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Vector-valued distributions and
Hardy’s uncertainty principle for

operators

M. G. Cowling, B. Demange and M. Sundari

Abstract

Suppose that f is a function on R
n such that exp(a |·|2) f and

exp(b |·|2) f̂ are bounded, where a, b > 0. Hardy’s Uncertainty Prin-
ciple asserts that if ab > π2, then f = 0, while if ab = π2, then
f = c exp(−a | · |2). In this paper, we generalise this uncertainty prin-
ciple to vector-valued functions, and hence to operators. The princi-
ple for operators can be formulated loosely by saying that the kernel
of an operator cannot be localised near the diagonal if the spectrum
is also localised.

1. Introduction

We define the Fourier transform f̂ of a function f on Rn by

(1.1) f̂(ξ) :=

∫
Rn

f(x) exp(−2πiξ · x) dx ∀ξ ∈ R
n,

provided that this makes sense.

G.H. Hardy [6] showed that if f is a function on Rn such that∣∣f(x)
∣∣ ≤ c exp(−a |x|2) ∀x ∈ R

n

∣∣f̂(ξ)
∣∣ ≤ c exp(−b |ξ|2) ∀ξ ∈ R

n,

where a, b > 0, and if ab = π2, then f(x) = c′ exp(−a |x|2), while if ab > π2,
then f = 0. Clearly the first result implies the second.

By rescaling, we may and shall suppose without loss of generality that
a = π in the above results. Similarly we may remove the constant c.
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For a detailed account of the proof and some classical related results, see
H. Dym and H.P. McKean [5].

There are many extensions of this result, which we call Hardy’s Uncer-
tainty Principle. For instance, G.W. Morgan [7] obtained a sharp version
for the exponentials exp(−a | · |p) and exp(−b | · |q), where 1/p + 1/q = 1,
finding the extremal functions. Cowling and J. F. Price [3] showed that if p
or q is finite, and

exp(π | · |2)f ∈ Lp(Rn)

exp(π | · |2)f̂ ∈ Lq(Rn),

then f = 0.

Demange (see A. Bonami and Demange [1]) proved one of the best ver-
sions for the usual quadratic exponentials.

Theorem 1. Suppose that Φ ∈ S(Rn)′ (that is, Φ is a tempered distribution)
and that

exp(π | · |2)Φ ∈ S(Rn)′

exp(π | · |2)Φ̂ ∈ S(Rn)′;

then
Φ(x) =

∑
|α|≤N

cα xα exp(−π |x|2) ∀x ∈ R
n,

that is, Φ is the distribution arising by integration against the function on
the right hand side.

There has been recent interest in understanding heat diffusion and its
relationship with uncertainty principles in more general contexts than Rn,
such as the Heisenberg group, where Thangavelu’s work [8] shows that the
subelliptic world offers some surprises, Lie groups [9], where structure plays
an important role, and differential operators on measured metric spaces [2].

In Section 2 of this paper, we extend the uncertainty principles of Hardy
and of Demange to vector-valued functions. The former generalises naturally
to Banach space valued functions, while the latter can be formulated for
functions with values in the dual of a Fréchet space.

In Section 3, we consider uncertainty principles for operators. We focus
on operators from S(Rn) to S(Rn)′, where the kernel of the operator and one
of its partial Fourier transforms satisfy conditions like those of Theorem 1,
and on operators on L2(Rn), whose kernels are locally integrable and which
satisfy inequalities like those of Hardy’s theorem. We extend and sharpen
previous work of Cowling and Sundari [4] which suggested the results here.
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Here is one of our main results, in which Pt is the heat operator and pt

is its kernel.

Theorem 2. Suppose that t is in R+, that K is the operator on L2(Rn)
associated to a locally integrable kernel k, and that∣∣k(x, y)

∣∣ ≤ pt(x, y) ∀x, y ∈ R
n,∥∥Kf

∥∥
2
≤ ∥∥Ptf

∥∥
2

∀f ∈ L2(Rn).

Then there is a bounded measurable function m on Rn such that

k(x, y) = m(x) pt(x, y) ∀x, y ∈ R
n,

and the operator K is the heat operator Pt followed by multiplication by m.

Our other main result, Theorem 5, generalises Theorem 2 in the same
way that Theorem 1 generalises Hardy’s original result.

