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Random fractals and tree-indexed
Markov chains

Arnaud Durand

Abstract
We study the size properties of a general model of fractal sets that

are based on a tree-indexed family of random compacts and a tree-
indexed Markov chain. These fractals may be regarded as a general-
ization of those resulting from the Moran-like deterministic or random
recursive constructions considered by various authors. Among other
applications, we consider various extensions of Mandelbrot’s fractal
percolation process.

1. Introduction

The purpose of this paper is to study the size properties of random frac-
tal sets based on a tree-indexed family of random compacts and a tree-
indexed Markov chain. In some sense, such sets generalize the fractal sets
resulting from the random recursive constructions examined by S. Graf [22],
R.D. Mauldin and S. Williams [36] and also K. Falconer [17], which are
themselves the randomized version of the recursive constructions first in-
troduced by P. Moran [37] and then systematically studied by J. Hutchin-
son [24]. Before presenting the fractal sets that we consider throughout
the paper, let us recall the main results concerning those associated with a
recursive construction.

Actually, a recursive construction is a family of compact sets indexed by
the m-ary tree, for some integer m ≥ 2. Formally, the m-ary tree is the set

Tm = {∅} ∪
∞⋃

j=1

{1, . . . , m}j

2000 Mathematics Subject Classification: Primary: 60D05; Secondary: 28A80, 60J10,
60J80.
Keywords : Hausdorff dimension, random recursive constructions of fractals, tree-indexed
Markov chains, branching processes in varying environment.



1090 A. Durand

formed by the empty word ∅ and the words u = u1 . . . uj of length j ≥ 1 in
the alphabet {1, . . . , m}. The length j of such a word u is denoted by 〈u〉
and is called the generation of u. By convention, 〈∅〉 = 0. Moreover, for
any u in T ∗

m = Tm \ {∅}, the word π(u) = u1 . . . u〈u〉−1 is called the father
of u. So, u has exactly m sons, which are the words u1, . . . , um. Following
the terminology of graph theory, the directed graph with vertex set Tm and
with arcs (π(u), u), for u ∈ T ∗

m, is a tree rooted at ∅.
Let us consider a nonempty compact subset J∅ of R

d (with d ≥ 1) equal
to the closure of its interior and, for any vertex u ∈ T ∗

m, let us consider
a compact set Ju that is geometrically similar to J∅. Then, the family
(Ju)u∈Tm is called a recursive construction if for any vertex u ∈ Tm, the
compacts indexed by the sons of u are included in the compact indexed by u
and have disjoint interiors. The fractal set associated with such a recursive
construction is

K =

∞⋂
j=0

↓
⋃

u∈Tm
〈u〉=j

Ju.

As we shall detail below, the size properties of this compact set K depend
mainly on the contraction ratios

(1.1) Lu =
|Ju|
|Jπ(u)|

,

for u ∈ T ∗
m, where | · | denotes diameter.

Under the assumption that the vectors (Lu1, . . . , Lum), for u ∈ Tm, are
all the same, Moran [37] and Hutchinson [24] established that the Hausdorff
dimension s of K satisfies

(1.2) L1
s + . . . + Lm

s = 1.

Later on, Falconer [17], Graf [22], Mauldin and Williams [36] considered
the case in which the compacts Ju forming the recursive construction are
random and some of them may be empty. Under the main assumption
that the vectors (Lu1, . . . , Lum), for u ∈ Tm such that Ju is nonempty, are
independent and identically distributed, they studied the probability that
the compact set K is nonempty and proved that, conditional on the fact
that K is nonempty, its Hausdorff dimension is almost surely equal to the
infimum of all s ≥ 0 such that

E [L1
s + . . . + Lm

s] ≤ 1.

A well-known example of random recursive construction is given by the
fractal percolation process introduced by B. Mandelbrot, see [35]. It is de-
fined as follows. Let us consider an integer c ≥ 2 and a real number p ∈ (0, 1).
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To begin with, the square G0 = [0, 1]2 is colored black. Moreover, it may
be subdivided into c2 adjacent closed squares with edge length 1/c. Each of
these squares is independently colored black, with probability p, or white,
with probability 1 − p, and the black squares form a compact set G1. This
procedure is repeated on the squares composing G1 and the black subsquares
thus obtained form a compact subset G2 of G1. The program is then iterated
ad infinitum and yields a nested sequence (Gj)j≥0 of compact sets composed
of black squares. The results of Falconer, Graf, Mauldin and Williams then
enable to establish that the intersection over all j ≥ 0 of the compacts Gj

is nonempty with positive probability if and only if p > 1/c2 and that, con-
ditional on the fact that it is nonempty, the Hausdorff dimension of this
intersection is almost surely equal to 2+log p/ log c (which is the infimum of
all s ≥ 0 such that E[N c−s] ≤ 1, where N is a binomial random variable with
parameters c2 and p). This result was also obtained by J. Chayes, L. Chayes
and R. Durrett [7] and is exposed in [8, 19, 23] too. In Section 3 below,
among other applications, we explain how our results enable to study the
size properties of various generalizations of Mandelbrot’s fractal percolation
process.

We refer to [17, 23, 33, 36] for other examples of random recursive con-
structions. A noteworthy one is related with the zero set of the Brownian
bridge. Indeed, the results of Falconer, Graf, Mauldin and Williams may be
applied in order to recover a result of S. Taylor [41] according to which the
Hausdorff dimension of this set is almost surely equal to 1/2, see [23] for
details.

From now on and except in Section 3 (in which we give several applica-
tions of our results), we shall always consider the general case.

Various refinements and extensions of the aforementioned results were
obtained. To begin with, Graf, Mauldin and Williams [23] found a gauge
function h satisfying 0 < Hh(K) < ∞ with probability one, conditional on
the fact that K is nonempty, where Hh denotes the Hausdorff h-measure
(see [40] for the definition). Later, A. Berlinkov and Mauldin [4, 5] studied
the packing dimension and measures of the compact K (see [19] for the def-
initions). Moreover, several authors established the existence of self-similar
random measures carried by compacts analogous to K and performed their
multifractal analysis, see [2, 18, 25, 38]. Let us also mention that Y. Pesin
and H. Weiss [39], and also Y. Kifer [27, 28], employed some techniques from
the theory of dynamical systems with a view to determining the Hausdorff
dimension of various random sets that are built recursively.

In all the works cited above, the vectors (Lu1, . . . , Lum) giving the con-
traction ratios across generations are independent and identically distri-
buted. A. Dryakhlov and A. Tempelman [13] proposed a way to relax
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this assumption. Specifically, under the main assumption that the vector
(Lu1, . . . , Lum) associated with a given vertex u ∈ Tm is correlated with the
vectors corresponding to a fixed number of ancestors of u, they established
that the Hausdorff dimension of the compact K is almost surely equal to
a specific value which can be computed in terms of the distributions of the
contraction ratios. Note that this phenomenon could be anticipated thanks
to Kolmogorov’s zero-one law.

In the same vein, Y.-Y. Liu, Z.-Y. Wen and J. Wu [31] introduced another
generalization of the previous random recursive constructions, in which the
vectors giving the contraction ratios need not be identically distributed. This
generalization is the first step towards the fractal sets that we study in this
paper, so we now recall it. We begin by replacing the m-ary tree Tm by the
tree U0 in which every vertex with generation j has exactly mj sons, where
(mj)j≥0 is a given sequence of integers greater than one. More precisely,

(1.3) U0 =
{
u ∈ U

∣∣ ∀j ∈ {1, . . . , 〈u〉} uj ≤ mj−1

}
,

where U denotes the set formed by the empty word ∅ and the words of
finite length in the alphabet N = {1, 2, . . .}. Of course, if mj = m for every
integer j ≥ 0 and some integer m ≥ 2, then U0 is just the m-ary tree Tm.

We then consider a random family (Ju)u∈U0 of compact subsets of R
d

indexed by the tree U0, having positive diameter and satisfying the following
properties:

A. For any vertex u ∈ U0, the compacts Juk, for k ∈ {1, . . . , m〈u〉}, are
subsets of Ju with disjoint interiors.

B. There exists a real κ > 0 such that for any u ∈ U0, the Lebesgue
measure of the interior of Ju is at least κ|Ju|d.

We also make an assumption about the distribution of the contraction ratios
defined by (1.1). Specifically, let β and β be two real numbers enjoying

0 < β ≤ β < 1 and, for any j ≥ 0, let µj be a probability measure on [β, β]mj .
We suppose that:

C. The (Luk)k∈{1,...,m〈u〉}, for u ∈ U0, are independent random vectors with
distribution µ〈u〉.

Under assumptions somewhat stronger than (A)–(C), Liu, Wen and Wu
studied the size properties of the random compact set

K =

∞⋂
j=0

↓
⋃

u∈U0
〈u〉=j

Ju.
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To be specific, they established that its Hausdorff dimension is almost surely
equal to a certain value which can be expressed in terms of the probabil-
ity measures µj . Note that this compact set may also be obtained in the
following manner. Assertion (C) ensures that with probability one, for any
sequence ζ = (ζj)j≥1 in N enjoying ζ1 . . . ζj ∈ U0 for all j ≥ 1, the diameter

|Jζ1...ζj
| is at most |J∅|β

j
, so that it tends to zero as j → ∞. Hence, there

exists a unique point xζ in R
d such that

(1.4) {xζ} =

∞⋂
j=1

↓ Jζ1...ζj
.

A standard diagonal argument then shows that the compact K is also equal
to the collection of all such points xζ .

The fractal set that we study below is a random subset Θ of K chosen
according to a tree-indexed Markov chain which we now introduce. Let
us consider a family (Xu)u∈U0 of {0, 1}-valued random variables which is
independent of the family (Lu)u∈U∗

0
, where U∗

0 = U0 \ {∅} (a case in which
these two families need not be independent is briefly discussed in Section 8).
In addition, for any j0 ≥ 1, let Uj0 denote the tree obtained by replacing
the sequence (mj)j≥0 by the sequence (mj0+j)j≥0 in the definition (1.3) of
U0 and let U∗

j0 = Uj0 \ {∅}. Note that, for any vertex u ∈ U0, the set uU〈u〉
(i.e. the set of all concatenations of the word u with words of U〈u〉) is the
subtree of U0 which is rooted at u. Hence, the σ-field

Gu = σ(Xv, v ∈ U0 \ (uU∗
〈u〉))

can be seen as the past before u in the tree U0. Indeed, this σ-field is
generated by the random variables corresponding to the vertices of U0 which
are not descended from u. Conversely, the future after u begins with its
sons, which are the vertices uk for k ∈ {1, . . . , m〈u〉}.

