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Asymptotic stability of solitons

for the Benjamin-Ono equation

Carlos E. Kenig and Yvan Martel

Abstract
In this paper, we prove the asymptotic stability of the family of

solitons of the Benjamin-Ono equation in the energy space. The proof
is based on a Liouville property for solutions close to the solitons for
this equation, in the spirit of [17], [19]. As a corollary of the proofs,
we obtain the asymptotic stability of exact multi-solitons.

1. Introduction

We consider the Benjamin-Ono equation (BO)

(1.1) up + Huge +uu, =0, (t,2) € R xR,

where ‘H denotes the Hilbert transform

1 Feo 1
(1.2) Hu(x) = — p.v./ uy) dy = — lim u(y) dy.
m o0 Y T e—0 ly—z|>e y—x
Note that with this notation, [wu,Hu = [ |Dzuf? = HuHi{%

The Cauchy problem for (1.1) is globally well-posed in H*®, for any s > 0
(see Tao [27] for s > 1 and Ionescu and Kenig [11] for the case s > 0, see
also Burq and Planchon [5] for the case s > 1). Morecover, for solutions in

the energy space H > the following quantities are invariant

(1.3) /u2(t, x)dx :/ u?(0, 2)dx, E(t) :/<ux7-{u — %u?’) (t,x)dz = E(0).
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Recall the scaling and translation invariances of equation (1.1)
(1.4) if u(t, x) is solution then
' Ve >0, 29 € R, v(t, ) = cu(ct, c(x — x¢)) is also solution.

We call soliton any travelling wave solution u(t,x) = Q.(x — zo — ct),
where ¢ > 0, g € R, and Q.(z) = cQ(cx) solves:

(1.5) “HQ' +Q-10*=0, QeHz, Q>0
It is known that there is a unique (up to translations) solution of (1.5),
which is
4
1. = .
(16) Q) =
(see Benjamin [2] and Amick and Toland [1] for the uniqueness statement).

This solution is stable (see Bennet et al. [3] and Weinstein [31]) in the fol-
lowing sense.

Stability of soliton in the energy space ([3], [31]). There exist C, ap>0
such that if ug € Hz satisfies ||ug — Qll ;1 = a < ag then the solution u(t)
of (1.1) with u(0) = ug satisfies

Sup inf Jlu(t) - Q( =)l ;3 < Ca
See a sketch of proof of this result in Section 5.1.

The main result of this paper is the asymptotic stability of the family of
solitons of (1.1). Then, we consider the multisoliton case (see Section 5).
Theorem 1. (Asymptotic stability of solitons in the energy space). There
exist Cag > 0 such that if ug € Hz satisfies |Jug — Qll,1 = o < ao, then
there exists ¢ > 0 with [c™ — 1| < Ca and a C* function p(t) such that the
solution u(t) of (1.1) with u(0) = wug satisfies

|
(1L7) ulty.+ p(t) = Qe in H weak, u(t) = Qur (- = p(t) 2ot ) — O,
(1.8)  p'(t) = c" ast— +oo.

The proof of Theorem 1 is based on the following rigidity result.

Theorem 2. (Nonlinear Liouville property). There exist C,ag > 0 such
that if uy € H? satisfies ||ug — Qll,;3 = @ < ag and if the solution u(t)
of (1.1) with u(0) = ug satisfies for some function p(t)

(1.9) Ve > 0,dA. >0, s.t. Vt € R, / u?(t,x + p(t))dz < ¢,

|z|>Ae
then there exist ¢; > 0, x1 € R, such that

(110) u(t,x) = Qm(x — 1 = Clt)a |Cl - 1| + |IL’1| <Ca.



ASYMPTOTIC STABILITY OF SOLITONS FOR THE BENJAMIN-ONO EQUATION 911

Remark 1. In Theorem 1, the convergence of u(t) to Q.+ as t — 400 is

obtained strongly in L? in the region # > . The value % is somewhat

10°
arbitrary, the result holds for z > et, for any € > 0, provided ap = () > 0
is small enough. Note that this result is optimal in L? since u(t) could
contain other small (and then slow) solitons and since in general u(t) does

not go to 0 in L? for z < 0. For example, if ||u(t)—QC+(.—p(t))||H%(R)

t — 400, then E(u) = E(Q.+) and [u® = [ Q2 and so by the variational
characterization of Q(x) (see [31]), u(t) = Qe+ (x — zg — c't) is exactly a
soliton.

Under the assumptions of Theorem 1, we expect strong convergence
in H2 to be true as well in the same local sense (x > et). This could
require some more analysis.

By the methods of this paper, we are able to obtain the following weaker
result (Section 4.3)

— 0 as

t+1
(1.11) lim u(s,. + p(s) — Qer|? y ds = 0.
H

t——+o0 ¢

loc

Recall that the first result of asymptotic stability of solitons for gener-
alized KdV equations was proved by Pego and Weinstein [24] in weighted
spaces. The discussion p. 308 in [24] justifies the emergence of a pure
dominant wave going to the right as time goes to +oo, whereas small am-
plitude solitary waves and dispersion have small or negative speeds. The
same discussion applies to the Benjamin-Ono equation. This is reflected
in the monotonicity arguments we use to prove Theorem 1 (see Proposi-
tion 1). These arguments are in fact inspired by the proof of Kato’s "local
smoothing” effect for the generalized KdV equation, [12].

The proof of Theorem 1 follows the approach of [16], [17], concerning
the case of the generalized KdV equations, where the asymptotic stability
of the family of solitons is deduced from a Liouville type theorem such as
Theorem 2. Moreover, similarly as in [17], the proof of Theorem 2 follows
from a Liouville property on the linearized equation around (), see Theorem 3
in Section 3.

With respect to the gKdV case, there are two main difficulties:

(1) L?* monotonicity type results, which are similar to the ones for the
gKdV equations ([17]), but whose proof are more subtle due to the nonlocal
nature of the (BO) operator (see Section 2). For this part, we use a Kato
type identity for (1.1) (see [9] and [25]).

(2) The proof of the linear Liouville theorem, which requires the analysis
of some linear operators related to ). Note that for this part, we use the fact
that Q(x) is explicit, and some known results about the linearized equation
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around @ ([3], [31]). We point out that except for this part of the analysis, all
the arguments are quite flexible and could be applied to generalized versions
of the (BO) equation. In particular, we do not use the integrability property
of the equation.

As a corollary of the proof of Theorem 1 and of Theorem 2, we obtain
stability and asymptotic stability of multisoliton solutions. See Theorem 4
in Section 5 for a precise statement.

After the paper was finished and submitted, we learned that S. Gustafson,
H. Takaoka, and T-P. Tsai [10] have obtained independently the stability
part of Theorem 4. Note that the main result of the present paper, i.e.
asymptotic stability of (single or multi-) solitons is not addressed in [10].

The rest of the paper is organized as follows. In Section 2, we prove L?
monotonicity type results in the context of Theorem 1. In Section 3, we
state and prove the linear Liouville Theorem, which is the main ingredient
of the proof of Theorem 2. In Section 4, we prove Theorems 1 and 2 using
Sections 2 and 3. Section 5 is devoted to the multisoliton case. In Section 6,
we prove some weak convergence and well-posedness results used in the
proofs. Finally, Appendix A contains the proof of some technical points.

2. Monotonicity arguments

2.1. Modulation

Lemma 1 (Choice of translation parameter). There exist C,an > 0 such
that for any 0 < o < a, if u(t) is an Hz solution of (1.1) such that

(2.1) vieR, inf flu(t) - Q( -7l <o
then there exists p(t) € C*(R) such that
n(t,x) = ult,z + p(t)) — Qz)
satisfies
weR [ Q@ntads =0, [nol,y < Ca,
2
. n°(t, )
s -11=c([TDa) < e

Proof of Lemma 1. This follows from standard arguments (see e.g. [4],
Lemma 4.1, [15], Proposition 1 and Lemma 4).

(2.2)

N[
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Time independent arguments. For u € H: and y € R, set

1,(u) = / Q(#)(ulx +) — Qa))dz so that %—I;w:o,u:Q: / (@) > 0.

Thus, by the implicit function theorem, there exists o; > 0, V' a neighbor-
hood of 0 in R and a unique C* map:

yifue HY, Ju=Q|, 4 <ai} =V

(2.3)
such that I,y (u) =0, |y(u)| < Clju — Q||H% :

We uniquely extend the C* map y(u) to Uy, = {u € H2, inf, |u(. +7) —

Qll ;3 < oa} so that for all w and r, y(u) = y(u(. + 7)) + r. Then, we set

() = u(z + y(u)) — Q(z), so that
/%Q/ =0 and |nf,1 < Cllu—@Q| 1.

Estimates depending on t. For all t, we define p(t) = y(u(t)) and 1(t) = ).
To conclude the proof of the lemma, we just have to prove the estimate
on p'(t) — 1.

We perform formal computations which can be justified for H > solutions
by density and continuous dependence arguments. The function (¢, x) sat-
isfies the following equation:

(24) ne=(Ly—in’)a+ (¢ —1)(Q+n), where L= —Hn, +n— Qn.

Thus, multiplying the equation of n by @’ and using [ 7@’ = 0, we obtain

@) w-n|f@r- [w] = [a@)-1 [

which finishes the proof for ay small enough.

Remark 2. By the proof of Lemma 1, p(t) depends continuously on u(t)
in Hz. In particular, let wu(t) satisfy the assumptions of Lemma 1 with
u(0) = ug. If u,(0) — ug in H2 as n — 400, then by continuous depen-
dence (see [11]), we obtain for all ¢t € R, p,(t) — p(t) as n — 400, where
pn(t) is defined from w,(t) (u,(t) is the solution of (1.1) corresponding to
U (0) = uop).

Note also that in the proof of Lemma 1, we can replace the space H 3
by L?, so that in the same context if u,,(0) — ug in L? as n — o0 then for

all t € R, p,(t) — p(t) as n — 400 (see continuous dependence in L? also
in [11]).
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Finally, for future reference, we justify that if v, = v in H 2 weak, then
y(u,) — y(u), where y(u) is defined in the proof of Lemma 1. Indeed, in
this proof, by the decay of Q'(z), we can also replace H > by the weighted
space LQ(If‘x‘dx), so that if u, — win L} _ and |Ju,]||z2 + |Jullzz < C, then
y(u,) — y(u) as n — +o00.

In the rest of this section, we present monotonicity arguments on L?
quantities for both u(t) and n(t), in the context of Lemma 1. These results
are reminiscent of similar results for the gKdV equation in [17] and [20], but
due to the nonlocal nature of the operator H, the proofs are more involved.

2.2. Monotonicity results for u(t)

Let A > 1 to be chosen later and set

(2.6) @(z) = pa(z) = T 4 arctan (E) so that ¢'(x) =

5 1 2>0.

1
1
1+ (%)
Proposition 1. Let 0 < X\ < 1. Under the assumptions of Lemma 1, for

ag small enough and A large enough, there exists C' > 0 such that for all
o > 1, 11 < ty,

1. Monotonicity on the right of the soliton:
[ itz a)ota = plta) — an)da

= / W1, 2)p (@ — plts) — Mt — 1) — wo)dz + —.

Zo

(2.7)

2. Monotonicity on the left of the soliton:

/uQ(tQ,x)go(x — p(ta) + Aty — t1) + xp)dx
(2.8)

C
< /U2(t17$><ﬂ(55 — p(t1) + xo)dx + .
0

Proof of Proposition 1. First, we note that (2.8) is a consequence
of (2.7) and the L? norm conservation. Indeed, let v(t,z) = u(—t,—z).
Then v(t) is a solution of (1.1) satisfying the assumptions of Lemma 1 and
pu(t) = —p(—t). Thus, from (2.7) applied on v(t,z), we deduce

/u2(—t2, z)p(—x + p(—ta) — zo)dx

< /u2(—t1, r)p(—x + p(—t1) — Ata — t1) — xo)dx + xgo'

(2.9)
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Since p(z) =7 — o(—), from [u?(—ty) = [u*(—t1), we obtain

2 C

u?(—tg, x)p(x — p(—t2) + xo)dx + —

Zo

(2.10) > /u2(—t1, D)o@ — p(—t) + Alts — £1) + z0)da,

which is exactly formula (2.8) for ¢, = —t, t| = —ts.

We are reduced to prove (2.7). We perform calculations on regular solu-
tions and then use density arguments and continuous dependence to obtain
the result in the framework of Lemma 1.

First, we recall a Kato type identity for solutions of the BO equation.
By direct computations, we have

% % u?(t, v)(z)dr = /utugo(x)dx = — /(Hum + uu, )up(x)de
(2.11) = /(Hux)(ucp'(x) + ug(x))dr + % /u?’cp'(x)dx.

For the first term in (2.11), we prove the following result.

Lemma 2. For allu € H'(R),
/ [ o,
(2.12) (Hug)uy' (x)de < a1 v (x)dx.

Proof of Lemma 2. For f € L*(R), we define the harmonic extension of f
on R x Ry =R?,

Ve eR, F(z,0)= f(x)

1 [ Yy .
(213) and F(..'E,y) = ; /OO m f(..'lf/) d..'lf/, lf Yy > 0.

In particular, recall that Hf'(x) = 0,F(x,0) (see Stein [26, Chapter III],
and the Introduction of Toland [28]).

