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Valiron’s construction
in higher dimension

Filippo Bracci, Graziano Gentili and Pietro Poggi-Corradini

Abstract

We consider holomorphic self-maps ϕ of the unit ball B
N in C

N

(N = 1, 2, 3, . . . ). In the one-dimensional case, when ϕ has no fixed
points in D := B

1 and is of hyperbolic type, there is a classical renor-
malization procedure due to Valiron which allows to semi-linearize the
map ϕ, and therefore, in this case, the dynamical properties of ϕ are
well understood. In what follows, we generalize the classical Valiron
construction to higher dimensions under some weak assumptions on
ϕ at its Denjoy-Wolff point. As a result, we construct a semi-conjuga-
tion σ, which maps the ball into the right half-plane of C, and solves
the functional equation σ ◦ ϕ = λσ, where λ > 1 is the (inverse of
the) boundary dilation coefficient at the Denjoy-Wolff point of ϕ.

1. Introduction

1.1. The one-dimensional case

Let ϕ be a holomorphic map on D with ϕ(D) ⊂ D. If ϕ has no fixed points
in D, then by the classical Wolff lemma (see, e.g., [1]) there exists a unique
point τ ∈ ∂D, called the Denjoy-Wolff point of ϕ, such that the sequence of
iterates {ϕ◦n} of ϕ converges uniformly on compacta to the constant map
ζ �→ τ , ∀ζ ∈ D. Also, by the classical Julia-Wolff-Caratheodory theorem, τ
is a fixed point (as non-tangential limit) for ϕ and the first derivative ϕ′ has
non-tangential limit c ∈ (0, 1] at τ ; moreover,

c = lim inf
ζ→ τ

1 − |ϕ(ζ)|
1 − |ζ | .
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The number c is called the multiplier of ϕ or the boundary dilatation coef-
ficient at τ . The map ϕ is called hyperbolic if c < 1 and parabolic if c = 1.

Geometrically, one defines the horodisks H(t) :=
{
z ∈ D : |τ − z|2/(1 −

|z|2) < 1/t
}
, which are disks in D internally tangent to ∂D at τ , and which

get smaller as t gets larger. Then the following mapping property holds:
φ(H(t)) ⊂ H(t/c). In formulas:

|τ − ϕ(z)|2
1 − |ϕ(z)|2 ≤ c

|τ − z|2
1 − |z|2 ,

for every z ∈ D.

In 1931 G. Valiron [14] (see also [15] and [4]) proved that if ϕ is hyperbolic
then there exists a nonconstant holomorphic map θ : D → H :=

{
w ∈ C :

Rew > 0
}

which solves the so-called Schröder equation:

(1.1) θ ◦ ϕ =
1

c
θ.

Valiron constructs the map θ as follows. First, in order to simplify notations,
one can move to the right half-plane H via the Cayley map C(ζ) = (τ +
ζ)/(τ−ζ), which takes τ to ∞ and conjugates ϕ to a self-map φ := C◦ϕ◦C−1

of H, with Denjoy-Wolff point ∞ and multiplier 1/c. Then, one considers
the orbit xn + iyn := φ◦n(1) of the point w = 1, and studies the sequence of
renormalized iterates:

(1.2) σn(w) :=
φ◦n(w)

xn
.

Valiron showed that {σn} converges to a holomorphic map σ : H → H such
that σ ◦ φ = 1

c
σ. Thus θ := σ ◦ C solves (1.1).

After Valiron’s construction, Ch.Pommerenke [11], [12], C. Cowen [6] and
P. Bourdon and J. Shapiro [5] exploited other constructions to solve (1.1)
(and the corresponding Abel’s equation for the parabolic case). In particular,
Pommerenke’s approach in [11] is based on a slightly different, but equiv-
alent, renormalization which replaces (1.2). The approach in [12], which
works for random iteration sequences, needs some regularity hypothesis. On
the other hand, Cowen’s construction [6] is based on an abstract model
relying strongly on the Riemann uniformization theorem. Finally, Bourdon
and Shapiro’s construction is based upon a different renormalization process
which works only with some further regularity of ϕ at τ , but also guarantees
some stronger regularity properties for the semi-conjugation θ.

In [4, Prop. 6] the first and last named authors proved that actually
all those different methods (when applicable) provide essentially the same
solution. Namely, if σ̃ : D → H is another (nonconstant) solution of the
functional equation (1.1) then there exists λ > 0 such that σ̃ = λσ.
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Moreover, Valiron showed that σ comes with some guaranteed, but weak,
regularity properties at τ . In function theory language, σ is semi-conformal
(or isogonal) at τ , namely, σ fixes ∞ ∈ ∂H non-tangentially and Arg σ has
non-tangential limit 0 at ∞. As showed in [4], the semi-conformality of
σ is essentially responsible for the uniqueness properties of σ and for the
following dynamical properties of φ: for every orbit zn := φ◦n(z0), Arg zn

tends to a limit α(z0) ∈ (−π/2, π/2) which depends harmonically on z0, and
conversely, given an angle α ∈ (−π/2, π/2) one can always find an orbit
whose limiting argument is α.

1.2. Valiron’s method in higher dimensions

In CN , N = 2, 3, . . . , we let πj : CN → C, j = 1, . . . , N , be the coordinate

mappings; the usual inner product is 〈z1, z2〉 :=
∑N

j=1 z1,jz2,j , where zn,j =

πj(zn); the norm is ‖z‖2 := 〈z, z〉. The unit ball BN is
{
z ∈ CN : ‖z‖2 < 1

}
.

