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Universal Taylor series
with maximal cluster sets

L. Bernal-González, A. Bonilla, M. C. Calderón-Moreno
and J.A. Prado-Bassas

Abstract
We link the overconvergence properties of certain Taylor series in

the unit disk to the maximality of their cluster sets, so connecting
outer wild behavior to inner wild behavior. Specifically, it is proved
the existence of a dense linear manifold of holomorphic functions in
the disk that are, except for zero, universal Taylor series in the sense
of Nestoridis and, simultaneously, have maximal cluster sets along
many curves tending to the boundary. Moreover, it is constructed
a dense linear manifold of universal Taylor series having, for each
boundary point, limit zero along some path which is tangent to the
corresponding radius. Finally, it is proved the existence of a closed
infinite dimensional manifold of holomorphic functions enjoying the
two-fold wild behavior specified at the beginning.

1. Introduction and notation

In 1996, Nestoridis [46] introduced the following notion, that is a sort of
“functional” overconvergence of power series in a disk of the complex plane C.

A holomorphic function f ∈ H(D) is called a universal Taylor series if,
for every compact set K ∈ M(C \ D) and every function h ∈ A(K), there
exists a sequence (λn) ⊂ N0 such that

s(λn, f) −→ h (n→ ∞) uniformly on K.

The sequence (λn) can be chosen so that λ1 < λ2 < · · · . We have used the
following notation: N0 = N ∪ {0}, where N is the set of positive integers, D

is the open unit disk
{
z ∈ C : |z| < 1

}
,H(G) is the space of all holomorphic
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functions in a domain (:= nonempty connected open subset of C) G, M(A)
is the family of all compact subsets K ⊂ A such that C \ K is connected
(A ⊂ C), A(K) is the space of all continuous functions h : K → C that

are holomorphic in the interior K0 of K, and s(n, f)(z) :=
∑n

k=0
f(k)(0)
k!

zk,
the nth partial sum of the Taylor expansion of f around the origin. It is
known that H(G) is a Fréchet space (:= complete locally convex metriz-
able topological vector space) under the topology of uniform convergence on
compacta in G (so H(G) is a Baire space), while A(K) is a Banach space
when endowed with the maximum norm.

In [46] it is proved that the class U(D) of universal Taylor series is re-
sidual in H(D), hence nonempty. Hence we can say that, in a topological
sense, “most” functions inH(D) possess an extremely wild “outer” boundary
behavior, if we consider the overconvergence phenomenon.

It should be observed that Nestoridis’ notion is stronger than the one
introduced in the seventies by Luh [39] and Chui and Parnes [26], where
the compact sets K were only allowed to belong to M(C \ D), A denoting
the closure of a subset A ⊂ C. Since Nestoridis’ result, much effort has
been done in the research of the universal Taylor series. Some of the related
statements are mentioned along this paper; for others, see e.g. [2] and the
references contained in it.

Now, let us adopt for a moment a different point of view, namely, that
of the “inner” boundary behavior. Let G be a domain, f ∈ H(G) and
γ : [0, 1) → C be a curve in G tending to the boundary ∂G (that is, γ
is continuous, γ

(
[0, 1)

) ⊂ G and, given a compact set K ⊂ G, there is
t0 ∈ (0, 1) such that γ

(
(t0, 1)

) ∩ K = ∅; by abuse of notation, we will
sometimes identify γ with its image γ

(
[0, 1)

)
), then the cluster set of f

along γ is defined as

Cγ(f)={w∈C∞ : there exists {tn}∞1 ⊂ [0, 1) with tn→1 and f(γ(tn)) → w},
where C∞ denotes the extended complex plane C∪{∞} (see [25] and [47] for
an account of results about cluster sets). A cluster set is said to be maximal
whenever it equals C∞. In 1933, Kierst and Szpilrajn [36] proved that there
is a residual subset of functions in H(D) having maximal cluster set at each
point of T := ∂D. Even more, in [36, Section 4] it is stated that there is a
residual subset of functions in H(D) having maximal cluster set along every
curve γ ∈ Γ0(D). We have denoted, for every domain G,

Γ0(G) := {curves γ ⊂ G tending to the boundary such that there is a

connected set A = A(γ) ⊂ G with A ∩ ∂G �= ∅ = A ∩ γ}.
(In [36] the set A was a segment, but the proof would be the same for
our more general family; note also that the class Γ0(G) contains strictly
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the class Γ(G) of curves γ ⊂ G tending to the boundary with non-total
oscillation, that is, such that (∂G) \ γ �= ∅; the class Γ(G) is considered
in [12] and [14], and a glance at the proofs reveals that the results in these
two papers hold for Γ0(G) instead of Γ(G).) (See also [15, Theorem 2.1] for
an extension of the Kierst–Szpilrajn statement where certain holomorphic
operators participate.) Since the intersection of two residual subsets is also
residual, we can assert, as a consequence of the results by Kierst–Szpilrajn
and Nestoridis, that “most” functions in H(D) exhibit, simultaneously, an
extremely wild “inner” and “outer” boundary behavior; in other words, this
two-fold property is “topologically generic”.

In order to put our research into an appropriate setting, we recall some
concepts, which have been matter of intensive study in the recent years by
several mathematicians. If A is a subset of a topological vector space X,
then A is called lineable (dense-lineable, spaceable, resp.) provided that
there exists an infinite-dimensional (a dense, an infinite-dimensional closed,
resp.) linear submanifold M ⊂ X such that M \ {0} ⊂ A. Following [6],
a property on X is said to be algebraically generic if the set A of vectors
in X satisfying such property is dense-lineable. Lineability has been widely
studied in [4], [5], [1], [30], [29] and [33], among others. The matter has
interest whenever A is not a linear space. For instance, the existence of
dense linear manifolds of hypercyclic vectors (i.e. vectors with dense orbits)
for general operators was solved in [22] for the complex case, and in [18] for
the real case.

Obviously, neither the set U(D) nor the set

MCS(Γ0(D)) := {f ∈ H(D) : Cγ(f) = C∞ for all γ ∈ Γ0(D)}
are linear spaces. But, according to the terminology of the last paragraph,
one could wonder if the property of wild inner-outer boundary behavior
mentioned before is algebraically generic in H(D). If we consider each pro-
perty independently of the other, the answer is “yes”. To be more precise,
in [14, Theorem 2.1] it is proved that there is a dense linear submanifold
D in H(D) with D \ {0} ⊂ MCS(Γ0(D)); and according to [6, Remark (3)
on page 176], the hypercyclicity methods developed in [6] lead to a similar
conclusion for U(D). But this does not imply that both sets share such a
common submanifold D. Nevertheless, we will prove that the answer is also
affirmative: Belonging to U(D) ∩MCS(Γ0(D)) is an algebraically generic
property. In fact, this statement will be formulated in a much more general
way (see Theorem 3.1), involving sequences of holomorphic operators and
infinite matrices with adequate properties.