We denote by ®(x,y) the harmonic extension of ¢'(x) and U(z,y) the
harmonic extension of u(z) on RxR, . Note that ®(z, y) is explicitly given by

BN

(2.14) O(z,y) = %( )2 }l—_|(_1 + %)2

BN
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Then, by the Green Formula on R? (using decay properties of ®(z,y) and
AU? = 2|VU|?), we obtain formally

/(Huw)uw’ = /%U(t,:c,O)U(t,x, 0)P(z,0)dr = % 0,(U*)®dx

y=0

=—= AU + U?AD + — U?0,®
(2.15) 5 Ri< )@+ ” 2 ),V
1
= —// IVU*® + §/u2(Hcp”)d$.
R%

See Appendix A.1 for a rigorous proof of (2.15). Since ® > 0 on R%, w
obtain

(2.16) [rwug <5 [,

By explicit computations, since H( = we have

1+m2) - 1+m2 )

1
(217) HyY = ———"— HY"' = —¢' —2(¢))? and Hp" < ng’.

Lemma 2 follows.

For the second term in (2.11), we have the following.

Lemma 3. For allu € H'(R),
< %/u%p’(x)d:c.

Proof of Lemma 3. We prove (2.18) for u smooth and compactly sup-
ported in R, the general case will follow by a density argument.
Since the limit in (1.2) holds in L? (see Stein [26, Chapter II]), we have

[otuiear =2 [ ( / Z“i"gﬂdy)ux(a:)w(x)dx
(2.19) - ;112%// ot )90(_5“; dy dz

= [ o) 2=ty = L [ o1 ey,

by symmetry and then integration by parts, where
_ 0 (e(x) —ey)
=
_ 2p(2) — ¢(y) — (¢(@) + ¢'(y)) (@ —y)
(z —y)?

(2.18) ‘/(Hum)umwdx

(2.20)
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Note that all the integrals in (2.19) make sense since wu(z) is compactly
supported, (p(z) — ¢(y))/(z — y) is bounded and moreover, by subtracting
the following two Taylor formulas:

2. N

o(x) = @(y) + (z —y)¢'(y) + %(l’ — %" (y) + é(l’ —y)’" (x1),

oly) = (&) + (y — 7)) + 5y — 26 () + Sy — 26" (22)

where z1, 25 € (y, ), we find:

1 90”<y> B ()0”(*7;> 1 " "
2.21 K, = = 4
R21)  Kyley) = 5P (@ ) + ),
which is also bounded on R?. Note also that by explicit computations,

we have

(2.22)

" _90/@) —2 8(%)2 _cp’(x) / 8 2/ N2
o= S (T )~ (e ),

We are reduced to prove the following estimate

/ / Sz y)dxdy' < % / w?y (z)dz.

We consider only the case |y| < |z| (by symmetry), and we divide {(z,y) :
ly| < |x|} into the following regions:

o ¥ ={(x,y) : > A 0<y< g} For (z,y) € X1, by (2.20) and the
fact that ¢’ is decreasing on R*, we have

(2.23)

16 16 32
() = — "(y) < "(y)-
p—F ?;Sw < 590 =5 %)Qw(y) ¥ @) (y)

[ Ko(z,y)| <

Thus, by Cauchy-Schwarz inequality, since [ ¢'(z) = m, we obtain

'// oz y)d:cdy’ < —/Iu )¢ (@ d:c/lu ' (y
31
Cr o2 .

<=7 [ @) a)de.

The case of the region X7 = {(z,y) : v < —A, § <y < 0} is similar.

3 ={(z,y) : v > A, —x <y < 0}. For (z,y) € ¥, we have by (2.20),
lz—y| =2—y >z > L(z+A), ¢'(y) > ¢'(x) and so by (2.20) and ¢ bounded,
we obtain

¢ Cé'(y)

<
|K<P(x7y)| — (I‘—FA)?’ + xQ
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For the term %, we argue as for ;. For the other term, by Cauchy-

Schwarz’ inequality and the expression of ¢’, we have
[ 1) ded
u u(z)|———=dx
PP Y (.CL’—FA)?’ Y
u?(x) : u?(y) :
<C ———dxd ———dxd
8 (/Z¥(x+AP ’ y) </Z;(x+AP ’ y)

The case of ¥5 = {(z,y) : © < —A, 0 <y < —x} is similar to X,.
o 23 = {(z,y) : |x| < A, |y| < |z|}. For (z,y) € 33, and |s| < |z|, we
have 55 < ¢/(s) < & and thus, from (2.21) and (2.22), we obtain

¢ C

|Ky(z,y)] < C sup |¢"(s)] < —= < —¢'(2)¢ ().
Is/<le] AP T A

We finish as for >;.

oYy ={(z,y) : #> A, Ltz <y <z} For (z,y) € Xy, and y < s < z,
we have from (2.22):

[0"(5)] < 2 P(9) < 2eW)P(s) < T ) (x)

thus o
Koz, y)l < 7' (2)#'(y),
and we conclude as for X;. The case of ¥ = {(z,y) : v < A, v <y < 3}
is similar
In conclusion, we have obtained (2.23) and Lemma 3 is proved.
From (2.11), Lemmas 2 and 3, there exists Cy > 0 such that

1d
24) - — <—
<22)2dt/< x)dx /tx z)dr + = /| (t, )| (x

Now, let u(t) be a solution of (1.1) satisfying the assumptions of Lemma 1
on R. Let n(t), p(t) be associated to the decomposition of u(t) on I as in
Lemma 1.

Let 0 < A <1, tg € [t1,t2] and z¢ > 1. For any ¢ € [t, 1], € R, we set

(225) T=x—x0—p(t) — Ato—1), My(t) = %/uQ(t,x)go(f)dx.
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Then, by (2.24), we find

220 2100 < - (0 -2 - Z2) [ @+ 5 [loPe@)

Fix now A > 0 large enough so that 252 < 1(1 — \). Then, by (2.2), we
choose ag > 0 small enough so that Vt E , p'(t) = A > 3(1 = A). Therefore,
we obtain

@) M) < 1-N [@dE + g [ fe@

oo

Finally, we estimate the nonlinear term [ |u(t)]*¢’(Z). We first observe:

(2.28) /|u t)|*¢'(7) <C’/Q3:c,0 d:(:—l—C’/|'r]tx| "(Z)dx

For the first term, we distinguish two regions in x:
o Ql = {z : z < p(t) + 320 + 35A(to — t)}. For x € Q, we have
T < —3x0 — 3A(to — t), and thus

C
(zo + Alto — 1))*

¢'(T) <
This implies

, L C 3 ¢
(2.29) le (z—p(1)¢'(T) < (@0 + Mo — 1))2 /Q = (w0 + A(to — 1))

o Oy ={x > p(t) + 370 + $A(to — t)}. For z € Qs, we have z — p(t) >

3%0 + 5A(to — t) and thus Q*(z—p(t)) < sy, and
Q*(z—p(t))¢' (F)dx < a ‘
. (o + A(to — 1))

Now, we claim

(2.30) / In(t, = — p(t)*! (@)dx < Cag / Ptz — plt))g (F)dz,

where C'is independent of A. See proof of (2.30) in Appendix A.2. Moreover,
as before, we find

/ (2 — p(t)¢ (@)dz < C / (W (t, ) + Q(a—p(t))) ' (F)da
C
(xo + A(to — 1))?

(2.31) < C’/ (t, 2)¢ (F)dx +
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Thus, it follows from (2.27)—(2.30) that for oy > 0 small enough, V¢ € [ty, to],

M) < ~501=2) [ @ +Cor [ 055 + 50—
1 e C
(2.32) < - 1= /u B¢ @)+ e

Let t € [t1,t0]. By integration of (2.32) on [t, o], since

to at' G e 8. A
_ % X = D
L‘@m+M%—#»2 MmA Trop <z =gt

we find:

/uQ(to, x)ap(x—xo—p(to))dx—l—é/t 7u2(t', z)p' (x—xo—p(t') =Nt —1"))dz dt’

(233) < /u2(t, D)o@ — 20 — p(t) — A(to — £))da + xgo

By density and continuous dependence ([11]) estimate (2.33) also holds

for HZ solutions.

2.3. Monotonicity results for 7(t)

Here, we present similar monotonicity arguments for 7(¢). See [20] for similar
results in the case of the gKdV equations.

Proposition 2. Let 0 < A < 1. Under the assumptions of Lemma 1, for g
small enough and A large enough, there exists C' > 0 such that for all zo > 1,
tl S t27

/%%wwxwx—xw—¢«wwnm
s/ﬁ%uwxmx—A@—¢n—x@—w«wm—xm—u»wx

¢ 2
2 In@)lzs
+ C/ L dt.
n (To+ At —1))?

Remark 3. With respect to Proposition 1, we need to modify slighty the

function in the integral (¢(x — x¢) — p(—z0) instead of p(x —x4)) to remove

some terms in the second member, see comments in the proof. This estimate

is clearly improving Proposition 1 since the remainder term can now be
c

controlled by = sup, [7(8)]]7-.
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As for u(t) in the proof of Proposition 1, we have by direct computations

using (2.4),

%% n*(t, x)(x)de = / ming(x)dx
= —/(»C'rz)(mo’+m<p) +%/n3<p’+ (=1 (/ Qe — %/772%0'>
:/(an)w’+/(7im)mw—%/n o'+ / Q' —Q'p)+ /77 ¢

(234)  + (0 -1 (/ Qe — %/77%) -

Let 0 < A< 1land T =z — 29 — A(to — t). Then, by Lemmas 2 and 3,

we get

? [ < (p'<t>—A—2%) [e@+ [ @@ - et

dt
/Inl +2p—1/6277<p

Now, as in the proof of Proposition 1, we fix A > 1 such that 252 < 1(1—))
and «g small enough so that o’ — A > (1 — A) by (2.2). Then, by (2.30)

and (2.2), we can choose ap > 0 small enough so that
1 2 (=
PP (@) < 2(1=X) [ ¢ (@).

Thus, we obtain

d 1 _ _ _ _

& [re@ < -0 [ @+ e @ -@e@)+2(5-1) [@neta)

At this point, note that the term | n*Q’¢(Z) has no sign, and since @(y) ~ E‘
[ m?, which is

as y — —oo, this term can only be controlled by m
not sufficient for our purposes. We modify slightly the %unctlonal to cancel

the main order of this term.

Indeed, since [nQ" = 0, using (2.4), we have

%/2:2/62777750:_/62,772
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Therefore, using also [ Q'n = 0, we get

4
dt

+2(0-1) [ 1@ (e@—p(—20-Atr—0) ~ & (~(r+Alto—0) [ 7

Now, we claim the following estimate Vx € R,

(2.35) Q2)¢'(T) +|Q(x) (¢(T) — p(=(z0 + Alto — 1))))| <

Since

C
(o + A(to — )%

C
e
Qz)e'(T) < A+t @ =20 — Mo = 1))

(recall that the value of A has been fixed) estimate (2.35) is clear for
Q(z)¢'(T) by considering the two regions |z > £ (zo + A(to — t)) and |z| <
5(o 4+ A(to — 1)).

For the other term, we first note that since |Q(x)| < H% and ¢ is
bounded, the estimate is clear for || > (zg + A(ty —t)). For |z| < 1(zo +
A(to —t)), we have

Clz|
p(T) — p(—20 = A(to—1))| < || sup ¢ < ;
(L (o+A(to—t), 3 (zo+ A(to—1)] (zo+A(to—1))?

thus, for such x, we obtain the following estimate which finishes the proof
of (2.35): o

Q) (p(T) — o(—x0 — Alto — )))] < CESICEDIE

By (2.2) and (2.35), and since |@Q’'(z)| < —<~Q(z), we obtain

1+|z|
Clln®)|7-
(zo+A(to — 1))*’

(2.36) ’/ Q' () - Q' (p(@) - so(—xo—Mto—t))))'

, o Clla®l2 [l

'(p - 1) /Q U(‘P(i) - 90(_$0 - )‘(tO - t)))‘ S (l’o + )\(t(] _ t))2 / 1 + |CL’|
Clln(o):

(2.37) = (20 + Mo — 1))

The conclusion is thus:
d

& i (o) = ol—too 4 Ato = 00)) <=51-3) [ @) +

(zo+A(to — 1))*
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By integration on [t, ty], we get

[ tt0.0) (it = 0) o2

1 [
+ 5/ /772(75', )@ (x — xo — AN(to — t'))dxdt!
¢

< [ 1P(6.) (oo = 0 = At — 1)) = (=20 = A(to — 1)) d

N C/to [n()||7.dt’
¢ (zo+ A(to —1))?

3. Linear Liouville property

In this section, we prove the following result.

Theorem 3. Let w € C(R, L*(R)) N L*=(R, L*(R)) be a solution of
(3.1) w; = (Lw), + B#)Q, (t,x) € R*  where (3 is continuous,

satisfying

(3.2) Vt € R, /w(t, )Q(x)dr = /w(t, 7)Q (x)dx = 0,

(3.3) Vit € R, Vx> 1, / w(t, z)dx < g
|z >z0 Lo

Then

(3.4) w=0 onR%

This result is similar to Theorem 3 in [16]. For the proof, we follow the
strategy of [14], [19], introducing a dual problem whose operator has better
spectral properties. Since w(t) is only L? and has a weak decay at infinity
in space, we will need to regularize and localize the dual solution.

