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Lebesgue points and the fundamental
convergence theorem for superharmonic

functions on metric spaces

Anders Björn, Jana Björn and Mikko Parviainen

Abstract

We prove the nonlinear fundamental convergence theorem for su-
perharmonic functions on metric measure spaces. Our proof seems to
be new even in the Euclidean setting. The proof uses direct methods
in the calculus of variations and, in particular, avoids advanced tools
from potential theory. We also provide a new proof for the fact that
a Newtonian function has Lebesgue points outside a set of capacity
zero, and give a sharp result on when superharmonic functions have
Lq-Lebesgue points everywhere.

1. Introduction

Our main objective is to provide a new proof for the fundamental conver-
gence theorem of nonlinear potential theory in R

n and on metric measure
spaces. By the fundamental convergence theorem, a regularized infimum of
superharmonic functions is superharmonic provided that it is locally uni-
formly bounded from below. Furthermore, the regularization changes the
limit only on a set of capacity zero.

During the last decade, analysis and potential theory on metric measure
spaces have been developing rapidly. Heinonen–Koskela [24] introduced up-
per gradients as a substitute for the modulus of the usual gradient and
Koskela–MacManus [38] extended the concept to weak upper gradients. In
Shanmugalingam [42], Sobolev type spaces (called Newtonian spaces) on
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metric measure spaces were defined as the collection of p-integrable functions
with p-integrable upper gradients. See also Cheeger [13] for an alternative
approach which leads to the same spaces.

Newtonian spaces enable us to study variational integrals and potential
theoretic models can be built on minimizers of the p-Dirichlet integral

(1.1)

∫
gpu dμ,

where gu denotes the minimal p-weak upper gradient of u. This general-
izes the Euclidean potential theory based on equations of p-Laplace type
as in Heinonen–Kilpeläinen–Martio [23], as well as potential theory on Rie-
mannian manifolds, Heisenberg groups, Carnot–Carathéodory spaces and
graphs, see e.g. Haj�lasz–Koskela [18]. For recent developments in poten-
tial theory on metric spaces, see e.g. Shanmugalingam [43, 44], Björn–
MacManus–Shanmugalingam [12], J. Björn [10, 11], Kinnunen–Shanmuga-
lingam [36, 37], Kinnunen–Martio [33, 34, 35], Björn–Björn–Shanmugalin-
gam [6, 7], A. Björn [1, 2, 3] and Björn–Björn [4]. For a nice general overview
of the theory we refer to Heinonen [20].

In R
n, the nonlinear fundamental convergence theorem dates back to the

1988 paper of Heinonen and Kilpeläinen [21]. See also Heinonen–Kilpeläi-
nen [22] as well as Kilpeläinen [27], and for the classical result Doob [15].
Their proofs rely on advanced tools from potential theory, whereas our proof
is based on direct methods in the calculus of variations. We establish di-
rectly in Theorem 7.1 that a decreasing sequence of superminimizers is a
superminimizer provided, of course, that a suitable lower bound exists. The
Lebesgue differentiation theorem for Newtonian functions then implies that
by changing the superminimizer on a set of capacity zero we obtain a super-
harmonic function, and a truncation argument completes the proof.

Our approach has one important advantage compared to the existing ver-
sions in the Euclidean literature: superminimizers in R

n belong to the usual
Sobolev spaces with a.e.-equivalence classes whereas Newtonian functions
are defined up to sets of capacity zero and have Lebesgue points outside
of a set of capacity zero. This follows from the results in Shanmugalin-
gam [42] and from Kinnunen–Latvala [30], where a discrete maximal func-
tion was used to prove the existence of Lebesgue points for representatives
of Haj�lasz–Sobolev functions. We seize the opportunity to provide a shorter
and more direct proof for Newtonian spaces based on upper gradients, see
Theorem 4.1. In Section 6 we give several results concerning Lebesgue points
of superminimizers and superharmonic functions.

The fundamental convergence theorem is a basic tool in the theory of
balayage: it implies several fundamental properties of the balayage in a
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straightforward manner, see Björn–Björn–Mäkäläinen–Parviainen [5]. The
theory of balayage in turn plays an essential role in the study of regular
boundary points, capacity and polar sets, see [5] for some of these applica-
tions on metric spaces.

Acknowledgement. We would like to thank Takayori Ono for pointing
out Theorem 7.3 to us.

2. Preliminaries

We assume throughout the paper that 1 < p < ∞ and that X = (X, d, μ)
is a metric space endowed with a metric d and a positive complete Borel
measure μ such that 0 < μ(B) <∞ for all open balls B ⊂ X. Assume also
that Ω ⊂ X is nonempty and open. (To avoid pathologies we also assume
that X contains at least two points.)

The measure μ is doubling if there exists a constant Cμ ≥ 1, such that
for all balls B = B(x0, r) := {x ∈ X : d(x, x0) < r} in X,

μ(2B) ≤ Cμμ(B),

where λB = B(x0, λr).
In this paper, a path in X is a rectifiable nonconstant continuous mapping

from a compact interval to X. A path can thus be parametrized by arc
length ds. We also make the convention that |∞−∞| = |−∞−(−∞)| = ∞.

We follow Heinonen–Koskela [24] introducing upper gradients as follows
(they called them very weak gradients).

Definition 2.1. A nonnegative Borel function g on X is an upper gradient
of an extended real-valued function f on X if for all paths γ : [0, lγ] → X,

(2.1) |f(γ(0)) − f(γ(lγ))| ≤
∫
γ

g ds.

If g is a nonnegative measurable function on X and if (2.1) holds for p-a.e.
path, then g is a p-weak upper gradient of f .

By saying that (2.1) holds for p-a.e. path, we mean that it fails only for a
path family with zero p-modulus, see Definition 2.1 in Shanmugalingam [42].
It is implicitly assumed that

∫
γ
g ds is defined (with a value in [0,∞]) for

p-a.e. path.

The p-weak upper gradients were introduced in Koskela–MacManus [38].
They also showed that if g ∈ Lp(X) is a p-weak upper gradient of f , then
one can find a sequence {gj}∞j=1 of upper gradients of f such that gj → g in
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Lp(X). If f has an upper gradient in Lp(X), then it has a minimal p-weak
upper gradient gf ∈ Lp(X) in the sense that for every p-weak upper gradient
g ∈ Lp(X) of f , gf ≤ g a.e., see Corollary 3.7 in Shanmugalingam [43].

Next we define a version of Sobolev spaces on the metric space X due to
Shanmugalingam in [42]. Cheeger [13] gave an alternative definition which
leads to the same space, when p > 1.

Definition 2.2. Whenever u ∈ Lp(X), let

‖u‖N1,p(X) =

(∫
X

|u|p dμ+ inf
g

∫
X

gp dμ

)1/p

,

where the infimum is taken over all upper gradients of u. The Newtonian
space on X is the quotient space

N1,p(X) =
{
u : ‖u‖N1,p(X) <∞}

/∼,
where u ∼ v if and only if ‖u− v‖N1,p(X) = 0.

Definition 2.3. The capacity of a set E ⊂ X is the number

Cp(E) = inf ‖u‖pN1,p(X),

where the infimum is taken over all u ∈ N1,p(X) such that u = 1 on E.

The capacity is countably subadditive. For this and other properties as
well as equivalent definitions of the capacity we refer to Kilpeläinen–Kinnu-
nen–Martio [29] and Kinnunen–Martio [31, 32].

We say that a property holds quasieverywhere (q.e.) if the set of points
for which the property does not hold has capacity zero. The capacity is the
correct gauge for distinguishing between two Newtonian functions. Indeed, if
u ∈ N1,p(X), then u ∼ v if and only if u = v q.e. Moreover, if u, v ∈ N1,p(X)
and u = v a.e., then u ∼ v.

We need a Newtonian space with zero boundary values defined as follows.
For an open set Ω ⊂ X,

N1,p
0 (Ω) =

{
f |Ω : f ∈ N1,p(X) and f = 0 in X \ Ω

}
.