Observe that our result complements one due to Melas and Nestoridis [42]
asserting that, for every f ∈ U(D) and every boundary point ζ ∈ T, the
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limit limz→ζ, z∈D f(z) does not exist in the complex plane. It follows that T

is a natural boundary for every universal Taylor series, which provides an
affirmative answer to a conjecture of J.-P. Kahane [35]. In the same line of
“bad” behavior, Armitage, Costakis and Bayart have recently proved (see
[2, Theorem 1.1] and [8, Theorem 3.2]) that if f ∈ U(D) then there exists a
residual subset M of T, such that the set

{f (n)(rζ) : 0 < r < 1}
is unbounded for every ζ ∈ M and every n ∈ N0. We improve this state-
ment (see Theorem 4.1) by replacing the derivatives by linear differential
operators.

In the opposite direction, Costakis and Armitage (see [27] and [2]) have
also showed that, given a subset E ⊂ T of first category in T, there ex-
ist universal Taylor series with radial limit at every point of E. We will
also complement this result by constructing a dense linear manifold of uni-
versal Taylor series having, for each boundary point, limit zero along some
path which is tangent to the radius joining the origin with the point, see
Theorem 4.2.

Finally, we deal with the other mentioned kind of large algebraic struc-
ture: the spaceability. Probably, the starting point of spaceability was the
result of Read [50] about the existence of hypercyclic operators on l1 such
that every non-null vector has a dense orbit. A systematic study of the
existence of closed infinite dimensional subspaces with some universal be-
havior was initiated by Montes and the first author in [17]. A very general
sufficient condition was obtained in [43]. This was refined in [38], and an
optimal result in the context of Banach spaces was obtained in [31]. Us-
ing different techniques based on the study of spaces of operators with the
strong operator topology, Chan [23] obtained in an easy way the original re-
sult of [43] for Hilbert spaces. This was latter generalized to Banach spaces
in [24], [44] and [41]. Extensions to the context of Fréchet spaces can be
found in [20], [11], [49] and [3]. Concerning our research in this paper, Ba-
yart [7, Theorem 2] was able to prove the spaceability of U(D) in H(D). We
complete his result as well as our Theorem 3.1 by proving the spaceability
of U(D) ∩MCS(Γ0(D)) in H(D) (see Theorem 5.2).

2. Further terminology and preliminary results

Firstly, let us recall a dynamic concept (see [32] and [37] for excellent
surveys). Assume that Ln : X → Y (n ∈ N) is a sequence of continuous
mappings between two topological spaces X, Y . Then the sequence (Ln)
is called universal provided that there exists an element x0 ∈ X –called
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universal for (Ln)– whose orbit
{
Lnx0 : n ∈ N

}
under (Ln) is dense in Y . If

the set U(
(Ln)

)
of universal elements for (Ln) is not only nonempty but also

dense in X, then (Ln) is called densely universal. If X is a Baire space and
Y is second-countable, then (Ln) is densely universal if and only if U((Ln))
is residual. The word “universal” is usually replaced by “hypercyclic” when
X, Y are topological vector spaces and the mappings Ln are linear.

Let A = [αnν ]
∞
n,ν=0 be an infinite matrix with complex entries. In order

to save some notation, we introduce the following definition. We say that A
is a C-matrix if it satisfies the next three conditions:

(i) For all n ∈ N0, limν→∞ |αnν|1/ν = 0.

(ii) For all ν ∈ N0, limn→∞ αnν = 0.

(iii) The limit limn→∞
∑∞

ν=0 αnν exists and is finite and non-zero.

Note that, due to (i), we have that each series
∑∞

ν=0 αnν (n ∈ N0) occur-
ring in (iii) converges. In fact (i) tells us that each row of A is the sequence
of the Taylor coefficients (at the origin) of some entire function Φn, while
(iii) tells us that there exists limn→∞ Φn(1) ∈ C \ {0}.

Assume that A is a C-matrix and that f ∈ H(D). According to [13,
Lemma 2.3] (with R0 = +∞), the sequence

σA(n, f)(z) :=
∞∑
ν=0

αnνs(ν, f)(z)

of A-transforms of f is well defined on
{|z| ≥ 1

}
and, in fact, σA(n, f) ∈

A(K) for each compact set K ⊂ {|z| ≥ 1
}
. We say that a function f ∈ H(D)

is A-universal if, for every compact set K ∈ M(C \ D) and every function
h ∈ A(K), there exists a sequence (λn) ⊂ N0 such that

σA(λn, f) −→ h (n→ ∞) uniformly on K.

Therefore f ∈ U(D) is the same as f is I-universal, I being the (infinite)
identity matrix. The study of the universal behavior of matrix transforms
of holomorphic functions has been dealt with by several authors (see for
instance [32, Sect. 4e] and [42]).

The following auxiliary result can be found in [13, Theorem 2.2 and Final
Remark 4.(5)] (take R0 = +∞ there).

Theorem 2.1. Let A be a C-matrix and {m(1) < m(2) < m(3) < · · · } ⊂ N.
Let us denote by U

(
D,A, (m(n))

)
the set of functions f ∈ H(D) such that,

for every compact set K ∈ M(C \ D) and every function h ∈ A(K), there
exists a sequence (λn) ⊂ N0 satisfying

σA(m(λn), f) −→ h (n→ ∞) uniformly on K.

Then U
(
D,A, (m(n))

)
is residual in H(D).
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Note that U
(
D,A, (n)

)
is the set of A-universal functions. Hence, in

particular, this set is residual (so dense) if A is a C-matrix. Note also that
U

(
D, I, (n)

)
= U(D).

We now reproduce a useful statement about “induced universality” due
to Herzog [34]. Recall that a metric space (X, d) is said to be a Polish
space if it is separable and complete (so it is Baire and second-countable).
Moreover, by Alexandroff’s theorem (see [48, pp. 47–48]), a subset A of
a complete metric space is completely metrizable if and only if A is a Gδ

subset.

Theorem 2.2. Assume that (X, dX) is a Polish space and (Y, dY ) is a sepa-
rable metric space. Assume also that {Ak}∞k=1 is a sequence of open subsets
of X such that A :=

⋂∞
k=1Ak is nonempty. Let Ln : X → Y (n ∈ N) be a

densely universal sequence of mappings. If

lim
k→∞

sup
n∈N

inf
z∈A

{
dX(ak, z) + dY (Lnak, Lnz)

}
= 0

for every sequence {ak}∞k=1 with ak ∈ Ak (k ∈ N), then the sequence of res-
trictions Ln|A : A → Y (n ∈ N) is also densely universal. Hence U(

(Ln|A)
)

is residual in A.