Let ϕ be a holomorphic self-map of BN . If ϕ has no fixed points in BN

then B. MacCluer [10] proved that the Denjoy-Wolff theorem still holds.
Namely, the sequence of iterates of ϕ, {ϕ◦n}, converges uniformly on com-
pacta to the constant map z �→ τ , ∀z ∈ BN , for a (unique) point τ ∈ ∂BN

(called again the Denjoy-Wolff point of ϕ). Like in the one-dimensional case,
the number

c := lim inf
z→τ

1 − ‖ϕ(z)‖
1 − ‖z‖ ,

belongs to (0, 1] and is called the multiplier of ϕ or the boundary dilatation
coefficient of ϕ at τ . Also, τ is a fixed point in the sense of non-tangential
limits (and actually in the sense of K-limits as we define below). However,
in this case the differential of ϕ might not have non-tangential limit at τ .
The map ϕ is called hyperbolic if c < 1 and parabolic if c = 1.

Here too ϕ preserves certain ellipsoids internally tangent to ∂BN at τ :
defining

(1.3) E(t) :=

{
z ∈ B

N :
|1 − 〈z, τ〉|2

1 − ‖z‖2
< 1/t

}
,

then ϕ(E(t)) ⊂ E(t/c). In formulas,

(1.4)
|1 − 〈ϕ(z), τ〉|2

1 − ‖ϕ(z)‖2
≤ c

|1 − 〈z, τ〉|2
1 − ‖z‖2

,

for every z ∈ BN .
Assuming some regularity for ϕ at τ , in the spirit of Bourdon-Shapiro,

in [3] the first and the second named authors proved that, if ϕ is hyperbolic,
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one can solve the following functional equation:

σ ◦ ϕ = Aσ,

where σ : BN → CN is a nonconstant holomorphic map with good regularity
properties at τ , and where A is the matrix dϕτ . Recently such a result has
been improved in B

2 by F. Bayart assuming less regularity for ϕ at τ (see [2]
where also the parabolic case is considered).

On the other hand, the first and third named author in [4] have shown,
that for all hyperbolic self-maps ϕ, i.e., with no regularity assumptions at τ ,
and for each orbit zn = ϕ◦n(z0), there is a Koranyi region K(τ, R) such
that zn will tend to τ while staying in K(τ, R). Recall that, for R > 1/2,
the R-Koranyi approach region at τ is a region of the form

(1.5) K(τ, R) :=
{
z ∈ B

N : |1 − 〈z, τ〉| < R(1 − ‖z‖2)
}
.

The original aim, when looking for semi-conjugations in the one-dimen-
sional case, was to show that general hyperbolic self-maps do indeed have a
similar dynamical behavior as the hyperbolic automorphisms that share the
same attracting fixed point.

In higher dimensions however, it is easy to construct maps whose image
lies in a sub-variety with non-zero codimension, and thus automorphisms
alone don’t seem to be enough to model the dynamics of such maps (although
one may try to consider automorphisms of lower dimensional balls). Also
the fact that the differential of ϕ does not in general have a non-tangential
limit at τ , shows that before trying to semi-conjugate ϕ to an automorphism
on an higher-dimensional ball, it is preferable to study the following “one-
dimensional” equation first.

Problem 1.1. Find a nonconstant holomorphic map Θ : BN → H ⊂ C

such that

(1.6) Θ ◦ ϕ =
1

c
Θ.

The aim of this paper is to try to solve Problem 1.1 by generalizing the
method of Valiron to higher dimensions.

As in the one-dimensional case, it is more convenient to move to the
Siegel domain

(1.7) H
N :=

{
(z, w) ∈ C × C

N−1 : Re z > ‖w‖2
}

which is biholomorphic to BN via the Cayley transform C : BN → HN

defined as

(1.8) C(ζ1, ζ
′) :=

(
1 + ζ1
1 − ζ1

,
ζ ′

1 − ζ1

)
.
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Thus, if φ : H
N → H

N is a hyperbolic holomorphic map with Denjoy-Wolff
point ∞ and multiplier 1/c, we define the following sequence

(1.9) σn(z, w) :=
π1 ◦ φ◦n(z, w)

xn
,

where, π1(z, w) := z is the projection on the first component and we set
xn = Re π1(φ

◦n(1, 0)). For short we will say that the Valiron method works
whenever the sequence {σn} converges uniformly on compacta.

Our main result is the following:

Main Theorem. Let ϕ : BN → BN be a hyperbolic holomorphic self-map
with Denjoy-Wolff point τ ∈ ∂BN and multiplier c < 1. If

(1) there exists z0 ∈ BN such that the sequence {ϕ◦n(z0)} is special and

(2) the K- lim
z→τ

1 − 〈ϕ(z), τ〉
1 − 〈z, τ〉 exists,

then the Valiron method works and there exists a nonconstant holomorphic
function Θ : BN → H such that Θ ◦ ϕ = 1

c
Θ.

In order to explain our hypotheses (1) and (2), we recall that a sequence
{zn} ⊂ BN converging to a point τ ∈ ∂BN is said to be special if

lim
n→∞

‖zn − 〈zn, τ〉τ‖2

1 − |〈zn, τ〉|2 = 0,

or, equivalently, the Kobayashi distance kBN (zn, 〈zn, τ〉τ), between {zn} and
the projection of zn along τ , tends to zero as n → ∞. For the definition
and properties of the Kobayashi distance we refer to [9] or [1]; we will only
use the fact that the Kobayashi distance is invariant under biholomorphisms
and that kBN (0, z) = tanh−1(‖z‖).

Moreover, a function h : BN → C has K-limit L at τ ∈ ∂BN , K-
limz→τh(z) = L, if for any R > 1/2 and any sequence {zn} ⊂ K(τ, R)
converging to τ it follows that limn→∞ h(zn) = L (see [1] or [13]).