One can replace the assumption ”f = 0 in X \Ω” with ”f = 0 q.e. in X \Ω”
without changing the space.

Definition 2.4. We say that X supports a (q, p)-Poincaré inequality if there
exist constants C > 0 and λ ≥ 1 such that for all balls B ⊂ X, all integrable
functions f on X and for all upper gradients g of f ,

(2.2)

(∫
B

|f − fB|q dμ
)1/q

≤ C(diamB)

(∫
λB

gp dμ

)1/p

,

where fB :=
∫
B
f dμ :=

∫
B
f dμ/μ(B).
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In the definition of the Poincaré inequality we can equivalently assume
that g is a p-weak upper gradient.

Hölder’s inequality implies that ifX supports a (q, p)-Poincaré inequality,
then it supports a (q, t)-Poincaré inequality for every t > p. If μ is doubling
and X supports a (1, p)-Poincaré inequality, then X also supports a (q, p)-
Poincaré inequality for some q > p, see Haj�lasz–Koskela [18]. If moreover
X is complete and p > 1, then X supports a (1, p)-Poincaré inequality for
some p < p, by Keith–Zhong [26].

If X supports a (1, p)-Poincaré inequality and μ is doubling, it follows
that Lipschitz functions are dense in N1,p(X), see Shanmugalingam [42].
If X is also complete, then the functions in N1,p(X) are quasicontinuous,
see Björn–Björn–Shanmugalingam [8]. This means that in the Euclidean
setting, N1,p(Rn) is the refined Sobolev space, considered e.g. in Chapter 4
in Evans–Gariepy [16]. At the beginning of Section 5 we add some general
assumptions valid throughout the rest of the paper.

Unless otherwise stated, the letter C denotes various positive constants
whose exact values are unimportant and may vary with each usage. Recall
also that f+ = max{f, 0} and f− = max{−f, 0}.

We end this section by showing that as long as u is real-valued a.e., it
makes no difference how we interpret the inequality (2.1) in the special case
when the left-hand side is either |∞ − ∞| or |(−∞) − (−∞)|. Our main
interest is in N1,p (and N1,p

loc ) functions, and such functions are necessarily
real-valued a.e.

Observe that Proposition 2.5 as well as the results in Section 3 hold in
general metric spaces. In particular we do not assume that μ is doubling
nor that any Poincaré inequality is satisfied. That X is complete will only
be assumed from Section 5 onwards.

Proposition 2.5. Let u be a function which is finite a.e. and assume that
g is such that for p-a.e. path γ : [0, lγ] → X it is true that either

(2.3) |u(γ(0))| = |u(γ(lγ))| = ∞ or |u(γ(0)) − u(γ(lγ))| ≤
∫
γ

g ds.

Then g is a p-weak upper gradient of f .

Proof. Let Γ be the set of the exceptional paths γ for which (2.3) does not
hold for some subpath of γ, and let Γ′ = {γ : γ ⊂ E}, where E = {x ∈ X :
|u(x)| = ∞}. Since (2.3) holds for p-a.e. path and μ(E) = 0, it follows
that the path family Γ ∪ Γ′ is of zero p-modulus, see Shanmugalingam [42],
Proposition 3.1 and Lemma 3.2.
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Let γ be a path which is not in Γ∪Γ′. Then there is t ∈ [0, lγ] such that
γ(t) /∈ E. Therefore

|u(γ(0)) − u(γ(lγ))| ≤ |u(γ(0)) − u(γ(t))| + |u(γ(t)) − u(γ(lγ))|
≤

∫
γ|[0,t]

g ds+

∫
γ|[t,lγ ]

g ds =

∫
γ

g ds,

since the second alternative in (2.3) holds for γ|[0,t] and γ|[t,lγ ]. We have thus
shown that g is a p-weak upper gradient of u. �

3. Consequences of Fuglede’s and Mazur’s lemmas

In this section, we show that if a sequence is bounded in N1,p(X) and con-
verges q.e., then the limit is in N1,p(X), see Corollary 3.3, a fact that will be
essential in our proof of Lemma 7.2. To accomplish this, we first utilize the
boundedness of the sequence to extract a weakly converging subsequence
whose weak upper gradients converge weakly. Mazur’s lemma then allows
us to pass from the weak to the strong convergence in Lp. This is the con-
tent of the proof of Lemma 3.2. In Proposition 3.1, we use Fuglede’s lemma
and Proposition 2.5 to show that there exists a function that differs from
the strong limit at most on a set of measure zero and belongs to N1,p(X).
Furthermore, the strongly converging sequence converges to this limit q.e.,
and therefore it coincides with the original limit q.e. This proves that the
original limit belongs to N1,p(X).

Proposition 3.1. Assume that fj ∈ N1,p(X) and that gj ∈ Lp(X) is a p-
weak upper gradient of fj, j = 1, 2, ... . Assume further that fj → f and
gj → g in Lp(X), and that g is nonnegative. Then there is a function f̃ = f
a.e. such that g is a p-weak upper gradient of f̃ , and thus f̃ ∈ N1,p(X).
There is also a subsequence {fjk}∞k=1 such that fjk → f̃ q.e. in X.

Moreover, if either f ∈ N1,p(X) or there is a subsequence {fjk}∞k=1 such
that fjk → f q.e., then we may choose f̃ = f .

Proof. By passing to a subsequence if necessary, we may assume that
fj → f a.e., and by Fuglede’s lemma (see Shanmugalingam [42], Lemma 3.4
and Remark 3.5) that

∫
γ
gj ds→

∫
γ
g ds ∈ R for all γ /∈ Γ, where Γ is a path

family with zero p-modulus. We concentrate on paths γ such that neither γ
nor any of its subpaths belong to Γ, and such that gj is an upper gradient
for fj along γ for every j = 1, 2, ... . This holds for p-a.e. path, cf. the proof
of Proposition 2.5.

Let f̃ = lim supj→∞ fj, and observe that f̃ is defined at every point of

X and f̃ = f a.e. in X. Let E = {x ∈ X : |f̃(x)| = ∞}. We see that
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either γ(0), γ(lγ) ∈ E or

|f̃(γ(0)) − f̃(γ(lγ))| ≤ lim sup
j→∞

|fj(γ(0)) − fj(γ(lγ))|

≤ lim sup
j→∞

∫
γ

gj ds =

∫
γ

g ds.

As μ(E) = 0, Proposition 2.5 shows that g is indeed a p-weak upper gradient
of f̃ .

Let now f̂ = lim infj→∞ fj. Arguing exactly as above we see that g is

also a p-weak upper gradient of f̂ ∈ N1,p(X) and that f̂ = f = f̃ a.e. in X.
As f̂ , f̃ ∈ N1,p(X), it follows that f̂ = f̃ q.e., and thus fj → f̃ q.e. in X.

On the other hand, if f ∈ N1,p(X), then f̂ = f = f̃ a.e. implies that
f = f̃ q.e. and f ∼ f̃ in N1,p(X) so that g is a p-weak upper gradient also
of f . Moreover, fj → f q.e. in X.

Finally, if fjk → f q.e., then again f = f̃ q.e., and g is a p-weak upper
gradient also of f . �

Lemma 3.2. Assume that gj is a p-weak upper gradient of uj, j = 1, 2, ...,
and that both sequences {uj}∞j=1 and {gj}∞j=1 are bounded in Lp(X). Then

there are u, g ∈ Lp(X), convex combinations vj =
∑Nj

i=j aj,iui with p-weak

upper gradients ḡj =
∑Nj

i=j aj,igi and a subsequence {ujk}∞k=1, such that

(a) both ujk → u and gjk → g weakly in Lp(X);

(b) both vj → u and ḡj → g in Lp(X);

(c) vj → u q.e.;

(d) g is a p-weak upper gradient of u.

Proof. Since Lp(X) is reflexive, there is a subsequence of {uj}∞j=1 which con-
verges weakly in Lp(X). Taking a subsequence of this subsequence, we ob-
tain a sequence, again denoted {uj}∞j=1, such that both {uj}∞j=1 and {gj}∞j=1

converge weakly in Lp(X) say to v and g (where g is not necessarily a p-weak
upper gradient of v). As gj, j = 1, 2, ..., are nonnegative we may choose g
nonnegative.