Next, we present a concept that was introduced by the authors in [12].
If G ⊂ C is a domain, then we say that an operator (= linear continuous
self-map) T : H(G) → H(G) is internally controlled if given any ε > 0 and a
pair of compact sets F, L ⊂ G with F ⊂ L0, there exists δ = δ(ε, F, L) > 0
such that [

f ∈ H(G) and ‖f‖L < δ
]

implies ‖Tf‖F < ε.

We have denoted by ‖g‖A the quantity supz∈A |g(z)|, for any function g :
A→ C.

For instance, let D : f ∈ H(G) �→ f ′ ∈ H(G) be the derivative operator,
and assume that Φ(z) :=

∑∞
n=0 anz

n is an entire function of subexponential
type, that is, given ε > 0 there is a constant A ∈ (0,+∞) such that |Φ(z)| ≤
A exp(ε|z|) for all z ∈ C. Then its associated (in general, infinite order)
differential operator

Φ(D) =
∞∑
n=0

anD
n : H(G) → H(G)

defined as Φ(D)f=
∑∞

n=0anf
(n) is internally controlled onH(G). To see this it

is enough to apply the Cauchy integral formula for derivatives together with
the fact that Φ is of subexponential type if and only if limn→∞(n|an|1/n)= 0
(see for instance [21]).
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As for a negative example, it is not difficult to prove by using Runge’s
approximation theorem (see [28]) that if ϕ : G→ G is any analytic self-map
which is not the identity, then the corresponding composition operator

Cϕ : f ∈ H(G) �→ f ◦ ϕ ∈ H(G)

is not internally controlled.
Finally, another property to be imposed in Section 3 on an operator T

on H(D) will be that ranT (:= T (H(D))) contains the constant functions.
Of course, this is equivalent to 1 ∈ ranT . For instance, every non-zero
differential operator Φ(D) as above satisfies this condition. The operator
f �→ I · f , where I(z) := z, does not satisfy it.

3. Dense linear manifolds of wild functions

We are now ready to state our main result.

Theorem 3.1. Let A be a C-matrix and Tn : H(D) → H(D) (n ∈ N) be a
sequence of operators satisfying the following conditions:

(a) Each Tn is internally controlled.

(b) For each n ∈ N, ranTn contains the constants.

Then there exists a dense linear manifold D in H(D) satisfying the fol-
lowing properties:

(A) For every function f ∈ D \ {0} and every n ∈ N, we have that Tnf ∈
MCS(Γ0(D)).

(B) Every function f ∈ D \ {0} is an A-universal Taylor series.

Proof . We start by choosing a number of families of sets or functions. We
select a dense sequence (qk)k≥1 in C, as well as a dense sequence (Pk)k≥1 in
H(D); for instance, (qk)k≥1 and (Pk)k≥1 may be, respectively, an enumer-
ation of the set Q + iQ of complex rational numbers and an enumeration
of polynomials whose coefficients have real and imaginary parts in Q + iQ.
By (Kk)k≥1 we denote a sequence of compact sets belonging to M(C \ D)
such that every K ∈ M(C \ D) is contained in some Kk depending on K
(see [46]). Fix any pair of sequences (rj), (sj) with 0 < r1 < s1 < r2 < s2 <
· · · < rj < sj < · · · → 1, and consider the spiral-like compact sets

Sj =

{(
rj +

(sj − rj)θ

4π

)
exp(iθ) : θ ∈ [0, 4π]

} (
j ∈ N

)
.



764 L. Bernal, A. Bonilla, M.C. Calderón and J.A. Prado

Observe that the sets Sj are contained in D and are pairwise disjoint. Due
to this, one can find αj > 0 (j ≥ 1) such that the sets

S̃j :=
{
z ∈ C : there exists w ∈ Sj with |z − w| ≤ αj

}
are still compact, contained in D and pairwise disjoint. Note also that
Sj ⊂ S̃0

j .

Let us denote by B(a, r) the closed ball
{
z : |z−a| ≤ r

}
with center a and

radius r > 0. For each k, we set J(k) := min
{
j ∈ N : rj − αj > k/(k + 1)

}(
so S̃j ∩ B(0, k/(k + 1)) = ∅ if and only if j ≥ J(k)

)
and

Fk := B

(
0,

k

k + 1

)
∪

∞⋃
j=J(k)

S̃j.

Choose also countably many disjoint strictly increasing sequences of
positive integers

(
p(n, k, j)

)
j≥1

(n, k ∈ N) whose union is N; note that

p(n, k, j) ≥ j for all n, k, j. By the hypothesis on the range, for each n ∈ N

there exists a function hn ∈ H(D) with

Tnhn = 1. (1)

Moreover, by the hypothesis on the internal control, one can find, for every
n ∈ N, every j ∈ N and ε > 0, a number δ = δ(ε, n, j) > 0 such that[

f ∈ H(D) and ‖f‖
�Sj
< δ

]
=⇒ ‖Tnf‖Sj

< ε. (2)

In order to save some notation, we set N2
k :=

{
(n, l) ∈ N2 : p(n, k, l) ≥ J(k)

}
and N3

k :=
{
(n, k′, l) ∈ N3 : k′ �= k and p(n, k′, l) ≥ J(k)

}
(k ∈ N). With all

this in mind, we define, for each k ∈ N, the set

Bk :=

{
f ∈ H(D) :‖f − Pk‖B(0, k

k+1
) < 1/k,

‖f − qlhn‖�Sp(n,k,l)
< δ

(
1

l
, n, p(n, k, l)

)
for all (n, l)∈N2

k ,

and ‖f‖
�Sp(n,k′,l)

< δ

(
1

l
, n, p(n, k′, l)

)
for all (n, k′, l) ∈ N3

k

}
.

Fix k ∈ N. The set Bk is, evidently, a countable intersection of open
subsets of H(D), so a Gδ subset. What is less evident is that Bk �= ∅.
Nevertheless, this is true by the Nersesjan tangential approximation theo-
rem (see [45] and [28]). Indeed, if we denote by Dω the one-point (=: ω)
compactification of D, then we have:

• Fk is a closed proper subset of D.

• Dω \ Fk is connected, because neither B(0, k/(k+ 1)) nor the spirals have
“holes”.
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• Dω \ Fk is locally connected at ω, because two points near ∞ can be

connected by an arc that is close to ω and that does not intersect any S̃j .

• Fk does not possess “large islands” near ∞, that is, for every compact
set K ⊂ D there is a neighborhood W of ω in Dω such that no component
of F 0

k intersects both K and W . This is so because the components of Fk
are compact and go towards T.