Notice that if ϕ : BN → BN is a hyperbolic holomorphic self-map with
Denjoy-Wolff point τ ∈ ∂B

N and multiplier c < 1, then Rudin’s version of
the classical Julia-Wolff-Caratheodory theorem (see [13, Thm. 8.5.6] or [1,
Thm. 2.2.29]) implies that

(1.10) lim
n→∞

1 − 〈ϕ(zn), τ〉
1 − 〈zn, τ〉 = c

for all sequences {zn} ⊂ BN converging to τ such that {zn} is special and
{〈zn, τ〉} converges to 1 non-tangentially in D. Such a limit is called re-
stricted K-limit. Unfortunately, it is easy to show that K-limits imply re-
stricted K-limits, but not the converse. Thus, hypothesis (2) is a non-trivial
requirement.
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Condition (1) is not always easy to verify, unless, say, the map ϕ happens
to fix (as a set) a slice ending at τ . For instance, under the regularity
assumptions of [3] it follows that (2) holds, but it is not clear, ex ante,
that (1) must also hold. On the other hand, once the semi-conjugation is
established in [3], with good regularity properties, then it is easy to verify
that (1) had to hold, ex post. In fact, we don’t know of any explicit examples
where (1) fails. So it could be the case that (1) is actually a superfluous
hypothesis for the Main Theorem.

1.3. An example

The following is an example of a map as in the Main Theorem satisfying
condition (1) but not (2) and for which the Valiron method still works.

Consider the map

φ : H
2 
 (z, w) �→ (Az + Aw2ψ(z), 0)

where ψ : H → D is any holomorphic function and A > 1. Then clearly,
φ(H2) ⊂ H2, ∞ is the Denjoy-Wolff point of φ, the multiplier is A > 1 and
the sequence {φ◦n(1, 0)} = {(An, 0)} is special. Moreover,

π1 ◦ φ◦n(z, w) = Anz + Anw2ψ(z).

Hence

σn(z, w) :=
π1 ◦ φ◦n(z, w)

xn
= z + w2ψ(z).

Therefore {σn} does not depend on n and it can be checked easily that the
map σ(z, w) := z + w2ψ(z) solves σ ◦ φ = Aσ. Thus the Valiron method

works. However, the K-limit of φ1(z,w)
z

at ∞ does not exist if ψ doesn’t have
a non-tangential limit at ∞. In particular, for such ψ, hypothesis (2) in the
Main Theorem is not satisfied.

It is interesting to note that for such an example, the crucial equa-
tion (3.15) below becomes

Axnz + Axnw
2ψ(xnz)

xnz
= A + A

w2

z
ψ(xnz),

and the limit for n→ ∞ does not exists if w �= 0.
In particular, the regularity hypothesis (2) in the Main Theorem, while

necessary in our proof, is not necessary for Valiron’s method to work.

Our Main Theorem is proved in Section 3. In order to prove it, in
Section 2 we introduce a new characterization of K-limits for functions,
which we then develop in the Appendix into the notion of E-limits. We
believe that the new understanding of K-limits which comes from the study



Valiron’s construction in higher dimension 63

of our E-limits might be a useful tool for other results. In the last section
we include some further comments and open questions.

We thank the referee for useful comments which improved the manuscript.

2. Preliminaries on K-Limits

As mentioned before, we work in the Siegel domain (1.7). A direct com-
putation using (1.5) and (1.8) shows that the Koranyi region K(τ, R) with
vertex at τ and amplitude R in BN corresponds to one with vertex at ∞
and amplitude M := 2R > 1 in H

N given by

(2.1) K(∞,M) :=

{
(z, w) ∈ H

N : ‖w‖2 < Re z − |z + 1|
M

}
.

To get a geometric feeling for these objects, notice that the ellipsoids E(t)
defined in (1.3) correspond in HN to the sets

E(T ) :=
{
(z, w) ∈ H

N : Re z − ‖w‖2 > T
}

for some T > 0 depending on t. So, in particular, a sequence in K(∞,M)
tending to infinity will eventually be contained in every E(T ) for T large,
because z tends to infinity when (z, w) ∈ HN tends to infinity.

Notice also that the property (1.4) for a hyperbolic map φ = (φ1, φ
′) :

HN → HN with multiplier A > 1 reads as follows:

Reφ1(z, w) − ‖φ′(z, w)‖2 > A(Re z − ‖w‖2)

for every (z, w) ∈ HN .
We will find it convenient to use an equivalent characterization of K-

limits. First we need a few definitions.
For Z = (z, w) ∈ HN , let p(Z) := (z, 0) be the projection of Z onto the

complex line L := {(z, 0) : z ∈ H} ⊂ HN . If kHN denotes the Kobayashi
distance on HN , a calculation shows that

kHN (Z, p(Z)) = kHN (Z,L).

Definition 2.1. Let {Zn} = {(zn, wn)} ⊂ HN converge to ∞.

(i) We say the convergence is C-special if there exists 0 ≤ C < ∞ such
that

lim sup
n→∞

kHN (Zn, p(Zn)) ≤ C,

where kHN is the Kobayashi distance on H
N .

(ii) We say the convergence is restricted if {zn} converges non-tangentially
to ∞ in H.
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Remark 2.2. Let {Zn} ⊂ H
N be a sequence which converges to ∞. Then

there exists 0 ≤ C ′ < +∞ such that kHN (Zn, p(Zn)) ≤ C ′ for all n ∈ N if
and only if {Zn} is C-special for some C ≤ C ′ (such C is in general strictly
smaller than C ′).

Remark 2.3. The concepts just introduced of C-special and restricted se-
quences are formulated using the complex geodesic z ∈ H �→ (z, 0) ∈ H

N

and the projection associated to it. It turns out that being C-special and
restricted do not depend on the chosen complex geodesic with ∞ in its
boundary. This is used in the proof of the Main Theorem and could be
useful in domains other than HN and BN . For this reason, in the Appendix,
Section 5, we provide a rigorous proof of this fact.

Remark 2.4. A 0-special sequence is simply referred to as special, see
also [1] and [13].