For the sake of clarity, we now present the formal argument. The com-
plete justification will be presented in Sections 3.1 and 3.2.

Multiplying the equation of w(t) by zw(t), we get

% xw2:—2/ /w +/ Q — 2@ +25(t)/x@’w,

where ([(Q)*)B(t) = [ wL(Q") (multiply the equation of w by @ and use
Jw@ =0).
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But it is not clear how to study the spectral properties of the operator

foom o[-0 (o) ([ e)

Moreover, the decay estimate (3.3) is not quite enough to control [ zw?.

Therefore, we instead rely on the dual problem, setting v = Lw. Since
L) = 0 (direct calculation), we obtain the following equation for wv(t):
vy = L(v,). Multiplying the equation by xv, we obtain

jt U—Q/vam /v—/ (Q + 2@).

Note that the operator in v is much easier to study since now the poten-
tial @’ has a positive contribution (z@Q)" < 0), moreover, there is no scalar
product. In fact, we will obtain (see Proposition 4) the positivity of this
operator under the orthogonality condition [v(zQ)" = 0. Observe that
Jv(zQ) = [(Lw)(zQ) = — [ wQ = 0 since £((xQ) ) = —Q (see (3.35)).
Provided that [ |z[v?(t) < C, we would obtain from the above identity

—+00
2
|l e < c

which says that for a subsequence t,, — +o0, v(t,) — 0, w(t,) — 0. Com-
bined with energy conservation ((Lw(t),w(t)) = C) and Lemma 15 be-
low, this gives w = 0. But (3.3) is not enough to obtain the estimate
[ |z|v?*(t) < C In fact, since w(t) is only in L?, we both need to localize and
regularize the dual problem.

3.1. Proof of Theorem 3 assuming the positivity of a quadratic
form

Lemma 4. (Regularized dual problem). There exists vy > 0 such that for
any 0 < v < 7, the following is true. Let v = (1 — ~v9%)"'(Lw). Then,
ve CR,H(R))NL>®R, H'(R)) and

1. Equation of v.

(3.5) ve = L(vs) = (1 = 707) 7 (202 Q" + v:Q").
2. Decay of v.
(3.6) Vte R, zg > 1, / (V2 (t, z) + v*(t, z))dr < C—Z
|z|>x0 xg

3. Virial type estimate.

(3.7) /_ Tl woiadt<c

o (1+12)3
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Proof of Lemma 4. First, since sup, ||w(t)||2<C, we obtain sup, ||v(t)]| g
< C, (see Claim 1 below).

1. Equation of v. Let v = Lw so that w; = v, + 6Q’. Since LQ' = 0, the
function v satisfies v, = Lwy; = L(v,). Now, we introduce a regularization
of the function v. For 0 < v < % to be chosen later small enough, we set:

(3.8) w(t,r) = (1 —~03)"'0(t,r) or equivalently v — v, =0 = Lw.

Then, v(t, z) satisfies the following equation

(1 - 762) (1 - 702) l‘c(v:z:) - ‘C('UI) - (1 - /ya:i)il(’ﬁ:c@) + UCCQ‘
But _(1 - Vag)il(ng) + UIQ = (1 - ’705)71(—271)505,;@/ - VUIQH)a and so
(3.9) vy = L(vg) — (1 — 702 1 (2022Q + v,Q").

2. Decay estimate on v. By using the decay on w(t), we claim

(3.10) Vg > 1,Vt, / (V2 (t, z) + v*(t, z))dr < C—;
|z|>x0

4
)

Indeed, let (zg > 1)

W) = Py (@) = e — ) = (g + arctan (‘”\;x_fo))z

Note that 0 < |W/|+|h"| < Ch. Since v —Yv,, = Lw, multiplying by vh, we
have

(3.11) /UZh + vaih —% 7/v2h”:/w£(vh) :/wD(vh) +/wvh —/Qwvh.
First, from
'/wvh +‘/Qwvh

/2h</ 2h+/ wt< ot
% 7o

(using the definition of h and (3. 3)) it follows that

o] | aw]

< CllwvAlle oV o2

and

- ||v\/ﬁ||L2.
2
0
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Second, by Lemma 14, we have

\ [wpen- | D<M>¢Ew\ <loll VAL LDV < S oV Bl

0

Since

' / D(vﬁwﬁw]suwmmnvﬁnm oVl = [0

1
Zo

),

we obtain from (3.11)

/ (v +0v?) < /(Ui—ier)hg
r>x0

3. Virial type estimate on v(t). Let & < 0 < 3, B > 1 to be chosen later
and set

I(t) = %/%ﬁ)v?(t, v)dr, 2= v\/g’(ﬁ)

where g(z) = arctan(z).

O&Nw‘ QQ

(3.12)  (Lz,2) = —2(L(2), 22) = 2/|D%z|2+/z2 —/(xQ’+Q)22.
For any 0 < 0y < 1, we claim
(3.13)

2I'(t) +

Lz, z) vz

< 2l s
= (B+2) "7 50 (B + 2)1-0

(B + t2)974 ||Z||H% ||U||L2 + WHZ’HH

Ll
(B +t2)?
+ WHZHH%HUHB +

Proof of (3.13). We compute I'(t):

First, note that by Cauchy-Schwarz’ inequality, for any o¢ > 0,
7 v < 79 v
(B + 2)7H1 /‘Cg ((B + t2)9)” =B+ey ) I\ Brey)’

+4g0(3032t2)2—9/<(Bft2)9>29’(ﬁ)v2.
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Since s%¢'(s) < 1, we obtain
ot /xg’ x 02 < o) /22 n Co? /Uz‘
(B+2)f+1 (B+t2)? (B+t2)? oo (B+12)1-0
Second, we use the equation of v to compute the term [ g( Bt t2) )vvt
x
\ @)

— A +B.

FEstimate on A.

A= Jolarap o= [o(rap) o
J ooy ool )
+2/((B+t2) /<(Bj:t2) >Q+g<(Bfit2)9>Q’)v2.
Next,
:ﬁﬁD%zIZ—l—v(D(Ud ey \/g By \/g TVl )
frrslitn) o

11 ,
+§m/(l@ + Q)7

w3 [ (larer) - wrm (i)

1 1 ~
= — im(ﬁz,Z) —|— A1 ‘I— A2 +A3,

where

A1 - (B+t2 / ( \/ (B+t2 (B_{:CtQ)G))a
A, :/(Hvx)vmg< Bty

Ao :%/(g(wft?) ) R ((Bfﬁ) ))Q/”z'
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Estimate on A;. By Lemma 14, we have

AL < B ey ||v||L2|| Izl D/ 9 () [l s < 77GIIUIIL2||Z||H%-

Estimate on A,. Since [(Hv,)v, = 0, Lemma 3, applied to A = (B + t?)°
gives

C
|A,| < m”zniw

Estimate on Ag. Since for all y € R, |arctany — 1fy2| < Cy?, we have, for
all z € R,
x x
NBrey) Brep? B+t2
1Q/ () 1
3.14 <
(3.14) < (oo S By P TI R
Thus

C
|As| < WHUHBHZHL?-
Estimate on B. First, we claim the following.
Claim 1. (i) o(1 —132)1f = (1—02) L (xf) — 27(1 — 102)2(f").

(i) 1(1=702) fllze+72 [ (1=12) " (f) a2+ (1702 7 (F ) 12 <O f | 22
(1 =232 (a2 < Oy 51y

Proof of Claim 1. (i) Let h = (1—v9?)~' f. Then, xh—~(zh)" = zf—2vyh’
and so zh = (1 —v02) Yz f — 2y(1 —~vd?)~' f)).

(i) [1f1? = [|h=~h")?> = [h* + 2y [(W)* + ~+* [(h”)?, which proves
the first estimate.

Next,
2\—1 pn 52
11 =702) " Nl < Cll (=) Fllae < Cyalllel> fll e
14+~¢
since V€ € R, Vv > 0, )

£ ET
— < 1 2
e S €]

The claim is proved.
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Using (i) of Claim 1, we obtain

1 o 2\—1
B:—W/Eg(m)v(l—Vax) H,

where

H = 220,,Q" + 2v,Q" — 2v(1 — vag)_l(vaQ' +0,Q").,.

Since |g(y)| < Cly|, for all y, we have

B| < glollzzll (1 —=~0) " H .

T
(B+12)
Now, we use Claim 1 (ii) to estimate |[(1 —y9?)"'H|| 2. We can rewrite H
under the form:

H = (202Q)" + (vF) + vFy = 29(1 = 792) 7 ((20Q")" + (vF3) + vFY),,
where for j =1,...,4, |Fj(z)] < C+5. Thus,

Tra?
_ _3 _1
[(1 =70 H| 2 < Oy 1 |lvzQ'|| ;3 + Oy 2 oz e
1 _
+ 211 =207 (20Q")" + (VEs) 4 vFy) || 2
_3 _1
< Oy 1 fvaQ'| 4y + Cy 2 v e

Now, we claim

(3.15) lvrzllze < Clizllze,  va@ll,y < Clizll,3-
The first estimate is clear since ﬁ < CV/{¢g'. Let
zQ' ()
f(z) = B e
9 (m)

Then, by Lemma 14,
1D (vz Q)| = [|1D2 (2 )|z < [[(D22)fllz2 + Cllzllall D2 fllzs < Cllzll 3,

since |||z + 1D fllps < [|f | < C.
Thus, ||(1—79%) " H| 2 < Cy % |21l ;3 and in conclusion for the term B:
Cvi
Bl < WHZHH%MB-
Putting together the above estimates, we obtain (3.13).

We now claim the following (see proof in Section 3.2):
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Proposition 3. There exist A > 0, v > 0 and By > 1 such that, for
0</y<70; BZBO7

where z 1s as above.

v,  (Lz(t),z(t) > A|z(t)

||2%a

Remark 4. The operator £ does not depend on v and B, but the orthog-
onality conditions on w imply almost orthogonality conditions on z that
depend on v, B, see proof of Proposition 3.

Choose 0 = % and fix og = %. Then,

A C 1 !
—2I'(t) > —————|Iz(O|> 1 — 2 2,

By the decay property (3.6),

[ew= P+ — 2 <c [ 20+
2| <L (B+t2)° (B + t2)4? (B +t2)10

For v > 0 small enough and B large enough, and by ||v||H% < C, we get

&

Since I(t) is bounded, we obtain by integration

400 1

We claim that (3.16) and (3.6) imply

+o0o
1 2
Indeed, by (3.6) and the expression of ¢’, and considering the two regions
7, 7, we have
(B+t2)3 (B+t2)8
C C
(3.18) lo =23 = llo(t = V)7 < = g

(B+12)8¢  (B+2)m

Thus, by loll,3 < l12],5 + lo = 2l,,3, and (3.16)

—+o00 1 ) d C “+o0 1 d C
@) .dt <2 - __at<cC.
/w e < v+/ Bl

— 00
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Using another virial argument, we claim

+oo 1
2
(3.19) /w B +t2)9||z(t)||H%dt <C.

Proof of (3.19). We set

10 =3 [ o g ) 0

Proceeding as in the proof of (3.13) (the equation for v, is very similar to
the one for v), we obtain

3

/ 1 55)2 C
J@+T§:§?/Uﬁ@ < gt (ol +l2l,3).

Using ||v]|gr < ||2]|mr + [|[v — 2|/ g7, (3.18) and the following estimate
3
Izl < el D222 + Cell 2] 2,

we obtain, for € > 0 small enough,

1 1

1
AGEE: SID2z2|3. + C

B+ oy B+ ey

Since J(t) is bounded and using (3.16), we obtain (3.19).
Finally, by (3.16), (3.18) and (3.19), we get (3.7). Lemma 4 is proved.

2|72

Lemma 5 (Decay estimate on w(t)). The following hold

+o00 1
3.20 / ——|w(t)||3.dt < C,
(3.20 ol
(3.21) sup/ |\z|w?(t, z)dr < C.
teR

Proof of Lemma 5. Estimate (3.20) is a consequence of Lemma 4 by
comparing v and w. Let v > 0 small. We have by the definition of v:
(1 —~v0%)v = Lw. Let w = (1 —v9?)"7w. Then,

/w(l — 0%) 3y = /@(1 — ~0%) 73 (Lw).
On the one hand, we have

[wt st

< Cllwl|z2l|v]| e
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On the other hand, as in the proof of Claim 1
(1 = 582)7% (Lw) — Lib]| 2

<11 = 482)"7(Qu) — Qul|z2 + |Q(w — @) 12 < ¥ |[w]| 2.
Thus,

[ @ - neyten) - 2o, < ol

and since (Lw, w) > %AH[&HH 3 for v > 0 small enough (this is a consequence
of Lemma 15 and the orthogonality conditions on w —see Section 3.2, in
particular the proof of Proposition 3), we obtain

- 1
/w(l —70;) 71 (Lw) > —||%U||2 s = CvillwlFa > w3,
In conclusion, we have obtained
lwllzz < Cljv]|m,

and Lemma 4 then implies (3.20).

Now, we prove (3.21). Indeed, the integrability property (3.20) allows us
to obtain the decay on w(t, x) by monotonicity properties.