Furthermore, the function gk : Fk → C defined as

gk(z) =

⎧⎨
⎩

Pk(z) if z ∈ B
(
0, k

k+1

)
qlhn(z) if z ∈ S̃p(n,k,l) and (n, l) ∈ N2

k

0 if z ∈ S̃p(n,k′,l) and (n, k′, l) ∈ N3
k

satisfies gk ∈ A(Fk), and the function εk : Fk → (0,+∞) given by

εk(z) =

⎧⎨
⎩

1
k

if z ∈ B
(
0, k

k+1

)
δ
(

1
l
, n, p(n, k, l)

)
if z ∈ S̃p(n,k,l) and (n, l) ∈ N2

k

δ
(

1
l
, n, p(n, k′, l)

)
if z ∈ S̃p(n,k′,l) and (n, k′, l) ∈ N3

k

is continuous. Hence, by Nersesjan’s theorem, the set
{
f ∈ H(D) : |f(z) −

gk(z)| < εk(z) for all z ∈ Fk
}

is nonempty. But this set equals our Bk.
Thus, Bk is a nonempty Gδ subset of H(D).

Incidentally, we note that thanks to (1) and (2) one obtains

∣∣(Tnf)(z) − ql
∣∣ < 1

l
for all z ∈ Sp(n,k,l) and all (n, l) ∈ N2

k (3)

and ∣∣(Tnf)(z)
∣∣ < 1

l
for all z ∈ Sp(n,k′,l) and all (n, k′, l) ∈ N3

k . (4)

Recall that k has already been fixed. Our next task is to prove the
following claim: For every strictly increasing sequence (m(n)) ⊂ N and
every K ∈ M(C \ D), the set Bk ∩ U(D,A, (m(n)), K) residual in Bk. We
have denoted by U(D,A, (m(n)), K) the same family of functions described
in Theorem 2.1, with the sole exception that the approximation property
is restricted to K. Thus U(D,A, (m(n))) =

⋂
K∈M(C\D) U(D,A, (m(n)), K).

We proceed similarly to the proof of Theorem 1.2 in [27]. By using the
exhaustion property of (Kk)k≥1 together with the Mergelyan approximation
theorem (see [28]), we derive that

U
(
D,A, (m(n))

)
=

∞⋂
k=1

U
(
D,A, (m(n)), Kk

)
.
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Consequently, if we were able to prove the property stated at the beginning
of this paragraph, then we would arrive at this conclusion:

Each set Bk ∩ U(D,A, (m(n))) is residual in Bk. (5)

Let us fix a sequence (m(n)) and a compact set K as above. It is possible
to select a sequence (tj) of numbers such that

k

k + 1
< tj ↑ 1 and {|z| = tj} ∩ S̃l = ∅ for all j, l ∈ N.

The space X := H(D) is a Polish space under the distance

dX(f, g) :=
∞∑
j=1

‖f − g‖B(0,tj)

1 + ‖f − g‖B(0,tj)

,

which induces the topology of locally uniform convergence, while the dis-
tance dY (f, g) := ‖f − g‖K derived from the supremum norm makes the
space Y := A(K) a metric space. This space is also separable by, for ins-
tance, Mergelyan’s theorem. On the other hand, we have that

Bk ∩ U(D,A, (m(n)), K) = U(Ln|A),

where A := Bk and (Ln) is the sequence of continuous linear mappings
given by

Ln : f ∈ H(D) �→ σA(m(n), f) ∈ A(K).

Moreover, A can be written as A =
⋂∞
j=1Aj , where

Aj :=
{
f ∈ H(D) : |f(z) − gk(z)| < εk(z) for all z ∈ Fk ∩B(0, tj)

}
.

Now, fix j ∈ N and f ∈ Aj . We are going to show the existence of a
sequence (ϕl)l≥1 ⊂ Bk such that

lim
l→∞

‖f − ϕl‖B(0,tj)
= 0. (6)

For this, it is enough to fix an ε > 0 and to find a function ϕ ∈ Bk with
|f(z) − ϕ(z)| < ε for all z ∈ B(0, tj). It is clear that, along with Fk, the
relative closed subset Fk∪B(0, tj) also fulfils the above four topological prop-
erties in order to apply Nersesjan’s theorem. By the choice of the radii tj ,
the sets B(0, tj) and Fk \ B(0, tj) can be separated by open sets, so the
functions Φ : Fk ∪ B(0, tj) → C and ε∗ : Fk ∪ B(0, tj) → (0,+∞) given
respectively by

Φ(z) =

{
gk(z) if z ∈ Fk \B(0, tj)
f(z) if z ∈ B(0, tj)
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and

ε∗(z) =

{
εk(z) if z ∈ Fk \B(0, tj)
min

{
ε,minw∈Fk∩B(0,tj)

{εk(w) − |f(w) − gk(w)|}} if z ∈ B(0, tj)

are well defined and continuous. In addition, Φ ∈ A(Fk ∪ B(0, tj)). Then
there is a function ϕ ∈ H(D) such that |Φ(z) − ϕ(z)| < ε∗(z) for all z ∈
Fk ∪ B(0, tj). This function ϕ solves our problem, so (6) is true.

Since K is bounded, there is R0 ∈ (1,+∞) for which K ⊂ B(0, R0).
From the Cauchy inequalities, we get∣∣∣∣∣f

(ν)(0) − ϕ
(ν)
l (0)

ν!

∣∣∣∣∣ ≤ ‖f − ϕl‖B(0,1/2)

(1/2)ν
(7)

for every ν ≥ 0. By using (7), we now estimate

dY (Lnf, Lnϕl) = sup
z∈K

|σA(m(n), f)(z) − σA(m(n), ϕl)(z)|

= sup
z∈K

∣∣∣∣∣
∞∑
ν=0

αm(n)νs(ν, f)(z) −
∞∑
ν=0

αm(n)νs(ν, ϕl)(z)

∣∣∣∣∣
= sup

z∈K

∣∣∣∣∣
∞∑
ν=0

αm(n)νs(ν, f − ϕl)(z)

∣∣∣∣∣
= sup

z∈K

∣∣∣∣∣
∞∑
ν=0

αm(n)ν

ν∑
i=0

f (i)(0) − ϕ(i)(0)

i!
zi

∣∣∣∣∣
≤ ‖f − ϕl‖B(0,1/2)

∞∑
ν=0

|αm(n)ν | (ν + 1) (2R0)
ν .