In the next section, we summarise L. Schwartz’ theory of distributions,
including the case of vector-valued distributions, and establish versions of
Hardy’s Uncertainty Principle in this context. In Section 3, we consider the
theory for linear operators and prove Theorems 1 and 4.

2. Tempered distributions

2.1. The Schwartz space

Recall that the Schwartz space S(Rn) is defined to be the space of all smooth
functions f : Rn → C such that ‖f‖(N) < ∞ for all N in N, where

(2.1) ‖f‖(N) :=

( ∑
|α|,|β|≤N

∥∥ · αDβf
∥∥2

2

)1/2

.

Here we use standard multi-index notation. Thus, when α ∈ Nn, we de-
fine xα to be xα1

1 . . . xαn
n , and

Dβf(x) :=
∂β1

∂xβ1

1

· · · ∂βn

∂xβn
n

f(x).

Then S(Rn) is the intersection of the completions S(N)(R
n) of the spaces

of compactly supported smooth functions in the norm ‖·‖(N). It is a Fréchet
space: it has a metric, for instance,

d(f, g) :=
∑
N∈N

‖f − g‖(N)

2N(1 + ‖f − g‖(N))
∀f, g ∈ S(Rn),

but in general d(λf, λg) �= |λ| d(f, g).
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2.2. Tempered distributions

The space of tempered distributions S(Rn)′ is the dual of S(Rn). It is the
union of the spaces S(N)(R

n)′. Thus, any tempered distribution Φ belongs
to some space S(N)(R

n)′, and then

|Φ(f)| ≤ c ‖f‖(N) ∀f ∈ S(Rn).

Every slowly growing locally integrable function k, that is, every locally
integrable function whose total mass over a ball grows polynomially with
the radius of the ball, defines a distribution Φk by integration:

Φk(f) :=

∫
Rn

k(x) f(x) dx.

A statement such as Φ = f , where Φ is a distribution and f is a function, is
to be interpreted that Φ is the distribution obtained by integrating against f .
For many purposes, we may consider all distributions as being given by in-
tegration against a function, as they may be derived from such distributions
by standard analytical processes, such as taking limits or differentiating.

Sometimes we write a formula involving distributions using pointwise no-
tation, as shorthand for the integrated version of the formula. Thus, in R2n,
we will write

Φ(x, y) = M(x) g(x − y) ∀x, y ∈ R
n,

where g ∈ S(Rn) and M ∈ S(Rn)′. This “means” that

Φ(f) “=”

∫
Rn

∫
Rn

M(x) g(x − y) f(x, y) dy dx

“=”

∫
Rn

M(x)

∫
Rn

g(x − y) f(x, y) dy dx

for all f in S(R2n), and so really means that the result of applying the
distribution Φ to f is the same as that of applying the distribution M to the
function x 	→ ∫

Rn g(x − y) f(x, y) dy.

Every smooth function h, all of whose partial derivatives are of poly-
nomial growth, multiplies S(Rn) pointwise, and hence multiplies S(Rn)′ by
duality: for Φ in S(Rn)′,

hΦ(f) := Φ(hf) ∀f ∈ S(Rn).

In particular, we write Ei,1 for the function (x, y) 	→ exp(2πix · y) on R
2n.

Then Ei,1 multiplies S(R2n) and hence S(R2n)′.
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For f, g in S(Rn), we define f ⊗ g in S(R2n) by

f ⊗ g(x, y) := f(x) g(y) ∀x, y ∈ R
n.

The set of finite linear combinations of such “outer tensor product functions”
is dense in S(R2n).

The Schwartz kernel theorem states that there is a one-to-one corre-
spondence between continuous linear operators T from S(Rn) to S(Rn)′ and
tempered distributions Φ in S(R2n)′, described by the formula

T (f)(g) = Φ(g ⊗ f) ∀f, g ∈ S(Rn).

At least formally, we may write T (f)(x) =
∫

Rn Φ(x, y) f(y) dy.