Applying Mazur’s lemma (see, e.g., Yosida [45, pp. 120–121]), we find con-

vex combinations v′j =
∑N ′

j

i=j a
′
i,jui converging strongly to v in Lp(X) as j→∞.

Furthermore, g′j =
∑N ′

j

i=j a
′
i,jgi is a p-weak upper gradient of v′j . Since g′j → g

weakly in Lp(X), we can again apply Mazur’s lemma to obtain convex com-

binations vj =
∑Nj

i=j ai,jui with p-weak upper gradients ḡj =
∑Nj

i=j ai,jgi such
that vj → v and ḡj → g in Lp(X). By Proposition 3.1, there exists u = v
a.e. such that g is a weak upper gradient of u and vj → u q.e. �
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If the sequence in Lemma 3.1 converges q.e., then the limit belongs
to N1,p(X). We also obtain an estimate for the minimal p-weak upper
gradient of the limit.

Corollary 3.3. Assume that {ui}∞i=1 is bounded in N1,p(X) and that ui → u
q.e. Then u ∈ N1,p(X) and∫

X

gpu dμ ≤ lim inf
i→∞

∫
X

gpui
dμ.

Proof. There exists a subsequence {uij}∞j=1 such that

lim
j→∞

∫
X

gpuij
dμ = lim inf

i→∞

∫
X

gpui
dμ.

By Lemma 3.2, there are convex combinations vj of {uij}∞j=1 and functions
ũ, g ∈ Lp(X) such that vj → ũ q.e., g is a p-weak upper gradient of ũ
and, after possibly taking another subsequence, both uij → ũ and guij

→ g

weakly in Lp(X).
Since vj tends to u q.e., it follows that ũ = u q.e., and thus g is also a

p-weak upper gradient of u. Since guij
→ g weakly in Lp(X), we have

∫
X

gpu dμ ≤
∫
X

gp dμ ≤ lim
j→∞

∫
X

gpuij
dμ = lim inf

i→∞

∫
X

gpui
dμ.

�

4. Lebesgue points of N 1,p-functions

In this section we prove that Newtonian functions have Lebesgue points q.e.
in X. To accomplish this, we estimate the Newtonian norm of the function

ũ(x) = lim sup
j→∞

(∫
B(x,2−j)

|u|q dμ
)1/q

in terms of the Newtonian norm of u. The proof utilizes the noncentred
maximal function in an essential way. In particular, the upper gradient of ũ
is expressed in terms of the maximal function of the upper gradient of u
itself. The definition of capacity and the Lp-boundedness of the maximal
function then give an estimate for the capacity of the set where ũ is large.
To complete the proof, we add and subtract a Lipschitz function in the
definition of Lebesgue points and use the fact that, under our assumptions,
Lipschitz functions are dense in Newtonian spaces.
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We assume that μ is doubling with doubling constant Cμ and that X sup-
ports a (1, p̄)-Poincaré inequality for some p̄ < p. By iterating the doubling
condition, it follows with s = log2Cμ and C = C−2

μ that

(4.1)
μ(B(z, r))

μ(B(y, R))
≥ C

( r
R

)s
,

for all balls B(y, R) ⊂ X, z ∈ B(y, R) and 0 < r ≤ R < ∞. However, the
choice s = log2Cμ may not be optimal, and we just assume that s is any
number such that (4.1) is satisfied.

Let q0 = sp/(s − p) if s > p and q0 = ∞ if s ≤ p. For every exponent
q < q0, we show that every Newtonian function has Lq-Lebesgue points
outside a set of capacity zero. In particular, since q0 > p, this holds with
exponent p.

Theorem 4.1. If u ∈ N1,p
loc (X) and q < q0, then for q.e. x ∈ X,

(4.2) lim
r→0

∫
B(x,r)

|u− u(x)|q dμ = 0.

In particular, q.e. x ∈ X is a Lebesgue point of u.

For Haj�lasz spaces on doubling metric spaces, Kinnunen and Latvala
proved that every Haj�lasz–Sobolev function has a representative which has
Lebesgue points q.e., see Theorem 4.5 in [30]. Their result covers The-
orem 4.1 in the case when X is complete, as then Newtonian functions
are quasicontinuous and coincide with the above best representatives of
Haj�lasz–Sobolev functions, see Theorem 4.9 in Shanmugalingam [42] and
Theorem 1.1 in Björn–Björn–Shanmugalingam [8]. We seize the opportu-
nity to provide a shorter and more direct proof of Theorem 4.1 in Newtonian
spaces which also covers the case when X is not complete. The proof utilizes
the following two notions.

Definition 4.2. For f ∈ L1
loc(X), the noncentred maximal function is

M∗f(x) := sup
B

∫
B

|f | dμ,

where the supremum is taken over all balls B containing x.

Definition 4.3. For u ∈ Lqloc(X), q ≥ 1, let

uj(x) =

(∫
B(x,2−j )

|u|q dμ
)1/q

, j = 0, 1, ... ,

Tqu(x) = lim sup
j→∞

uj(x).
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It is easy to see that the noncentred maximal function is comparable
to the usual Hardy–Littlewood maximal function. The following maximal
function theorem is well known, see e.g. Theorem 2.2 in Heinonen [19].

Theorem 4.4. Let t > 1. If f ∈ Lt(X), then M∗f ∈ Lt(X) and∫
X

(M∗f)t dμ ≤ C

∫
X

|f |t dμ,

where C depends only on the doubling constant Cμ and on t. For f ∈ L1(X),
the following weak type estimate holds for all τ > 0,

μ
({x ∈ X : M∗f(x) > τ}) ≤ C

τ

∫
X

|f | dμ,

where C depends only on the doubling constant Cμ.

Lemma 4.5. Let g be an upper gradient of a function u ∈ Lq(X) and assume
that a (q, p̄)-Poincaré inequality holds for u and g. Then C(M∗gp̄)1/p̄ is a
p-weak upper gradient of Tqu, where C depends only on Cμ, q, p̄ and the
constants in the Poincaré inequality.

Proof. Since Tqu ≤ (M∗|u|q)1/q, Theorem 4.4 implies that Tqu < ∞ a.e.
Let γ : [0, lγ] → X be a path (parametrized by arc length) such that the set
{τ ∈ [0, lγ] : Tqu(γ(τ)) = ∞} has zero (one-dimensional) Lebesgue measure.
This holds for p-a.e. path, see the proof of Lemma 3.2 in Shanmugalin-
gam [42].

We first show that C(M∗gp̄)1/p̄ is an upper gradient of uj along γ for all
sufficiently large j. Let j be such that rj = 2−j ≤ 2lγ. By splitting γ into
parts if necessary, we can assume that rj/2 ≤ lγ ≤ rj. Let x = γ(0) and
y = γ(lγ) be the endpoints of γ. Since u ∈ Lq(X), both uj(x) and uj(y) are
finite. The (q, p̄)-Poincaré inequality implies that for all z ∈ B := B(x, 2rj),

|uj(x) − uj(y)| ≤
∣∣∣∣
(∫

B(x,rj)

|u|q dμ
)1/q

− uB

∣∣∣∣ +

∣∣∣∣
(∫

B(y,rj)

|u|q dμ
)1/q

− uB

∣∣∣∣
≤

(∫
B(x,rj)

|u− uB|q dμ
)1/q

+

(∫
B(y,rj)

|u− uB|q dμ
)1/q

≤ C

(∫
B

|u− uB|q dμ
)1/q

≤ Crj

(∫
λB

gp̄ dμ

)1/p̄

≤ Crj
(
M∗gp̄

)1/p̄
(z).
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As γ ⊂ B and lγ ≥ rj/2, we get that

|uj(x) − uj(y)| ≤ C

∫
γ

(
M∗gp̄

)1/p̄
ds,

i.e. C(M∗gp̄)1/p̄ is an upper gradient of uj along γ.
Glueing together all the parts of γ if necessary and assuming that either

Tqu(x) <∞ or Tqu(y) <∞, we get

|Tqu(x) − Tqu(y)| ≤ sup
j

|uj(x) − uj(y)| ≤
∫
γ

C(M∗gp̄)1/p̄ ds,

where the supremum is taken over sufficiently large j. Proposition 2.5 then
shows that C(M∗gp̄)1/p̄ is a p-weak upper gradient of Tqu. �

Lemma 4.6. Let q < q0. If u ∈ N1,p
0 (B) for some ball B ⊂ X, then

Tqu ∈ N1,p(X) and ‖Tqu‖N1,p(X) ≤ C‖u‖N1,p(B), where C depends only on
B, Cμ, q, p and the constants in the Poincaré inequality.