The last series converges because limν→∞ |αnν | 1
ν = 0 for all n ∈ N. Hence

we obtain
lim
l→∞

dY (Lnf, Lnϕl) = 0 (8)

for every n ∈ N.
From (6), (8) and the definitions of dX , dY , we derive, exactly as in the

proof of Theorem 1.2 in [27], that

lim
j→∞

sup
n∈N

inf
h∈A

{
dX(fj , h) + dY (Lnfj , Lnh)

}
= 0

for every sequence (fj) with fj ∈ Aj for all j ∈ N. According to Theorem 2.1,
the sequence (Ln) is densely universal. Thus, by Theorem 2.2, we deduce
the residuality of U(Ln|A) in A. Hence, we have proved our claim and,
consequently, we have (5) at our disposal.
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Thanks to (5) we can pick a function f1 ∈ B1 ∩U(D,A, (n)). Therefore,

we may select for each k ∈ N an strictly increasing sequence (n
(1,k)
j )j≥1 ⊂ N

such that

σA
(
(n

(1,k)
j ), f1

) −→ 0 (j → ∞) uniformly on Kk.

For convenience of notation, we set n
(0,k)
j := j for all j, k. Due to (5) and

the fact that a countable intersection of residual subsets is still residual, we
may choose a function f2 ∈ B2∩

⋂∞
k=1 U

(
D,A, (n(1,k)

j ), Kk

)
. As before, there

exists for each k ∈ N an strictly increasing sequence (n
(2,k)
j )j≥1 ⊂ (n

(1,k)
j )j≥1

such that, for every k,

σA
(
(n

(2,k)
j ), f2

) −→ 0 (j → ∞) uniformly on Kk.

Observe that, for each k,

σA
(
(n

(2,k)
j ), f1

) −→ 0 (j → ∞) uniformly on Kk.

By induction, we can select a sequence (fN) of functions as well as a coun-

tably many sequences (n
(N,k)
j )j≥1 (N, k ∈ N) satisfying

fN ∈ BN ∩
∞⋂
k=1

U
(
D,A, (n(N−1,k)

j ), Kk

)
(N ∈ N)

and, for every k ∈ N,

σA
(
(n

(N,k)
j ), fl

) −→ 0 (j → ∞) uniformly on Kk (l = 1, . . . , N).

Let us define
D := span

{
fN : N ∈ N

}
.

Then D is, trivially, a linear submanifold ofH(D). Moreover, since fN ∈ BN ,
we have ‖fN − PN‖

B
(
0, N

N+1

) < 1/N → 0 (N → ∞). Since (PN) is a dense

sequence in H(D) and
(
B(0, N

N+1
)
)

is an exhaustive sequence of compact

subsets of D, we derive that the set
{
fN : N ∈ N

}
is dense too. Conse-

quently, D is also dense.
Our next goal is to demonstrate that each function f ∈D\{0} is A-

universal. For such a function, there exists N ∈ N and complex scalars
c1, . . . , cN such that cN �= 0 and f = c1f1 + · · ·+cNfN . Since U

(
D,A, (n)

)
=⋂∞

k=1 U(D,A, (n), Kk), it must be shown that, for prescribed k ∈ N and h ∈
A(Kk), there exists some sequence (λj) ⊂ N such that σA(λj , f) → h uni-

formly onKk. For this, observe that because of f
N
∈U(

D,A,(n(N−1,k)
j )

j≥1
,Kk

)
,

there is a subsequence (λj) of (n
(N−1,k)
j ) satisfying

σA(λj, fN) −→ c−1
N h (j → ∞) uniformly on Kk.
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We also have that σA(λj, fl) → 0 uniformly on Kk for l = 1, . . . , N − 1.
Consequently

σA(λj , f) = cNσA(λj , fN) +

N−1∑
l=1

clσA(λj, fl)

−→ h+ 0 = h (j → ∞) uniformly on Kk,

as required.

Finally, fix n ∈ N, γ ∈ Γ0(D) and f ∈ D \ {0}. It remains to prove that
Cγ(Tnf) = C∞. As before, f = c1f1 + · · ·+ cNfN , where N ∈ N and cN �= 0.
The only property of γ that we will use is that it intersects the compact
sets S̃j for all sufficiently large j. Therefore, there is l0 ∈ N such that we
can select a point

zl ∈ γ ∩ S̃p(n,N,l) for all l ≥ l0. (9)

Since fk ∈ Bk, one may assume without loss of generality that l0 is such
that

‖fN − qlhn‖�Sp(n,N,l)
< δ

(
1

l
, n, p(n,N, l)

)
(10)

and

‖fk‖�Sp(n,N,l)
< δ

(
1

l
, n, p(n,N, l)

)
(k = 1, . . . , N − 1) (11)

for all l ≥ l0. By using (3), (4), (9), (10) and (11), we obtain for every l ≥ l0
that ∣∣(TnfN)(zl) − ql

∣∣ < 1

l
and

∣∣(Tnfk)(zl)∣∣ < 1

l
(k = 1, . . . , N − 1).

Since Tn is linear, we get from the triangle inequality that∣∣(Tnf)(zl) − cNql
∣∣ =

∣∣c1(Tnf1)(zl) + · · ·+ cN (TnfN)(zl) − cNql
∣∣

≤
( N∑

k=1

|ck|
)
· 1

l
−→ 0 (l → ∞).

But cN �= 0, so the sequence
{
cNql : l ∈ N

}
is dense in C∞. Since

liml→∞
(
(Tnf)(zl)− cNql

)
= 0, we derive that the set

{
(Tnf)(zl) : l ≥ l0

}
is

also dense in C∞. Therefore, every value α ∈ C∞ belongs to the cluster set
Cγ(Tnf). The proof is finished. �

If, specially, A is the identity matrix and every Tn is the identity ope-
rator, then one obtains the following corollary, that asserts the announced
algebraic genericity of U(D) ∩MCS(Γ0(D)).
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Corollary 3.2. There exists a dense linear manifold D ⊂ H(D) such that
every function f ∈ D \ {0} is a universal Taylor series and has maximal
cluster set along any curve γ ∈ Γ0(D).

4. Behavior along the radii and other curves

We start this section by showing the unboundedness of the images of most
radii under any universal Taylor series f , when f is subjected to the action
of a linear differential operator P (D). Here P is a polynomial with complex
coefficients.

Theorem 4.1. Let f be a universal Taylor series. Then there is a residual
subset M ⊂ T such that, for every non-zero polynomial P and every ζ ∈M ,
the set {

(P (D)f)(rζ) : 0 < r < 1
}

is unbounded.

Proof. According to [8, Theorem 3.2], there is a residual subset M ⊂ T

such that, for every ζ ∈ M , the set
{
f(rζ) : 0 < r < 1

}
is unbounded.

We will prove that M is also valid for any operator P (D), where P is a
non-zero polynomial. It is evident that one can assume that the leading
coefficient of P is 1. Hence, if P is a constant, the desired conclusion is
exactly [8, Theorem 3.2]. So we may suppose that P has the form P (z) =
(z − a1) · · · (z − aN), where N ∈ N and a1, . . . , aN ∈ C.