By the proof of Proposition 2, we have, for any A € (0,1), for any ¢,
t € (—o0,tg], zo > 1,

/wz(to,x) ((p(x—xo) — @(—xo))d:c
(3.22) < [w(t,9) (plo—r0-2(to—1)) ~ ol — Nta—0)) do
+C’/ |w(t)||3.dt’

Sl](]—i‘)\ t(] —t/»

The last term in (3.22) is treated as follows (z > 1)

to NE +oo 2 gy
/ [w(t )||det/ < Cl’ag/ [w(t)][7-dt 4
¢ (xo+ Alto — 1)) —oo (14 (tg—t))5
Thus, by (3.20) (applied to w(t + to)) and (3.3), letting t — —oo in (3.22),
we obtain

6

w?(to) (p(x — 20) — () do < Cxy .
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By the change of variable x — —x, t — —t, which leaves the equation
invariant, we get:

/wz(to) (p(w0) — p(x + x0)) do < Cﬁaga

and thus, summing up the two estimates,

_s
[ wt0) (o = a0) =+ 0) + () = () dr < Cay
We verify easily that for all |z| > zq > 1,

o(x —x0) — (T + 20) + 0(20) — P(—70)
> 0(0) — ¢(220) + ¢(0) — p(—z0) = § — arctan(2) > 0.

Thus, for all ¢ > 1,

(3.23)

_6
(3.24) / w?(tg) < Cy °.
|z| =0
By integrating in xy, we obtain the following estimate
(3.25) Vt € R, /|x|w2(t) <C.

Thus Lemma 5 is proved.
Now, we claim that estimate (3.21) implies a gain of regularity on w(t).
Lemma 6 (Gain of regularity on w(t)). Let w € C(R, L*(R))NL>(R, L*(R))

be a solution of (3.1) satisfying (3.21). Then, w(t) € C(R, Hz(R)) and the
following identity holds

/wa(tQ)—/xw2(t1):—/t:z/(2|péw|2+w2+w2(x62’—Q))

+2/t1t26(t)/:z:@’w.

End of the proof of Theorem 3 assuming Lemma 6. Note first
that multiplying the equation of w(t) by @ and using [w@Q' = 0, we find
(J(@)2) B(t) = [wL(Q"), so that

(3.27) 1B(8)| < Cllw]|re.

(3.26)

Multiplying the equation of w(t) by Lw and using £Q' = 0, we also have
VieR, (Lw(t),w(t)) = (Lw(0),w(0)).
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By (3.26), the estimates on [ |z|w?(t) and on [(f), and Lemma 5, we
have

+o0 1 )
/ ——— |lw(®)||7 ,dt < C.
e (L )E

This implies that for a sequence ¢, — +oo, we have [[w(t,)]|,1 — 0 as
n — +o0.

Since (Lw(t), w(t))=1limy, . (Lw(t,), w(t,)), we obtain (Lw(t),w(t))=0
and so by the orthogonality conditions on w(t) and Lemma 15, we finally
obtain V¢, w(t) = 0.

Proof of Lemma 6. Formally, identity (3.26) follows from multiplying
equation (3.1) by xw, integration by parts and properties of the Hilbert
transform. To justify (3.26), we use a regularization of w(t).

We set w, = (1 — £92)7'w, so that for all ¢, w,(t) — w(t) in L*(R)
as n — 4o00. Then, w, satisfies the following equation

(3.28) wny = (Lwy)e — (1 — 202) 71 (2Q wne + 0, Q). + B(1 — 202)7'Q).

Let h : R — R be a smooth nondecreasing function such that h(z) = x
if z>1and h(z) =0if x < 0. Then,

1
paod +2 [utne) = & [win@)+— [udhi)
implies that
(3.29) / zw? < C  and / r(w—w,)* — 0 asn— +oo.
>0 z>0

The same holds true in the region z < 0.
For the functions w,, we have the following identity, for any ¢; < ts:

/zwi(tg) —/xwi(tl) =— /t2/ <2|D%wn|2 +w? + w2 (2Q — Q))dxdt
(3.30) + /m/ (= 22(1-10)7'(2Q"wpe + w, Q" )wy,)

42 / "5 / (1 — 162) Q' Ywnddt.
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Indeed, multiplying the equation of w, by Ag(%)w, where g(x) = arctan(z),
we find

[ sz - [ g
~ [ [ (Db Py () + 20D (5) - Dl ()
+ 2Dwnin, Ag(%) + wig (%) + wA(Ag(5)Q - ¢'(5)Q) ) dudt
~2 [0 [0~ 1) Qaatm,
2 / J(0= 32 Q@ + 0, Ag( ),

Then, (3.30) is proved using Lemmas 3 and 14 (see the proof of Lemma 4
for similar arguments) and then passing to the limit as A — 400 applying
the Lebesgue convergence theorem.

From (3.30), we claim that for any ¢y, t,

to
(3.31) limsup/ ||wn(t)||i{%dt < +00.

n—+oo Jtg

Proof of (3.31). By Claim 1 (i), we have
%/x(l — %(?ﬁ)*l(QQ'wm + w, Q") Wy,
=1 /wn( — L9271 (22Q Whew + 33Q" Wy, + 2Q®w,)

—%/wn( — L2 2Qwne + 0, Q") yw = T+ IL

As in the proof of Lemma 4 (control of B), we have

C C
(3.32) 1 < —rllwnlly lwnllze, 1T <

1
n n2

From (3.30), (3.27), the L? bounds on w(t) and w,(t) and (3.32) we obtain

to Cv to
[ 101yt < €t =l +swp [ Jalu(0)+ < [ e
t1

t1 t n4

lwnlZ-

For n large enough, we get fttf ||wn(t)||z%dt < C. Thus (3.31) is proved.

By the well-posedness of the equation of w(t) in H 2, we obtain V¢, w(t) €
H2 and w, — w in Hz. Finally, from (3.29) and (3.32), we obtain (3.26)
by passing to the limit as n — oo in (3.30).
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3.2. Positivity of a quadratic form related to the dual problem

In this section, we prove Proposition 3. The main ingredient is the following
result.

Proposition 4. There exists \g > 0 such that for all z € H%,

/z(x@)’ =0 =

(3.33) (B2, 2) = 2/|D%z|2 +/z2 - /(xQ’+Q)z2 > aoll= 2,
Proof of Proposition 4. First, we introduce some notation. Recall that
(3.34) Lf=-Hf+[f—-0QF.

We define S = (zQ)’. Note that S = %Qﬁc:l and thus by differentiating
the equation of (). with respect to ¢, and taking ¢ = 1, we find LS = —Q.
Observe also that £LQ = —HQ' + Q — Q* = —%Q2, by the equation of Q).
Now, we set T'= 5 — Q. Then LT =—-Q+ 2Q2 (xQ) = S, by using the
explicit expression Q(z) = 1 +I2 We compute [TS = [S* — [QS. Since
S =HQ = 1Q* — Q (explicit computation), we have [S? = [(Q')* and

(Q/)z = 164332 I — Q3 4Q4a thus

/(Q/)2:/Q3_1/Q4:/52:/(%QZ—Q)2:i/@4—/Q3+/Q2,
we find [S% = 3 [Q* Moreover, [SQ = — [2QQ" = 5 [Q? and so
[TS=0. Finally, [TQ=— [TLS =— [ 5%

In conclusion, we have proved ((.,.) denotes the L? scalar product):
= %Qz—Q—( Q), T=5-Q, LQ=-1Q% LS=-Q, LT =5,

(3.35) /Q2 (S, T)=0, (T,Q) = /52
Now, we claim the following.
Lemma 7. There exists A > 0 such tllat, foralle >0, if [wS. =0, where
S. =S +¢eQ, then (Lw,w) > 0 and (Lw,w) > AHwHZ%
Proof of Lemma 7. Let 7. =T — &S and S. = S + €@, then by (3.35):
LT. = S. and
(LT, T.) = (Se, Te)=(S, T)+e(— (S, 8)+(T, Q) —*(S, Q) < —2¢(S, ) < 0.

Moreover, it is clear that if fy, A\g denote respectively the first eigenfunction
and first eigenvalue of £ (see Lemma 15) we have (S, fy) = (LT, fy) =
(T, Lfo) = Mo(z@Q', fo) # 0, since fy > 0. Thus, by Lemma E.1 in [29], we
obtain the first part of Lemma 7.
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Now, we note that since 2@’ > 0,

(Cwwy =2 [ IDruf + [u? - [Q +Qu?

22/|D5w|2—|—/w2—/Qw2:/|D5w|2+(£w,w).

Using the inequality [lwl[]3, < C|lw||z2]|Dzwl|z2 (see (A.1)) and Cauchy-
Schwarz’ inequality, we have, for some constant Cyy > 0,

1
[eu <clatln <c [I0kep+5 [ur

Thus, for g > 0 such that 2 — Cydg > 1 — %‘), we have

(Luw,w) = (2= o) [ 1D} + (1= 180) [w? = (1=8) [ Qu?

> (1= ) (Lw,w) + w4 > Flwl?,,

(3.36)

provided [wS: = 0.
Now, we finish the proof of Proposition 4. Let z € H > be such that

[ 2S = [2(2Q) =0. Let w = z 4 aQ, where [wS. =0, 0 < & < gy, where
€p is to be chosen small enough. In particular, we have

/ng:/st+a/QSE:8/2Q+a/SQ+a8/Q2

:e/zQ+a(%+e)/Q2:0,

and so |a| < W el|z|lr2, and ||w]|z2 <2||z]| 2 for €9 small enough. Similarly,
L

we have ||z||z2 < 2||w]|z2, by possibly choosing a smaller 5. By Lemma 7,
we obtain

A ~ ~ _ ~
Izl < Mlwll ) < (Lw,w) = (£2,2) + *(£Q, Q) + 2a(LQ), 2).

For £ small, we get (Lz,z) > %HzHZ%
Now, we are in a position to prove Proposition 3.

Proof of Proposition 3. In Proposition 3, we want to prove that for B
large and + small, and for some A\; > 0, for all ,
~ ) B x
(L2(t), 2(1) = Ml[2(0)I[ 4, for =(t) = v(?) 9'(@),

where v = (1 — v0?)"!(Lw). Formally, if B = 400 and v = 0, we have
2(t) = v(t) = Lw and 0 = [wQ = — [wLS = — [ 25, and the result
follows from Proposition 4. Now, we justify that the result persists for large
values of B and small values of ~.
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Let Sp(t) = (gl(ﬁ))_%(s —7S"). Then,

£((1 =2 o L )Sp () = —Q

B+ t2)«

and so [ Sp,(t)z = — [w@Q = 0. Now, we control Sp,(t) — S:

SpA(t)—S = w/1+(3+t2 (S —~8") -8
( 1+(B+t2) )S Y 1+ s BHQ =9,

Thus, by elementary estimates and the expression of S, we obtain:

1
1+ x|

«
2

1Sp,(t,x) — S(z)| < (B™% +7)
It follows that

[ 50| = | [15 = Saa0):00)] < (57 4 2) oo

Setting z = z+aQ, where [ 2,5 = 0 and |a| < (B~2+7)]|z||12, we conclude
the proof of Proposition 3 as at the end of the proof of Proposition 4, for B
large enough and ~ small enough.

4. Proof of asymptotic stability - Theorem 1

In this section, we first prove that Theorem 2 implies Theorem 1. Then, we
prove that Theorem 3 (proved in Section 3) implies Theorem 2.
4.1. Proof of Theorem 1 assuming Theorem 2

We follow the strategy of [16], [17], the main idea being to use monotonic-
ity type arguments (such as Proposition 1) to prove that a limiting solu-
tion of (1.1) has uniform decay in space. See also [18] for similar use of
monotonicity arguments.

We consider a solution u(t) of (1.1) in H2 which satisfies
[uo = Q|| ;13 = & < for ap > 0 small enough.

By the stability property, for all ¢t € R,

inf [[u(t) — Q. — y)llp3 < Ca.
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1. Decomposition of u(t) around the asymptotic soliton. First, we determine
the parameter ¢ > 0. It is given by the amount of L? norm that remains
on the region x > % asymptotically as t — +oo. Let ¢ be as in (2.6), with
A > 1 so that Proposition 1 holds. Let

(4.1) ct lim sup/u2(t, z) p(x — ) dr.

1
a WfQZ t—+00

From the stability property, |¢"—1] < Cag (lim, ¢ = 7). Using Lemma 1 to
decompose u(t) around Q.+, we consider the following decomposition of w(t)

u(t7$) = Qc*(x - p(t)) + 77(75’$ - p(t)),

(4.2)
[ @untadr=o. swln(oll,; < Kao

In what follows, we consider oy > 0 small enough, so that the following
holds (by (2.2)):

99 101 99 101
(4.3) Vi, —<pt)<—, —<ct<—.
100 100" 100 100

2. Monotonicity arguments. We claim the following estimates:

Lemma 8. (Asymptotics on u(t)).

(4.4) Yy > 1, 1imsup/u2(t,x)ap(x — Yo — p(t))dx < g,
t——4o00 Yo
(4.5)
: C
Yoo > 1, tmsup [t )l ) + ) = oo = p(0) + i) <

(4.6) lim [ w*(t, z)(p(x — p(t) + %t) — oz — p(t) + f—o))d:l: =0,

t——+00

t——+o0

(4.7) lim [ Wt z)p(z — p(t) + &)de = c+7r/Q2.

