−3/2Q3.

Furthermore the differential inequality (7.7) can be rewritten as
(
ψ′(u)
u

)′
> 0,

which implies that the function ψ′(u)
u

is increasing and it attains its lower
bound at u =

√
εQ−1, hence ψ′(u) ≥ 4ε−2Q4u on [

√
εQ−1, 1]. From here we

can see that ψ itself must be of order at least Q4 for large Q and we are
done. More precisely, integrating the inequality from

√
εQ−1 to 1, and using

the fundamental theorem of calculus, we get

ψ(u) ≥ ψ(u) − ψ(
√
εQ−1) ≥ 2ε−2Q4(u2 − εQ−2).

That is, ψ(u)
ε−2Q4 ≥ 2u2 − 2εQ−2, and letting now Q → ∞ we reach a contra-

diction that 2u2 ≤ 0 since we assumed ψ(u) = o(Q4). �

This trick is used to show that, though the function 4
(
x − y2

1+M

)
is not

the true Bellman function for the Carleson embedding theorem, the constant
it yields is the best possible [26]. The method of reducing the number of
variables for the Bellman function is Burkholder’s idea from his paper [6],
as it is clearly stated in [26].
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8. Concluding Remarks

One can deduce Lp(w) results for the square function Sd by “sharp extra-
polation” techniques as described in [12]. For 1 ≤ p < 2 the operator norm

is of the order [w]
1/(p−1)
Ap

and this is optimal [12, Sec 4.1]. However for p > 2
the linear results obtained by extrapolation in [12] are not optimal. Sharper
results have been obtained by Lerner [18, 19]. The optimal rate of growth
for Sd on Lp(w), p > 2 with respect to [w]Ap characteristic is not known yet.
We expect similar bound for Sσ on Lp(vdσ) extrapolated form the L2(vdσ)
norms obtained in this paper. This will be discussed in a future paper.

Theorems 4, 5, 6 and 7, are optimal in the sense that we will not find
a better bound that will work for ALL positive doubling measures σ, and
weights v ∈ Ad2(dσ), because it will mean that it will work for the particular
case dσ = dx, v = w, for which we have shown no better bound exists.

Lemma 9 (σ-Sawyer’s Estimate) was proved using a Bellman function
argument. The Bellman function that worked for Lemma 3 (a Sawyer’s
Estimate in the case dσ = wdx and v = w−1) worked as well for Lemma 9
in a slightly larger domain. Similarly in the proof of the Weight Lemma 10
the Bellman function needed was the same that worked for the lemma in
the case dσ = dx, which was known to exist because the lemma was known
to hold in that case. In both cases, once we had a Bellman function for one
case, we could use it for the other, provided we could define it on a slightly
larger domain (deformation of the domain or the function dictated by the
doubling constant of σ).

The question now is, how far can the following principle be pushed: Given
any theorem for the Lebesgue measure dx that allows for a Bellman function
proof “in principle” (that is regardless of the proof having been obtained
by Bellman functions or completely different methods, the fact that the
theorem is true guarantees the existence of a Bellman function with certain
properties: even if we do not have an explicit formula for such function, we
know it exists) then the proof should be generalizable, in a way similar to
how we have done it here for some particular examples, to the case of the
doubling measure dσ.
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