2.3. The Fourier transformation

The Fourier transformation F : f 	→ f̂ (where f̂ is defined by (1.1)) is a
bijection of S(Rn). Generalising the formula∫

Rn

f(x) ĝ(x) dx =

∫
Rn

f̂(ξ) g(ξ) dξ ∀f, g ∈ L1(Rn),

we define the Fourier transform Φ̂ of a tempered distribution Φ:

Φ̂(f) := Φ(f̂) ∀f ∈ S(Rn).

This extended Fourier transformation is also bijective on S(Rn)′.
Suppose that f is a function on R2n. The partial Fourier transform F2f

of f is defined by

F2f(x, η) :=

∫
Rn

f(x, y) exp(−2πiη · y) dy ∀x, η ∈ R
n

provided that this makes sense. It is easy to show that the partial Fourier
transformation F2 is a bijection of S(R2n), and hence extends to S(R2n)′.

2.4. Hardy’s Uncertainty Principle for distributions

As mentioned before, Demange (see [1]) proved one of the best versions of
Hardy’s result for the usual quadratic exponentials: if Φ ∈ S(Rn)′ and

exp(π | · |2)Φ ∈ S(N)(R
n)′

exp(π | · |2)Φ̂ ∈ S(N)(R
n)′,

then
Φ(x) =

∑
|α|≤N ′

cα xα exp(−π |x|2) ∀x ∈ R
n.
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We claim that we may assume that N − n/2 < N ′ ≤ N . To see this, we
may suppose that cα �= 0 for some α such that |α| = N ′, in which case, for
some y0 in Rn, there exists a positive constant c such that∣∣∣∣

∑
|α|=N ′

cα(ty0)
α

∣∣∣∣ = ctN
′ ∀t ∈ R

+.

Now if Φ satisfies the hypotheses of the theorem (and hence the conclusion
of the theorem applies to Φ), then∣∣∣∣

∑
|α|≤N ′

cα

∫
Rn

xα f(x) dx

∣∣∣∣ =

∣∣∣∣Φ(
exp(π |·|2)f)∣∣∣∣ =

∣∣∣∣(exp(π |·|2)Φ)
(f)

∣∣∣∣
≤ c ‖f‖(N) ∀f ∈ S(Rn).

Pick a smooth function f with compact support such that
∫

Rn f(x) dx = 1.
Then, on the one hand,

‖τyf‖(N) ≤ c (1 + |y|)N ∀y ∈ R
n,

where τyf denotes the translate f(· − y) of f , while on the other,
∣∣∣ ∑
|α|≤N ′

cα

∫
Rn

xα τyf(x) dx
∣∣∣ =

∣∣∣ ∑
|α|≤N ′

cα

∫
Rn

(x + y)α f(x) dx
∣∣∣

=
∣∣∣ ∑
|α|=N ′

cα yα
∣∣∣ + O

(|y|N ′−1
)

when |y| tends to ∞, and the first part of the claim follows by taking y to
be ty0 and letting t grow. On the other hand, if Φ(x) = xα exp(−π |x|2) for
all x in R

n, where |α| ≤ N ′, then

∣∣exp(π | · |2)Φ(f)
∣∣2 =

∣∣∣
∫

Rn

xα f(x) dx
∣∣∣2

≤
∣∣∣
∫

Rn

(1 + |x|2)−k dx
∣∣∣
∣∣∣
∫

Rn

(1 + |x|2)k
∣∣xα f(x)

∣∣2 dx
∣∣∣,

so that exp(π | · |2)Φ is in S(N)(R
n)′, when N > N ′ + n/2.

2.5. Vector-valued distributions

Take a Banach space X.
For nice enough X-valued functions f , we may still compute their partial

derivatives and multiply by scalar-valued functions. Hence we may form the
vector-valued Schwartz space S(Rn;X) of X-valued functions f such that
‖f‖(N) < ∞, for all N in N, where the norm ‖·‖(N) is still defined by (2.1).
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It is then possible to define the Fourier transform f̂ of such a function, by
formula (1.1), where the integrand is X-valued, and to prove an X-valued
version of Hardy’s Uncertainty Principle.

Theorem 3. Suppose that f : R
n → X is a smooth vector-valued function

such that ∥∥f(x)
∥∥

X
≤ exp(−π |x|2) ∀x ∈ R

n

∥∥f̂(ξ)
∥∥

X
≤ exp(−π |ξ|2) ∀ξ ∈ R

n.