Proof. If s < p, then (4.1) holds with s replaced by p, so we can assume
that s ≥ p. Find p̄ > ps/(p + s) so that X supports a (1, p̄)-Poincaré
inequality and so that qs/(q + s) < p̄ < p ≤ s. Further, find ε > 0 such
that q̄ := q(1 + ε) < sp̄/(s − p̄) and q̄ > p. Since q̄ < sp̄/(s − p̄) and μ is
doubling, X supports a (q̄, p̄)-Poincaré inequality as shown by Haj�lasz and
Koskela in Theorem 5.1 of [18].

Note that suppTqu ⊂ B and Tqu ≤ (M∗|u|q)1/q on B. By these facts,
Theorem 4.4, and Sobolev’s inequality, see Proposition 3.1 in J. Björn [10],
we have that(∫

X

|Tqu|q̄ dμ
)1/q̄

≤
(∫

X

(M∗|u|q)1+ε dμ

)1/q̄

≤ C

(∫
B

|u|q̄ dμ
)1/q̄

≤ C‖u‖N1,p(B).

As supp Tqu ⊂ B and q̄ > p, this implies that

(4.3) ‖Tqu‖Lp(X) ≤ C‖u‖N1,p(B).

Let g be an upper gradient of u. By Lemma 4.5, C(M∗gp̄)1/p̄ is a p-weak
upper gradient of Tqu and as p/p̄ > 1, Theorem 4.4 together with (4.3)
finishes the proof. �

The following corollary follows directly from the definition of capacity
and Lemma 4.6 since Tqu(x)/τ is admissible for calculating the capacity of
{x ∈ X : Tqu(x) > τ}.
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Corollary 4.7. If u ∈ N1,p
0 (B) for some ball B ⊂ X, then for all τ > 0,

Cp({x ∈ X : Tqu(x) > τ}) ≤ C

τp
‖u‖pN1,p(X).

Proof of Theorem 4.1. As Lebesgue points are a local issue, multiply-
ing u by a cut-off function, we can assume that u ∈ N1,p

0 (B) for some ball
B ⊂ X. There exist Lipschitz functions uk, k = 1, 2, ..., such that uk → u
both in N1,p(X) and pointwise q.e. This was shown by Shanmugalingam in
Corollary 3.9 and Theorem 4.1 of [42]. Writing

|u− u(x)| ≤ |u− uk| + |uk − uk(x)| + |uk(x) − u(x)|
and using the fact that uk has Lebesgue points everywhere, we have for all
x ∈ X and all k = 1, 2, ..., that

lim sup
j→∞

(∫
B(x,2−j)

|u− u(x)|q dμ
)1/q

≤ Tq(u− uk)(x) + |uk(x) − u(x)|.(4.4)

The last term on the right-hand side tends to zero as k → ∞ for q.e. x ∈ X.
To estimate the first term on the right-hand side, we have by Corollary 4.7
for every τ > 0,

Cp
({x ∈ X : Tq(u− uk)(x) > τ}) ≤ C

τp
‖u− uk‖pN1,p(X).

This estimate and (4.4) imply that

Cp

({
x ∈ X : lim sup

j→∞

(∫
B(x,2−j)

|u− u(x)|q dμ
)1/q

> 2τ

})

≤ Cp
({x ∈ X : |uk(x) − u(x)| > τ}) +

C

τp
‖u− uk‖pN1,p(X) → 0,

as k → ∞. The doubling property of μ then implies that for q.e x ∈ X,

lim
r→0

∫
B(x,r)

|u− u(x)| dμ ≤ C lim sup
j→∞

∫
B(x,2−j)

|u− u(x)| dμ = 0.
�

If u ∈ N1,p
loc (X) and Cp({x}) > 0, then x is a Lebesgue point for u

(and (4.2) holds), by Theorem 4.1. In the case when p > s (and X is
complete) we can show that this is the case for all points and also improve
upon Theorem 5.1 in Shanmugalingam [42], showing not only that every
Newtonian function has a Hölder continuous representative, but that all
representatives are Hölder continuous.

Proposition 4.8. Assume that X is complete, p > s and x ∈ X. Then
Cp({x}) > 0.
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Proof. Let B ∈ X be a ball containing x such that X \ 6B �= ∅. By
Lemma 3.3 in J. Björn [10] and Theorem 1.1 in Kallunki–Shanmugalin-
gam [25], it is sufficient to show that

(4.5) inf
u

∫
B

gpu dμ > 0,

where the infimum is taken over u ∈ Lip(X) with u(x) = 1 and u = 0 in
X \B. By Theorem 5.1 in Haj�lasz–Koskela [18], for such u, we have that∫

B

gpu dμ =

∫
10λB

gpu dμ ≥ C sup
y∈2B

|u(y) − u2B|,

where C is independent of u and λ ≥ 1 is the dilation constant in the
Poincaré inequality. It follows from the Poincaré inequality that there is
some z ∈ 2B \ B. As u(z) = 0 and u(x) = 1, the supremum on the right-
hand side is always at least 1

2
. Hence the infimum in (4.5) is positive. �

Theorem 4.9. Assume that X is complete, p > s and u ∈ N1,p(X). Then
u is (1 − s/p)-Hölder continuous and all points are Lebesgue points for u.

Proof. By Theorem 5.1 in Shanmugalingam [42], there is ũ ∼ u which is
(1 − s/p)-Hölder continuous. As all points have positive capacity we must
have u = ũ. Hence all points are Lebesgue points for u (which also follows
directly from Theorem 4.1 together with Proposition 4.8). �

5. Superminimizers and superharmonic functions

In the rest of the paper, we assume that X is complete, that μ is doubling,
and that X supports a (1, p)-Poincaré inequality. A deep theorem of Keith–
Zhong [26] then shows that X even supports a (1, p)-Poincaré inequality for
some p < p.

We say that f ∈ N1,p
loc (Ω) if for every x ∈ Ω there exists rx such that

f ∈ N1,p(B(x, rx)). This is clearly equivalent to saying that f ∈ N1,p(V )
for every open V � Ω. By saying that V � Ω we mean that V is a compact
subset of Ω.

Definition 5.1. A function u ∈ N1,p
loc (Ω) is a minimizer in Ω if for all ϕ ∈

N1,p
0 (Ω) we have

(5.1)

∫
ϕ �=0

gpu dμ ≤
∫
ϕ �=0

gpu+ϕ dμ.

A function u ∈ N1,p
loc (Ω) is a superminimizer in Ω if (5.1) holds for all nonneg-

ative ϕ ∈ N1,p
0 (Ω), and a subminimizer in Ω if (5.1) holds for all nonpositive

ϕ ∈ N1,p
0 (Ω).
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By Proposition 3.2 in A. Björn [2] it is enough to test (5.1) with (all,
nonnegative and nonpositive, respectively) ϕ ∈ Lip(X) with suppϕ � Ω.

We shall use the ess lim inf-regularization

(5.2) u∗(x) = ess lim inf
y→x

u(y) = lim
R→0

ess inf
B(x,R)

u.