Lemma 2.5. Let Zn = (zn, wn) ∈ HN converge to ∞. Then, the following
are equivalent:

(1) Zn stays inside a Koranyi region K(∞,M) for some 1 < M <∞;

(2) Zn is C-special, for some C <∞, and is restricted;

(3) There is 0 < a < 1 and 0 < T <∞, such that

‖wn‖2 ≤ aRe zn and |Im zn| ≤ TRe zn.

The proof of Lemma 2.5 rests on the following computation. For Z =
(z, w) ∈ HN , we compute the Kobayashi distance in HN between Z and
p(Z). Set z = x + iy and notice that the map T (u, v) = (u−iy

x
, v√

x
) is an

automorphism of HN . Thus by invariance, we have

kHN

(
(z, 0), (z, w)

)
= kHN

(
(1, 0), T (z, w)

)
= kBN

(
0, C−1(T (z, w))

)
= tanh−1 ‖C−1(T (z, w))‖

= tanh−1 ‖(0, w√
x

)‖ = tanh−1 ‖w‖√
x
.

(2.2)

In other words, kHN (Z, p(Z)) = tanh−1(‖w‖/√Re z) and it is useful to recall
that tanh−1(s) is a positive increasing function on (0, 1) with a vertical
asymptote at 1.

Proof of Lemma 2.5. By (2.2), a sequence {Zn} = {(zn, wn)} ⊂ HN is
C-special for some 0 < C <∞ if and only if lim supn→∞ ‖wn‖2/(Re zn) ≤ a
for some 0 < a < 1. In fact, a = tanhC. Thus, since |Im zn| ≤ TRe zn is
an usual formulation of non-tangentiality in H, we have that (2) and (3) are
equivalent.
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Assuming (3) and writing zn = xn + iyn, we have |zn +1|2 ≤ (1+T 2)x2
n +

2xn + 1. Thus

xn − |zn + 1|
M

≥
(

1 −
√

1 + T 2

M

)
xn + o

(
1

xn

)
,

as xn tends to infinity. Choose M large enough, so that 1 −√
1 + T 2/M <

a < 1. This ensures that Zn ∈ K(∞,M) for all n large. So (3) implies (1).
Conversely, assume that Zn ∈ K(∞,M) for some 1 < M < ∞. Then,

since
xn − |zn + 1|/M ≤ (1 − 1/M)xn,

by (2.1), we have ‖wn‖2 ≤ aRe zn with a = 1−1/M . Also, |zn+1| ≤MRe zn,
so |Im zn| ≤ MRe zn. Hence, (1) implies (3). �

3. The proof of the Main Theorem

We start by reformulating it in the context of HN .

Main Theorem (Siegel domain version). Let φ = (φ1, φ
′) : H

N → H
N be

holomorphic, with Denjoy-Wolff point ∞ and multiplier λ > 1. Assume that

(1) There exists Z0 ∈ HN such that the sequence {φ◦n(Z0)} is special.

(2) K-limHN�(z,w)→∞
φ1(z,w)

z
exists.

Then Valiron’s method works and there exists a non-constant holomorphic
map σ : HN → H such that

σ ◦ φ = λσ.

Remark 3.1. By considering T ◦ φ ◦ T−1, where T is an automorphism
of HN fixing ∞ and such that T (Z0) = (1, 0), we can always assume that it
is the sequence φ◦n(1, 0) that is special, see the proof of Lemma 5.2. So we
will make this assumption in the sequel.

Remark 3.2. The Valiron method is invariant under conjugation, namely,
let φ : HN → HN be hyperbolic holomorphic with Denjoy-Wolff point ∞, let
T be an automorphism of HN fixing ∞ and let φ̃ := T ◦ φ ◦ T−1. Then the
sequence {σn} := {(π1 ◦ φ◦n)/xn} given by (1.9) converges if and only if the
sequence {σ̃n} := {(π1 ◦ φ̃◦n)/x̃n} converges (here x̃n = Re π1(φ̃

◦n(1, 0)) =
Re π1◦T ◦φ◦n◦T−1(1, 0)). In fact, by a direct computation, it turns out that
if σn → σ as n→ ∞ then σ̃n → (x0 −‖w0‖2)σ ◦T−1, where (x0 + iy0, w0) :=
T−1(1, 0). We leave the details of such a computation to the reader.
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We need a preliminary result.

Lemma 3.3. Let φ = (φ1, φ
′) : HN → HN be holomorphic, with Denjoy-

Wolff point ∞ and multiplier λ ≥ 1. Assume the sequence {φ◦n(1, 0)} is
special. Write φ◦n(1, 0) = (zn, wn) and zn = xn + iyn. Then

(1) lim
n→∞

xn+1

xn

= λ.

(2) There exists L ∈ R such that lim
n→∞

yn

xn

= L.

Proof . As proved in [4, section 3.5], for any fixed Z ∈ H
N , the orbit

{φ◦n(Z)} stays in a Koranyi region with vertex at ∞ and so, in particular,
it is restricted. Therefore, there exists C > 0 such that for all n ∈ N

(3.1) |yn| ≤ Cxn.

By Rudin’s version of the classical Julia-Wolff-Caratheodory theorem (1.10),
reformulated in HN (see Theorem 5.5 in the Appendix), since (zn, wn) is
special and restricted, it follows that

lim
n→∞

zn+1

zn
=
φ1(zn, wn)

zn
= λ.

In particular we can write

(3.2) zn+1 = λzn + o(1)zn.