For every integer j ≥ 0 and every t ∈ {0, 1}, let νt,j be a probability
measure on {0, 1}mj . From now on and except in Section 8, we assume
that the process (Xu)u∈U0 is a Markov chain with transition probability
measures νt,j for j ≥ 0 and t ∈ {0, 1}, which means that the following
Markov condition holds:

D. For any vertex u ∈ U0 and any subset A of {0, 1}m〈u〉,

P
(
(Xuk)k∈{1,...,m〈u〉} ∈ A

∣∣ Gu

)
= νXu,〈u〉(A).

Informally, for every vertex u ∈ U0, the vector (Xuk)k∈{1,...,m〈u〉} depends only
on the value of Xu and the generation 〈u〉, conditionally on the past before u.
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The definition of a tree-indexed Markov chain that we adopt here may be
compared with that introduced by I. Benjamini and Y. Peres [3]. Actually,
the Markov chains that they considered correspond to the particular case
in which the measures νt,j , for t ∈ {0, 1}, are the products λt

⊗mj for some
fixed probability measure λt on {0, 1}. However, note that we restrict our
attention to {0, 1}-valued Markov chains and trees of the form U0, whereas
Benjamini and Peres did not.

An important consequence of the Markov condition (D) is that for any
integer j0 ≥ 0, conditionally on the σ-field generated by the variables Xw

for w ∈ U0 with 〈w〉 ≤ j0, the processes (Xuv)v∈Uj0
, for u ∈ U0 with genera-

tion j0, are independent Markov chains with transition probability measures
νt,j0+j, for j ≥ 0 and t ∈ {0, 1}.

To obtain the set Θ, we only keep in the compact set K the points xζ

resulting via (1.4) from a sequence ζ = (ζj)j≥1 in N enjoying Xζ1...ζj
= 1 for

all j large enough. To be specific, for any vertex u ∈ U0, let

(1.5) τu =
{
v ∈ uU〈u〉

∣∣ ∀j ∈ {〈u〉, . . . , 〈v〉} Xv1...vj
= 1
}

.

If Xu = 0, then the set τu is empty. Otherwise, τu is the largest subtree of
U0 rooted at u and formed by vertices mapped to the state 1 by the Markov
chain X. The boundary of τu is

(1.6) ∂τu =
{
ζ = (ζj)j≥1 ∈ N

N
∣∣ ∀j ≥ 〈u〉 ζ1 . . . ζj ∈ τu

}
.

The points xζ resulting from all the sequences ζ of this boundary form the set

(1.7) Ku =
⋃

ζ∈∂τu

{xζ}.

As observed before, a standard diagonal argument enables to show that this
last set is a compact subset of K. The subset Θ of K that we study in the
following is then the Fσ-set

(1.8) Θ =
⋃

u∈U0

Ku.

A point of K thus also belongs to Θ if and only if it can be written on the
form xζ for some sequence ζ = (ζj)j≥1 in N such that Xζ1...ζj

= 1 for all j
large enough. Furthermore, note that the randomness in the construction
of Θ lies both in the family (Ju)u∈U0 of compact sets and in the Markov
chain (Xu)u∈U0 .

The fractal sets obtained by dint of the recursive constructions intro-
duced by the aforementioned authors may actually be seen as particular
cases of the set Θ. Indeed, if X∅ = 1 with probability one and ν1,j is the
point mass at (1, . . . , 1) for any j ≥ 0, then τ∅ is almost surely equal to the
whole tree U0, so that Θ is almost surely equal to the whole compact set K.
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One thus recovers the fractal sets obtained through the constructions intro-
duced by Liu, Wen and Wu. Likewise, one can obtain the fractals resulting
from the constructions of Falconer, Graf, Mauldin and Williams by let-
ting ν0,j be the point mass at (0, . . . , 0) and assuming that the probability
measures ν1,j and µj do not depend on j. Therefore, in some sense, the
results of this paper can be seen as a generalization of those established
in [17, 22, 31, 36]. They also apply when the family (Ju)u∈U0 of compacts is
deterministic, as in the works of Moran and Hutchinson. In this case, the
distributions µj of the contraction ratios are all equal to a given point mass.

The rest of the paper is organized as follows. The main results are
exposed in Section 2 and several applications are given in Section 3. In Sec-
tion 4, we establish various ancillary lemmas: we study a particular family
of branching processes in varying environment related with the underlying
Markov chain; we adapt a method proposed by Falconer [17] to exhibit a
connection between the size properties of the compact sets Ku composing Θ
and the question of the existence of positive flows in certain random net-
works; and we generalize some techniques exposed by R. Lyons and Peres [33]
concerning percolation on trees. Sections 5 and 6 are respectively devoted
to giving an upper and a lower bound on the Hausdorff dimension of the
compact sets Ku and the main results of the paper are proven in Section 7.
Lastly, Section 8 briefly discusses a simple extension of these results to a
case in which the families (Lu)u∈U∗

0
and (Xu)u∈U0 need not be independent.

2. Statement of the results

The main results of the paper concern the distribution of the Hausdorff
dimension of the set Θ. It is not obvious that the dimension of Θ is a ran-
dom variable, i.e. is measurable with respect to the σ-field of the underlying
probability space. However, this is true because the dimension of Θ is mea-
surable with respect to the σ-field generated by the contraction ratios Lu,
for u ∈ U∗

0 , and the states Xu, for u ∈ U0, which are random variables. We
refer to Remark 3 below for details. Note that there is no need to make
measurability assumptions on the compacts Ju themselves.

Before stating the results, let us briefly recall the definition of Hausdorff
dimension. First, for any real s > 0, the s-dimensional Hausdorff measure
of a set F ⊆ R

d is given by

Hs(F ) = lim
ε↓0

↑ Hs
ε(F ) with Hs

ε(F ) = inf
F⊆
�

p Up

|Up|<ε

∞∑
p=1

|Up|s,

where the infimum is over all sequences (Up)p≥1 of sets with F ⊆
⋃

p Up and

|Up| < ε for all p. Note that Hs is a Borel measure on R
d, see [40].
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The Hausdorff dimension of a nonempty set F ⊆ R
d is then defined by

dim F = sup{s ∈ (0, d) | Hs(F ) = ∞} = inf{s ∈ (0, d) | Hs(F ) = 0},

with the convention that the supremum (resp. infimum) of the empty set ∅
is zero (resp. d), see [19]. In addition, we agree that ∅ has dimension −∞.

We also need to introduce a family of real numbers αs,j related with the
transition probability measures ν1,j of the Markov chain (Xu)u∈U0 and the
distributions µj of the ratios (Lu)u∈U∗

0
. Specifically, for any real s and any

integer j ≥ 0, let

(2.1) αs,j =

∫
{0,1}mj

∫
[β,β]mj

mj∑
k=1

�k
sxk µj(d�)ν1,j(dx),

where �1, . . . , �mj
and x1, . . . , xmj

are the coordinates of � ∈ [β, β]mj and
x ∈ {0, 1}mj , respectively. Note that αs,j can be seen as a generalization of
the left-hand side of the Moran equation (1.2).

The reals αs,j enable us to introduce a number d∗ ∈ [−∞,∞) which
governs the Hausdorff dimension of Θ. It is defined as follows. If

(2.2) j = inf{j0 ≥ 0 | ∀j ≥ j0 α0,j > 0}

is infinite, then let d∗ = −∞. Conversely, if j is finite, then let us consider
the function ρ defined on R by

(2.3) ρ(s) = lim inf
j→∞

1

j

j−1∑
n=j

log αs,n.

Owing to the fact that the distributions µj are supported on [β, β]mj , the
function ρ is either the constant function equal to −∞ on R or a decreasing
bijection from R onto R. In both cases, one can consider

(2.4) d∗ = sup{s ∈ R | ρ(s) > 0} = inf{s ∈ R | ρ(s) < 0}.

It is possible to give another expression of d∗ when j is finite. Indeed, in
this case, the function s �→ log αs,j + . . . + log αs,j−1 is a bijection from R

onto R for any j > j, so it has a unique zero denoted by dj. One then readily
verifies that

d∗ = lim inf
j→∞

dj.

The following result, which is established in Section 7, gives the possible
values of the Hausdorff dimension of the set Θ defined by (1.8).
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Theorem 1. With probability one,{
d∗ < 0 =⇒ dim Θ = −∞
d∗ ≥ 0 =⇒ dim Θ ∈ {−∞, d∗}.

In order to complete the description of the distribution of the Haus-
dorff dimension of Θ, there remains to study the probability that it is equal
to −∞ in the case where d∗ is nonnegative. This amounts to examining
the probability that the set Θ is empty. To this end, we need to introduce
several notations related with the underlying Markov chain (Xu)u∈U0. For
any integer j ≥ 0, let

Sj = {u ∈ U0 | 〈u〉 = j and Xu = 1} .

This is the set of all vertices with generation j that are mapped to the state 1
by the Markov chain. Moreover, let us consider the generating function of
the cardinality of Sj, that is,

(2.5) Φj : z �→ E[z#Sj ]

(with the usual convention that 00 = 1). The generating functions Φ0, Φ1, . . .
may easily be computed as follows in terms of the transition probability
measures νt,j of the Markov chain. Actually, the Markov condition (D)
implies that for any integer j ≥ 0 and any complex number z,

(2.6) E[z#Sj+1 | Xu, 〈u〉 ≤ j] = ϕ1,j(z)#Sjϕ0,j(z)m0····mj−1−#Sj ,

where the functions ϕ0,j and ϕ1,j are given by

(2.7) ϕt,j(z) =

∫
{0,1}mj

zx1+···+xmj νt,j(dx).

Taking expectations in (2.6), it follows that the generating functions Φ0,
Φ1, . . . may be calculated recursively using the formulas:

(2.8)

{
Φ0(z) = P(X∅ = 0) + P(X∅ = 1) · z

Φj+1(z) = ϕ0,j(z)m0····mj−1 · Φj(ϕ1,j(z)/ϕ0,j(z)).

Alongside with that, we need to consider the sequence (fj)j≥0 defined by

(2.9) ∀j ≥ 0 fj = lim
n↑∞

↑ ϕ1,j ◦ · · · ◦ ϕ1,j+n(0).

As shown by Lemma 6 below, every real fj is in fact the extinction probabil-
ity of a branching process in varying environment related with the transition
probability measures ν1,j+n, for n ≥ 0.

The following result, which is proven in Section 7, provides an expression
of the probability that Θ is empty, thereby completing the description of the
distribution of the Hausdorff dimension of this set.
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Theorem 2. If d∗ ≥ 0, then

P(Θ = ∅) = lim
j↑∞

↓ Φj(fj).