For the reader’s convenience let us verify that u∗ is indeed lower semicontin-
uous: Let x ∈ Ω and a < u∗(x). Then there is r > 0 such that B(x, r) ⊂ Ω
and ess infB(x,r) u > a. It follows that u∗(y) > a for all y ∈ B(x, r). Let-
ting a → u∗(x) we see that u∗(x) ≤ lim infy→x u

∗(y), and hence u∗ is lower
semicontinuous.

Theorem 5.2. Let u be a superminimizer in Ω. Then

u∗ = u q.e. in Ω.

This result was obtained by Kinnunen–Martio [33, Theorem 5.1], using
a weak Harnack inequality for superminimizers. Here we give an alternative
proof based on a supremum estimate for subminimizers, which is easier to
obtain. The proof applies in the Euclidean setting as well. For a parabolic
counterpart, see Kuusi [39].

Proof. By Theorem 4.1,

E =

{
x0 ∈ Ω : lim

R→0

∫
B(x0,R)

|u(x0) − u| dμ = 0 and |u(x0)| <∞
}

differs from Ω only in a set of capacity zero. Choose x0 ∈ E and observe
that (u(x0)−u)+ is a nonnegative subminimizer. By the supremum estimate
from Theorem 4.2 and Remark 4.4 (2) in Kinnunen–Shanmugalingam [36],
we have for B(x0, R) � Ω that

(5.3) ess sup
B(x0,R/2)

(u(x0) − u)+ ≤ C

∫
B(x0,R)

(u(x0) − u)+ dμ.

Let ε > 0. Since x0 ∈ E, there exists R0 > 0 such that∫
B(x0,R)

(u(x0) − u)+ dμ ≤
∫
B(x0,R)

|u(x0) − u| dμ < ε for all 0 < R < R0.

We deduce that

Cε > ess sup
B(x0,R/2)

(u(x0) − u)+ ≥ ess sup
B(x0,R/2)

(u(x0) − u) = u(x0) − ess inf
B(x0,R/2)

u.

Since this holds for every 0 < R < R0 and since ε > 0 was arbitrary, it
follows that u(x0) ≤ u∗(x0).
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On the other hand, x0 is a Lebesgue point and, thus,

u∗(x0) = ess lim inf
y→x0

u(y) ≤ lim
R→0

∫
B(x0,R)

u(x) dμ = u(x0).

Consequently, u∗ = u q.e. in Ω. �
If u is a minimizer, then u∗ is a continuous minimizer (see Proposition 3.8

and Corollary 5.5 in Kinnunen–Shanmugalingam [36]). A p-harmonic func-
tion is a continuous minimizer.

We follow Kinnunen–Martio [33] in giving the following definition of the
obstacle problem. Let V ⊂ X be a nonempty bounded open set with Cp(X \
V ) > 0. (If X is unbounded then the condition Cp(X \ V ) > 0 is of course
immediately fulfilled.)

Definition 5.3. Let f ∈ N1,p(V ) and ψ : V → R. Then we define

Kψ,f(V ) =
{
v ∈ N1,p(V ) : v − f ∈ N1,p

0 (V ) and v ≥ ψ a.e. in V
}
.

Further, a function u ∈ Kψ,f (V ) is a solution of the Kψ,f(V )-obstacle prob-
lem if ∫

V

gpu dμ ≤
∫
V

gpv dμ for all v ∈ Kψ,f(V ).

Kinnunen–Martio [33, Theorem 3.2], showed that if Kψ,f (V ) �= ∅, then
there is a solution of the Kψ,f(V )-obstacle problem, and this solution is
unique up to equivalence in N1,p(V ). They also showed, Theorem 5.1 in [33],
that if u is a solution, then u∗ is the unique ess lim inf-regularized solution.
Furthermore, u∗ is superharmonic in V (see below). If the obstacle ψ is
continuous they showed that u∗ is also continuous, see Theorem 5.5 in [33].
They actually considered continuous functions which are even allowed to
take the value −∞. For f ∈ N1,p(V ), define HV f to be the continuous
solution of the K−∞,f(V )-obstacle problem.

A solution u of the Kψ,f (V )-obstacle problem is a superminimizer in V .
Conversely, if u ∈ N1,p(V ) is a superminimizer, then u is a solution of the
Ku,u(V )-obstacle problem.

Definition 5.4. A function u : Ω → (−∞,∞] is superharmonic in Ω if
(i) u is lower semicontinuous;

(ii) u is not identically ∞ in any component of Ω;
(iii) for every nonempty open set V � Ω and all functions v ∈ Lip(X), we

have HV v ≤ u in V whenever v ≤ u on ∂V .

For us it will be convenient to know that u is superharmonic if and only
if (ii) holds and min{u, k} is an ess lim inf-regularized superminimizer for
every k ∈ R, see Theorem 6.1 in A. Björn [1], which also shows that our
definition of superharmonic functions is equivalent to the definitions used in
Heinonen–Kilpeläinen–Martio [23] and Kinnunen–Martio [33].
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6. Lebesgue points for superharmonic functions

Every locally bounded superharmonic function (or, which is the same, lo-
cally bounded ess lim inf-regularized superminimizer) has Lebesgue points
everywhere, which was observed by Kinnunen–Martio [33, Remark 5.4]. For
unbounded superharmonic functions this is not true, but we can go one step
further than Kinnunen and Martio showing that also unbounded superhar-
monic functions have Lq-Lebesgue points everywhere for certain q. Moreover
we show that our range of q is sharp.

We will need the following sharp weak Harnack inequality.

Theorem 6.1. Assume that X supports a (κp, p)-Poincaré inequality, with
dilation constant λ, for some κ > 1 and that 0 < σ < κ(p− 1). Let u ≥ 0
be superharmonic in Ω, then there is C > 0, only depending on p, κ, Cμ
and the constants in the Poincaré inequality, such that

(6.1)

(∫
B

uσ dμ

)1/σ

≤ C inf
B
u

for every ball B ⊂ 20λB � Ω.

Proof. This follows from Theorem 9.2 in Björn–Marola [9] as in Kinnunen–
Martio [35], Theorems 4.3 and 5.1. Note that the results in [35] need to be
modified, taking λ into account, see the discussion in Section 10 in [9]. �

Proposition 6.2. Assume that u is a locally bounded superharmonic func-
tion in Ω. Then

lim
r→0

∫
B(x0,r)

|u− u(x0)| dμ = 0 for all x0 ∈ Ω.

Proof. We may assume that 0 < u < 1. Let 0 < ε < u(x0). As u is
lower semicontinuous there is r′ such that u > u(x0) − ε in B(x0, r

′). Let
v = u−(u(x0)−ε), σ = min{κ(p−1)/2, 1} and r < r′/20λ. Then 0 < v < 1
in B(x0, r

′) and, by Theorem 6.1,∫
B(x0,r)

|u− u(x0)| dμ =

∫
B(x0,r)

|v − v(x0)| dμ ≤ v(x0) +

∫
B(x0,r)

v1−σvσ dμ

≤ ε+

∫
B(x0,r)

vσ dμ ≤ ε+ Cεσ.

Letting r → 0 and then ε→ 0 completes the proof. �
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Proposition 6.3. Assume that u is essentially locally bounded in Ω and let
x0 ∈ Ω. If

(6.2) lim
r→0

∫
B(x0,r)

|u− u(x0)|q dμ = 0

for some q = q0 > 0 then (6.2) holds for all q > 0.

Note that we do not assume that u is superharmonic, this result holds
for any function.

Proof. Assume that (6.2) holds for q = q0. If q < q0 then it follows from
Hölder’s inequality that (6.2) holds even for unbounded u.

Assume therefore that q > q0. We may also assume that 0 ≤ u ≤ 1 in
B(x0, r

′) for some r′ > 0. Then, for 0 < r < r′ we get that∫
B(x0,r)

|u− u(x0)|q dμ =

∫
B(x0,r)

|u− u(x0)|q−q0|u− u(x0)|q0 dμ

≤
∫
B(x0,r)

|u− u(x0)|q0 dμ→ 0, as r → 0.
�

Theorem 6.4. Assume that u is a superharmonic function in Ω. Let σ be
as in Theorem 6.1. Then

(6.3) lim
r→0

∫
B(x0,r)

|u− u(x0)|σ dμ = 0, if u(x0) <∞,

and, for every q > 0,

(6.4) lim
r→0

∫
B(x0,r)

uq dμ = ∞, if u(x0) = ∞.