Then f(x) = f(0) exp(−π |x|2).
Proof. Take an element V of the dual space X ′, and denote by V (f) the
scalar-valued function x 	→ V (f(x)). Clearly this satisfies the inequalities

∣∣V (f)(x)
∣∣ ≤ c exp(−π |x|2) ∀x ∈ R

n

∣∣(V (f))ˆ(ξ)
∣∣ ≤ c exp(−π |ξ|2) ∀ξ ∈ R

n,

so V (f)(x) = c′ exp(−π |x|2) for all x in Rn.

Evidently c′ depends linearly on V , and so there is an element C of X ′′

such that c′ = C(V ). Now, by taking x to be 0, we see that C(V ) = V (f(0)).
�

Take a Fréchet space X, which is the intersection of a decreasing family
of Banach spaces X(M) with increasing norms ‖·‖(M). The standard Fréchet
metric d is defined by

d(u, v) :=
∑
M∈N

‖u − v‖(M)

2n(1 + ‖u − v‖(M))
∀u, v ∈ X.

Suppose that f is X-valued and continuous, and that for some M in N,

∥∥f(y)
∥∥

(M)
≤ exp(−π |y|2) ∀y ∈ R

n

∥∥f̂(η)
∥∥

(M)
≤ exp(−π|η|2) ∀η ∈ R

n.

Then f(y) = f(0) exp(−π |y|2), by Theorem 3.

If d is the Fréchet metric just defined, and f : Rn → X is continuous and

d(f(y), 0) ≤ c exp(−π |y|2) ∀y ∈ R
n

d(f̂(η), 0) ≤ c exp(−π|η|2) ∀η ∈ R
n,

then the same conclusion holds.
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Indeed, assuming (as we may) that c ≥ 1, then these estimates imply that

∥∥f(y)
∥∥

(0)

1 + ‖f(y)‖(0)

≤ c exp(−π |y|2) ∀y ∈ R
n

∥∥f̂(η)
∥∥

(0)

1 +
∥∥f̂(η)

∥∥
(0)

≤ c exp(−π|η|2) ∀η ∈ R
n,

and hence that, when y and η are big enough so that c exp(−π |y|2) < 1/2
and c exp(−π|η|2) < 1/2,

∥∥f(y)
∥∥

(0)
≤ 2c exp(−π |y|2)∥∥f̂(η)

∥∥
(0)

≤ 2c exp(−π|η|2).

It follows that y 	→ V ′(f(y)) is a continuous function on Rn for any V ′

in X(0)
′, and that

|V ′(f(y))| ≤ 2c ‖V ′‖(0) exp(−π |y|2) ∀y ∈ R \ [−κ, κ]∣∣∣V ′(f̂(η))
∣∣∣ ≤ 2c ‖V ′‖(0) exp(−π|η|2) ∀η ∈ R \ [−κ, κ],

where κ =
(
log(2c)/π

)1/2
. Thus, exp(π | · |2)V ′(f(·)) and exp(π | · |2)V ′(f̂(·))

are distributions, and by Theorem 1,

V ′(f(y)) = c(V ′) exp(−π |y|2) ∀y ∈ R
n,

where c(V ′) is a constant depending on V ′. But c(V ′) = V ′(f(0)) for all V ′

and hence
f(y) = f(0) exp(−π |y|2) ∀y ∈ R

n.

Note that for some metrics (e.g., d1/2), Hardy’s Uncertainty Principle cannot
be formulated as we have formulated the result for d. Thus this result is
more a curiosity than “a theorem from the book”.

We may generalise further, and consider distributions with values in X ′,
the dual of the Fréchet space X. At least formally, every element Φ of
S(Rn; X)′ is such an object: for any such Φ there exist M and N in N such
that

|Φ(f)| ≤ c ‖f‖(M,N) ∀f ∈ S(Rn; X),

where

‖f‖(M,N) :=

( ∑
|α|,|β|≤N

∥∥∥∥∥ · αDβf
∥∥

(M)

∥∥∥2

2

)1/2

.
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Given an X ′-valued distribution Φ and an element V of X, we may define
a scalar-valued distribution Φ(V ) by the formula

Φ(V )(f) := Φ(fV ) ∀f ∈ S(Rn),

where fV is the function whose value at x is f(x)V . Thus defined, Φ(V ) is
a distribution, because for V in X and a scalar-valued function f in S(Rn),
the vector-valued function fV is in S(Rn; X).