When fj vanishes for some j, it is possible to provide an expression of
the probability that Θ is empty which is more explicit than that given by
Theorem 2. This is the purpose of the following result, which is proven in
Section 7.

Proposition 1. If d∗ ≥ 0 and fj∗ = 0 for some integer j∗ ≥ 0, then

P(Θ = ∅) = Φj∗(0) ·
∞∏

j=j∗

ϕ0,j(0)m0····mj−1 .

In whole generality and especially when the conditions of Proposition 1
do not hold, it seems tricky to provide an expression of the probability
that Θ is empty which is both tractable and more explicit than that given
by Theorem 2. Instead, we supply necessary and sufficient conditions for Θ
to be empty with positive probability and with probability one, respec-
tively. These conditions are expressed by means of two sequences (σj)j≥0

and (σj)j≥0 which are defined by

(2.10)

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

σj = max

(
1,

∞∑
n=j

ϕ′
1,n(1)+ϕ1,n(0)−1

ϕ′
1,n(1)

n�

�=j

ϕ′
1,�(1)

+ lim sup
n→∞

1
n�

�=j

ϕ′
1,�(1)

)

σj =
∞∑

n=j

ϕ′′
1,n(1)

ϕ′
1,n(1)

n�

�=j

ϕ′
1,�(1)

+ lim inf
n→∞

1
n�

�=j

ϕ′
1,�(1)

.

Actually, these sequences lead to a lower and an upper bound on fj . More
precisely, Lemma 7 below shows that 1/(1 − fj) is between σj and σj for
every integer j ≥ 0. Note that fj is thus equal to one if σj = ∞. This is so
in particular when j is less than the number j defined by (2.2).

Let us now give a necessary and a sufficient condition for the set Θ to
be empty with positive probability or with probability one, respectively.
Thanks to Proposition 1, we can obviously restrict our attention to the case
in which d∗ ≥ 0 and

(2.11) ∀j ≥ 0 fj > 0.

Note that, under these assumptions, j is necessarily finite, as d∗ is chosen
to be equal to −∞ when j is infinite. The next two results are established
in Section 7.
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Proposition 2. Let us assume that d∗ ≥ 0 and that (2.11) holds. Then,

∃j0 ≥ 0

∞∑
j=j0

−m0 · · · ·mj−1 · log ϕ0,j

(
1 − 1

σj+1

)
< ∞(2.12)

=⇒ P(Θ = ∅) > 0

=⇒ d∗ = 0 or
∞∑

j=0

−m0 · · · ·mj−1 · log ϕ0,j

(
1 − 1

σj+1

)
< ∞.(2.13)

Proposition 3. Let us assume that d∗ ≥ 0 and that (2.11) holds. Then,

σj = ∞ or [Φj(0) = 1 and ∀j ≥ j ϕ0,j(0) = 1](2.14)

=⇒ P(Θ = ∅) = 1

=⇒ σj = ∞ or [Φj(0) = 1 and ∀j ≥ j ϕ0,j(0) = 1].(2.15)

Remark 1. For particular choices of the transition probability measures ν1,j

of the Markov chain, the sequences (σj)j≥0 and (σj)j≥0 behave comparably,
so that Propositions 2 and 3 actually provide a criterion to know if Θ is
empty with positive probability or with probability one respectively, see
Proposition 4 below for an illustration of this remark.

3. Applications

3.1. Generalizations of Mandelbrot’s fractal percolation process

Various generalizations of the fractal percolation process which we briefly
described in Section 1 were considered, see [8] and the references therein. In
what follows, we introduce several new ones, to which the results of Section 2
may be applied.

3.1.1. A generalization of the Bernoulli case

Let (cj)j≥0 denote a bounded sequence of integers greater than one, let
π ∈ [0, 1] and let (pj)j≥0 and (qj)j≥0 be two sequences in [0, 1]. To begin
with, the cube [0, 1]d is colored black, with probability π, or white, with
probability 1 − π. Moreover, it is the union of c0

d adjacent closed subcubes
with edge length 1/c0. If [0, 1]d is black (resp. white), then each of these
subcubes is independently colored black, with probability p0 (resp. q0), or
white, with probability 1− p0 (resp. 1− q0). Each of the black (resp. white)
subcubes is itself the union of c1

d adjacent closed cubes with edge length
1/(c0c1) and each of these last cubes is then independently colored black,
with probability p1 (resp. q1), or white, with probability 1−p1 (resp. 1−q1).
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This program is iterated ad infinitum. Note that the usual percolation
process corresponds to the case in which π = 1, the sequence (cj)j≥0 is
constant, the sequence (pj)j≥0 is constant and equal to a given p ∈ (0, 1) and
the sequence (qj)j≥0 is equal to zero. We are interested in the distribution of
the Hausdorff dimension of the set of points belonging to black cubes from
a certain stage onward.

More formally, this set corresponds to the set Θ given by (1.8) when
the tree U0 is defined by (1.3) for mj = cj

d and the family of compact sets
(Ju)u∈U0 and the Markov chain (Xu)u∈U0 are as follows. For any integer
j ≥ 0, let us consider a bijection k �→ (rj,1(k), . . . , rj,d(k)) from {1, . . . , mj}
onto {0, . . . , cj − 1}d. Then, let J∅ = [0, 1]d and, for any vertex u ∈ U∗

0 , let

(3.1) Ju =

( 〈u〉∑
j=1

rj,1(uj)

c0 · · · cj−1
, . . . ,

〈u〉∑
j=1

rj,d(uj)

c0 · · · cj−1

)
+

1

c0 · · · c〈u〉−1
[0, 1]d.

Observe that Assertions (A)–(C) hold when the probability measure µj is the
point mass at (1/cj, . . . , 1/cj) for every integer j ≥ 0. Moreover, let (Xu)u∈U0

be a {0, 1}-valued Markov chain such that X∅ = 1 with probability π and
with transitions given by the product measures

(3.2)

{
ν0,j = (qjδ1 + (1 − qj)δ0)

⊗mj

ν1,j = (pjδ1 + (1 − pj)δ0)
⊗mj ,

where δx denotes the point mass at x. Then, the black (resp. white) cubes
correspond to the compacts Ju indexed by vertices u ∈ U0 enjoying Xu = 1
(resp. 0). Thus, as announced previously, the set Θ is the set of points that
belong to black cubes from some stage onward.

With a view to applying the results of Section 2, we need to consider the
infimum j of all integers j0 ≥ 0 such that pj is positive for every j ≥ j0 and
then to let d∗ = −∞ if j is infinite and

d∗ = d + lim inf
j→∞

log pj + · · · + log pj

log cj + · · · + log cj

otherwise. If d∗ is negative, then the set Θ is almost surely empty by virtue
of Theorem 1. Conversely, if d∗ is nonnegative, then Theorem 1 ensures that
with probability one, the set Θ either is empty or has Hausdorff dimension d∗.
Moreover, Propositions 1, 2 and 3 provide additional information about the
probability that Θ is empty in the case where d∗ is nonnegative.

Remark that if pj tends to one as j → ∞, then d∗ is equal to d, so that the
set Θ has Hausdorff dimension d with probability one when it is nonempty.
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Let us consider the particular case in which d is equal to two, π is equal
to one, the sequence (cj)j≥0 is constant and the sequence (qj)j≥0 is equal
to zero. Then, the set Θ has Hausdorff dimension two with probability one
when it is nonempty. This observation motivated the authors of [9] to use
this set as a better mean field approximation of the planar Brownian path,
which has Hausdorff dimension two, than the sets resulting from the usual
fractal percolation process, which necessarily have Hausdorff dimension less
than two.

3.1.2. A generalization of the microcanonical case

The difference with the previous case is that the transition probability mea-
sures defined by (3.2) are replaced by

ν0,j =
1(

mj

bj

) ∑
x∈{0,1}mj
�

k xk=bj

δx and ν1,j =
1(

mj

aj

) ∑
x∈{0,1}mj
�

k xk=aj

δx,

where aj , bj ∈ {0, . . . , mj} for any integer j ≥ 0. Informally, the cubes are
now colored as follows. As in the previous situation, the cube [0, 1]d is colored
black, with probability π, or white, with probability 1− π. If [0, 1]d is black
(resp. white), then among its m0 = c0

d adjacent closed subcubes with edge
length 1/c0, exactly a0 (resp. b0) are colored black and their positions are
chosen uniformly. Next, if a cube with edge length 1/c0 is black (resp. white),
then exactly a1 (resp. b1) of its m1 = c1

d adjacent closed subcubes with edge
length 1/(c0c1) are colored black and their positions are chosen uniformly
again. The above program is then reenacted ad infinitum. Note that the
usual microcanonical fractal percolation process corresponds to the case in
which π = 1, the sequences (cj)j≥0 and (aj)j≥0 are constant and the sequence
(bj)j≥0 is equal to zero.

The results of Section 2 prompt us to consider the infimum j of all
integers j0 ≥ 0 such that aj is positive for every j ≥ j0. If j is infinite, then
the set Θ is almost surely empty by virtue of Theorem 1. Conversely, let us
suppose that j is finite and let

d∗ = lim inf
j→∞

log aj + · · ·+ log aj

log cj + · · ·+ log cj
≥ 0.

Theorem 1 then ensures that with probability one, the set Θ either is empty
or has Hausdorff measure d∗. Moreover, fj is clearly equal to zero, so that
Proposition 1 may be applied. This result enables to show that Θ is empty
with probability zero if bj is positive for some j ≥ j and with probabil-
ity Φj(0) otherwise.
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3.1.3. Binary case in dimension one

Let us consider the particular case in which d is equal to one and the sequence
(cj)j≥0 is constant and equal to two. Accordingly, U0 is the binary tree T2 and
the compacts Ju defined by (3.1) are the closed dyadic subintervals of [0, 1].
Here, no specific assumption is made on the form of the transition probability
measures νt,j. Our aim is to illustrate Remark 1 above, according to which
Propositions 2 and 3 may sometimes lead to a criterion to know if the set Θ
is empty with positive probability or with probability one, respectively.

To this end, for any integer j ≥ 0, let⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

ηj = 1 − ν0,j({(0, 0)})
γj = 2 ν1,j({(1, 1)}) + ν1,j({(1, 0), (0, 1)})

ςj = 2
∞∑

n=j

ν1,n({(1,1)})

γn·
n�

�=j

γ�

and let j denote the infimum of all integers j0 ≥ 0 such that γj > 0 for any
j ≥ j0. Furthermore, let d∗ = −∞ if j is infinite and let

d∗ = lim inf
j→∞

log γj + · · ·+ log γj

j log 2

otherwise. In order to illustrate Remark 1, let us now establish the following
result. Recall that the generating functions Φj are defined by (2.5).