Proof . When u(x0) <∞, the proof is fairly similar to the proof of Propo-
sition 6.2. Indeed, let ε > 0. As u is lower semicontinuous there is r′ such
that u > u(x0) − ε in B(x0, r

′). Let v = u − (u(x0) − ε) and r < r′/20λ.
Then, by Theorem 6.1,∫

B(x0,r)

|u− u(x0)|σ dμ =

∫
B(x0,r)

|v − v(x0)|σ dμ ≤ v(x0)σ +

∫
B(x0,r)

vσ dμ

≤ v(x0)σ + Cv(x0)
σ ≤ εσ + Cεσ.

Letting ε→ 0 completes the proof of (6.3).
If u(x0) = ∞ we instead proceed as follows. Let ω > 0. As u is lower

semicontinuous there is r′ such that u > ω in B(x0, r
′). It follows that

lim
r→0

∫
B(x0,r)

uq dμ ≥ ωq.

Letting ω → ∞ completes the proof of (6.4). �
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Remark 6.5. Let us demonstrate the sharpness of Theorem 6.4. In un-
weighted R

n with 2 ≤ p < n, we have s = n in (4.1) and R
n supports a

(p∗, p)-Poincaré inequality, where p∗ = np/(n−p). This is proved e.g. in The-
orem 2, p. 141, in Evans–Gariepy [16] as well as in Corollary 1.64 in Malý–
Ziemer [40] (and for metric spaces in Theorem 5.1 in Haj�lasz–Koskela [18]).
We can thus have any positive σ < σ∗ := p∗(p− 1)/p = n(p− 1)/(n− p) in
Theorems 6.1 and 6.4.

Let v(x) = |x|(p−n)/(p−1), xj = (2−j, 0, ... , 0),

uN(x) =

N∑
j=1

2−j v(x+ xj)

v(xj)
and u(x) =

∞∑
j=1

2−j v(x+ xj)

v(xj)
.

By Theorem 3.1 in Crandall–Zhang [14] (here we use that p ≥ 2) and Theo-
rem 7.35 in Heinonen–Kilpeläinen–Martio [23], uN is superharmonic in R

n.
It follows from Lemma 7.3 in [23] (or Theorem 8.2) that u = limN→∞ uN is
superharmonic in R

n. As u(0) = 1 and∫
B(0,r)

uσ
∗
dμ = ∞,

we see that (6.3) fails for σ = σ∗.

Proposition 6.6. Assume that u is a superharmonic function in Ω. Let σ
be as in Theorem 6.1. Then

u(x0) = lim
r→0

(∫
B(x0,r)

uσ dμ

)1/σ

for all x0 ∈ Ω,

where we interpret uσ as |u|σ sign u, and similarly for other powers.
Let further q > 0 and uk := min{u, k}. Then

u(x0) = lim
k→∞

lim
r→0

(∫
B(x0,r)

uqk dμ

)1/q

for all x0 ∈ Ω.

In weighted R
n the first part was obtained for σ = 1 and ess lim inf-

regularized superminimizers u, whenever σ = 1 is permitted, in Theo-
rem 3.66 in Heinonen–Kilpeläinen–Martio [23].

Proof. The first part follows directly from (6.4) when u(x0) = ∞. When
u(x0) < ∞ and σ ≥ 1, it follows from (6.3) by means of the triangle
(Minkowski) inequality. For σ < 1 we need to use the elementary inequality

(6.5) |aσ − bσ| ≤ 21−σ|a− b|σ.
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In the second part we use (6.5) together with Propositions 6.2 and 6.3
to get that

uk(x0) = lim
r→0

(∫
B(x0,r)

uqk dμ

)1/q

for all x0 ∈ Ω.

From which the last part follows directly. �

7. Convergence of superminimizers

In this section, we prove that the limit of a decreasing sequence of supermin-
imizers is a superminimizer provided, of course, that there exists a suitable
lower bound. Observe also that then the ess lim inf-regularization changes
the limit only in a set of capacity zero. This result provides a straightfor-
ward proof of the fundamental convergence theorem of potential theory as
we shall show in Section 8. By combining the decreasing convergence result
with the increasing convergence result (Theorem 7.3), we obtain convergence
for nonmonotone sequences in Corollary 7.5 as well.

Theorem 7.1. Let {ui}∞i=1 be a decreasing sequence of superminimizers in Ω
such that ui ≥ f a.e. in Ω for some f ∈ N1,p

loc (Ω). Let u = limi→∞ ui. Then

(a) u is a superminimizer in Ω;
(b) u∗ is superharmonic in Ω;
(c) u = u∗ q.e. in Ω.

We provide two proofs of Theorem 7.1. Part (b) is quite straightforward
to deduce directly, as we show in the second proof. The difficult part is to
obtain (c). In both proofs we first deduce that u ∈ N1,p

loc (Ω).
In the first proof we proceed to show (a), after which (c) follows directly

from Theorem 5.2 and (b) from Proposition 7.4 in Kinnunen–Martio [33]
(and we do not need the direct deduction of (b) mentioned above).

Alternatively we proceed as in the second proof, where we first prove (c)
using ideas similar to our proof of Theorem 5.2, mainly the useful robustness
of the supremum estimate (5.3) for decreasing sequences. In this proof we
use the direct deduction of (b) (which does not come for free as it did in the
first proof). After this (a) follows in a straightforward manner from results
in [33].

Our result has one important difference to the existing versions in the
Euclidean literature: superminimizers in R

n belong to the usual Sobolev
spaces with a.e.-equivalence classes, which makes it impossible to deduce (c)
directly from (a). Also (c) is known in the Euclidean setting, see Heinonen–
Kilpeläinen [21] or Theorem 8.2 in Heinonen–Kilpeläinen–Martio [23], but
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the proof uses advanced tools from potential theory. Both our proofs use
direct methods in the calculus of variations in a straightforward manner.

Lemma 7.2. Let {ui}∞i=1 be a sequence of superminimizers in Ω such that
ui → u q.e. in Ω. If there is a function f ∈ N1,p

loc (Ω) such that |ui| ≤ f a.e.
in Ω, i = 1, 2, ..., then u ∈ N1,p

loc (Ω).

In particular, Lemma 7.2 applies if the sequence {ui}∞i=1 is decreasing
(increasing) and u is locally essentially bounded from below (above).

Proof. Clearly, u ∈ Lploc(Ω). If we can show that {gui
}∞i=1 is uniformly

bounded in Lp(B) for every B � Ω, then we can deduce that u ∈ N1,p
loc (Ω)

using Corollary 3.3.
To this end, let B = B(x0, R) � Ω. Then we can find R′ > R so that also

B′ = B(x0, R
′) � Ω. Let next 0 < r1 < r2 ≤ R′, Bj = B(x0, rj), j = 1, 2,

and

η = min

{
r2 − d(x0, x)

r2 − r1
, 1

}
+

∈ N1,p
0 (B).

We will use that

gη ≤ 1

r2 − r1
χB2\B1 .

Set ϕi = η(f − ui) ∈ N1,p
0 (B2), which is nonnegative a.e. in Ω. As (ϕi)− = 0

a.e. in X and (ϕi)− ∈ N1,p(X), it follows that (ϕi)− = 0 q.e. in Ω, and
hence that ϕi ≥ 0 q.e. in Ω. Since ϕi and (ϕi)+ are representatives of the
same equivalence class in N1,p

0 (B2), we can assume that ϕi is nonnegative
everywhere in Ω. By Lemma 2.4 in Kinnunen–Martio [33], we have that

gui+ϕi
≤ (1 − η)gui

+ (f − ui)gη + ηgf a.e. in B.