Dividing (3.2) by xn and taking the real part, we obtain xn+1

xn
= λ+Re o(1)−

yn

xn
Im o(1). Taking the limit for n→ ∞, by (3.1), we get

(3.3) lim
n→∞

xn+1

xn

= λ,

which proves (1).
In order to prove (2), let

{ ynk

xnk

}
be any convergent subsequence and let L

be its limit. By (3.1), L is finite. Moreover,

(3.4)
zn+1

zn
=
xn+1

xn

1 + i yn+1

xn+1

1 + i yn

xn

and by (3.2) and (3.3) we see that
{ ynk+1

xnk+1

}
is also a convergent sequence with

the same limit L. Assume by contradiction that there exists a converging
subsequence

{ ymk

xmk

}
with limit L′ �= L. Let

qn :=
xn+1

xn

+ i
yn+1 − yn

xn

.



Valiron’s construction in higher dimension 67

By (3.3), we have

Im qnk
=
ynk+1 − ynk

xnk

=
ynk+1

xnk+1

xnk+1

xnk

− ynk

xnk

−→ L(λ− 1),

and similarly Im qmk
→ L′(λ−1). Therefore {qnk

} converges to λ+ iL(λ−1)
while {qmk

} converges to λ+ iL′(λ− 1).

We claim that {qn} can have at most two accumulation points, say a, a′

(which must be necessarily a = λ + iL(λ − 1) and a′ = λ + iL′(λ − 1)).
Assuming the claim is true, let U,U ′ be two open neighborhoods of a and a′

respectively such that U ∩U ′ = ∅. Since {qn} has only a, a′ as accumulation
points by our claim, there exists n0 such that for all n > n0 then either
qn ∈ U or qn ∈ U ′. Moreover, since {qnk

} ⊂ U for nk > n0 and {qmk
} ⊂ U ′

for mk > n0, one can select a subsequence {qlk} ⊂ U such that {qlk+1} ⊂ U ′.
But this implies that

{ ylk

xlk

}
converges to L(λ − 1) while

{ ylk+1

xlk+1

}
converges

to L′(λ− 1), contradicting our previous argument in (3.4).
We are left to show that {qn} can have at most two accumulation points.

We already know that Re qn → λ > 1. We are going to show that the (real)
sequence {kH(1, qn)} of hyperbolic distances between 1 and qn has limit,
say d. Thus the accumulation points of {qn} must belong to the intersection
between the real line {ζ ∈ H : Re ζ = λ} and the boundary of the hyperbolic
disc of center 1 and radius d, and this intersection consists of at most two
points.

To see that {kH(1, qn)} converges, let us introduce the family of auto-
morphisms of HN given by

(3.5) Tn(z, w) :=

(
z − iyn

xn
,
w√
xn

)
.

Notice that Tn(zn, 0) = (1, 0) and Tn ◦ T−1
n+1(1, 0) = (qn, 0), from which we

obtain that

kH

(
1, qn

)
= kHN

(
(1, 0), (qn, 0)

)
= kHN

(
(1, 0), Tn ◦ T−1

n+1(1, 0)
)

= kHN

(
T−1

n (1, 0), T−1
n+1(1, 0)

)
= kHN

(
(zn, 0), (zn+1, 0)

)
.

(3.6)

Now, by the contracting property of Kobayashi’s distance,

kHN

(
(zn, 0), (zn+1, 0)

)
= kH

(
zn, zn+1

)
= kH

(
π1(zn, wn), π1(zn+1, wn+1)

)
≤ kHN

(
(zn, wn), (zn+1, wn+1)

)
.

(3.7)

On the other hand, by the triangle inequality,

kHN

(
(zn, 0), (zn+1, 0)

) ≥ kHN

(
(zn, wn), (zn+1, wn+1)

)
− kHN

(
(zn, 0), (zn, wn)

) − kHN

(
(zn+1, 0), (zn+1, wn+1)

)
.

(3.8)
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Since {(zn, wn)} is special, both the function kHN ((zn, 0), (zn, wn)) and the
function kHN ((zn+1, 0), (zn+1, wn+1)) tend to 0 as n → ∞. Therefore, from
(3.6), (3.7) and (3.8) it follows

lim
n→∞

kH

(
1, qn

)
= lim

n→∞
kHN

(
(zn, 0), (zn+1, 0)

)
= lim

n→∞
kHN

(
(zn, wn), (zn+1, wn+1)

)
,

and the latter limit exists because the sequence {kHN ((zn, wn), (zn+1, wn+1))}
is non-increasing in n since the Kobayashi distance is contracted by holo-
morphic maps. �

Proof of the Main Theorem. As mentioned in Remark 3.1 and Re-
mark 3.2, after conjugating φ with some automorphism of H

N we can sup-
pose that Z0 = (1, 0), and as we saw in the proof of Lemma 3.3, the orbit
of (1, 0) is thus both special and restricted. Moreover, see Proposition 5.8 in
the Appendix, the conjugation made does not effect our regularity hypoth-
esis, namely

(3.9) K- limHN�(z,w)→∞
φ1(z, w)

z
= λ.

Letting (zn, wn) := φ◦n(1, 0), zn = xn + iyn, and using Lemma 2.5, we see
that

(3.10) lim
n→∞

‖wn‖√
xn

= 0.

Now we consider the Valiron-like sequence {σn} of holomorphic maps
from HN to H defined by

σn(z, w) :=
π1 ◦ φ◦n(z, w)

xn
,

where, as usual, π1(z, w) := z is the projection on the first component.
Notice that

(3.11) σn ◦ φ =
π1 ◦ φ◦(n+1)

xn

=
xn+1

xn

σn+1.

If we can prove that the sequence {σn} converges uniformly on compacta to
a non-constant map σ : HN → H (which is necessarily holomorphic), then
by taking the limit for n → ∞ in (3.11), and by Lemma 3.3 (1), we obtain
that σ ◦ φ = λσ.

We will now show that {σn} is uniformly convergent on compacta to a
non-constant function.