2.6. A vector-valued version of Theorem 1

Theorem 4. Suppose that t is in R
+, that X is a Fréchet space, that Φ is

an X ′-valued distribution, and that

exp(tπ | · |2)Φ ∈ S(Rn; X)′

exp
(π

t
| · |2 )

Φ̂ ∈ S(Rn; X)′.

Then

Φ(y) =
∑
|α|≤N

Cα yα exp(−tπ |y|2) ∀y ∈ R
n,

where Cα ∈ X ′.

In particular, this applies when X = S(Rn).

Proof. By rescaling if necessary, we may suppose without loss of generality
that t = 1.

As already remarked, there exist M and N in N such that

exp(π | · |2)Φ ∈ S(M,N)(R
n; X)′

exp(π | · |2)Φ̂ ∈ S(M,N)(R
n; X)′.

For V in X, it follows that

exp(π | · |2)Φ(V ) ∈ S(N)(R
n)′

exp(π | · |2)Φ̂(V ) ∈ S(N)(R
n)′,

and by Theorem 1,

Φ(V )(y) =
∑
|α|≤N

cα(V ) yα exp(−π |y|2) ∀y ∈ R
n.

We now determine how the numbers cα(V ) depend on V .
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The functions y 	→ yα exp(−π |y|2) are linearly independent for differ-
ent α, and we may find Schwartz functions fβ such that

∫
Rn

yα exp(−π |y|2) fβ(y) dy = δα,β

(the Kronecker delta) for all α and β such that |α| , |β| ≤ N . Now cβ(V ) is
equal to Φ(V )(fβ), and hence is linear in V , and

|cβ(V )| ≤ c(Φ) ‖V ‖(M) ‖fβ‖(N) .

Thus there exists Cβ in X ′
(M) such that cβ(V ) = Cβ(V ). �

3. Operators

We consider operators K on L2(Rn) defined by locally integrable kernels k,
that is,

Kf(x) =

∫
Rn

k(x, y) f(y) dy ∀x ∈ R
n

for all f in L2(Rn). Such operators may be given different orderings. We
write |K1| ≤ |K2| if

(3.1) ‖K1f‖2 ≤ ‖K2f‖2 ∀f ∈ L2(Rn)

(that is, K∗
1K1 ≤ K∗

2K2 in the usual ordering of self-adjoint operators),
and |k1| ≤ |k2| if

|k1(x, y)| ≤ |k2(x, y)| ∀x, y ∈ R
n.

We may omit some of the absolute value signs if some of the operators are
positive, or if some of the kernels are positive. If K2 has an (unbounded)
inverse K−1

2 with a dense domain, then the inequality (3.1) amounts to
saying that K1K

−1
2 extends to a bounded operator of norm at most one.

3.1. The heat operator

The heat semigroup is an important family of operators on L2(Rn). For
positive t, we define the heat kernel pt (often described as “a Gaussian”) by

pt(x, y) :=
1

tn/2
exp

(
− π|x − y|2

t

)
∀x, y ∈ R

n.

We then define the heat operator Pt to be the operator corresponding to
this kernel. Then FPtf = exp(−tπ | · |2)Ff .
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We define the Laplacian Δ as a positive operator:

Δ := − 1

4π

n∑
i=1

∂2

∂x2
i

,

so F(Δf) = π | · |2 f̂ , and Pt may be written as exp(−tΔ). The operator Pt

has an unbounded inverse exp(tΔ) with dense domain.

3.2. The main results

Implicitly, we use three quadratic forms B1, B2 and B3 on Rn × Rn:

B1(x, y) = 2x · y B2(x, y) = |y|2 B3(x, y) = |x − y|2

for all x and y in Rn. Recall that we define Ei,1(x, y) = exp(2πix · y). We
also write Er,2 and Et

r,3 for the exponential functions (x, y) 	→ exp(π |y|2)
and (x, y) 	→ exp(tπ|x − y|2) on R2n. The subscripts r and i stand for real
and imaginary, and the subscripts 1, 2 and 3 describe the quadratic form
involved. The superscript t is used to indicate the real number t in the
exponent.