Since ui is a superminimizer we have that∫
B1

gpui
dμ ≤

∫
B2

gpui
dμ ≤

∫
B2

gpui+ϕi
dμ

≤ 3p
(∫

B2

(1 − η)pgpui
dμ+

∫
B2

(f − ui)
pgpη dμ+

∫
B2

ηpgpf dμ

)

≤ 3p
(∫

B2\B1

gpui
dμ+

2p

(r2 − r1)p

∫
B′
f p dμ+

∫
B′
gpf dμ

)
.

Adding 3p times the left-hand side to both sides we obtain that

(1 + 3p)

∫
B1

gpui
dμ ≤ 3p

(∫
B2

gpui
dμ+

2p

(r2 − r1)p

∫
B′
f p dμ+

∫
B′
gpf dμ

)
.
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After dividing by 1 + 3p we get, with θ = 3p/(1 + 3p) < 1, that∫
B1

gpui
dμ ≤ θ

∫
B2

gpui
dμ+

2p

(r2 − r1)p

∫
B′
f p dμ+

∫
B′
gpf dμ.

By Lemma 3.1, p. 161, in Giaquinta [17], we have that∫
B1

gpui
dμ ≤ C

(
1

(r2 − r1)p

∫
B′
f p dμ+

∫
B′
gpf dμ

)

for 0 ≤ r1 < r2 ≤ R′. By choosing r1 = R we see that {gui
}∞i=1 is bounded

in Lp(B). By Corollary 3.3, u ∈ N1,p(B), and hence u ∈ N1,p
loc (Ω). �

The next theorem generalizes Remark 6.7(1) in Kinnunen–Martio [33]
and gives a necessary and sufficient condition for when an increasing limit
of superminimizers is a superminimizer. It was pointed out by T. Ono [41].

Theorem 7.3. Let {ui}∞i=1 be an increasing sequence of superminimizers
in Ω and assume that there is a function f ∈ N1,p

loc (Ω) such that u :=
limi→∞ ui ≤ f a.e. in Ω. Then u is a superminimizer in Ω, u∗ is su-
perharmonic in Ω and u = u∗ q.e. in Ω.

Note that if all ui are ess lim inf-regularized then so is u. This is not
completely trivial but follows from Lemma 7.1 in Kinnunen–Martio [33].

Proof. Since |ui| ≤ max{|u1|, f} a.e. in Ω and max{|u1|, f} ∈ N1,p
loc (Ω),

Lemma 7.2 shows that u ∈ N1,p
loc (Ω). The result now follows from Re-

mark 6.7 (1) and Proposition 7.4 in [33], together with Theorem 5.2. �
As a consequence we obtain the following result.

Proposition 7.4. If u is a superharmonic function in Ω which is bounded
from above by an N1,p

loc (Ω)-function, then u is a superminimizer.

Proof . We know that uk := min{u, k} is a superminimizer, k = 1, 2, ..., see
the comments after Definition 5.4. Thus, by Theorem 7.3, u = limk→∞ uk is
a superminimizer. �

First proof of Theorem 7.1. (a) Since ui ≤ u1 ∈ N1,p
loc (Ω), Lemma 7.2

shows that u ∈ N1,p
loc (Ω). Let G � Ω be open and v be a solution of the

Ku,u(G)-obstacle problem. As ui is a solution of the Kui,ui
(G)-obstacle prob-

lem, Lemma 5.4 in Björn–Björn [4] implies that v ≤ ui q.e. in G. Further-
more, as this holds for all i we have v ≤ u q.e. in G.

On the other hand, by the definition of the obstacle problem, v ≥ u a.e.
in G, and thus u = v a.e. in G. As u, v ∈ N1,p(G), we get that u = v q.e. in
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G, and thus u is also a solution of the Ku,u(G)-obstacle problem. Hence u
is a superminimizer in Ω.

(c) This now follows directly by Theorem 5.2.
(b) This now follows from Proposition 7.4 in Kinnunen–Martio [33]. �

Second proof of Theorem 7.1. Since ui ≤ u1 ∈ N1,p
loc (Ω), Lemma 7.2

shows that u ∈ N1,p
loc (Ω).

(c) In view of Theorem 4.1, the set

E =

{
x0 ∈ Ω : lim

R→0

∫
B(x0,R)

|u(x0) − u| dμ = 0 and |u(x0)| <∞
}

differs from Ω only in a set of capacity zero.
Choose x0 ∈ E and observe that (u(x0)−ui)+ is a positive subminimizer.

As in the proof of Theorem 5.2, we have for B(x0, R) � Ω that

ess sup
B(x0,R/2)

(u(x0) − ui)+ ≤ C

∫
B(x0,R)

(u(x0) − ui)+ dμ.

Since the sequence of subminimizers is increasing, we deduce that

lim
i→∞

ess sup
B(x0,R/2)

(u(x0) − ui)+ = ess sup
B(x0,R/2)

(u(x0) − u)+.

By this fact and Lebesgue’s monotone convergence theorem, we can then
pass to the limit and infer that

ess sup
B(x0,R/2)

(u(x0) − u)+ ≤ C

∫
B(x0,R)

(u(x0) − u)+ dμ,

i.e. (5.3) holds. The rest of the proof of (c) is similar to the proof of Theo-
rem 5.2.

(b) Clearly, u∗ is lower semicontinuous and is not identically ∞ in any
component. It remains to show that u∗ satisfies the comparison princi-
ple (iii) in Definition 5.4. To this end, let Ω′ � Ω be open and v ∈ Lip(X)
be such that v ≤ u∗ on ∂Ω′. As u∗ ≤ u∗i , we also have v ≤ u∗i on ∂Ω′.
Since u∗i is superharmonic it follows that

(7.1) HΩ′v ≤ u∗i in Ω′.

Although ui → u does not in general imply that u∗i → u∗, it follows that
u∗i → u q.e. due to Theorem 5.2. Passing to the limit in (7.1) we obtain that

HΩ′v ≤ u q.e. in Ω′.
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Since HΩ′v is continuous, we finally end up with

HΩ′v = (HΩ′v)∗ ≤ u∗ everywhere in Ω′.

We have thus shown that u∗ is superharmonic in Ω.
(a) By (b), u∗ is superharmonic. As it belongs to N1,p

loc (Ω), it is also a
superminimizer by Proposition 7.4. As u = u∗ q.e. it follows that also u is a
superminimizer in Ω. �

Next we prove a convergence result for any pointwise convergent sequence
of superminimizers, not necessarily monotone, which is bounded from above
and from below by functions in N1,p

loc (Ω). In particular this is true if the
sequence is locally uniformly essentially bounded from below and the limiting
function is locally essentially bounded from above. The proof is based on
the combination of the increasing and decreasing convergence results.

Corollary 7.5. Let {ui}∞i=1 be a sequence of superminimizers and let

v = lim inf
i→∞

ui.

If there exist f1, f2 ∈ N1,p
loc (Ω) such that ui ≥ f1 a.e. in Ω, i = 1, 2, ..., and

v ≤ f2 a.e. in Ω, then v is a superminimizer in Ω, v∗ is superharmonic in Ω
and v∗ = v q.e. in Ω.

Proof. For every k = 1, 2 ..., the functions

vk,i = min{uk, ... , ui}, i ≥ k,

are superminimizers and uk ≥ vk,i ≥ f1 a.e. in Ω. Theorem 7.1 implies that
vk = limi→∞ vk,i is also a superminimizer in Ω′. The sequence {vk}∞k=1 is
increasing and by Theorem 7.3, v = limk→∞ vk is a superminimizer, v∗ is
superharmonic and v = v∗ q.e. in Ω. �

8. Convergence of superharmonic functions

In this section, we extend the convergence results from Section 7 to su-
perharmonic functions and prove the fundamental convergence theorem of
potential theory. In the nonlinear Euclidean theory, the proof of the funda-
mental convergence theorem uses advanced tools from potential theory as
we pointed out after Theorem 7.1. Our approach is based on the following
convergence theorem for a decreasing sequence of superharmonic functions.