Proof of Lemma 8. Monotonicity property on the right of the soliton.
By (2.7), with A = £, we have, for all yo > 1,

[t oeta = p0)do < [ 00.00p(0 = - p(0) ~ o + .

Since limy 4o [ u?(0,2)p(z — yo — p(0) — 3t)dz = 0, we obtain (4.4).
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Monotonicity property on the left of the soliton. By (2.8), with A = 12

20
and xg = %t/, we have for all 0 < ¢/ <'t,

/ u?(t, 2)p(x — p(t) + Ft)dv < / Gt 2)ple — p(t) + Bt')de + tQ

It follows that [ u?(t,z)p(x — p(t) + s9t)dz has a limit as ¢ — +oco. Set

t——+o0

(= lim [ w?(t,z)p(x — p(t) + 2t)dz, 0> c+7r/Q2.

Applying (2.8) with A = (35 — 1555) < 1 and zo = we find

t
20 1000 1000°

C
[ atayete = o)+ B0y < [ el 00ele - plets) + )i+ T
Since

limsup/u2(1tm,:c)go(x — p(35s) + 15155 )dx < c+7r/Q2,
t——+o0
we obtain ¢*m [ Q? = ¢ and (4.6).

Fix yo > 1, pick A = % Consider t, > t and define t; = %tz + 290, SO
that for ¢ large, t; < to. But then, by (2.8),

/ W2 (ts, 2)p(—plte) + 2)dz = / W2 (b2, 2)p(—plt2) + A(fa—to) L) d

C
< / W01, a)pla — pltr) + oo +
0

In light of (4.6) and the existence of ¢, (4.5) follows. Thus Lemma 8 is
proved.

3. Construction of a compact limit object. Let t, — +o00. By the uniform
1 ~ 1 .

bound on u(t) in Hz, there exist up € H2 and a subsequence, still denoted

by (t,), such that

u(ty, .+ p(t,)) = 0o in H? weak as n — +00.

Consider () the global H2 solution of (1.1) such that %(0) = . By (4.2),
|lto — Qe+|| < Coap and thus by the stability property, sup,inf, ||a(t) —
Q( —y)ll,;3 < Cag. Let p(t), 7(t) correspond to the decomposition of u(t)
around Q.+ given by Lemma 1.

By Theorem 5 below and Remark 2, for all ¢ € R, we have

ulty +t,.+ p(ty)) — U(t) in H? weak,
p(t, +1t) —p(t,) — p(t) asn — +oo.
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From weak convergence and Lemma 8, we claim the following decay estimate
on u(t):

(4.8) Yyo > 1,Vt € R, / Wtz + p(t))de < —.
|z|>vyo Yo

Indeed, first, from (4.4), for any fixed yo > 1, t € R, we have

Y

C
lim sup/uQ(t + tna T+ p(tn))gp(gj - p(tn + t) + p<tn> - y0>dx < y_
0

n—-+0o0o
and so by weak convergence
s - C
u(t, z)p(x — p(t) — yo)dz < "
0
Second, from (4.5), for fixed t € R,
lim sup/u2(t + tn, x + p(t,)) X

n—-+o00

X (9o = plta +8) + p(t) 4 532) = (o = plta +0) + p(t) + ) <

Note that for fixed t, yo, we have

lim @(x — p(t, +1) + p(tn) + B5) — o(x — p(tn +1t) + p(tn) + yo)

n—-+0o0o
=7 — @z — p(t) + yo) = (=2 + p(t) — yo).

Thus, we obtain

o - C

Wt w)p(=w +plt) = yo)dw < -

Finally, from (4.4)—(4.7), for any yo > 1, we have

¢
Yo

<

lim ' / u2<tn,x)(w(z—p(tmyo)—w(z—p(m—yo>>d”f‘c+”/ @

n—-+o0o

Thus, by L7 convergence, for any yo > 1,

'/a%(x)(w(xwo) _¢(x_90))d$—c+7r/Q2

C
< —.

Yo
Passing to the limit yg — +o0, we obtain

[aol[ 2 = [[u(t)l[2 = Ve |QllLe = |Qcr [l 2
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4. Conclusion by Theorem 2. From Theorem 2, it follows that for some c;
close to ¢ and z; close to 0, we have

u(t, ) = Qe (x — 1 — qt).

But ||a(t)]|2 = ||Qe+]|z2 implies that ¢; = ¢™. Moreover, p(0) = 0 and
u(0) = Qe+ (x — 1) = Qe+ (z )+'r](0 x) where 27 is small and [77(0)Q’. =0
imply z; = 0. In conclusion, g = Q.+.

By a standard argument and (4.4), (4.7), we have obtained

u(t,. +p(t)) = Q-+ in H? weak as t — +00,

(4.9) lim lu(t, ) — Qe+ (z — p(t))|*dx = 0.

t——+o0 t
$>E

Thus Theorem 1 is a consequence of Theorem 2.

4.2. Proof of Theorem 2

First, we note that it is sufficient to prove Theorem 2 in the case [uf = [ Q?.
Indeed, for uq satisfying the assumptions of Theorem 2, set

u? 1 1 1
= L{Q% and  u(t) = C—lu(gt,c—lx>
Then, |¢; — 1| < Cap and @ satisfies (1.1), [u* = [ Q? and ||uy — Qll,1 <
Cag. Thus, by the stability property —see Introduction— for all ¢, there
exists y(t) such that sup, [[u(t) — Q(. — y(?))| ;3 < C’ag. Moreover, u(t)
also satisfies (1.9). If we prove u(t, ) = Q(x —t — ), with |z¢| < Cay, the
result follows for u(t).

The proof of Theorem 2 is by contradiction. Assume that there exists a
1
sequence uy,(t) of Hz solutions of (1.1) such that

(4.10)  sup [lun(t) = Q( = pa(t))l[2 = 0 as n — +oo,
teR

@) [0 / Q. 20,

(4.12)  ¥n,¥e > 0,3A,. >0, s.t. Vt € R, / ul(t,x + pa(t))dz < e,

|z[>An,e

where p,(t) and n,(f) are defined from w,(t) by Lemma 1. Note that
Ju2(0) = [ Q* implies

(4.13) Vn, Vt, /ng(t) = —Q/nn(t)Q.
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Define

(4.14) 0Z b, =sup ||n,(t)]|lrz— 0 asn— +oo.
t

Then, there exists ¢, such that ||, (t,)] 22 > 1b,. We set

N (tn +t, )

Wy (t,x) =
For such a sequence w,, we claim the following result.

Proposition 5. (Weak convergence of renormalized solutions). There ezists
a subsequence of (wy) denoted by (w,/) andw € C(R, L*(R))NL>®(R, L*(R))
such that

VteR, wy(t) —=w(t) in L* weak as n — +oo.

Moreover, w(t) satisfies for some continuous function (B(t):

= (Lw), + B(t)Q" onR xR,

0) #0, /wQ /wQ =0,
C
Vit € R, Vo > 1, / w(t, z)de < —
|z|>z0 5170

Proposition 5 is in contradiction with Theorem 3. Thus, for ag > 0
small, for u(t) satisfying the assumptions of Theorem 2, we have n = 0 so
that p'(t) = 1 (by Lemma 1) and u(t, z) = Q(z—p(0)—t), with |p(0)| < Cay.

Therefore, we are reduced to prove Proposition 5.

Proof of Proposition 5. One can actually prove a strong L? convergence
result. See the end of the proof.

Note that the main point in Proposition 5 is the fact that w # 0. This
requires a strong convergence in L? for some suitable t.

Decay estimate. From Proposition 2, we have
[ttt 2) (e = 0) = (=)o
< [ )t = 0 = Ao = 1)) = p(=0 — At = 1))

2

Letting t — —oo and using (4.12), we obtain, for any zo > 1,

Cb2

Zo

/ 72 (o, 2)(p(z — 0) — (—10))
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Similarly, arguing on 7, (—t, —x), for any zo > 1,

CR

_SL’(]

Y

l/ﬁ@m@@@®—¢@+mm

which gives, by (3.23), similarly as in the proof of (3.24):

2
(4.15) Vzo > 1, / n2(t, x)dr < b and / w2 (t, r)dr < g
lz|>x0

|z|>z0 Zo Zo

Local smoothing estimate on w,. Let ¢ be defined in (2.6) for a fixed value
of A (A =1 for example). Then,

(4.16) / /|D2 wn(t, 2)\/ @' ())|Pdzdt < C.

Proof of (4.16). First, we claim the following estimate:

1
(417) §%ﬁn@___/D2 M |+C/ <——/D2 M |2+Cb2

Thus, by integration,
t+1 )
vt € R, / /|D2(77n\/g0/)|2dxdt < CPh? and

/ /|D2 wnr/ )| Pdadt < C.

Now, we justify (4.17). Using direct computations, Lemma 3, (2.2) and then
[ S < C [l < C [n? (by (A1), we get

1d

1
= [ = ) o ) + = 1) [ @ = 0= 1) [ a2
_ / 1 2 1 1 2 / /
= /((H'rzm)nmwr (Hhne)n’) — 5/%0 + §/nn(—QsO+Q<p)

1 /
+3/nnw+pn—1/62nnw—— 1)/772@
< /(Hnm)nn@’+0/ﬁn

(4.18)
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Using (A.3) and then (A.1), we have
- / (HNne )i’ = / M D (")
Z/nn\/?D(nn\/?H/nn( (') — /&' D( nn\F>
@19) 2 [1D/F)P ~ Cllnal il D) — VED1/)
/ D} (/P = Cllnnllze /| D/

=3 / D2 (/&) = Cllmall 3

(Note that we have used ||D+v/¢'||zs < +00.) Thus (4.17) is proved.

Compactness in L* for some time. From the equation of 1, and (2.2), it

follows that
2 1 1,2 / / _d 2 2
M=—5 [ Qi+ (1) [ Qun andso |— [} <Co [ .

In particular, by the definition of ¢,,, V¢ € [0,1], [n2(t+t,) > e “°b2 and so

(4.20) vt e [0,1], |lwa(®)|pe > e 2% =6 >0.

It follows from (4.16) that for all n, there exists 7, € [0,1] such that
S 1Dz (w,(1,)v/@')[> < C. Thus, there exists a subsequence of (w,) (still
denoted by (w,)) and so € [0,1], W € H2 such that

. 1
Wn(To)V@' = W in Hz weak, Tn — So as n — —+0o.

But (by possibly extracting a further subsequence), there exists w,, € L?
such that

Tw — 80,  Wp(Ty) — ws, in L? weak as n — +oo0.
It follows that W = wg,/¢’. Since /¢’ > 0 on R, we get
wy(T,) — wy, in LY, as n — +oo.

By (4.15) and (4.20), we finally get
(4.21)  wp(rn) — ws, in L? as n — +oo0, /wSOQ/ =0, ws #0.

Note also that from (4.13) and [ 7,Q’ = 0, we have

(4.22) / 0 Q = / 0 Q' = 0.
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Weak convergence for all time. Consider w(t) € C(R,L*(R)) the unique
solution of

wy = (Lw), onRxR, w(sy)=ws, onR.
(It is clear by a standard energy estimate and regularization arguments that
the corresponding Cauchy problem is well-posed in L?).

Now, to obtain weak convergence, we need to remove some terms from the
equation of wy,, following some arguments in [16], Lemma 8 and beginning
of proof of Lemma 11. We write
1

Wt = (Lw, — %"w e +

where
1

fo=
J(@)
Set w,,(t) = w,(t) — Q' f Bn(s)ds. Then, the equation of w,(t) writes

/@w@m Ba= (=1, Fu= (B 5)Q

n

Boe = (LTn)o = 5D + buFy + b (@) + buBaQ" / Ba(s)ds
We claim the following weak convergence result.
Lemma 9. For all t € R,
wy(t) — w(t) in L* weak.

Assuming this lemma, from (2.5), we have, for all ¢,

Bult) — /ﬁ” /ﬁn se/ﬁ

Set w(t) = w(t) + Q' fso ﬁ(s)ds. Then, w(t) solves
= ('Cw):c + EQla
and w(sg) = ws, # 0. Moreover, for all ¢t € R,
wy(t) — w(t) in L? weak.
Finally, from (4.13) and [ 7,Q" = 0, we have [w(t)Q = [w( =0,

and by weak convergence and (4.15), we have

Vg > 1,Vt, / w(t, z)dr < g
lz|>x0

Zo

Thus, we are reduced to prove Lemma 9.
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Proof of Lemma 9. Set
L, 2 2 0 '
Gl,n - _Ewna G2,n = Fn + ﬁnwn + ﬁn@ ﬁn(S)dS, Gn = Gl,n + G2,n-

Observe that
|G1nllzr + [|Ganllze < C(t), with C(t) bounded on bounded intervals.

Let T € R. By sup, ||w,(t)]|zz < C and the expression of w,, we have
sup_p7) [wn(t)]|22 < Cr.

Let g € C3°(R) and let v solve the problem

{ v = L(vy)

Vt=T = 9-

Then
[ @ = D Dgla)dn ~ [ (wa() - wir)im )
— /T / 0,((, — @) (t)v(t, z))dadt

- / / (LT — (LT)a + ba(Go))olt, 2) + (@ — ) (L) odadt

T
= —bn/ /Gnvx(t,x)dxdt.

The energy method gives

]| Loo ([r,,22(R)) F |V || Lo (a1 xR) F |V || o0 (77, 220R)) < C.