We are moving towards proving Theorem 2. According to our discussions
above, this is a theorem about operators K and their locally integrable
kernels k, such that K exp(tΔ) is bounded on L2(Rn) and Et

r,3k ∈ L∞(R2n).
The following version of Hardy’s theorem for operators boils down to

Theorem 1 if the operator T from S(Rn) to S(Rn)′ is given by a convolution,
but otherwise it is more general.

Theorem 5. Suppose that t is in R+, and that T is an operator from
S(Rn) to S(Rn)′ such that T exp(tΔ) also maps S(Rn) into S(Rn)′ and the
kernel Φ in S(R2n)′ of T (given by the Schwartz kernel theorem) satisfies
Et

r,3Φ ∈ S(R2n)′. Then there exist a positive integer N and distributions Mα

in S(Rn)′ when |α| ≤ N such that

Φ(x, y) =
∑
|α|≤N

Mα(x) (x − y)αpt(x, y) ∀x, y ∈ R
n.

Proof. By rescaling, we may suppose that t = 1. By our hypotheses,

E1
r,3Φ ∈ S(R2n)′

Er,2F2Φ ∈ S(R2n)′.

Define the distribution Ψ by

Ψ(x, y) = Φ(x, x − y) ∀x, y ∈ R
n.
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Then Er,2Ψ(x, y) = E1
r,3Φ(x, x − y) ∈ S(R2n)′, while

Er,2F2Ψ(x, η) = exp(π|η|2)
∫

Rn

exp(−2πiη · y) Ψ(x, y) dy

= exp(π|η|2)
∫

Rn

exp(−2πiη · y) Φ(x, x− y) dy

= exp(π|η|2) Ei,1F2Φ(x,−η).

By the earlier result about multiplication by the function Ei,1 and the
hypothesis, Er,2F2Ψ ∈ S(R2n)′. The conclusion now follows from Theorem 4,
with X taken to be S(Rn). �

We are now able to prove Theorem 2, which we recall for the reader’s
convenience: suppose that t is in R+, that K is the operator on L2(Rn)
defined by a locally integrable kernel k, and that

|k| ≤ pt

|K| ≤ Pt.

Then there exists a bounded measurable function m on Rn such that

k(x, y) = m(x) pt(x, y) ∀x, y ∈ R
n.

If m is a bounded measurable function on Rn and k(x, y) = m(x) pt(x, y),
then K is the heat operator Pt followed by multiplication by m; the two
inequalities of the theorem hold, but clearly k may be more general than a
Gaussian.

Proof of Theorem 2. By rescaling if necessary, we may suppose that
t = 1.

For a nonnegative integer j, write j′ for max{0, j − 1}. For f and g
in S(Rn),

∣∣∣〈f, KΔjg
〉∣∣∣ ≤ ‖f‖2

∥∥KΔjg
∥∥

2

≤ c ‖f‖2

∥∥P1Δ
jg

∥∥
2

= c ‖f‖2

∥∥∥P1Δ
j′Δj−j′g

∥∥∥
2

≤ c ‖f‖2 sup
{
exp(−π |ξ|2) (π|ξ|2)j′ : ξ ∈ R

n
} ∥∥Δj−j′g

∥∥
2

≤ c

(
j′

e

)j′

‖f‖(0) ‖g‖(2)

(when j′ = 0, the right hand side is interpreted as c ‖f‖(0) ‖g‖(2)).
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Now

|〈f, K exp(Δ)g〉| ≤
∑
j∈N

1

j!

∣∣〈f, KΔjg
〉∣∣

≤ c
∑
j∈N

1

j!

(
j′

e

)j′

‖f‖(0) ‖g‖(2)

≤ c ‖f‖(0) ‖g‖(2) ∀f, g ∈ S(Rn).

Thus the kernel of the operator K exp(Δ) is in S(R2n)′. Application
of F2 shows that Er,2F2k ∈ S(R2n)′.

By Theorem 5, there exist Mα in S(Rn)′ such that

k(x, y) =
∑
|α|≤N

Mα(x) (x − y)αp1(x, y) ∀x, y ∈ R
n.

But |k| ≤ p1, so N = 0 and M0 = m0 for some m0 in L∞(Rn). �
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