Proposition 4. If d∗ < 0, then Θ is empty with probability one. If not,
then with probability one, Θ is empty or has Hausdorff dimension d∗ and,
in addition,

a. if there is a j∗ ≥ 0 such that ν1,j({(0, 0)}) = 0 for any j ≥ j∗, then

P(Θ = ∅) = Φj∗(0) ·
∞∏

j=j∗

(1 − ηj)
2j

;

b. if ν1,j({(0, 0)}) > 0 for infinitely many integers j ≥ 0 and if
∑

j 2jηj

< ∞, then P(Θ = ∅) is positive and it is equal to one if and only if

ςj = ∞ or lim inf
j→∞

j∏
�=j

γ� = 0 or

{
Φj(0) = 1

∀j ≥ j ηj = 0;

c. if ν1,j({(0, 0)}) > 0 for infinitely many integers j ≥ 0, if
∑

j 2jηj = ∞
and if d∗ > 0, then P(Θ = ∅) is less than one and it is equal to zero if
and only if

∑
j 2jηj/ςj+1 = ∞.
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Proof. Theorem 1 directly ensures that Θ is empty with probability one
if d∗ is negative and that, with probability one, Θ is empty or has Hausdorff
dimension d∗ if d∗ is nonnegative. Moreover, (a) follows at once from Propo-
sition 1. Thus, we may restrict our attention to proving (b) and (c). To this
end, let us assume that d∗ ≥ 0 and that ν1,j({(0, 0)}) > 0 for infinitely many
integers j ≥ 0. Then, (2.11) holds, so that we may apply Propositions 2
and 3 in what follows. In addition, recall that, for any integer j ≥ 0, the
numbers σj and σj are defined by (2.10) and observe that for all j ≥ 0,

(3.3)

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

σj = max

(
1,

ςj
2

+ lim sup
n→∞

1
n�

�=j
γ�

)

σj = ςj + lim inf
n→∞

1
n�

�=j
γ�

= 1 +
∞∑

n=j

2 ν1,n({(1,1)})+γn−γn
2

γn·
n�

�=j
γ�

≥ 1.

In the last sum, 2 ν1,n({(1, 1)}) + γn − γn
2 is nonnegative for any integer n,

because it is the variance of Y1 + Y2, when (Y1, Y2) is distributed according
to ν1,n. Note that in particular, if d∗ is positive, then σj = max(1, ςj/2) and
σj = ςj ≥ 1.

Thanks to Proposition 2 and the observation that ϕ0,j(1− z) ≥ 1− 2ηjz
for any real z ≥ 0 and any integer j ≥ 0, it is straightforward to check that

∞∑
j=0

2jηj

σj+1

< ∞ =⇒ P(Θ = ∅) > 0.

Together with (3.3), this implies that Θ is empty with positive probability
in the case where

∑
j 2jηj converges and in the case where

∑
j 2jηj/ςj+1

converges and d∗ is positive.
Conversely, if

∑
j 2jηj/ςj+1 diverges while d∗ remains positive, then Θ is

empty with probability zero, because of (3.3), Proposition 2 and the fact
that ϕ0,j(1 − z) ≤ 1 − ηjz for any real z ∈ [0, 1] and any integer j ≥ 0.

Furthermore, if
∑

j 2jηj = ∞ and d∗ > 0, then Θ cannot be empty
with probability one, in view of (3.3), Proposition 3 and the fact that ςj
is necessarily finite when d∗ is positive, because ν1,n({(1, 1)}) ≤ γn for any
integer n ≥ 0.

Lastly, if
∑

j 2jηj < ∞, then the criterion to know if Θ is empty with
probability one directly follows from (3.3) and Proposition 3. �

Remark 2. Proposition 4 is employed in [16], where the set Θ comes into
play in the study of the pointwise regularity of the trajectories of a stochastic
process of a certain form. This process is actually a random wavelet series
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and the correlations between wavelet coefficients are governed by a tree-
indexed Markov chain. In that context, the set Θ is related with the set
of points at which the regularity of the process (measured using the notion
of Hölder exponent) is the worst possible. Thus, the determination of the
Hausdorff dimension of Θ plays a crucial role in the multifractal analysis of
the trajectories.

3.1.4. Further discussion

Other generalizations of Mandelbrot’s fractal percolation process may be
studied with the help of the results of Section 2. For instance, one could
define a generalization of the random Sierpinski carpet featured in [10] and
then examine the distribution of its Hausdorff dimension. One could also
consider situations where the compacts Ju are not simply cubes, but have a
more complicated (deterministic or random) geometric structure.

3.2. A case in which the compacts Ju are random

Until the end of this section, we restrict our attention to an elementary
example in which the compacts Ju arising in the construction of the set Θ
are random. Many other examples may easily be obtained by generalizing
those exposed in [17, 23, 33, 36].

Let p ∈ (0, 1) and, for any integer j ≥ 0, let λj denote a probability mea-
sure. We assume that the supports of the measures λj are included in a com-
mon proper subinterval of [0, 1]. The compact subsets Ju are now indexed by
the binary tree T2 and are defined as follows. To begin with, the compact J∅

is equal to [0, 1]. Then, given a random variable Y∅ with distribution λ0, the
compacts J1 and J2 are equal to [0, Y∅] and [Y∅, 1] respectively. Next, given
two random variables Y1 and Y2 with common distribution λ1, the compacts
J11, J12, J21 and J22 are equal to [0, Y∅Y1], [Y∅Y1, Y∅], [Y∅, Y∅ + (1− Y∅)Y2]
and [Y∅ + (1 − Y∅)Y2, 1] respectively. This procedure is then iterated ad
infinitum. It is easy to check that Assertions (A)–(C) hold, if for any in-
teger j ≥ 0, the measure µj is the law of (Y, 1 − Y ) when Y is distributed
according to λj .

Subsequently, some of the compacts Ju are either retained or discarded
according to the following recursive procedure. To begin with, the com-
pact J∅ is always kept. Next, for any vertex u ∈ T2, if the compact Ju has
been retained, then the compacts Ju1 and Ju2 are independently kept, with
probability p, or discarded, with probability 1−p, and if the compact Ju has
been discarded, then the compacts Ju1 and Ju2 are thrown away as well. Let
us examine the distribution of the Hausdorff dimension of the set of points
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resulting from the remaining compacts. More formally, this set coincides
with the set Θ defined by (1.8) when the transition probability measures of
the Markov chain (Xu)u∈T2 are given by

ν0,j = δ(0,0) and ν1,j = (p δ1 + (1 − p)δ0)
⊗2

and its initial state is 1, which means that X∅ = 1 with probability one.
The results of Section 2 show that if p ≤ 1/2, then the set Θ is almost surely
empty and that if p > 1/2, then either the set Θ is empty or its Hausdorff
dimension is the unique solution of

lim inf
j→∞

1

j

j−1∑
n=0

log

(∫ 1

0

(ys + (1 − y)s)λn(dy)

)
= log

1

p
, s ∈ R.

Moreover, in this last case, the set Θ is empty with probability (−1+1/p)2.

4. Ancillary results

In this section, we establish a few lemmas that are called upon at various
points of the rest of the paper.

4.1. Branching processes in varying environment

We first introduce a family of branching processes in varying environment
related with the transition probability measures ν1,j of the Markov chain
(Xu)u∈U0 and then establish a relationship between these processes and the
set Θ given by (1.8). Such processes are defined in the same way as the usual
Galton-Watson branching processes, except that the offspring distribution
of the individuals may depend on their generation, see [26].

Recall that the functions ϕ1,j are defined by (2.7). Let (Xj,n,k)j,n≥0,k≥1

denote a family of independent random variables such that, for any j and n
fixed, Xj,n,1,Xj,n,2, . . . have generating function ϕ1,j+n, that is,

∀k ≥ 1 ∀z E[zXj,n,k ] = ϕ1,j+n(z).

Note that with probability one, Xj,n,k is at most mj+n. For any integer
j ≥ 0, the branching process in varying environment (Zj,n)n≥0 with offspring
distributions having generating functions ϕ1,j, ϕ1,j+1, . . . is then defined by
Zj,0 = 1 and

∀n ≥ 0 Zj,n+1 =

Zj,n∑
k=1

Xj,n,k.
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It is easy to prove by induction on n that the generating function and the
expectation of Zj,n are respectively given by

(4.1) E[zZj,n ] = ϕ1,j ◦ · · · ◦ ϕ1,j+n−1(z) and E[Zj,n] =
n−1∏
�=0

ϕ′
1,j+�(1).

As we shall show in Sections 5 and 6, the size properties of the set Θ are
closely related with the asymptotic behavior of the processes (Zj,n)n≥0. If j
is less than the number j defined by (2.2), the expectation of Zj,n clearly
vanishes for all n large enough, so that the process (Zj,n)n≥0 becomes extinct
(i.e. Zj,n vanishes for all n large enough) with probability one and the study
of its asymptotic behavior is elementary. With a view to examining the
asymptotic behavior of (Zj,n)n≥0 when j ≥ j, let us consider its normed
process defined by

∀n ≥ 0 Wj,n =
Zj,n

E[Zj,n]
.

It is straightforward to check that (Wj,n)n≥0 is a nonnegative martingale.
Doob’s convergence theorem then ensures that Wj,n converges almost surely
as n → ∞ to a nonnegative random variable denoted by Wj,∞, see [12,
p. 450].

Before going into detail on the asymptotic behavior of (Zj,n)n≥0, let
us state a consequence of the assumptions made on the random compacts
(Ju)u∈U0 coming into play in the construction of the random set Θ.

Lemma 5. The sequence (mj)j≥0 is bounded.

Proof. Owing to Assertions (A) and (B), there exists a real C > 0 such
that

∑m〈u〉
k=1 |Juk|d ≤ C|Ju|d for any vertex u ∈ U0. Assertion (C) then implies

that mjβ
d ≤ C for any j ≥ 0. The result follows from the fact that β is

positive. �
Lemma 5 is elementary, but crucial, as it ensures that the offspring dis-

tributions of the processes (Zj,n)n≥0 are uniformly bounded. A result of
Lyons [32, Theorem 4.14] then immediately implies that Wj,∞ is positive
with probability one given nonextinction. Note that this need not hold
for a branching process in varying environment whose offspring distribu-
tions are not uniformly bounded, as shown by the various examples given
in [14, 15, 30, 34].

We use the result of Lyons in order to establish the following lemma,
which provides all the properties concerning the asymptotic behavior of the
processes (Zj,n)n≥0 that we shall need in the rest of the paper. Recall that
the real fj is defined by (2.9) for any integer j ≥ 0.
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Lemma 6. For any integer j ≥ 0,{
j < j =⇒ P(Zj,n → 0 as n → ∞) = 1

j ≥ j =⇒ P(Zj,n → 0 as n → ∞) = P(Wj,∞ = 0) = fj .