First of all, we notice that by Lemma 3.3 (2),

σn(1, 0) = 1 + i
yn

xn
−→ 1 + iL, as n→ ∞.
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And, on the other hand, again by Lemma 3.3

σn(φ(1, 0)) =
π1 ◦ φ◦(n+1)(1, 0)

xn

=
xn+1 + iyn+1

xn

=
xn+1

xn

+ i
xn+1

xn

yn+1

xn+1

→ λ+ iλL,

as n→ ∞. Since λ > 1, the above proves that any limit of the sequence {σn}
cannot be constant.

Now we are going to prove that for any (z, w) ∈ HN

(3.12) lim
n→∞

kH(σn(z, w), σn+1(z, w)) = 0.

To this aim, we first notice that the set {σn(z, w)} is relatively compact
in H. Indeed, let πw : CN → CN−1 be the projection C × CN−1 
 (z, w) �→
w ∈ CN−1 and define

(3.13) Sn(z, w) :=

(
σn(z, w),

πw(φ◦n(z, w))√
xn

)
.

Notice that Sn = Ln ◦φ◦n, where Ln is the automorphism of HN defined
by Ln(z, w) = (z/xn, w/

√
xn). Therefore Sn : HN → HN . Moreover, by

Lemma 3.3 (1) and (3.10)

(3.14) Sn(1, 0) =

(
σn(1, 0),

wn√
xn

)
= (1 + i

yn

xn

,
wn√
xn

) → (1 + iL, 0),

as n→ ∞.
In particular there exists C > 0 such that kHN (Sn(1, 0), (1 + iL, 0))< C

for all n ∈ N. Therefore, by the triangle inequality and the contraction
property,

kHN

(
Sn(z, w), (1 + iL, 0)

) ≤ kHN

(
Sn(z, w), Sn(1, 0)

)
+ kHN

(
Sn(1, 0), (1 + iL, 0)

)
≤ kHN

(
(z, w), (1, 0)

)
+ C,

which proves that {Sn(z, w)} is relatively compact in HN .
Now, notice that

σn+1 = π1 ◦ Ln+1 ◦ φ ◦ L−1
n ◦ Sn.

Since we already proved that the sequence {Sn(z, w)} is relatively compact
in HN , (3.12) will follow if we prove that π1 ◦Ln+1 ◦φ◦L−1

n → π1 as n→ ∞.
A direct computation shows that

(3.15) π1 ◦ Ln+1 ◦ φ ◦ L−1
n (z, w) =

π1(φ(xnz,
√
xnw))

xnz

xnz

xn+1
.
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Now for all n ∈ N, by (2.2)

kHN

(
(xnz,

√
xnw), (xnz, 0)

)
= tanh−1 ‖w‖√

Re z
<∞,

and clearly {xnz} converges to ∞ non-tangentially in H. Thus the sequence
{(xnz,

√
xnw)} is C-special and restricted. Hence, by applying (3.9) and

Lemma 3.3 (1) to the limit as n → ∞ in (3.15), we get π1 ◦ Ln+1 ◦ φ ◦
L−1

n (z, w) → z as n→ ∞, as needed.

At this point, let {σnk
} be a convergent subsequence of {σn} and let σ be

its limit, which we know is non-constant. By (3.12), {σnk+1} also converges
to σ. By (3.11) and Lemma 3.3 (1) we see that

(3.16) σ ◦ φ = λσ.

It remains to show that the Valiron method works, namely, that the sequence
{σn} converges. By the very definition, {σn} converges if and only if {π1◦Sn}
does with Sn defined in (3.13). We already proved that {Sn} is bounded on
compacta of HN , thus it is a normal family. Let S be a limit of {Sn}. Let
Z ∈ HN . Since the Kobayashi distance is contracted by holomorphic maps,
the sequence {kH(Sn(1, 0), Sn(Z))} is decreasing in n and must have a limit.
Therefore, by (3.14), for all Z ∈ HN ,

lim
n→∞

kH(Sn(1, 0), Sn(Z)) = kH((1 + iL, 0), S(Z)).

This implies that if S̃ is another limit of {Sn} then kH((1 + iL, 0), S(Z)) =
kH((1 + iL, 0), S̃(Z)) for all Z ∈ HN . Thus, conjugating both S, S̃ with a
Cayley map C′ which maps (1+iL, 0) into O ∈ BN , we find two holomorphic
maps S ′, S̃ ′ : BN → BN with the property that ‖S ′(Z)‖ = ‖S̃ ′(Z)‖ for all
Z ∈ BN . Hence (see, e.g., [7, Prop. 3, p. 102]) there exists a unitary matrix U
such that S ′ = US̃ ′. Translating into HN this means that S̃ = T ◦ S
for some automorphism T : HN → HN fixing (1 + iL, 0). We claim that
π1◦T (z, w) = z, hence π1◦S = π1◦S̃ which implies that {π1◦Sn} –and hence
{σn}– is converging. In order to prove that π1 ◦ T (z, w) = z, it is enough to
prove that T (z, 0) = (z, 0) for some point z ∈ H \ {1 + iL}, because then by
the classical theory of automorphisms (see [1] or [13]) T must fix pointwise
the complex geodesic H × {0}. To this aim, let Z1 := φ(1, 0). Let {Snk

} be
a sub-sequence of {Sn} converging to S. By (3.16),

(π1 ◦ S)(Z1) = (π1 ◦ S)(φ(1, 0)) = λσ(1, 0) = λ(1 + iL).
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On the other hand, setting as before (zn, wn) := φ◦n(1, 0), we get

(πw ◦ S)(Z1) = lim
k→∞

πw(φ◦nk(Z1))√
xnk

= lim
k→∞

πw(φ◦(nk+1)(1, 0))√
xnk

= lim
k→∞

wnk+1√
xnk

= lim
k→∞

wnk+1√
xnk+1

√
xnk+1

xnk

= 0,

where the last equality follows from (3.10) and Lemma 3.3 (1). Thus S(Z1) =
(λ(1 + iL), 0). Similarly, we have S̃(Z1) = (λ(1 + iL), 0). Therefore