Let f be a universal Taylor series, Q(z) := z−a (a ∈ C) and g := Q(D)f .
By elementary integration, we obtain

f(z) =

(
f(0) +

∫ z

0

g(t)e−at dt
)
eaz , (12)

where we can take the segment [0, z] as integration curve. Fix ζ ∈ M and
assume, by way of contradiction, that the set

{
(Q(D)f)(rζ) : 0 < r < 1

}
is

bounded. By (12),∣∣f(rζ)
∣∣ ≤ e|a|

∣∣f(0)
∣∣ + e2|a| sup

(0,ζ)

∣∣g∣∣ =: α for all r ∈ (0, 1),

where α is a finite constant. This is absurd, so the set
{
(Q(D)f)(rζ) : 0 <

r < 1
}

is unbounded for every ζ ∈ M . But, since the operator P (D) can
be decomposed into finitely many factors of the form Q(D), an induction
procedure leads easily to the conclusion. �

Next, we present the promised statement about a certain “good” bound-
ary behavior of some universal series (Theorem 4.2). In fact, we have a new
generic property, clearly non compatible with that of Theorem 3.1. Observe
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that the decay of the functions along the paths can be made as “tamed”
as desired. Except for the first step, its proof follows closely the proofs of
our Theorem 3.1 and of Theorem 1.2 in [27], so it will be shortened at some
points. In [51, Example 2] it is asserted the existence of a non-zero function
f ∈ H(D) which has at each point ζ ∈ T a path Pζ which is tangent to the
radius joining the origin to ζ and lim z→ζ

z∈Pζ

f(z) = 0. We state here that this

property is compatible with universality.

Theorem 4.2. There is a family of paths {Pζ}ζ∈T with the following pro-
perties:

(a) For every ζ ∈ T, Pζ ⊂ D and Pζ is tangent to the radius joining the
origin to ζ.

(b) For each C-matrix A and each continuous function α : D → (0,+∞),
there exists a dense linear manifold D satisfying the following:

(i) Every f ∈ D \ {0} is A-universal.

(ii) For every f ∈ D, lim
z→ζ
z∈Pζ

f(z)

α(z)
= 0.

Proof. Inspired by [51, Examples 2 and 11], we construct the following
“dyadic tree” V inductively. It is the tree which has four branches starting
from the origin. We will suggest how to made it in the first quadrant. In the
other three ones it is only needed to rotate this construction. As for the first
quadrant, draw the circle C with center 1+ i passing through the points 1, i.
Focus our attention on the part of this circle contained in D. This circle is
tangent to both radii R(0) and R(π/2) at the points 1, i, respectively. We
have denoted R(θ) := {r exp(iθ) : 0 ≤ r < 1}. The tree V begins with the
segment joining the origin z0 := 0 to the point z1 that is the intersection of
R(π/4) with C. The tree is continued by drawing the two branches starting
at z1 and ending at the points z2,1 := C ∩ R(π/8) and z2,2 := C ∩ R(3π/8).
From each of these points two new branches are to be constructed. We do it
for z2,1, the construction being symmetric for z2,2. The point z2,1 is joined to
the points C ∩R(π/16), C(π/8)∩R(3π/16), where C(θ) is the reflection of
C by R(θ) (which is tangent to R(2θ) at exp(iπ2θ)). The tree is continued
in this way, always by joining each point P in each generation to two new
pointsQ, S, so that if P ∈ R(νπ/2n+1) thenQ, S ∈ R

(
(2ν±1)π/2n+2

)
. Each

point Q or S is obtained as intersection of the radius containing it with the
image of C under reflection (or under a finite sequence of reflections) by an
adequate radius R(θ) (if P ∈ C then one of the points Q, S is also in C).
If we fix a point ζ ∈ T and consider an adequate sequence of successive
branches taken from V , then we can construct a path Pζ ⊂ D terminating
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at ζ . The fact that the circles C and C(θ) are respectively tangent to the
radii at 1, 1 + i and at exp(iπ2θ) forces the path Pζ to be tangent at ζ .

Next, fix a C-matrix A. Fix also a continuous function α : D → (0,+∞).
By replacing α by the function α∗(z) := min

{
α(w) : |w| ≤ |z|}, one can

suppose without loss of generality that α only depends on the modulus |z|,
i.e. α(z) = α(|z|). Observe that the function ε : t ∈ [0, 1) �→ (1 − t)α(t) ∈
(0,+∞) is also continuous.

Choose sequences (Pk) and (Kk) as in the proof of Theorem 3.1. Since
Dω \ V is easily seen to be connected and locally connected at ω, and V has
no “large islands” near the boundary (because V 0 = ∅), the set V satisfies
the hypotheses of the Nersesjan theorem. And it is easily checked that the
sets Vk := B

(
0, k

k+1

) ∪Wk

(
where Wk := V ∩ {

w : |w| ≥ k+1
k+2

}
, k ∈ N

)
also

satisfy them. Consequently, each set

Bk :=

{
f ∈H(D) : ‖f − Pk‖

B
(
0, k

k+1

)< 1

k
and |f(z)| < ε(|z|) for all z ∈Wk

}

is nonempty. It is also a Gδ subset of H(D).
Fix k ∈ N. The set A := Bk can be written as A =

⋂∞
j=k+1Aj , where

Aj :=

{
f ∈ H(D) : ‖f − Pk‖B(0, k

k+1
) < 1/k and

∣∣f(z)
∣∣ < ε(|z|) for all z ∈Wk ∩B

(
0,
j + 1

j + 2

)}
.

Now, fix j ∈ N with j ≥ k + 1 and f ∈ Aj . We want to show the existence
of a sequence (ϕl)l≥1 ⊂ A such that

lim
l→∞

‖f − ϕl‖B(0, j+1
j+2

) = 0. (13)

Similarly to [27, Proof of Lemma 3.2], we consider the set F := B(0, j+1
j+2

)∪
V = B(0, j+1

j+2
) ∪Wj and the function T : F → C given by

T (z) =

⎧⎪⎨
⎪⎩

f(z) if z ∈ B(0, j+1
j+2

)
ε(|z|)
ε( j+1

j+2
)
f(π(z)) if z ∈Wj .

Here π(z) denotes the unique point where the circle
{
w : |w| = j+1

j+2

}
is

intersected by the part of the tree V that, starting from z, goes back to
the origin. The function T is well defined and T ∈ A(F ). In addition,
F satisfies the conditions allowing the application of Nersesjan’s theorem.
Since ε(|π(z)|) = ε( j+1

j+2
) for z ∈ Wj, we have that |T (z)| < ε(|z|) on Wk.
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For every l = 1, 2, . . . and every z ∈Wk, set

δl(z) = min
{1

l
,
1

k
− ‖f − Pk‖B(0, k

k+1
), ε(|z|) − |T (z)|

}
.