Proof. The expressions of the probability that Zj,n → 0 follow from (4.1)
and the fact that Zj,n → 0 if and only if Zj,n = 0 for all n large enough.

Let us assume that j ≥ j. If Zj,n → 0 with probability one, then Wj,∞
clearly vanishes with probability one. If not, Lemma 5 above and Theo-
rem 4.14 in [32] imply that Wj,∞ is positive with probability one given the
fact that Zj,n does not tend to zero. The result is thus a direct consequence
of the observation that Wj,∞ vanishes if Zj,n tends to zero. �

The following result gives some useful properties concerning the reals fj .
Recall that σj and σj are defined by (2.10).

Lemma 7. For any integer j ≥ 0,

fj = ϕ1,j(fj+1) and 1 − 1

σj

≤ fj ≤ 1 − 1

σj

.

Proof. The recurrence relation results from the continuity of ϕ1,j and the
definition of fj . The lower bound on fj is a straightforward consequence
of Theorem 2.1 and Proposition 3.1 in [21]. The upper bound is given by
Theorem 1 in [1]. �

Let us now supply a connection between the set Θ defined by (1.8) and
the branching processes in varying environment (Zj,n)n≥0. By definition, Θ
can be written as the union over all vertices u ∈ U0 of the compacts Ku

given by (1.7). As a consequence, the set Θ is empty if and only if all the
compacts Ku are empty. Hence, the study of the emptiness probability of Θ
reduces to investigating the probability that all the compacts Ku are empty.
As shown by the following lemma, this amounts to analyzing the extinction
probabilities of the processes (Zu,j)j≥〈u〉 defined by

(4.2) ∀j ≥ 〈u〉 Zu,j = #
{
v ∈ τu

∣∣ 〈v〉 = j
}

.

Lemma 8. For any vertex u ∈ U0, the compact Ku is empty if and only if
the process (Zu,j)j≥〈u〉 becomes extinct.

Proof. By virtue of (1.7), the set Ku is empty if and only if the set ∂τu is
empty. Moreover, the process (Zu,j)j≥〈u〉 becomes extinct if and only if the
set τu is finite, which is equivalent to the emptiness of ∂τu. This is due to
Kőnig’s lemma, according to which a tree in which every vertex has a finite
number of sons is finite if and only if its boundary is empty, see [29]. �
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The next result links the processes (Zu,j)j≥〈u〉 with the branching processes
in varying environment (Zj,n)n≥0.

Lemma 9. Let us consider a vertex u in U0.

a. If P(Xu = 0) > 0, then conditionally on the event {Xu = 0}, the
process (Zu,j)j≥〈u〉 is almost surely equal to zero.

b. If P(Xu = 1) > 0, then conditionally on the event {Xu = 1}, the pro-
cess (Zu,j)j≥〈u〉 has the same distribution as the process (Z〈u〉,j−〈u〉)j≥〈u〉.

Proof. The first part of the lemma is immediate. In order to establish
the second part, observe that (Zu,j)j≥〈u〉 is an inhomogeneous Markov chain
with state space {0, 1, . . .} such that

(4.3) ∀j ≥ 〈u〉 ∀z E[zZu,j+1 | Zu,〈u〉, . . . , Zu,j] = ϕ1,j(z)Zu,j .

Indeed, a vertex v ∈ U0 with generation j + 1 belongs to τu if and only if its
father π(v) belongs to τu and Xv = 1. Thus,

Zu,j+1 =
∑
w∈τu
〈w〉=j

mj∑
k=1

Xwk.

The Markov condition (D) ensures that, conditionally on the σ-field Fj

generated by the variables Xw for w ∈ U0 with generation at most j, the
vectors (Xwk)k∈{1,...,mj} for w ∈ τu with generation j are independent and
distributed according to ν1,j . Therefore,

(4.4) E[zZu,j+1 | Fj] = ϕ1,j(z)Zu,j .

The tower property of conditional expectation and the fact that the variables
Zu,〈u〉, . . . , Zu,j are Fj-measurable then lead to (4.3). The second part of the
lemma follows from the observation that (4.3) also holds for the process
(Z〈u〉,j−〈u〉)j≥〈u〉, that Z〈u〉,0 = 1 and that Zu,〈u〉 = 1 if and only if Xu = 1. �

4.2. Flows in random networks

Falconer [17] observed that the problem of determining the s-dimensional
Hausdorff measures of the sets obtained through certain random recursive
constructions can be reduced to that of examining flows in random networks.
His approach can actually be adapted for studying the Hausdorff dimension
of the set Θ defined by (1.8). Note that we do not go into detail about
network theory here and we refer to [6, 20, 33] for full expositions of this
topic.
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As Θ is the union over all vertices u ∈ U0 of the sets Ku given by (1.7),
we shall begin by studying the Hausdorff dimension of Ku for any u ∈ U0.
Recall that the set Ku is based on the boundary ∂τu of the set τu defined
by (1.5). Let C(τu) denote the collection of all finite sets χ ⊆ τu enjoying⎧⎨

⎩
∀ζ ∈ ∂τu ∃v ∈ χ ζ1 . . . ζ〈v〉 = v
∀v ∈ χ ∃ζ ∈ ∂τu ζ1 . . . ζ〈v〉 = v
∀v ∈ χ ∀� ∈ {〈u〉, . . . , 〈v〉 − 1} v1 . . . v� /∈ χ.

According to the terminology of network theory, any element of C(τu) is
called a cut of τu. One easily checks that C(τu) = {∅} if ∂τu is empty and
that the singleton {u} necessarily belongs to C(τu) otherwise. In addition,
for any integer j ≥ 〈u〉, let Cj(τu) denote the collection of all cuts χ ∈ C(τu)
formed by vertices with generation at least j only.

For every positive real s, let us consider

Es,u = inf
χ∈C(τu)

∑
v∈χ

( 〈v〉∏
�=〈u〉+1

Lv1...v�

)s

and Ẽs,u = lim
j↑∞

↑ inf
χ∈Cj(τu)

∑
v∈χ

( 〈v〉∏
�=〈u〉+1

Lv1...v�

)s

.

(4.5)

Then, Es,u can actually be seen as a maximal flow through a certain ran-
dom network associated with the set τu. The following result shows that,
together with Ẽs,u, it is linked with the s-dimensional Hausdorff measure of
the set Ku.

Lemma 10. There exists a real C > 0 such that with probability one, for
every vertex u ∈ U0 and every real s > 0,

C|Ju|sEs,u ≤ C|Ju|sẼs,u ≤ Hs(Ku) ≤ |Ju|sẼs,u.

Proof. Assertion (C) ensures that with probability one,

(4.6) ∀v ∈ U∗
0 β ≤ Lv ≤ β.

Throughout the proof, we assume that the event on which (4.6) holds oc-

curs. Let ε > 0 and j ≥ 0 with |J∅|β
j

< ε and let χ ∈ Cj(τu). Thanks
to (1.4), (1.7) and (4.6), it is straightforward to check that the compact
sets Jv, for v ∈ χ, cover Ku and have diameter less than ε. Hence,

Hs
ε(Ku) ≤

∑
v∈χ

|Jv|s = |Ju|s
∑
v∈χ

( 〈v〉∏
�=〈u〉+1

Lv1...v�

)s

.
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We get Hs(Ku) ≤ |Ju|sẼs,u by taking the infimum over all χ ∈ Cj(τu) and
letting j → ∞ in the right-hand side and then by letting ε → 0 in the
left-hand side.

Conversely, let j ≥ 〈u〉 and ε ∈ (0, |J∅|βj ] and let (Up)p≥1 denote a
cover of Ku by sets of diameter less than ε. For any p, if |Up| > 0, then let
Ũp = Up. If not, let Ũp denote a set with diameter ε/2p that contains Up.
Thus, (Ũp)p≥1 is a cover of Ku enjoying 0 < |Ũp| < ε for all p. Moreover, for
any p ≥ 1, let

Vp =
{
v ∈ τu \ {∅}

∣∣ Ũp ∩ Jv �= ∅ and |Jv| ≤ |Ũp| < |Jπ(v)|
}
.

Let us show that #Vp is bounded. Let x0 ∈ Ũp and let κ′ denote a positive
real such that ‖x‖∞ ≤ κ′‖x‖ for all x ∈ R

d, where ‖ · ‖∞ and ‖ · ‖ are
respectively the supremum norm and the norm R

d is endowed with. The
sets Jv, for v ∈ Vp, have disjoint interiors and are included in the closed
ball B with center x0 and radius 2κ′|Ũp| for the supremum norm, so that

(4κ′)d|Ũp|d = Ld(B) ≥
∑
v∈Vp

Ld(int Jv) ≥ κ
∑
v∈Vp

|Jv|d,

where int denotes interior and κ is given by Assertion (B). As |Jv| ≥
β|Jπ(v)| > β|Ũp| for any v ∈ Vp, it follows that

(4.7) #Vp ≤
1

C
with C =

κβd

(4κ′)d
.

Let χ denote the set obtained by removing from χ′ =
⋃

p Vp the vertices v
such that v1 . . . v� ∈ χ′ for some � < 〈v〉 or such that ζ1 . . . ζ〈v〉 �= v for all
ζ ∈ ∂τu. One can straightforwardly check that χ is a cut of τu. Moreover,
|Jv| < ε ≤ |J∅|βj for any v ∈ χ, so that β〈v〉 ≤ βj by (4.6). As a result, χ
actually belongs to Cj(τu). Furthermore, thanks to (4.7),

|Ju|s
∑
v∈χ

( 〈v〉∏
�=〈u〉+1

Lv1...v�

)s

≤
∞∑

p=1

∑
v∈Vp

|Jv|s

≤ 1

C

∞∑
p=1

|Ũp|s ≤
1

C

(
εs

2s − 1
+

∞∑
p=1

|Up|s
)

.

We finally obtain C|Ju|sẼs,u ≤ Hs(Ku) by taking the infimum over χ ∈
Cj(τu) in the left-hand side and the infimum over (Up)p≥1 in the right-hand
side and by letting ε → 0 and j → ∞.

To end the proof of the lemma, it suffices to observe that Cj(τu) ⊆ C(τu)
for any j ≥ 〈u〉, so that Es,u ≤ Ẽs,u. �
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Remark 3. Note that both Es,u and Ẽs,u are measurable with respect to
the σ-field generated by the ratios (Lv)v∈U∗

0
and the Markov chain (Xv)v∈U0 .