Moreover, by continuity of ¢ — w(t) in L?
lir}rl (wn(Tn) — w(Tm))v(T)dx

= lim [ (w,(7) —w(so))v(m)de + lim [ (w(sg) — w(7,))v(r,)dx = 0.

n—-+o00 n—-+00

Thus,
Wp(T) —= w(T) asn — +o0.

and the proof of Lemma 9 is concluded.
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Alternate proof by strong L? convergence for all time. Now, we
use Theorem 6 in Section 6 to prove strong L? convergence of the sequence

(wy(t)) for all t.
Let T' > 0. Set

Cn(t, ) = wn(t, x — pu(t) + pn(0))

(4.23) + %[Q@ = (pu(t) = pn(0))) — Qz — 1),

so that

un(t, x4+ pp(0)) = Q(z = pu(t) + pa(0)) + buwn(t, 2 = pu(t) + pu(0))
= Q(x - t) + ann(t’ x),

and ¢, satisfies

by

(Gn)e = (=H(Gn)e — Q@—1)Cn)o — 5((5)30,

1) |2 < Cp, ¥Vt e [-T,T).
Indeed, since |p],(t) — 1| < C||nn|z2 < Cb,, we have
(4.24) pn(t) = pn(0) — t| < Cbyt],

and the estimate on (, follows.

On the one hand, Theorem 6 applied to CLTCH for n large enough (so
that b,, is small enough) implies that ¢ € [-T,T] — (,(t) € L? is equicon-
tinuous in n.

On the other hand, from (4.16), we have

/[TT]/]D%(Qn(t,x)\/W)fdxdtgcT,

and the decay property (4.15) also holds for ((¢) on [T, T'| with constant de-
pending on 7. In particular, there exists N C [T, T of zero Lebesgue mea-

sure such that for all t € [T, T]\ N, [|D2(Ca(t, )1/ (x))?dzdt < +oo.
Now, we choose a dense and countable subset I of [—T,T] such that for all

tel, [ |Dz (¢, (t, )/ (x))|2dxdt < 4-00. Arguing as in the proof of (4.21),
and using a diagonal argument, there exists a subsequence of ({,) which we
will still denote by (¢,) such that for any ¢ € I, ¢, (t) — ¢(t) in L? strong as
n — +o00. Using the equicontinuity, we obtain

(4.25) Vt e [-T,T], C(a(t) — ¢(t) in L* strong as n — +o0.
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By (4.24) and |p), — 1| < Cb,, we may also assume that for the same subse-
quence

(4.26) Vi € [-T, T, bi(pn(t) — pn(0) — 1) — k(D).

n

Now, we deduce from (4.23), (4.25) and (4.26) that

vVt € [=T,T], wy(t) — w(t) =n(t,. +1t)+ k(t)Q in L? strong as n — +o00.

4.3. Proof of Remark 1

Let u(t) be a solution satisfying the assumptions of Theorem 1. Let ¢*, p(¢)
and n(t) be defined as in the proof of Theorem 1. In particular, by (4.9),
we have

4.27 lim t,z)[*dx = 0.
n

t—+o00 I>%—p(t)

To prove (1.11), we use the identity (2.34) on 7, where ¢ = 7 + arctan(%),
A > 1 large enough be to defined later:

1 2/1 20y /
th/nso /anw+/(7im)mw 2/77w+2/77( Q'p+Q¢")

+%/'rz ¢/+(p’—1)/62’mo—%(ﬂ'—l)/nzwl-

We claim that for A large enough and ag small enough, for C' > 0 indepen-
dent of A,

(4.28) th/nw /an 90+C/1+x2

Indeed, by Lemma 3, we have [(Hn,)n.¢ < S [n?¢’. By the definition of @,
I (=Qe+Qy) <C[ 11% By (2.30) (note that the constant in (2.30)
is independent of A) | [ n*¢'| < Cayg [ n*¢’. Finally, the last two terms are
controlled using (2.2), so that (4.28) is proved for A large enough, ag small
enough.

Now, we use (4.19) on n. We obtain

1d
2dt

(4.20) / D (/B2 + Cllalle /@ e | DA/l s + C

e
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Note that for A > 1, we have 1+ —— < Cyp on R. Let tg > 0. Integrating the
above estimate on [to, to + 1], we get

/t:o+1/|D5(77\/97)|2 <C sup </772(t)90+CH"7\/JHL4HD\/J|IL4>.

tE[to,t0+1]

On the other hand, by (A.3), we have
[0tk <2 [ Dt/ R + 2 [ (D) - D)
2 [ IDaV/F) P + Cllli 1D}/,
<2 [ IDHav/@)P + CIDAF R,
Thus, we obtain

to+1
/ / DinPddt < C  sup ](/ n2<t>w+c||nﬁ||L4||D¢&||L4)
to

tE[to,t0+1
1
LD
We have ||D%\/cp’||2L4 < CA™%, |Dy@||pe < CA™7 and

_3
V@l < lnllesllv/@lls < CATS

Therefore,

ot dadt .
/ /|D n(t,x) 2 ’ <A sup </n2(t)g0> +CA™ 2.
( ) te(to,to+1]

We now choose A depending on %:

t
A= A;, = min @, sup / n*(t, z)dx
2 tefto,to+1] Jz> 5 —p(t)

For this choice of A;,, we have limy,_, ;- Ay, = +00 and, since E p(t) < —%,

A
A sw ([roe)<ca s ([ o)« Pecan
t€lto,to+1] t€fto,to+1] > L p(t) to

so that limg, 4o ASUDiep 1o11] ([ n*(t)¢) = 0. It follows that

fot+1 dxdt
lim /|D n(t, r)|? T

(SIS

to——+00 1 +x 2
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5. Multi-soliton case

Using the previous arguments and the strategy of [21] for the gKdV equation,
we obtain the following result concerning multi-soliton solutions of (1.1).

Theorem 4 (Asymptotic stability of a sum of decoupled solitons).
Let N>1and 0 <) < ... <c§]\,. There exist Ly > 0, Ag > 0 and ag > 0
such that if ug € H: satisfies for some 0 < a < ap, L > Ly,

(5.1)

< a where Vj €{2,...,N}, y?_y?—l > L,

H?2

N
UO_Z QC?(‘_y]Q)
j=1

and if u(t) is the solution of (1.1) corresponding to u(0) = uy, then there
exist p1(t), ..., pn(t) such that the following hold

(a) Stability of the sum of N decoupled solitons.

(5.2) VYt >0,

u(t) = " Qala = py(t)

1
SAQ(O[‘I'—)
a3 L
Jr

(b) Asymptotic stability of the sum of N solitons. There exist ¢, ..., cx,
with [cf — ¢ < Ag (v + 1), such that

(5.3) Vi, u(t,.+p;(t) = Q.+ in H? weak as t — +00,
J

(5.4) — 0, pi(t) = ¢ ast — foo.

L2(z> %c(l)t)

u(t) =Y Qu(—pi(t)

J

j=1

Recall that the Benjamin-Ono equation admits explicit multi-soliton so-
lution. We denote by Uy(z;¢;,y;) the explicit family of N-soliton profiles,
see e.g. [22, formula (1.7)] and Appendix A (see also references in [22]). We
obtain the following corollary of the above Theorem and the continuous
dependence of the solution in H 2

Let N>1,0< ¢} <--- < and set
dy(u) = inf {Jlu = Un(5¢5,95)ll 3. v € R}
Corollary 1. (Asymptotic stability in H 2 of multi-solitons). For all § > 0,
there exists a > 0 such that if dy(uo) < « then for all t € R, dy(u(t)) < 9.

Recall that a result of stability in H! of double solitons for the BO
equation was proved by variational methods in [23]. See also [22] for stability
related results.
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5.1. Sketch of the stability argument [31]

For the reader’s convenience, we now sketch the proof of the stability argu-
ment for one soliton (see statement in the Introduction). Let u(t) be an H2
solution of (1.1) such that u(0) is close to Q in Hz. Let ¢t > 0 be close
to 1 such that [u?(0) = ¢ [Q* We use Lemma 1 on u(t) around Q.+
so that n(t,z) = u(t,x + p(t)) — Qe+ (x) satisfies [n(t)Q.+ = 0 and by L?

conservation [ n(t)Qc+ = —3 [ n*(t).
We define the functional

(5.5) G(u(t)) = E(u(t)) + c* /uz(t).
Observing that G(u(t)) = G(u(0)) and so expanding u(t) in G(u(t)), we

obtain

(Lesn(t), () + 00 (1) = (Lern(0),7(0)) + O(n*(0))

where L.+n = —Hn, +ctn—Q.+n. By the positivity property of L.+, (prop-
erty (A.10) of £ and a scaling argument), we then obtain

@l < ClaOl, ;.
Note that } / nQC+}§ C||n||%. replaces the orthogonality condition [7Q.+ = 0.

5.2. Sketch of the proof of Theorem 4

The proof is the same as the proof of Theorem 1 in [21].
First, we recall four lemmas (corresponding to Lemmas 1-4 in [21]) which
are the main tools in proving Theorem 4.

Lemma 10. (Decomposition of the solution). There exist Ly, aq, K7 > 0
such that the following is true. If for L > L1, 0 < a < aq, ty > 0,

) <o
H?

then there exist unique C* functions ¢; : [0,t] — (0,+00), p; : [0,t0] — R,
such that

0<t<to \¥;>Yj—1+L

o (it ([t =30 0ul~ 1)

n(t,z) = u(t,z) — R(t, z)

N
where  R(t,z) =Y Ri(t.z), Ryt ) = Qc(z — p;(t)),
j=1
satisfies the following orthogonality conditions

vivte0nl, [ R0 = [ @00 =0
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Moreover, there exists C > 0 such that ¥t € [0, to],

N
@)1l + D les(t) = HI < Ca,
j=1

i, |e0] + 1640 - 0] <€ (Il + 7).

Remark 5. In the rest of the argument, the modulation in the scaling
parameter for all time (i.e. the introduction of ¢;(t)) is not necessary. Indeed,
modulation at ¢ = 0 would be sufficient since we deal with the subcritical
case. However, we have preferred to introduce this modulation to match the
strategy of [21].

Expanding u(t) in the energy conservation and using E(Q.) = *E(Q),
we have

Lemma 11. There exists C > 0 such that in the context of Lemma 10,
vt € [0, to],

QY [20) - 20 + 5 [ - R

J=1
1
2 3
<0 (IO + 10l + 7 )

We consider ¢ defined as in (2.6), with A large enough, and we set
Vje{2,...,N},

7,(0) = [ w(t.2)o(o — my(O)d, my(®) = 5(oi-1(0) + pi(0)

Then, proceeding as in the proof of Proposition 1, we obtain the following.

Lemma 12. There exists C' > 0 such that in the context of Lemma 10,

C
Finally, setting c(t,z) = ¢1(t) + Z;.V:z(cj(t) —cj_1(t))p(x —m,(t)), and
proceeding as in the proof of Propositions 3 and 4, we have

Lemma 13. There exists A > 0 such that in the context of Lemma 10,

s

vt € [0,to], Gn(t) = /mHn + c(t,z)n’ — Qn® > An(t)
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Recall that the introduction of the functional Gy(t) for the problem of
stability of multi-soliton solutions is justified as follows. For the stability of
one soliton, the suitable functional is G(u(t)) defined in (5.5). For the case
of N solitons we introduce the functional Gn(t) which is approximately
E(u(t)) 4+ ¢;(0) [ u?(t) around the soliton Q.. Then, we observe (using the
energy conservation and Lemma 11) that this quantity is almost decreasing.
This is sufficient to conclude the stability argument for several solitons.
We now sketch the argument. We refer to [21], Section 3 for more details in
the stability proof.

Sketch of the proof of the stability. Let

al 1
u — E QC?(.—y]) ) SAO <Oé+z) }
=1 a2

Part (a) of Theorem 4 is a consequence of the following proposition and
continuity arguments.

Vao (L, a) = {u €Hz; in

f
Yji—yj—1>L

Proposition 6. There exist Ay > 0, Lg > 0 and ag > 0 such that, for all
Ug € H%, Zf

N
Up — Z ch(- - 3/?)

J=1

<«

1

Y

where L > Ly, 0 < a < ), y;-) - y?q + L, and if for t* >0,
Vi e [0,T*], wu(t) € Va (L, ),
where u(t) is the solution of (1.1), then
Vi€ (0,17, u(t) € Viy (L, ).

The proof of Proposition 6 is exactly the same as the proof of Proposi-
tion 1 in [21], using Lemmas 10-13. In particular, we first prove

1
(56) Ve 0.e] Zlc] =00 = G (101, + IO, + 7).
and then

57) 012 < (IO + 7 )

where C, Cy > 0 are independent of Ay, and we then conclude by using the
decomposition of u(t) is terms of n(t) and R(t).
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Note that in proving (5.6), we make use of the following algebraic fact:

BQ)=CE@. [@i=c[@ B@--; [

The last formula is easily obtained from the equation of ) multiplying by @
and then by Q" and using [(HQ')(xQ’) = 0. This allows us to prove the
following estimate

E(Q)i(cg ) —¢(0 Q2 {c] ) (¢;(t) = ¢;(0))}
@3 0o+ [ !

<CZ|CJ —¢;(0

which is the analogue of (44) in [21].