Since Wk is closed in F , Tietze’s extension theorem permits to extend δl to
F so that 0 < δl(z) ≤ min

{
1
l
, 1
k
− ‖f − Pk‖B(0, k

k+1
)

}
.

By Nersesjan’s theorem, we obtain a sequence (ϕl)l≥1 ⊂ H(D) satisfying∣∣T (z) − ϕl(z)
∣∣ < δl(z) for all z ∈ F. (14)

Then (13) is derived from (14), because δl ≤ 1/l and T = f on the ball
B(0, j+1

j+2
). The fact that each ϕl ∈ A follows easily if we distinguish the

three cases “z ∈ B(0, k
k+1

)”, “z ∈ Wk ∩ B(0, j+1
j+2

)”, “z ∈ Wj”, and if we use
the definition of T as well as the triangle inequality.

Exactly as in the proof of Theorem 3.1 –that is, by starting from (13)
and applying Herzog’s theorem (Theorem 2.2)– we can find a sequence (fN)
in H(C) satisfying:

• fN ∈ BN for every N .

• (fN) is dense in H(D). Hence the linear manifold D spanned by this
sequence is a dense linear submanifold of H(D).

• Each non-zero function f ∈ D is A-universal.

Consequently, since D is a linear manifold, it only remains to prove the
property (ii) of the statement of the theorem for each function fk. This is
easily seen from the fact that fk ∈ Bk. Indeed, for z ∈ V and |z| close
enough to 1, we have |fk(z)| < ε(|z|) = (1−|z|)α(z). Hence, for each ζ ∈ T,
we have |fk(z)/α(z)| < 1−|z| → 0 as z → ζ along Pζ, because Pζ ⊂ V . The
proof is finished. �

We remark that Theorem 4.2 does not contradict the Lusin-Privalov
theorem (see [40] and [47, p. 60]), because the limits are not taken along the
radii themselves.

5. Closed linear manifolds of wild functions

In this final section, we establish the spaceability of the set U(D) ∩
MCS(Γ0(D)) in H(D). For this, we will follow closely the proof of The-
orem 2 in [7], so some arguments will be simplified. We need the following
refinement of Mergelyan’s theorem, that is essentially proved in [7].

Lemma 5.1. Let ε > 0, N ∈ N, r ∈ (0, 1), K ∈ M(C \ rD), L ∈ M(rD),
and g ∈ A(K). Then there exists a polynomial P (z) =

∑q
n=N anz

n such that

‖P‖L < ε and ‖P − g‖K < ε.



774 L. Bernal, A. Bonilla, M.C. Calderón and J.A. Prado

Theorem 5.2. There exists a closed infinite dimensional linear manifold
F ⊂ H(D) such that every function f ∈ F \ {0} is a universal Taylor series
and has maximal cluster set along any curve γ ∈ Γ0(D).

Proof. Choose a dense sequence {qk}k≥1 in C. As in the proof of [7,
Theorem 2], fix a sequence {Km}m≥1 ⊂ M(C \ D) such that, for every set
K ∈ M(C \ D), there exists an m ∈ N with K ⊂ Km [46]. Let {Ql}l≥1

be an enumeration of all polynomials with coefficients in Q + iQ and let
ϕ, ψ : N → N be two functions such that, given any couple (m, l) in N × N,
there exist infinitely many j with (ϕ(j), ψ(j)) = (m, l). Fix also a pair of
double sequences {ri,j}i≥j and {si,j}i≥j with 1

2
< r1,1 < s1,1 <

2
3
< r2,1 <

s2,1 <
3
4
< r2,2 < s2,2 <

4
5
< r3,1 < s3,1 <

5
6
< r3,2 < s3,2 <

6
7
< r3,3 < s3,3 <

7
8
< · · · → 1, and consider the spiral-like compact sets

Si,j =

{(
ri,j +

(si,j − ri,j)θ

4π

)
exp(iθ) : θ ∈ [0, 4π]

}
(i, j ∈ N, i ≥ j).

Observe that the sets Si,j are contained in D and are pairwise disjoint.

We use induction to build sequences of polynomials {fj,k}j≥k for k ∈ N.
Let {τn}n≥1 ⊂ (0,+∞) be a sequence such that

∑∞
n=1 τn < 1.

First, we define g1,1 = 2z + P (z), where P is given by Lemma 5.1 with
K = Kϕ(1) ∪ S1,1, L = B(0, 1

2
), N = 2, ε = τ1

23 and

g(z) =

{
Qψ(1)(z) − 2z if z ∈ Kϕ(1)

q1 − 2z if z ∈ S1,1.

The Taylor series of g1,1 approaches Qψ(1) on Kϕ(1). We now correct its
value on Kϕ(2) for further expansions by setting f1,1 = g1,1 +Q(z), where Q
is given by Lemma 5.1 with K = Kϕ(2), L = B(0, 2

3
), N = degree(P ) + 1,

ε = τ1
23 and g = −g1,1.

Let us introduce the notation A(j) :=
{
z : j

j+1
< |z| < j+1

j+2

}
(j ∈ N).

Assume that polynomials fj−1,k have been built in the previous step for
k ≤ j−1. LetNj,1 = 1+max1≤k≤j−1 degree(fj−1,k). We define a intermediate
polynomial gj,1 = fj−1,1 + P (z), where P is given by Lemma 5.1 with K =
Kϕ(j)∪Sk,i [where (k, i) is the unique pair (k(j), i(j)) such that Sk,i ⊂ A(j)],
L = B(0, j

j+1
), N = Nj,1, ε = τ1

2j+2 and g : K → C the function defined by

g(z) =

⎧⎨
⎩

Qψ(j)(z) − fj−1,1(z) if z ∈ Kϕ(j)

qk − fj−1,1(z) if z ∈ Sk,i and i = 1
−fj−1,1(z) if z ∈ Sk,i and i �= 1.

Now we correct the Taylor series of gj,1 by setting

fj,1 = gj,1 +Q(z),
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where Q is given by Lemma 5.1 with K = Kϕ(j+1), L = B(0, j+1
j+2

), N =

degree(P ) + 1, ε = τ1
2j+2 and g = −gj,1.