Lemma 10 then implies that the Hausdorff dimension of each Ku is measur-
able with respect to this σ-field. As Θ is the union over all vertices u ∈ U0 of
the sets Ku, its Hausdorff dimension is also measurable with respect to the
same σ-field. As observed by Falconer [17], as far as dimension calculations
are concerned, it is not necessary to impose measurability conditions on the
compacts Jv themselves.

Lemma 10 reduces the problem of computing the Hausdorff dimension
of Ku to that of determining for which values of s the random variables
Es,u and Ẽs,u are positive. In particular, if the flow Es,u is positive for some
s > 0, then the s-dimensional Hausdorff measure of Ku is positive as well,
so that the Hausdorff dimension of this set is at least s. Thus, with a view
to later deriving a lower bound on dimKu, we now study the probability
that Es,u vanishes.

To this end, for any integer j ≥ 0, we need to introduce two independent
families (Lj

u)u∈U∗
j

and (Xj
u)u∈Uj

of random variables which satisfy the follow-

ing conditions, which are similar to those given by Assertions (C) and (D):

E. The vectors (Lj
uk)k∈{1,...,mj+〈u〉}, for u ∈ Uj , are independent and dis-

tributed according to µj+〈u〉.

F. With probability one, Xj
∅ = 1 and, for any vertex u ∈ Uj , the con-

ditional distribution of the vector (Xj
uk)k∈{1,...,mj+〈u〉}, conditionally on

Xj
v for v ∈ Uj \ (uU∗

j+〈u〉), is νXj
u,j+〈u〉.

The last condition means that (Xj
u)u∈Uj

is a Markov chain with initial state 1
and transition probability measures νt,j+n for n ≥ 0 and t ∈ {0, 1}. For any
u ∈ Uj , we also need to consider the set

(4.8) τ j
u =

{
v ∈ uUj+〈u〉 | ∀n ∈ {〈u〉, . . . , 〈v〉} Xj

v1...vn
= 1
}
,

which is defined as in (1.5) and the collection C(τ j
u) of all its cuts. Then,

Assertions (C) and (D) imply that for any u ∈ U0 with P(Xu = 1) > 0 and
any s > 0, conditionally on the event {Xu = 1}, the flow Es,u has the same
distribution as

(4.9) inf
χ∈C(τ

〈u〉
∅

)

∑
v∈χ

( 〈v〉∏
�=1

L〈u〉
v1...v�

)s

.

Moreover, if Xu = 0, then Es,u obviously vanishes. Thus, the problem is
reduced to the study of the probabilities

(4.10) es,j = P

(
inf

χ∈C(τj
∅

)

∑
v∈χ

( 〈v〉∏
�=1

Lj
v1...v�

)s

= 0

)
,



1112 A. Durand

for s > 0 and j ≥ 0. The following result shows that, for any fixed s > 0, the
reals es,j satisfy the same recurrence relation as that enjoyed by the reals fj ,
see Lemma 7.

Lemma 11. For any real s > 0 and any integer j ≥ 0,

es,j = ϕ1,j(es,j+1).

Proof. Let Sj
1 denote the set of vertices u ∈ Uj with 〈u〉 = 1 and Xj

u = 1.
If the set τ j

∅ is finite, then C(τ j
∅) is reduced to the singleton {∅}, as well as

the sets C(τ j
u), for u ∈ Sj

1. Conversely, if τ j
∅ is infinite, then C(τ j

∅) consists
of the singleton {∅}, together with all the possible unions of elements of
C(τ j

u), for u ∈ Sj
1. In both cases, it follows that

inf
χ∈C(τj

∅
)

∑
v∈χ

( 〈v〉∏
�=1

Lj
v1...v�

)s

= min

(
1,
∑
u∈Sj

1

(Lj
u)

s inf
χu∈C(τ j

u)

∑
v∈χu

( 〈v〉∏
�=2

Lj
v1...v�

)s
)

.

In particular, the infimum in the left-hand side vanishes if and only if all
the infimums in the right-hand side do. Meanwhile, conditionally on the
variables Xj

u for 〈u〉 ≤ 1, each of these infimums vanishes independently of
the others with probability es,j+1. Hence,

P

(
inf

χ∈C(τj
∅

)

∑
v∈χ

( 〈v〉∏
�=1

Lj
v1...v�

)s

= 0

∣∣∣∣Xj
u, 〈u〉 ≤ 1

)
= es,j+1

#Sj
1 .

In order to conclude, it suffices to observe that #Sj
1 = Xj

1 + · · · + Xj
mj

and
to take expectations. �

Let us now assume that the number d∗ defined by (2.4) is positive. We
end this subsection by giving an upper bound on es,j, when s is less than d∗.
For any real s ∈ (0, d∗) and any integer j ≥ 0, let us consider the function φs,j

defined by

φs,j : z �→
∫
{0,1}mj

∫
[β,β]mj

mj∏
k=1

(1 − �k
s(1 − zxk))µj(d�)ν1,j(dx).

Lemma 12. If d∗ > 0, then for any real s ∈ (0, d∗) and any integer j ≥ 0,

es,j ≤ 1 − 1

ςs,j
where ςs,j =

∞∑
n=0

φ′′
s,j+n(1)

φ′
s,j+n(1)

n∏
�=0

φ′
s,j+�(1)

.

We refer to the next subsection for a proof of this result. This mainly
consists in adapting to our setting some techniques of percolation theory
exposed by Lyons and Peres in [33, Chapter 5].
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4.3. Percolation on trees

With a view to proving Lemma 12, we begin by considering percolation on
the tree τ j

∅ defined by (4.8). Let ξ denote a mapping from U∗
j to {0, 1}.

This mapping is intended to indicate which vertices of τ j
∅ remain during the

percolation process. Actually, the remaining vertices are those of the set

ξ · τ j
∅ =

{
u ∈ τ j

∅

∣∣ ∀j ∈ {1, . . . , 〈u〉} ξu1...uj
= 1
}
.

This set is the largest subtree of τ j
∅ formed by the root ∅ and the vertices

u ∈ τ j
∅ for which ξu = 1. For any integer n ≥ 0, let

ξ · Zj
∅,n = #

{
u ∈ ξ · τ j

∅

∣∣ 〈u〉 = n
}
.

If the mapping ξ is chosen according to the random product measure

Mj
s =

⊗
u∈U∗

j

(
(Lj

u)
sδ1 +

(
1 − (Lj

u)
s
)
δ0

)
,

then it is possible to express the generating functions of ξ · Zj
∅,0, ξ · Z

j
∅,1, . . .

in terms of the functions φs,j, φs,j+1, . . . This is the purpose of the following
result.

Lemma 13. If d∗ > 0, then for any real s ∈ (0, d∗) and any integer j ≥ 0,

∀n ≥ 0 ∀z E

[∫
{0,1}U

∗
j

zξ·Zj
∅,nMj

s(dξ)

]
= φs,j ◦ · · · ◦ φs,j+n−1(z).

Proof. We prove the result by induction on n ≥ 0. First, the equality is
obviously verified for every z when n = 0. Then, let n denote an integer
for which the equality holds for every z. For the sake of clarity, we need to
introduce some further notations. Let Ξn be the set of all mappings that are
valued in {0, 1} and defined on the set of vertices u ∈ U∗

j with generation at
most n and let us consider the random measure

Mj
s,n =

⊗
u∈U∗

j
〈u〉≤n

(
(Lj

u)
sδ1 +

(
1 − (Lj

u)
s
)
δ0

)
.

In addition, let Ξ̃n = {0, 1}mj+n and, for any vertex w ∈ Uj with generation
n, let us consider the random measure

M̃j
s,w,n =

mj+n⊗
k=1

(
(Lj

wk)
sδ1 +

(
1 − (Lj

wk)
s
)
δ0

)
.
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For any mapping ξ : U∗
j → {0, 1}, a vertex v ∈ Uj with generation n + 1

belongs to the tree ξ · τ j
∅ if and only if its father π(v) also belongs to it and

if ξv = Xj
v = 1. As a result,

ξ · Zj
∅,n+1 =

∑
w∈ξ·τj

∅

〈w〉=n

mj+n∑
k=1

ξwkX
j
wk.

Thus, for any complex number z, the integral of zξ·Zj
∅,n+1 with respect to the

random product measure Mj
s(dξ) is equal to

∫
Ξn

∏
w∈ξ·τj

∅

〈w〉=n

(∫
Ξ̃n

mj+n∏
k=1

(
zXj

wk

)ξw
k

M̃j
s,w,n(dξw)

)
Mj

s,n(dξ)

=

∫
Ξn

∏
w∈ξ·τj

∅

〈w〉=n

mj+n∏
k=1

(
(Lj

wk)
szXj

wk + 1 − (Lj
wk)

s
)

Mj
s,n(dξ).

Therefore, owing to Assertions (E) and (F), the conditional expectation of
the right-hand side of the previous equality, conditionally on the variables
Xj

u and Lj
u for 〈u〉 ≤ n, is equal to

∫
Ξn

φs,j+n(z)ξ·Zj
∅,nMj

s,n(dξ)

As a consequence,

E

[∫
{0,1}U

∗
j

zξ·Zj
∅,n+1Mj

s(dξ)

∣∣∣∣∣ Xj
u, Lj

u,
〈u〉 ≤ n

]
=

∫
{0,1}U

∗
j

φs,j+n(z)ξ·Zj
∅,nMj

s(dξ).

It finally suffices to take expectations in order to conclude. �

We are now able to prove Lemma 12. Let us assume that d∗ is positive,
consider a real s ∈ (0, d∗) and establish that the probability es,j is at most
1− 1/ςs,j. We can clearly suppose that j ≥ j, since ςs,j is infinite otherwise.

To begin with, observe that the mean number of vertices remaining in
any cut χ ∈ C(τ j

∅) after the percolation process has occurred is

∫
{0,1}U

∗
j

#(ξ · τ j
∅ ∩ χ)Mj

s(dξ) =
∑
v∈χ

∫
{0,1}U

∗
j

1{v∈ξ·τ j
∅
}M

j
s(dξ).
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Furthermore, any vertex v ∈ χ ⊆ τ j
∅ also belongs to ξ · τ j

∅ if and only if
ξv1...v�

= 1, for every integer � ∈ {1, . . . , 〈v〉}. Hence,

∫
{0,1}U

∗
j

1{v∈ξ·τ j
∅
}M

j
s(dξ) =

( 〈v〉∏
�=1

Lj
v1...v�

)s

.

The mean number of vertices remaining in the cut χ is then obtained by
summing the right-hand side over all vertices v ∈ χ. Meanwhile, this mean
number is at least∫

{0,1}U
∗
j

1{#(ξ·τ j
∅
∩χ)≥1}M

j
s(dξ) ≥

∫
{0,1}U

∗
j

1{ξ·Zj
∅,n�0 as n→∞}M

j
s(dξ).