The proof of part (b) of Theorem 4 is exactly the same as in [21], Sec-
tion 4, using Theorem 2, the monotonicity arguments (Proposition 1) and
Theorem 5. It follows closely the proof of Theorem 1 in the present paper.

The proof of Corollary 1 is omitted since it is the same as the proof of
Corollary 1 in [21].

6. Weak convergence and well-posedness results

6.1. Weak convergence

Theorem 5. (Weak continuity of the BO flow map). Let (u,,) be a sequence
of global H= solutions of equation (1.1). Assume that u,(0) — ug in H?
weak and let u(t) be the solution of (1.1) corresponding to u(0) = ug. Then,
for allt € R, u,(t) — u(t) in H2 weak.

Proof of Theorem 5. Let ug,, = u,(0). It is sufficient to prove the result
for T' € [0, 1].

Step 1. H?case. Here, we assume ug,, — ug in H%. Let w, = u, —u. The
equation for w, is

Wyt + H(Wp) g + UnWha + Upwy, =0
61) { ¢+ H(w,)

wn(o) = wna 'an = Ug,n, — Up-

Fix t =T, g € C§°(R). For a function u to be determined, we consider the
solution v(t) of

vy + Hvge + (W) — uzv = 0,
o(T) =g.
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Then
T
/wn(Tx dx—/z/)n Oxdz—/ /wnt )+/ /wn(t)vt
0
=I1+1I.
I—/ /wn (Hvge + (unv)y — ugv / /wn (Hvze + () — ugv)
so that

/wn(T,:c dx—/wn Oscd:c—/ /wn Uy — W)V
[

We can assume, after passing to a subsequence, that u,, —u — 0 in L? (R x

[0,T]). Next, we will show that given € > 0, there exists R > 0 such that

T
‘ / / W (Up — W)V
0 |z|>R

In fact, since ||wp||p~ < C, sup, ||v]|rz < C and sup, ||u, — ||z < C, the
claim is clear.

But then, I + II — 0 as n — +o0o. We only needed sup, ||[v||;2z < C,
which needs w, € L*, u, € L, which are both clear. (We use the energy
method to bound v.)

<e

, uniformly in n.

—

Step 2. General case. Fix N large and define ué\fn such that uy,(§) =
1N (&)uon(§), where 17 is the characteristic function of I. Note that

— C’
o = woale = [ O < lluonly < 5
|€[>N

so that ué\{n — Uy 1N L? as N — +oo, uniformly in n.
Fix g € C5°, T € R, € > 0. The proof of the L? continuity of the flow
map (see [11]) shows that

sup [[u™ (1) — u(t)]| 2 < Cllug — uol| 2,
te(0,1]

sup [lul () — un ()|l 2 < Cllug), — uonllz2
t€[0,1]
for some universal constant C' > 0. We fix N such that

/(un(T) —u(T))g — /(ufj(T) —u™N(T))g| < %, uniformly in n.

But, for fixed N, we let n — 400, and use step 1 and the proof is concluded.




ASYMPTOTIC STABILITY OF SOLITONS FOR THE BENJAMIN-ONO EQUATION 957

6.2. Well-posedness result for the nonlinear BO equation with
potential

In this subsection, for 0 < b < by, by small, we consider the IVP

62) v = (—Hvy)s — (Q(z—t)v), — 2(v?), =0 on [-T,T] x R,
' v(t=0,2) =ve(z) onR.

The well-posedness of the Cauchy problem in L? for this equation is clear

from [11] since u(t,z) = Q(z—t) + bv(t, z) satisfies the BO equation. Our

main concern is a result of equicontinuity of the map ¢ — v(¢) in L? with

respect to b. To establish such a result we follow the strategy of [11] on equa-

tion (6.2), using the special form of ) and keeping track of the dependency
in b.

Theorem 6. (a) Let vy € H®. Then, there exists T = T(Q) > 0 and a
unique solution v = Sp°(vo) of (6.2) in [-T,T], v e C([-T,T], H®).
(b) There exists a constant C, independent of b such that
(6.3) sup ||v(t)||z2 < Cllvo|| g2

te[-T,T)
(c) The mapping S5° extends uniquely to a continuous mapping Sy : L* —
C([-T,T), L?), and there exists C, independent of b such that

(6.4) sup [[v(t)[lz2 < Cllvoll 2.
te|-T,T)

Moreover, given vy € L?, |lvgllrz < 2, for any € > 0, there ewits
§ = 8(vg,e) > 0 (& independent of b) such that for any v; € L2
o]l z2 < 2,

(6.5) [lvo—wilrz <6 = sup [[SY(wo)(t) = Sp(v1)()]lr2 e
te[-T,T)

Finally, there exists b = g(vo,e) > 0 (independent of b) such that for
any t,t' € [-T,T],

(6.6)  [t—t1<0 = [SH(vo)(t) = Spwo)(t)llz < .

Reduction of the proof. For 0 < A\ < 1, consider vy(t, ) = M (A%, A\z).
Then v, solves

67) {(UA)t = (=H(0A)o)o— (AQAz—N2t)0)), —2(1})e =0 on [-T, T xR,
. uA(t=0,2) =vgr(x) on R, vy ,(z) = Avp(Az).

Define
Qx(t,z) = A\Q(M\z—)\1).
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Then the proof of Theorem 6 reduces to prove that for the following (IVP)
(6.) vy = (—Hug)e — (Qa(t, 2)v), — 2(v?), =0 on [-1,1] X R,

‘ ’U(t:O,SL’) :Uo(.flf) on R7 ||UO||L2 < )‘%7
we have

Theorem 7. There exists by, X > 0 small enough such that if 0 < b < by,
the following hold

(a) Assume vg € H*. Then, there exists a unique solution v = Sg°(vg) of
(6.8) in [—1,1], v € C([—1,1], H™).

(b) There exists a constant C, independent of b such that

(6.9) sup |[v(®)]| gz < Cllvol|m2-
te[—1,1]

(c) The mapping Sg° extends uniquely to a continuous mapping SY : L* —
C([-1,1],L?), and there exists C, independent of b such that

(6.10) sup |lv(t)||z2 < Cllvol| 2.
te[-1,1]

Moreover, given vy € L2, |lvollzz < A2, for any € > 0, there exits
§ = 8(vg,e) > 0 (& independent of b) such that for any v; € L2
Joallze < Az,

(6.11) flvo —wifl2 <0 = sup 155 (wo) () = Sp(w1)(t) |2 < e.
te|—1,1

Finally, there exists = 0(vg,€) > 0 (independent of b) such that for
any t, t' € [—-1,1],

(6.12) t—t1<d =[S wo)(t) = Spwo)(t)]lee < e

The proof of Theorem 7 is based on the following three propositions.

Proposition 7. Assume vy € H*, then there exists T = T(||vo||g2) and a
unique solution v of (6.8) in (=T,T). Also, for any o > 2,

(6.13) sup |[u(t)[lue < Clo, vollo, sup [lv(®)]|#2)-
te(—T,7) te(—T,7)

In particular, the constant C' is independent of b, (0 < b < by) and X < 1.
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Proposition 7 is a consequence of the energy method, taking into account
that

10:Qxll L1 (~1,1),250) < O

Proposition 8. For A small enough, we have that if T' € (0,1], ||vg|z2 < Az,
v=S%(v) € C((=T,T), H®) is a solution, then

sup |v(t)|| 2 < Cllvol 12,
te[-T,T)

where C' is independent of b (0 < b < by).

Proposition 9. For vy € H®, N € [1,00), |lvollre < )\%, let ;{5’(5) =
1w (§)00(8), vy € H®. Then,

sup 185 (vo) (t) — 57 (v ) (1) |2 < Cllvg — v 2,
te(—1,1)

sup 557 (vo) (1) 2 < Cllwo[ 2.
te(—1,1)

where C' is independent of b (0 < b < by).

Proof of Theorem 7 from Propositions 7, 8 and 9. First, note that
Propositions 7 and 8 clearly give (a) and (b) in Theorem 7. Let us turn to
the proof of (c): it suffices to show first that if vg, € H*, lim, 4 vo.n = Vo
in L?, the sequence S;°(vy ) is Cauchy in C([—1,1], L?). Let € > 0 be given.
We want to show that there exists M. (independent of b) such that

monz M = s S () - S ) Ol < =
te[—1,1

Observe that
|vo.n — U(J)\,]nHLQ < lvo — v§ 22 + llvo — vo,ullz2-

Hence, we can fix N = N (e, vg) large and M} large such that |[vg, —ovd, ||z <

15, for n > M, where C' is the constant in Proposition 9 (|ven/|z2 < Az).

Then, by Proposition 9, for n > M,
o0 o0 8
sup S5 (vo.n) () = 5% (v ) (B2 < 5
te[—1,1]
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It remains to estimate sup,e_ 11 |55 (v0}) (1) — S5° (Vg ) (1) 2. But en-
ergy estimates for the difference equation give

sup {1957 (v9) (1) — S5 (0 ) (1) 22
te[-1,1]

1
< laiullzen (€ [ 10Ol +CIOL S Ol

< [[oom—toum 22 exp (c s 505, 0 +C s ||S§°<véYm><t>HHz)
tl<1 t|<1

< Hvo,n - Uo,m||L2 €xp (CN2HU0,n||L2 + CNZHUO,nHL?)

< lvom — vomllz2 exp(CN?) < g’

for n, m large (we have used the estimate of Proposition 8). Also, by Proposi-
tion 9, we have sup;e(_y 1y [[95°(vo,n)(t)[|z2 < C. Thus, we obtain the unique
extension S and (6.10) holds.

To check (6.11), fix vo, ||vollz2 < A2, let & > 0 be given. With C' as in
Proposition 9, find N (N = N(e,vp)) so large that [|vg — v('[|22 < &5. Now
find &; = d; (e, vo) so small that if |[vg — vy |22 < 6, then [Joy —v{'[|2 < 5.
We have

sup [y (vo) (1) — Sy (i) (t)llz2 < sup [y (wo)(8) — Sp(vg") (£)| 2
te[—1,1] te[—1,1]

+ sup [[Sy(v)(t) = Sy (v )(@)llz2 + sup 1Sy (vi)(t) = Sy vy ) (1) 2.
te[—1,1] te[—1,1]

£

By Proposition 9, the first two terms are smaller than 5. For the last one,

we again use the energy estimate and get, as before

sup 155 (1) (1) = Sy (v ) ()| 22 < Cllor — wol| 2 exp(CN?),
te[—1,

using Propositions 8 and 9 and (6.11) follows.

For (6.12), first find N = N(e,vg) so large that [Jvg — v ||z <
where C' is as in Proposition 9. Then,

16
sup [1S9(v0) () — SP(0) (1)1 12 <

g
te[—1,1] 4

and we are reduced to showing, for N fixed that if |t — /| < 5, then
195 () () = Sp (v ) (F)l|z2 < 5.
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Let f(t) = [|SP(v))(t)]|3.. The energy method, combined with Propo-
sition 8 shows that |f/(t)] < f(0)exp(CN?). But then, for |t — /| < 6y,
[f(t) = ()] < §. But

195 (w9 ) (t) = Sp (v )(t)I[72 = F(t) + F(¥) —2/55(05)(?5)-55(05)(5)05%
= f(t ) + 2/5 Do) () — SP (i) ()] dw.

Let vV (t) = SP(v¥)(t). The second term equals

Q/UN(t) /t 0,0 (s)dsdx
=2 [ [on0-1020 ) = @), = G0Nl dads.

But by Proposition 8, sup,c;_; y [[v"V (t)[z2 < Cllvf||z> < CN?. Thus, the
second term is controlled by C|t — | N, and the proof is complete, provided
we prove Propositions 8 and 9.

Proof of Propositions 8 and 9. Step 1. Assume vy € H*, ||vg||gz < M
and 0 < T < 2, v = 5;°(t) exists in [—T,T]. Then, there exist A\g = \g(M),
by = bo(M) such that for 0 < A < A\, 0 < b < by, we have
(6.14) sup o) |lgz < 2||vol g2

te[-T,T)

Proof of (6.14). Note that [|[0¥QA|| 1= < CxA". Let f(t) = |lv(t)||%.. The
standard energy method shows that

£ < COG + bol| 0o (@l) £ () < (OF + bo( £ (1))2) f (1):

Integrating the ODE gives the result.

As a corollary, we obtain under the circumstances of Step 1 that v exists

n (—1,1) and
sup [[o(t)[la> < 2|lvo| -
te[—2,2)

Step 2. From now on, we will follow closely [11]. Some of the ideas
used before were developed in a forthcoming paper [8]. We have now re-
duced everything to a priori estimates. We will change notation slightly to
match [11]. We then study the problem

(6.15) U + Hugy + (Qau), + b(5u%), =0 (t,z) € (-1,1) x R,
. U= = ¢, ||Blz2 < Az,
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We use the notation Py, Prhigh as in [11]:
Piow defined by the Fourier multiplier { — 1{_310 10(£);

Pinign defined by the Fourier multiplier £ — 110 o0y (£E);
Py defined by the Fourier multiplier £ — 1 )(££).