T (λ(1 + iL), 0) = (T ◦ S)(Z1) = S̃(Z1) = (λ(1 + iL), 0),

which proves that π1 ◦ T (z, 0) = z as needed. �

4. Further remarks and open questions

1. In order to make the Valiron construction to work, in the Main Theorem
we need the technical hypothesis (1), namely that φ possesses a 0-special
orbit. We do not know whether any hyperbolic holomorphic self-map of the
ball always has such an orbit or not. Clearly, if the self-map has an invariant
complex geodesic (whose closure must necessarily contain the Denjoy-Wolff
point) then such a condition is satisfied for all points on such a complex
geodesic. For instance, if T : BN → BN is a hyperbolic automorphism with
Denjoy-Wolff point e1 and other fixed point −e1, then the orbit of any point
(z, 0′) is (obviously) special, and conversely, the orbit of any point of the
form (z, z′) with z′ �= 0′ is not special.

2. As shown by the Example in section 1.3, hypothesis (2) in the Main
Theorem is not necessary for the Valiron construction to work in higher
dimension.

3. Along the lines of the one-dimensional Valiron construction (see, e.g.,
[4, p. 47]) one can prove that if σ is the intertwining map given by the Main
Theorem, then H 
 ζ �→ σ(ζ, 0) is semi-conformal at ∞. However, no
further regularity on σ at ∞ seems to follow from the construction.

4. Uniqueness (up to composition with linear fractional maps) of inter-
twining mappings in higher dimension –without assigning further conditions–
does not hold. The main theoretical reason is that in dimension one the
centralizer of a given hyperbolic automorphism consists of hyperbolic au-
tomorphisms while in higher dimension this is no longer so (see [8]). For
example, if H : BN → BN is a hyperbolic automorphism, then any holomor-
phic self-map F : BN → BN such that F ◦ H = H ◦ F solves the (trivial)
Schröder equation σ ◦H = H ◦ σ. By [8], if N > 1, then there exist map-
pings F which are not linear fractional maps.
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5. Appendix: E-limits

In this appendix, we introduce the notion of E-limit in H
N and show that

it is equivalent to that of K-limit. However, this new definition might be
useful in more general domains. We also prove a couple of routine facts that
were needed in the proof of the Main Theorem.

A complex geodesic f : H → HN is a holomorphic map which is an
isometry between the Poincaré distance on H and the Kobayashi distance
on HN . It is well known (see, e.g., [1]) that for HN the image of a complex
geodesic is the intersection of HN with an affine complex line. A linear
projection ρ : HN → HN is a holomorphic map such that ρ2 = ρ, the image
ρ(HN ) is the intersection of HN with an affine complex line (namely it is
a complex geodesic) and ρ−1(ρ(Z)) is an affine hyperplane in HN for all
Z ∈ HN . To any complex geodesic it is associated a unique linear projection
and conversely, to any linear projection it is associated a unique (up to
parametrization) complex geodesic.

Given any complex geodesic f : H → HN there exists an automorphism
G of HN such that f(ζ) = G−1(ζ, 0). The linear projection associated to f
is then given by ρ(z, w) = G−1(π1(G(z, w)), 0), where π1(z, w) := z. The
map ρ̃ := f−1 ◦ ρ : HN → H is called the left inverse of f .

If ρ : H
N → H

N is a linear projection such that ρ(HN ) contains ∞, for
short we say that ρ is a linear projection at ∞.

We will denote by p1 : HN → HN the linear projection at ∞ given by
p1(z, w) = (z, 0), associated to the complex geodesic f(ζ) = (ζ, 0) and left
inverse π1(z, w) = z.

Definition 5.1. Let ρ : HN → HN be a linear projection at ∞. A sequence
{Zk} ⊂ HN converging to ∞ is said C-special with respect to ρ if there
exists C ≥ 0 such that

lim sup
k→∞

kHN (Zk, ρ(Zk)) ≤ C.

The sequence {Zk} converging to ∞ is said to be ρ-restricted if {ρ(Zk)}
converges non-tangentially to ∞ in ρ(HN ).

Lemma 5.2. Let {Zk} ⊂ HN be a sequence converging to ∞. Let ρ0 :
HN → HN be a linear projection at ∞. Then {Zk} is C-special (C ≥ 0)
with respect to ρ0 if and only if it is C-special (same C) with respect to any
linear projection at ∞ ρ. The sequence {Zk} is ρ0-restricted if and only if
it is ρ-restricted with respect to any linear projection at ∞ ρ.

Proof . Let T0 be an automorphism of H
N fixing ∞ and with the property

that ρ(z, w) = T−1
0 (p1(T0(z, w)). Since T0 is an isometry for kHN , then
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{Zk} is C-special with respect to ρ0 (respectively ρ0-restricted) if and only
if {T0(Zk)} is C-special with respect to p1 (respect. p1-restricted). Therefore
it is enough to prove that if {Zk} is C-special with respect to p1 (respectively
p1-restricted) then it is C-special with respect to any linear projection at ∞ ρ
(respect. ρ-restricted).

Given a linear projection at ∞ ρ, there exists a ∈ C
N−1 and an auto-

morphism T ∈ Aut(HN ) of the type

T (z, w) = (z + ‖a‖2 + 2〈w, a〉, w+ a)

such that ρ = T−1 ◦ p1 ◦ T . A direct computation shows that

(5.1) ρ(z, w) = (z + 2‖a‖2 + 2〈w, a〉,−a).
Therefore, writing Zk = (zk, wk) = (xk + iyk, wk) and, arguing similarly
to (2.2), we obtain

kHN

(
p1(Zk), ρ(ZK)

)
= kHN

(
(zk, 0), (zk + 2‖a‖2 + 2〈wk, a〉,−a)

)
= kHN

(
(1, 0), (

zk + 2‖a‖2 + 2〈wk, a〉 − iyk

xk
,
−a√
xk

)

)

= tanh−1

√√√√ |2‖a‖2 + 2〈wk, a〉|2 + 4xk‖a‖2

x2
k

∣∣∣2 + 2‖a‖2

xk
+ 2 〈wk,a〉

xk

∣∣∣2 .