Indeed, the mean number of vertices remaining in χ is greater than or equal
to the probability that there remains at least one vertex in χ. In addition,
if ξ · Zj

∅,n does not tend to zero as n → ∞, the boundary of the tree ξ · τ j
∅,

which is defined as in (1.6), contains at least a sequence ζ = (ζj)j≥1, by
virtue of Kőnig’s lemma. This sequence also belongs to the boundary of the
tree τ j

∅, so that the cut χ contains a vertex v enjoying ζ1 . . . ζ〈v〉 = v. The

vertex v thus simultaneously belongs to χ and ξ · τ j
∅. Therefore, at least a

vertex remains in χ.
Taking the infimum over all cuts χ in C(τ j

∅), we deduce that

inf
χ∈C(τj

∅
)

∑
v∈χ

( 〈v〉∏
�=1

Lj
v1...v�

)s

≥
∫
{0,1}U

∗
j

1{ξ·Zj
∅,n�0 as n→∞}M

j
s(dξ).

In particular, if this infimum vanishes, then the preceding integral vanishes
as well. Owing to the definition (4.10) of the probability es,j, this observation
implies that

es,j ≤ P

(∫
{0,1}U

∗
j

1{ξ·Zj
∅,n�0 as n→∞}M

j
s(dξ) = 0

)

≤ E

[∫
{0,1}U

∗
j

1{ξ·Zj
∅,n→0 as n→∞}M

j
s(dξ)

]
.

Observe that ξ · Zj
∅,n tends to zero as n → ∞ if and only if ξ · Zj

∅,n = 0 for
all n large enough. Owing to Lemma 13, the last expectation is thus the
limit of

E

[∫
{0,1}U

∗
j

1{ξ·Zj
∅,j1

=0}M
j
s(dξ)

]
= φs,j ◦ · · · ◦ φs,j+j1−1(0)
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as j1 → ∞. Furthermore, for any j1 ≥ 0, Theorem 1 in [1] ensures that the
right-hand side is at most

1 −
(

1
j1−1∏
�=0

φ′
s,j+�(1)

+

j1−1∑
n=0

φ′′
s,j+n(1)

φ′
s,j+n(1)

n∏
�=0

φ′
s,j+�(1)

)−1

.

To end the proof of Lemma 12, it remains to observe that this expression
tends to 1− 1/ςs,j as j1 → ∞. This is due to the fact that s is less than d∗,
together with the observation that φ′

s,j+�(1) is equal to the number αs,j+�

defined by (2.1), for any nonnegative integer �.

5. Upper bound on the dimension

Recall that, by virtue of its definition (1.8), the set Θ is the union over all
vertices u ∈ U0 of the compacts Ku given by (1.7). Hence, with a view to
proving Theorem 1, we establish in this section that the Hausdorff dimension
of the compacts Ku is at most the number d∗ defined by (2.4). We first
discuss the elementary case in which the generation of the vertex u is less
than the number j defined by (2.2).

Proposition 14. For any vertex u ∈ U0 with 〈u〉 < j,

a.s. dim Ku = −∞.

Proof. Lemmas 6, 8 and 9 ensure that for any vertex u ∈ U0 with generation
less than j, the compact Ku is almost surely empty. Thus, its Hausdorff
dimension is −∞ with probability one. �

Let us now consider the case in which the generation of u is at least j.
The number j is thus necessarily finite. Lemma 10 ensures that, in order
to derive an upper bound on the Hausdorff dimension of Ku, it suffices to
identify values of the positive real s for which the random variable Ẽs,u

vanishes. The next lemma suggests that this may be done by examining the
asymptotic behavior of the processes (Zs,u,j)j≥〈u〉 defined by

(5.1) ∀s > 0 ∀j ≥ 〈u〉 Zs,u,j =
∑
v∈τu
〈v〉=j

( j∏
�=〈u〉+1

Lv1...v�

)s

,

where the set τu is defined by (1.5) and the ratios Lv1...v�
are given by (1.1).

Lemma 15. For any vertex u ∈ U0 with 〈u〉 ≥ j and any real s > 0,

Ẽs,u ≤ lim inf
j→∞

Zs,u,j.
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Proof. For each integer j ≥ 〈u〉, the set of vertices v ∈ τu with generation j
for which Zv,n does not tend to zero as n → ∞ belongs to Cj(τu), the
collection of all cuts of τu formed by vertices with generation at least j only.
Consequently,

inf
χ∈Cj(τu)

∑
v∈χ

( 〈v〉∏
�=〈u〉+1

Lv1...v�

)s

≤ Zs,u,j.

The result is then a straightforward consequence of (4.5). �
In what follows, we also consider the process (Z0,u,j)j≥〈u〉 obtained by

letting s = 0 in (5.1). It is clearly equal to the process (Zu,j)j≥〈u〉 given
by (4.2). In addition, we make use of the normed processes (Ws,u,j)j≥〈u〉
defined by

(5.2) ∀s ≥ 0 ∀j ≥ 〈u〉 Ws,u,j =
Zs,u,j

j−1∏
�=〈u〉

αs,�

,

where the numbers αs,� are given by (2.1). These numbers are positive if
� ≥ j, so that the normed processes are correctly defined.

Lemma 16. For any vertex u ∈ U0 with 〈u〉 ≥ j and any real s ≥ 0, the
process (Ws,u,j)j≥〈u〉 is a nonnegative martingale.

Proof. For any integer j ≥ 〈u〉, a vertex w in U0 with generation j + 1
belongs to τu if and only if its father π(w) also belongs to τu and if Xw = 1.
Hence,

Zs,u,j+1 =
∑
v∈τu
〈v〉=j

( j∏
�=〈u〉+1

Lv1...v�

)s mj∑
k=1

Lvk
sXvk.

Assertions (C) and (D) then imply that the conditional expectation of
Zs,u,j+1, conditionally on the σ-field generated by the variables Xv and |Jv|
for v ∈ U0 such that 〈v〉 ≤ j, is equal to αs,jZs,u,j. The result follows from
the fact that the variables Ws,u,〈u〉, . . . , Ws,u,j are measurable with respect to
this σ-field. �

It follows from Lemma 16 and Doob’s convergence theorem that for any
vertex u ∈ U0 with generation at least j and any real s ≥ 0,

a.s. Ws,u,j −−−→
j→∞

Ws,u,∞ ∈ [0,∞).

We can now establish the desired upper bound on the Hausdorff dimen-
sion of the sets Ku.
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Proposition 17. For any vertex u ∈ U0 with 〈u〉 ≥ j,

a.s. dim Ku ≤ d∗.

Proof. Let us first assume that d∗ < 0. In particular, ρ(0) is negative.
The definition (2.3) of the function ρ, together with the observation that
α0,〈u〉+� = ϕ′

1,〈u〉+�(1) for any � ≥ 0, implies that

j−1∏
�=0

ϕ′
1,〈u〉+�(1) ≤ eρ(0)j/2

for infinitely many integers j ≥ 1. Hence, the number σ〈u〉 defined by (2.10)
is infinite and Lemma 7 guarantees that f〈u〉 is equal to one. It follows from
Lemmas 6, 8 and 9 that the set Ku is empty with probability one, so that
its Hausdorff dimension is necessarily less than d∗.

Let us now assume that d∗ ≥ 0 and let us consider a real s > d∗.
Then, ρ(s) is negative, so that the lim inf of

∏j−1
�=〈u〉 αs,� vanishes as j → ∞.

Meanwhile, Ws,u,j converges almost surely to a finite limit. It follows that the
lim inf of Zs,u,j vanishes with probability one. Lemma 15 ensures that Ẽs,u

vanishes almost surely. Lemma 10 then implies that with probability one,
dim Ku ≤ s. To deduce that the Hausdorff dimension is almost surely
at most d∗, it suffices to let s tend to d∗ along a decreasing sequence of
reals. �

6. Lower bound on the dimension

With a view to proving Theorem 1, we establish in this section that the
Hausdorff dimension of the sets Ku defined by (1.7) and composing Θ is
almost surely at least the number d∗ defined by (2.4), when they are non-
empty. We may obviously assume that d∗ is positive. In particular, the
number j given by (2.2) is finite. More precisely, we establish the following
result.

Proposition 18. Let us assume that d∗ is positive. Then, for any vertex
u ∈ U0 with 〈u〉 ≥ j, with probability one,

Ku �= ∅ =⇒ dim Ku ≥ d∗.

The rest of this section is devoted to the proof of Proposition 18. Let
us suppose that d∗ is positive and let us consider a vertex u ∈ U0 with
generation at least j. Our proof makes use of the processes (Es,u,j)j≥〈u〉
defined by

∀s ∈ (0, d∗) ∀j ≥ 〈u〉 Es,u,j = es,j
Zu,j ,

where the reals es,j are the probabilities defined by (4.10).
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Lemma 19. For any real s ∈ (0, d∗), the process (Es,u,j)j≥〈u〉 is a nonnega-
tive martingale.

Proof. Let us consider an integer j ≥ 〈u〉. Thanks to (4.4), the conditional
expectation of Es,u,j+1, conditionally on Fj is ϕ1,j(es,j+1)

Zu,j , which is equal
to Es,u,j by virtue of Lemma 11. To conclude, it suffices to observe that the
variables Es,u,〈u〉, . . . , Es,u,j are Fj-measurable. �

It follows from Lemma 19 and Doob’s convergence theorem that

a.s. Es,u,j −−−→
j→∞

Es,u,∞ ∈ [0, 1].

The next lemma supplies a connection between the value of the limiting vari-
able Es,u,∞ and that of the limit W0,u,∞ of the process (W0,u,j)j≥〈u〉 defined
by (5.2).

Lemma 20. For any real s ∈ (0, d∗),

W0,u,∞ > 0 =⇒ Es,u,∞ = 0.

Proof. Lemma 12 ensures that for any integer j ≥ 〈u〉,

(6.1) Es,u,j ≤
(

1 − 1

ςs,j

)Zu,j

≤ exp

(
−Zu,j

ςs,j

)
.

Furthermore, note that φ′
s,�(1) = αs,� > 0 and φ′′

s,�(1) ≤ m�φ
′
s,�(1) for any

integer � ≥ j. As a result,

ςs,j ≤
( j−1∏

�=j

φ′
s,�(1)

) ∞∑
n=j

mn
n∏

�=j

αs,�

.

Since ρ(s) is positive and the sequence (mj)j≥0 is bounded owing to Lemma 5,
we necessarily have, for ε ∈ (0, ρ(s)) and j large enough,

∞∑
n=j

mn
n∏

�=j

αs,�

≤
∞∑

n=j

e(ε−ρ(s))(n+1) =
e(ε−ρ(s))(j+1)

1 − eε−ρ(s)
.