Theorem 8.1. Let {uj}∞j=1 be a decreasing sequence of superharmonic func-

tions in Ω such that v := limj→∞ uj ≥ f for some f ∈ N1,p
loc (Ω). Then v∗ is

superharmonic in Ω and v = v∗ q.e. in Ω.
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Theorem 8.1 is a special case of the following more general result and
the proof is virtually the same.

Theorem 8.2. Let {uj}∞j=1 be a sequence of superharmonic functions in Ω

such that uj ≥ f a.e. in Ω for some f ∈ N1,p
loc (Ω) and all j = 1, 2, ... . Let

v = lim infj→∞ uj. If v∗ is not identically ∞ in any component of Ω, then
it is superharmonic in Ω and v = v∗ q.e. in Ω.

Proof. Let vk := min{v, k} = lim infj→∞ min{uj, k}. Each min{uj, k}
is a superminimizer in Ω, min{uj, k} ≥ min{f, k} a.e. in Ω and vk ≤ k ∈
N1,p

loc (Ω). Corollary 7.5 then implies that vk is a superminimizer in Ω, vk = v∗k
q.e. in Ω and v∗k is superharmonic in Ω.

As v∗k = min{v∗, k} in Ω, the characterization after Definition 5.4 shows
that v∗ is superharmonic in Ω. Moreover, v∗ = limk→∞ v∗k = limk→∞ vk = v
q.e. in Ω. �

The main aim in this section is to prove the following result. First we
need to define the lim inf-regularization of a function f : Ω → R as

f̂(x) = lim
r→0

inf
Ω∩B(x,r)

f, x ∈ Ω.

It follows that f̂ ≤ f , and it is easy to show that f̂ is lower semicontinuous.

Theorem 8.3. (The fundamental convergence theorem) Let F be a non-
empty family of superharmonic functions in Ω. Assume that there is f ∈
N1,p

loc (Ω) such that u ≥ f a.e. in Ω for all u ∈ F . Let w = inf F . Then the
following are true:

(a) ŵ is superharmonic;
(b) ŵ = w∗ in Ω;
(c) ŵ = w q.e. in Ω.

Proving (b) is straightforward, as we will show below. Also (a) can be
obtained directly in the same way as in Lemma 7.4 in Heinonen–Kilpeläinen–
Martio [23]. The difficult part is to prove (c). Our proof of (c) is based on
Theorem 8.1 and automatically gives (a).

Usually, in the fundamental convergence theorem it is assumed that the
functions in F are locally uniformly bounded, rather than the (slightly)
more general condition here. In fact, it follows from our result that under
our condition the functions in F are locally uniformly bounded. The ad-
vantage with our formulation is that it allows for connecting balayage and
obstacle problems without requiring an unnatural (and unnecessary) condi-
tion on which obstacle problems are under consideration. This connection
is established in Björn–Björn–Mäkäläinen–Parviainen [5]. In [5] the funda-
mental convergence theorem is used as a starting point for the development
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of the theory of balayage, this is in contrast to earlier developments of the
theory of balayage where the fundamental convergence theorem is obtained
as a consequence of the theory.

We will need Choquet’s topological lemma. We say that a family of
functions U is downward directed if for each u, v ∈ U there is w ∈ U with
w ≤ min{u, v}.

Lemma 8.4. (Choquet’s topological lemma) Let U = {uγ : γ ∈ I} be
a nonempty family of functions uγ : Ω → R. Let u = inf U . If U is
downward directed, then there is a decreasing sequence of functions vj ∈ U
with v = limj→∞ vj such that v̂ = û.

Proof. The proof of Lemma 8.3 in Heinonen–Kilpeläinen–Martio [23] gen-
eralizes directly to metric spaces. Just remember that our metric space X
is separable. �
Proof of Theorem 8.3. (b) It is clear that w∗ ≥ ŵ.

For the converse inequality let B = B(x, r) ⊂ Ω be a ball and ε > 0. If
ŵ(x) = ∞, then w∗(x) ≤ ŵ(x) trivially, so we may assume that ŵ(x) <∞.
We can then find y ∈ B such that w(y) < ŵ(x) + ε and hence also u ∈ F
such that u(y) < ŵ(x) + ε. As u is superharmonic and hence ess lim inf-
regularized, it follows that

μ({z ∈ B : w(z) < ŵ(x) + ε}) ≥ μ({z ∈ B : u(z) < ŵ(x) + ε}) > 0.

Since this is true for all balls B = B(x, r) ⊂ Ω we see that w∗(x) ≤ ŵ(x)+ε.
Letting ε→ 0 shows that w∗ ≤ ŵ and thus w∗ = ŵ.

(a) and (c) Let U = {u : u is superharmonic in Ω and u ≥ w in Ω} ⊃ F .
Then

w ≤ inf
u∈U

u ≤ inf
u∈F

u = w.

As U is downward directed, by Choquet’s topological lemma (Lemma 8.4)
there is a decreasing sequence of superharmonic functions vj ∈ U with v =
limj→∞ vj such that v̂ = ŵ. By (b) applied to v we have that ŵ = v̂ = v∗

everywhere in Ω. Theorem 8.1 applied to the sequence {vj}∞j=1 shows that
v∗ is superharmonic and v∗ = v q.e. in Ω. Finally, as vj ≥ w, j = 1, 2, ..., we
get that

ŵ = v∗ = v ≥ w ≥ ŵ q.e. in Ω. �
Example 8.5. The lower semicontinuous regularization is necessary in the
fundamental convergence theorem. To see this consider the sequence of
superharmonic functions uj(x) = |x|(p−n)/(n−1) /j, j = 1, 2, ..., (with uj(0) =
∞) in unweighted R

n with 1 < p < n. The infimum is clearly u(x) = 0
for x �= 0 and u(0) = ∞, which is not lower semicontinuous and hence not
superharmonic. The regularization of u is identically zero.
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[28] Kilpeläinen, T.: Weighted Sobolev spaces and capacity. Ann. Acad. Sci.
Fenn. Ser. A I Math. 19 (1994), no. 1, 95–113.

[29] Kilpeläinen, T., Kinnunen, J. and Martio, O.: Sobolev spaces with
zero boundary values on metric spaces. Potential Anal. 12 (2000), 233–247.

[30] Kinnunen, J. and Latvala, V.: Lebesgue points for Sobolev functions
on metric spaces. Rev. Mat. Iberoamericana 18 (2002), no. 3, 685–700.

[31] Kinnunen, J. and Martio, O.: The Sobolev capacity on metric spaces.
Ann. Acad. Sci. Fenn. Math. 21 (1996), no. 2, 367–382.

[32] Kinnunen, J. and Martio, O.: Choquet property for the Sobolev ca-
pacity in metric spaces. In Proceedings on Analysis and Geometry (Novosi-
birsk, Akademgorodok, 1999), 285–290. Sobolev Institute Press, Novosi-
birsk, 2000.

[33] Kinnunen, J. and Martio, O.: Nonlinear potential theory on metric
spaces. Illinois J. Math. 46 (2002), no. 3, 857–883.

[34] Kinnunen, J. and Martio, O.: Potential theory of quasiminimizers.
Ann. Acad. Sci. Fenn. Math. 28 (2003), no. 2, 459–490.

[35] Kinnunen, J. and Martio, O.: Sobolev space properties of superhar-
monic functions on metric spaces. Results Math. 44 (2003), 114–129.

[36] Kinnunen, J. and Shanmugalingam, N.: Regularity of quasi-minimi-
zers on metric spaces. Manuscripta Math. 105 (2001), no. 3, 401–423.

[37] Kinnunen, J. and Shanmugalingam, N.: Polar sets on metric spaces.
Trans. Amer. Math. Soc. 358 (2006), no. 1, 11–37.



174 A. Björn, J. Björn and M. Parviainen

[38] Koskela, P. and MacManus, P.: Quasiconformal mappings and
Sobolev spaces. Studia Math. 131 (1998), no. 1, 1–17.

[39] Kuusi, T.: Lower semicontinuity of weak supersolutions to a nonlinear
parabolic equation. Differential Integral Equations 22 (2009), 1211–1222.
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