The last term tends to 0 as xk → ∞, which is the case if k → ∞ because
Zk → ∞ and xk = Re zk > ‖wk‖2. Thus

(5.2) lim
k→∞

kHN (p1(Zk), ρ(ZK)) = 0.

Now, using the triangle inequality and (5.2) we see that if {Zk} is C-special
with respect to p1, then

lim sup
k→∞

kHN (Zk, ρ(ZK))

≤ lim sup
k→∞

kHN (Zk, p1(ZK)) + lim sup
k→∞

kHN (p1(Zk), ρ(ZK)) ≤ C,

as stated.
On the other hand, if {Zk} is p1-restricted (namely, Re zk ≥ cIm zk for

some c > 0), from (5.1) and since Re zk > ‖wk‖2 it follows that {Zk} is also
ρ-restricted �

Remark 5.3. It is worth to note explicitly that by Lemma 5.2 the condition
of being C-special and that of being restricted do not depend on the chosen
linear projection.
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Definition 5.4. Let h : H
N → C be holomorphic. We say that h has

E-limit A ∈ C at ∞, and we write

E- limHN�(z,w)→∞h(z, w) = A,

if for any sequence {Zk} ⊂ HN converging to ∞ which is C-special for some
C≥0 (C depending on {Zk}) and restricted, it follows that limk→∞ h(Zk)=A.

If the limit holds only for 0-special, restricted sequences we write

E0- limHN�(z,w)→∞h(z, w) = A.

Next we state a version of the Julia-Wolff-Carathéodory theorem due to
Rudin for the unit ball B

n ([13, Thm. 8.5.6]), using our previous notations:

Theorem 5.5. Let φ = (φ1, φ
′) : HN → HN be holomorphic, with Denjoy-

Wolff point ∞ and multiplier λ ≥ 1. Let ρ : HN → HN be a linear projection
at ∞ and let ρ̃ : HN → H be an associated left inverse. Then

E0- limHN�(z,w)→∞
ρ̃ ◦ φ(z, w)

ρ̃(z, w)
= λ.

As a corollary we have the following:

Lemma 5.6. Let φ = (φ1, φ
′) : HN → HN be holomorphic, with Denjoy-Wolff

point ∞ and multiplier λ ≥ 1. Assume E- limHN�(z,w)→∞
φ1(z,w)

z
exists. Then

(1) E- limHN�(z,w)→∞
φ1(z,w)

z
= λ,

(2) E- limHN�(z,w)→∞
‖φ′(z,w)‖

|z| = 0.

Proof . (1) It follows directly from Theorem 5.5.
(2) Since φ(HN) ⊆ HN then Reφ1(z, w) ≥ ‖φ′(z, w)‖2 for all (z, w) ∈ HN .

Thus dividing by |z|2 and taking limits, (2) follows from (1). �

Remark 5.7. Rudin’s Julia-Wolff-Carathéodory theorem for the unit ball
([13, Thm. 8.5.6]) has also another implication similar to (2) of Lemma 5.6.
Namely, it implies that if a holomorphic map φ : HN → HN has Denjoy-
Wolff point at ∞, then E0- limHN�(z,w)→∞

‖φ′(z,w)‖
|z|1/2 = 0. Note that, since

‖(z, w)‖ → ∞ in HN implies in particular that |z| → ∞, it follows that

E0- limHN�(z,w)→∞
‖φ′(z,w)‖

|z| =0. However, as shown in the proof of Lemma 5.6,

(2) follows directly from (1) and, on the other hand, it does not seem to be
clear how to get (2) from Rudin’s theorem and the hypotheses of Lemma 5.6
without using (1).

The following technical proposition is needed in the proof of the Main
Theorem.
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Proposition 5.8. Let φ = (φ1, φ
′) : H

N → H
N be holomorphic, with

Denjoy-Wolff point ∞ and multiplier λ ≥ 1. Let ρ0 be a linear projec-
tion at ∞ with a left inverse ρ̃0. Suppose E- limHN�(z,w)→∞

ρ̃0(φ(z,w))
ρ̃0(z,w)

exists.

Then for any complex geodesic f : H → HN with f(∞) = ∞ with left inverse
ρ̃f : H

N → H it follows

E- limHN�(z,w)→∞
ρ̃f ◦ φ(z, w)

ρ̃f (z, w)
= λ.

Proof. Up to conjugation we can assume that ρ0 = p1 and then by hypoth-
esis we know that E- limHN�(z,w)→∞

φ1(z,w)
z

exists and equals λ by Lemma 5.6.
Given the complex geodesic f , there exists a ∈ CN−1 and an automorphism
T ∈ Aut(HN ) of the type

T (z, w) = (z + ‖a‖2 + 2〈w, a〉, w+ a)

such that T ◦ f(ζ) = (ζ, 0) and ρ̃(z, w) = π1 ◦ T (z, w) = z + ‖a‖2 + 2〈w, a〉,
where, as usual π1(z, w) = z. Thus

ρ̃f ◦ φ(z, w)

ρ̃f(z, w)
=
φ1(z, w) + ‖a‖2 + 2〈φ′(z, w), a〉

z + ‖a‖2 + 2〈w, a〉
=
φ1(z, w) + ‖a‖2 + 2〈φ′(z, w), a〉
z(1 + ‖a‖2/z + 2〈w, a〉/z) .

Taking into account that 1 + ‖a‖2/z + 2〈w, a〉/z = 1 + o(|z|−1) since |z| ≥
Re z ≥ ‖w‖2, the result follows from Lemma 5.6. �
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