Letting ε = ρ(s)/2, applying (5.2) with s = 0 so as to express Zu,j in terms
of W0,u,j and observing that 0 < φ′

s,�(1) ≤ ϕ′
1,�(1) for any integer � ≥ 〈u〉,

we deduce that

−Zu,j

ςs,j
≤ − W0,u,j

〈u〉−1∏
�=j

φ′
s,�(1)

(eρ(s)/2 − 1)eρ(s)j/2

for all j large enough. Therefore, if W0,u,∞ is positive, the right-hand side
tends to −∞ as j → ∞, so that Es,u,∞ vanishes thanks to (6.1). �
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To prove Proposition 18, let us consider a real s ∈ (0, d∗). Due to
Lemma 19,

E[Es,u,∞] = E[Es,u,〈u〉] = P(Xu = 0) + es,〈u〉P(Xu = 1).

Moreover, recall that if Xu = 0, then the flow Es,u vanishes and that if
Xu = 1 with positive probability, then conditionally on the event {Xu = 1},
this flow has the same distribution as the variable given by (4.9). Thus, the
probability that Es,u vanishes is equal to the right-hand side of the previous
equality. Therefore, this probability is equal to the expectation of Es,u,∞. In
addition, Lemma 10 shows that Es,u vanishes if the dimension of the set Ku

is less than s. As a consequence,

P(dim Ku < s) ≤ P(Es,u = 0) = E[Es,u,∞].

This last expectation may be written on the form

E[1{W0,u,∞>0}1{Es,u,∞>0}Es,u,∞] + E[1{W0,u,∞=0}Es,u,∞].

The first term is at most the probability that W0,u,∞ and Es,u,∞ are both
positive, which is equal to zero because of Lemma 20, and the second term
is at most the probability that W0,u,∞ vanishes. Furthermore, Lemmas 6
and 9 imply that W0,u,∞ vanishes with probability

P(Xu = 0) + P(W〈u〉,∞ = 0) P(Xu = 1)

= P(Xu = 0) + P(Z〈u〉,j → 0 as j → ∞) P(Xu = 1).

Because of Lemmas 6, 8 and 9, this probability is also equal to that of the
event {Ku = ∅}. We deduce that P(dim Ku < s) ≤ P(Ku = ∅). Since the
event {dim Ku < d∗} is the increasing union over s ∈ (0, d∗) of the events
{dim Ku < s}, this yields

P(dim Ku < d∗) ≤ P(Ku = ∅).

Proposition 18 follows directly.

7. Proofs of the main results

7.1. Proof of Theorem 1

Propositions 14 and 17 ensure that for any vertex u ∈ U0, the set Ku defined
by (1.7) has Hausdorff dimension at most d∗ with probability one. Recall
that, by virtue of its definition (1.8), the set Θ is the union over u ∈ U0 of
the sets Ku. Hence, with probability one, the dimension of Θ is at most d∗.
In particular, if d∗ is negative, then the dimension of Θ is almost surely
equal to −∞.
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It remains to prove that if d∗ is nonnegative, then with probability one,

Θ �= ∅ =⇒ dim Θ ≥ d∗.

We may obviously assume that d∗ is positive. If Θ is nonempty and has
Hausdorff dimension less than d∗, then there exists a vertex u ∈ U0 such
that Ku �= ∅ and dim Ku < d∗. By virtue of Proposition 14, the generation
of u is at least j. Proposition 18 then ensures that such a vertex u may exist
only with probability zero. The result follows.

7.2. Proof of Theorem 2

Lemma 8, along with (1.8), ensures that Θ is empty if and only if the
processes (Zu,j)j≥〈u〉, for u ∈ U0, become extinct. Moreover, for any integer
j ≥ 0, the processes (Zu,n)n≥〈u〉, for 〈u〉 ≤ j, become extinct, if and only if
the processes (Zu,n)n≥〈u〉, for u ∈ Sj , do. Therefore,

P(Θ = ∅) = lim
j↑∞

↓ P(∀u ∈ Sj Zu,n → 0 as n → ∞).

In addition, for any j ≥ 0, Lemma 9 and the Markov condition (D) imply
that

P(∀u ∈ Sj Zu,n → 0 as n → ∞ | Xv, 〈v〉 ≤ j) = fj
#Sj .

To conclude, it suffices to take expectations and to let j → ∞.

7.3. Proof of Proposition 1

Let us suppose that d∗ is nonnegative and that fj∗ vanishes for some integer
j∗ ≥ 0. It follows from Lemma 7 that fj = 0 and ϕ1,j(0) = 0 for any integer
j ≥ j∗. Owing to (2.8),

∀j ≥ j∗ Φj+1(fj+1) = Φj(fj) · ϕ0,j(0)m0·...·mj−1 .

We conclude by arguing by induction and using Theorem 2.

7.4. Proof of Proposition 2

Let us assume that (2.12) holds. For any integer j ≥ 0, it follows from (2.6)
that

E[fj+1
#Sj+1 | Xu, 〈u〉 ≤ j] = ϕ1,j(fj+1)

#Sjϕ0,j(fj+1)
m0·...·mj−1−#Sj .

In addition, Lemma 7 ensures that ϕ1,j(fj+1) = fj and (2.11) imply that
ϕ0,j(fj+1) belongs to the interval (0, 1]. Taking expectations, we deduce
that

Φj+1(fj+1) ≥ Φj(fj) · ϕ0,j(fj+1)
m0·...·mj−1 .
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Theorem 2 and Lemma 7 then imply that for any integer j0 ≥ 0,

(7.1) P(Θ = ∅) ≥ Φj0(fj0) ·
∞∏

j=j0

ϕ0,j

(
1 − 1

σj+1

)m0·...·mj−1

.

Note that Φj0(fj0) and the product above are both positive, owing to (2.11)
and (2.12) respectively. Therefore, the set Θ is empty with positive proba-
bility.

Let us suppose that (2.13) does not hold. For any integer j ≥ 0, let
mj = m0 · · ·mj−1. Owing to (2.11), the reals fj and ϕ0,j(fj+1) belong to the
interval (0, 1]. Thus, by virtue of (2.6) and Lemma 7,

E[fj+1
#Sj+1 | Xu, 〈u〉 ≤ j] = fj

#Sjϕ0,j(fj+1)
mj−#Sj

≤ fj
#Sj
(
ϕ0,j(fj+1)

mj/21{#Sj≤mj/2}+1{#Sj>mj/2}
)

≤ fj
#Sjϕ0,j(fj+1)

mj/2 + fj
mj/2.

Taking expectations and then arguing by induction on j, one easily checks
that

(7.2) ∀j ≥ 0 Φj(fj) ≤
f0

uj

+
1

uj

j∑
k=1

uk fk−1
mk−1/2,

where, for any integer j ≥ 0,

uj =
1

j−1∏
�=0

ϕ0,�(f�+1)m�/2

≥ 1
j−1∏
�=0

ϕ0,�

(
1 − 1

σ�+1

)m�/2
.

Observe that
∑

j fj
mj/2 < ∞. Indeed, ρ(0) is positive, ϕ′′

1,�(1) ≤ m�ϕ
′
1,�(1)

for any integer � ≥ j and the sequence (mj)j≥0 is bounded owing to Lemma 5.
As a result, we necessarily have, for ε ∈ (0, ρ(0)) and j large enough,

σj ≤
∞∑

n=j

mn
n∏

�=j

ϕ′
1,�(1)

=

( j−1∏
�=j

ϕ′
1,�(1)

)
e(ε−ρ(0))(j+1)

1 − eε−ρ(0)
.

Letting ε = ρ(0)/2 and using Lemma 7, we obtain

fj
mj/2 ≤ exp

(
−mj

2σj

)
≤ exp

(
−(eρ(0)/2 − 1)

mj

2
eρ(0)j/2

)

for all j large enough, which ensures the convergence of
∑

j fj
mj/2. More-

over, the sequence (uj)j≥0 is nondecreasing and diverges to infinity. Kro-
necker’s lemma then guarantees that the right-hand side of (7.2) tends to
zero as j → ∞, see [11, p. 103]. Theorem 2 implies that Θ is empty with
probability zero.
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7.5. Proof of Proposition 3

Let us assume that (2.14) holds. If σj is infinite, then one easily checks

using (2.10) that σj = ∞ for any j ≥ j. In particular, fj = 1 thanks to
Lemma 7 and ϕ0,j(1 − 1/σj+1) = 1 for each j ≥ j. Applying (7.1) with
j0 = j, we deduce that Θ is empty with probability one. Conversely, if σj is

finite, then the function Φj and the functions ϕ0,j, for j ≥ j, are constant
and equal to one. Together with (7.1), this directly implies that Θ is almost
surely empty.

Let us suppose that Θ is empty with probability one. By Theorem 2, the
expectation of fj

#Sj is equal to one for any integer j ≥ 0. Let us assume
that σj is finite. Using (2.10), one easily checks that σj is also finite, for any
j ≥ j. By Lemma 7, the probability fj is less than one for each j ≥ j, so that
with probability one, #Sj vanishes for all j ≥ j. In particular, Φj(0) = 1
and ϕ0,j(0) = 1 for any j ≥ j, thanks to (2.6). Thus, (2.15) necessarily
holds.

8. A straightforward generalization

In this last section, the families (Lu)u∈U∗
0

and (Xu)u∈U0 are not assumed to
be independent anymore and Assertions (C) and (D) are replaced by the
assumption that, for any u ∈ U0, the conditional law of

(Xu1, . . . , Xum〈u〉, Lu1, . . . , Lum〈u〉),

conditionally on the variables Xv and Lv, for v �∈ uU∗
〈u〉, is λXu,〈u〉. Here, λt,j

denotes a fixed probability measure on {0, 1}mj ×[β, β]mj for every t ∈ {0, 1}
and every j ≥ 0. Note that the original case in which Assertions (C) and (D)
hold and the families (Lu)u∈U∗

0
and (Xu)u∈U0 are independent may be recov-

ered by letting λt,j be the product measure νt,j ⊗ µj, for any t and any j. It
is quite straightforward to adapt the proofs exposed in Sections 4–7 above
in order to establish that Theorems 1 and 2, as well as Propositions 1, 2
and 3, still hold this generalized context, provided that (2.1) and (2.7) are
replaced by

αs,j =

∫
{0,1}mj×[β,β]mj

mj∑
k=1

�k
sxk λ1,j(dx, d�)

and ϕt,j(z) =

∫
{0,1}mj×[β,β]mj

zx1+...+xmj λt,j(dx, d�),

respectively.
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