Let ¢ = Pow® € H®, real-valued, ||¢ollz2 < 22° = M. We choose A, by
as in Step 1 and its corollary, so that Proposition 7 and these results gives,
with uo = S5°(¢o)(t) that

sup 1072 07ul |2 < Cor on|Bll12, 03> 0.
te[—2,2]

Let u=u— u(()l). The equation for u is

ﬂ|t:0 = P+high¢ + P—high¢-

Let now wug(t,x) = Qx(t, x) + buél) (t,z). Then

1
sup ||aflag2u0HLi < 001702()‘5 + bO)
te[—2,2]

We now want to construct Uy similarly to [11], with the following properties
d:Us(t,2) = uo(t,z), Up(0,0) = 0 and

sup 0792Vt 2z < Cou (N + )

te[—2,2]

where 01,09 > 0, (01,02) # (0,0).
Since Q\(t,z) = W, we set U(SQ)(t, r) = 2arctan(Az — A\?t).

We next recall the equation ul (¢, z) verifies:

3, (3ul) + HP (5ul) + 0, (Qrtul) + b0, (2uf)?) = 0.
We then define first Uél)(t, 0) by Uél)(O, 0) =0 and
AU (t,0) + HOL (3l (¢, 0)) + Qu(t, 0)2ul) (£,0) + b(3ul (¢, 0))? = 0.

We then construct Uél) (t,x) by 8mU0(1) (t,x) = lu(()l)(t, x). Notice that Uél)

2
is real-valued. Using the equation for uél), we have

0, (0" + HOAU" + Qa0 U + b(@,U")) =0 on R x [-2,2].
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But then, on R x [—2, 2], we have
M Lo L b 2
Uy " (t,x) + §H0xu0 (t,x) + Q,\(t,x)§u0 (t,x) + Z(uo (t,z))".

We then define Uy(t, ) = bUél)(t, x)+ U(SQ)(t, x), and all our properties hold.
We recall that
o [E

=0 = Pinigh® + P_pign -

We now proceed as in Section 2 of [11]. We define
~ _‘U ~ ‘U ~
Pinight = e "Pwy,  P_pignt = e °w_  and Py = wp.

Applying Pihigh, P-high, Plow to the above equation and using the definitions
above, we have (we write the equation for w,, the one for w_ is analogous,
the one for wy will be written later). Following the argument in [11], one
gets:

b . . 4
(wy ) + HOPw, = —§eZU°P+high8m((e’ZUow+ + eWow_ 4 wp)?)
— e P ignOs (uo(€0w_ + wp)) 4 €V (P_pigh + Piow) (€ ugdpw, )
+2iP_ 00wy — € Pyygn (9 (uoe™ P wy)) + iwy [(Uo)i—=i(Uo)ee—((Us)a)] ,

and so after more calculations, we get

b . 4 .
(wy) + HPwy = — 562U0P+highaz((6_ZUow+ + ePow_ + wp)?)

— e P, ign [az(uop—high(ewow—) + uORow(wO))}
+ € (P_yign + Puow) [0 (uoPynign (e wy )]

+ 2P [02(™ Pyuign(e™ "0 wy))]

+ iwy [(Uo) + HOZU + (0,U0)? + iP10,Up) |

We recall (9zU(§2) = %Q)\ and that Q) solves 0,Qx + HO?Qyx + &U(%Q?\) =0
or QU +HO2USY = —1Q2 and §,U8" + HO2US" = —Q,oUS" —b(8,UD)2.
Hence, 0,Uy+H?Up+(9,Up)* = 0 and we get dw, +Hw, = E, (wy, w_,wy),
where E is defined as in [11, p. 756], except that the first term is multiplied
now by b. The equation for w_ and E_ is similar. The equation for wy
writes

Oy (Powt) + HOZ Piowlt 4+ Piow0y (Uoll) + 5 Piow:((1)?) = 0,

where 1 = e~ ow, + eYow_ + wy.
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1
Next, we note that, with § = (A +bg), the estimates (10.19) in [11] hold.
Because of this and the form of ., E_, Ey, just as in Proposition 10.5
n [11], we have

1 (8) (E(w)—E(w)) |5 < Chollw = w'[| po ([[ W] o + [[W']| o)
+ Cbollw = W'l po (Wl pe + [[W]| 7o) + Collw — W[ o

Note that w = (w,,w_, wp) and
E(W) = (E+('lU+, w-—, U}()), E—(w+7 w—, wO)a EO('LU-H w—, 'lU()))

as in [11]. The rest of the notation (the norm ||.||y- and the function 1) is
also taken from [11]. We have a slightly different formula for £y, but (10.27)
in [11] gives the estimate in our case also.

We then construct a solution to
Vit Hv = E() onRx -3
v(0) = 9,

as in (10.32)-(10.37) in [11]. Note that (10.35) and [[v(®) = v(®")|| po(_3 3)) <
C||® — @'|| 70 hold here too. Next, with

= (¢4, 0—, do) = (eI Pypigng, e POV P L1010, 0),

® € H, by Lemma 10.1 in [11].

We next show (wy,w_,wy) = v(®) in R x [—1,1]. This is as in [11].
Proposition 8, and the second estimate in Proposition 9 now follow from the
bounds on v(®) i.e. (10.35). For Proposition 9, note that for N large, Uy
corresponding to ¢ and to ¢y defined by ¢y = 1N (£)P(€) are the same.
We then have

u(t,z) = u(()l) +u— u(() ) = uél) +u= u(l) + e o, + eMow_ 4wy
and similarly,
uN(t, x) = ugl) +uN — (() ) = ugl) + e_iUwa + eWouN wév.

Hence,

sup [Ju(t, ) — u™(t, )2 < sup Juw(t) — w” (1)]|:
te[-1,1] te[-1,1]

< Cl(0)w — wN]lpo < Cllé— V|12

as desired, giving Proposition 9.
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A. Appendix
First, we recall the following inequalities:

Lemma 14.

(A1) V2 <p<too, |fllee < CollfllZIDEfIE
(A.2) ID(fg) — gD fllz> < Cllfllal| Dyl o,
(A.3) 1D (fg) — gD% fll1> < C||f ||+l D7 gl 1s.

Recall that (A.1) is the Gagliardo-Nirenberg inequality, which follows
from complex interpolation and Sobolev embedding.

Estimate (A.2) is due to Calderén [6], see also Coifman and Meyer [7],
formula (1.1).

Estimate (A.3) is a consequence of Theorem A.8 in [13] for functions
depending only on x, with the following choice of parameters: o = %, a; =0,
=3 p=2p =p =4

A.1. Proof of (2.15)
We claim that for a function u(z) fixed in H*(R)

(A.4) / 0,(U*)® :—2//}1{2 |VU|2<I>+/ U?9,®

where U(x,y) is the harmonic extension of u(x) in R% and ®(x,y) is defined
n (2.14).
First, we observe that

(A.5) U, VU € L*(R%) and sup|U(z,y)| — 0 as |z| — +oc.

y>0

Indeed, from [26], Theorem 1, p. 62, we have sup,., |U(z,y)| < Mu(z),
where Mu(x) is the maximal function of u (see [26] Chapter 1), and simi-
larly, sup,~¢ |0:U(7,y)| < Mu,(z), sup,~q |0,U(z,y)| < M(Hu,)(x). More-
over, from [26] Theorem 1, p. 5, since u,u,, Hu, € H' C L*, we obtain
Mu, Mu,, M(Hu,) € L*. Finally, since u € H', we have |u(x)| — 0 as
|z| — 400, which implies by the definition of the maximal function (see [26,
page 4]) that Mu(x) — 0 as |z| — +o00. Thus (A.5) is proved.

Let R > 0. We use the Green formula on D}, = {(z,y) € R2 | 22 + ¢ <
R?}. Let ', = {(z,y) € R2 | 2? + y* = R*} and I = (2,0) | = € [-R, R].
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Then:

/ (?n(Uz)CD:—// (AU2)<I>+// U2A<I>+/ U?0,®
Ifulg D} D} IfUlR

(A.6) = —2// |VU|2<I>+/ U?0,®,
D} Ifulg

where 0,, denotes the inward normal derivative since A® = 0 and AU? =
2|VU|?. Therefore, we only have to prove the following convergence results:

(A7) lim 0,(U*)®=0, lim 8 (U*)® / 9,(U*)® /(Hum)wp

R—+4o00 F+ R—>+c>o

(A.8) lim U?0,0=0, lim U28n¢> = / U?0,® = / u?(He").
y=0

R—+o00 1—\; R—+o00 In

The limits limp_ oo ffR(HuI)ucp’ = [(Huy)uy' and

R

lim u(Hye") = / u*(Hy")

R—+o00 _R

are clear since u € H'. Next, from the expression of ®(z,y) in (2.14), we
have ®(z,y) < C(1+y)R™? on I'L. Therefore, from (A.5), (do denotes the
unit lenght element on I'})

L nwel < g [ w0l + e
C

< = (1+y)do+C sup |U(z,y)|
+ﬂ{|m|§\/§} ||>V/R,y>0

—+C sup  |U(z,y)|
\/7 |z|>VR,y>0

and so (A.7) is proved. Estimate (A.8) is proved similarly and is easier since
0,® has more decay than ®.

A.2. Proof of (2.30)

In the proof of (2.30), the time ¢ is fixed, so we set yg = xo + A(to — t).
Let x : R — R be a C* function such that y = 1 on [0,1], x = 0 on
(—o0,—1] N [2,+00) and x < 1 on R. Let x,(x) = x(x —n). Then, by the
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Gagliardo-Nirenberg inequality (A.1), we obtain

/Inl3<p/(x—yo) < Z/nﬂ e (z—yo) <> (/In|‘°’xi>[ sup ¢

nezvm nez n—yo,n+1-yo]
1
f 2
< ([itoar) (fow?) sw o
nez [n—yo,n+1—-yo]

By Lemma 14 and (2.2), we get

1 1 1
1Dz (nxa)ll2 < ClD20)xnll2 + Cllnllzs[[ D2 xnl[ 2+ < Clinll 3 < Ca.
Thus,
/Inl?’w’(x —y0) < Cap Y _ </(77Xn)2) sup ¢ < Cozo/n%’(ar )
= [n—yo.n-+1-yo]
by the properties of y and the following elementary remark:

(A.9) VyeR, sup ¢ <C inf ¢
ly,y+4] [y,y+4]

Note that the constant C' is independent of A, for A > 1.

A.3. Properties of the operator £

We recall from [29]-[31] and [3] the following properties of £ (recall Ln =
—Hne + 1 —Qn).

Lemma 15. The operator L is self-adjoint on L? and satisfies the following
properties.

(i) The operator L has exactly one negative eigenvalue Ao of multiplic-
ity 1 with corresponding eigenfunction fy, which can be chosen so that
fo>0.

(ii) Ker £ = span{Q'}.
(i) There exists A > 0 such that, for all z € H?,
(A.10) (2,Q) = (2,@) =0 = (Lz,2) 2 Mz,2).

Remark 6. Recall from Bennett et al. ([3], Appendix B) that the spec-
trum of £ is completely understood. Indeed, the operator £ has exactly
four eigenvalues, A\g = —3(1 + v/5), 0, 2(=1 + /5), 1 and a continuous
spectrum [1, 400).

Now, we sketch a proof of Lemma 15 using general arguments from [29]-[31].
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Sketch of proof. One easily checks that £Q)' = 0 (differentiate the equation
of Q(x + xg) with respect to zy and take zo = 0), and that Lfy = —\o fo,
where fo = Q + 1(1+ v/5)Q?* (by (3.35)). Moreover, the proof of (i) follows
from the variational characterization of @), see Proposition 4.2 of [31]. Recall
that £ [ Q? = [ Q? > 0 (subcriticality) implies that inf{(Lf, f); (f,Q)=0,
| f|lz2=1}=0 (see proof of Proposition 5.1 in [31] and Proposition 3.1 in [30]).

Now, we give a new proof for (ii). Let f € L? be such that Lf = 0.
First, we remark that f € H®, for all s > 0. Moreover, by similar estimates

as in [1], we have |f(z)| < H% Integrating £f = 0 on R, we obtain

J(f = fQ) = 0. But, we also have (f,Q) = —(f,LS) = —(Lf,S) = 0
(see (3.35)). Thus, [ f = 0 and we can define g(z) = [* _f(s)ds € L?
which satisfies £(g') = 0. Let now g = g — a@ be such that (g,Q) = 0 and
L(7) = 0. From (3.12) and (3.36), we obtain [ |Dzg|? + (£7,§) < 0. But,
since (9,Q) = 0, we have (£g,9) > 0. Thus, [ |D%§|2 =0and g = 0, so
that ¢ = a@ and f = a@'.

Finally, we sketch the proof of (iii), which follows from the arguments of
the proof of Proposition 2.9 in [29] (see also Section 6, example 4 in [31]).
By contradiction, assuming that

inf{(Lf, f); (f,Q) = (f.Q) =0, [[fllrz =1} =0,
and using compactness arguments as in Proposition 2.9 in [29], we obtain
the existence of f € H 2,0\ 8, v € R (Lagrange multipliers) such that

(L. f)=0, (L=Nf=BQ+Q, (f,Q) =(f£Q)=0, |fllz=1
But, taking the scalar product by f, we find A = 0. Then, taking the scalar
product by ', we find v = 0. Taking the scalar product with S (see (3.35)),
using (5, Q) = 3(Q, Q) and L(S) = —Q, we find 3 =0, so that L£f = 0 and
(f,Q") = 0. This implies f = 0 by (ii), a contradiction.
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