Consequently, the following inequalities are satisfied:

‖fj,1 − fj−1,1‖B(0, j
j+1

) ≤
τ1

2j+1
(15)

‖fj,1‖Kϕ(j+1)
≤ τ1

2j+1
(16)

‖fj,1 − qk‖Sk,1
≤ τ1

2j+1
if Sk,1 ⊂ A(j) (17)

‖fj,1‖Sk,i
≤ τ1

2j+1
if i �= 1 and Sk,i ⊂ A(j) (18)

Taking Nj,2 = degree(fj,1) + 1, we apply the same construction to deduce
fj,2 from fj−1,2, and inductively we build polynomials fj,k (1 ≤ k ≤ j − 1)
satisfying inequalities similar to those of above. Finally, if Nj,j is an integer
greater than the degree of all polynomials fj,k (1 ≤ k ≤ j − 1), then fj,j is
deduced from 2Nj,jzNj,j by following the same process.

The condition (15) ensures that the sequence {fj,k}j≥k converges uni-
formly on any compact subset of D to a function fk ∈ H(D). Let E be
the vector space consisting of all series

∑∞
k=1 ckfk converging uniformly

on compacta of D, and let F be the closure of E in H(D). By using
estimations (15)–(16), it can be proved as in [7] that {fk}k≥1 is a ba-
sic sequence in L2(1

2
T) [= the space of measurable complex functions f :

T → C with square-integrable modulus, endowed with the norm ‖f‖2 :=( ∫ 2π

0
|f(1

2
eiθ)|2 dθ

2π

)1/2
] which is equivalent to {(2z)k}k≥1, and that F is a

closed infinite dimensional linear manifold such that all F \ {0} ⊂ U(D).
Note that convergence in H(D) implies quadratic convergence in the space
L2(1

2
T).

Let us fix a function f ∈ F \ {0} and a curve γ ∈ Γ0(D). Note that γ
intersects all spirals Sk,i except finitely many of them. It remains to show
that Cγ(f) = C∞. Let

∑∞
n=1 cnfn be its representation on L2(1

2
T) (perhaps

not convergent in H(D)). Since F and MCS(Γ0(D)) are invariant under
scaling, one can assume that there exists N ∈ N such that cN = 1. Let{
hl :=

∑∞
n=0 cn,lfn

}
l≥1

be a sequence of series of E converging compactly
to f . By the continuity of the projections, one can assume that cN,l = 1 for
all l ∈ N. Due to the density of (qk) in C and to the facts that sets Sk,N
tend to the boundary T as k → ∞ and γ intersects almost all of them, it is
enough to demonstrate that

lim
k→∞

‖f − qk‖Sk,N
= 0. (19)

Fix k ∈ N with k ≥ N and let j = j(k) the unique positive integer with
Sk,N ⊂ A(j). Observe that j(k) → ∞ as k → ∞.
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Let us choose l such that ‖f − hl‖Sk,N
< 1/k. Since convergence in

H(D) is stronger than convergence in L2(1
2
T), we have that (hl) converges

in L2(1
2
T), so the sequence (‖hl‖2) is bounded, say ‖hl‖2 ≤ β (l ∈ N). From

the equivalence of the basic sequences (fn) and (2nzn), there is a constant
m ∈ (0,+∞) such that m‖∑∞

n=1 cn,l(2z)
n‖2 ≤ ‖∑∞

n=1 cn,lfn‖2 for all l ≥ 1
(see [9, p. 108]). Hence, if we set α := β/m, then we obtain( ∞∑

n=1

|cn,l|2
)1/2

≤ α (l ∈ N). (20)

We will employ the inequalities (15), (17), (18) (or their analogues for
higher steps) and the fact Sk,N ⊂ A(j) ⊂ B(0, j+1

j+2
). For n �= N , we get

‖fn‖Sk,N
≤ ‖fj,n‖Sk,N

+ ‖fn − fj,n‖Sk,N

≤ ‖fj,n‖Sk,N
+

∞∑
p=j+1

‖fp,n − fp−1,n‖B(0, p
p+1

)

≤ τn
2j+1

+
∞∑

p=j+1

τn
2p+1

=
τn
2j
. (21)

On the other hand, we have, analogously,

‖fN − qk‖Sk,N
≤ ‖fj,N − qk‖Sk,N

+ ‖fN − fj,N‖Sk,N

≤ ‖fj,N − qk‖Sk,N
+

∞∑
p=j+1

‖fp,N − fp−1,N‖B(0, p
p+1

)

≤ τN
2j+1

+

∞∑
p=j+1

τN
2p+1

=
τN
2j
. (22)

Consequently, thanks to (20)–(22) and the Cauchy-Schwarz inequality we
arrive to

‖f − qk‖Sk,N
≤ ‖f − hl‖Sk,N

+ ‖hl − qk‖Sk,N

≤ 1

k
+ ‖fN − qk‖Sk,N

+
∑
n 	=N

|cn,l| ‖fn‖Sk,N

≤ 1

k
+
τN
2j

+
( ∞∑
n=1

|cn,l|2
)1/2( ∞∑

n=1

τ 2
n

4j

)1/2

≤ 1

k
+

1

2j(k)
+

α

2j(k)
−→ 0 (k → ∞),

which proves (19), as desired. �
A question that is related to the result in this section is the following.

In many instances the existence of closed infinite dimensional subspaces of
universal functions depends on the assumption of some Universality Crite-
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rion (see for instance [32]). We want to conclude this paper by posing the
problem of finding universality criteria similar to the one established in [19],
or the generalization in [16] and [10], as a tool to show the spaceability of
the universalities related to the one studied here.

Acknowledgement. We are indebted to the referee for useful suggestions,
concerning lineability and recent relevant literature.
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[10] Bermúdez, T. Bonilla, A. and Peris, A.: On hypercyclicity and su-
percyclicity criteria. Bull. Austral. Math. Soc. 70 (2004), no. 1, 45–54.
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[14] Bernal-González, A., Calderón-Moreno, M.C. and Prado-

Bassas, J. A.: Maximal cluster sets along arbitrary curves. J. Approx.
Theory 129 (2004), no. 2, 207–216.
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[41] Mart́ınez-Giménez, F. and Peris, A.: Universality and chaos for tensor
products of operators. J. Approx. Theory 124 (2003), no. 1, 7–24.

[42] Melas, A. and Nestoridis, V.: Universality of Taylor series as a generic
property of holomorphic functions. Adv. Math. 157 (2001), no. 2, 138–176.
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Math. Anal. Appl. 319 (2006), no. 2, 764–782.



780 L. Bernal, A. Bonilla, M.C. Calderón and J.A. Prado

[50] Read, C. J.: The invariant subspace problem for a class of Banach spaces,
II: Hypercyclic operators. Israel J. Math. 63 (1988), no. 1, 1–40.

[51] Schneider, W. J.: Approximation and harmonic measure. In Aspects
of contemporary complex analysis (Proc. NATO Adv. Study Inst., Univ.
Durham, Durham, 1979) 333–349. Academic Press, London-New York, 1980

Recibido: 21 de febrero de 2007
Revisado: 19 de febrero de 2008

L. Bernal-González
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