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Exploding solutions for a nonlocal
quadratic evolution problem

Dong Li, José L. Rodrigo and Xiaoyi Zhang

Abstract
We consider a nonlinear parabolic equation with fractional diffu-

sion which arises from modelling chemotaxis in bacteria. We prove
the wellposedness, continuation criteria and smoothness of local solu-
tions. In the repulsive case we prove global wellposedness in Sobolev
spaces. Finally in the attractive case, we prove that for a class of
smooth initial data the L∞

x -norm of the corresponding solution blows
up in finite time. This solves a problem left open by Biler and Woy-
czyński [8].

1. Introduction and main results

In this paper we consider the following evolution equation on R2:{
∂tu = −ν(−Δ)α/2u−∇ · (uB(u)), 0 < α < 2,

u(0, x) = u0(x),
(1.1)

where ν ≥ 0 is the viscosity coefficient. Physically meaningful solutions
of (1.1) are nonnegative functions u : R2×R+ → R which represent the den-
sity of particles in R2. The term B(u) is a linear integral operator given by

B(u)(x) = μ

∫
R2

x− y

|x− y|2u(y)dy,(1.2)

and μ = ±1. When μ = −1 we will call B an attractive kernel, while the
case μ = 1 corresponds to a repulsive kernel. By explicit computation it is
easy to see that B(u) has an equivalent expression:

B(u) = −C1μ(−Δ)−1∇u,(1.3)

where C1 > 0 is an absolute constant.
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Throughout the paper, we shall use both expressions of B(u) whenever
it is convenient. The fractional Laplacian (−Δ)α/2 is defined via the Fourier
transform:

̂(−Δ)α/2u(ξ) = |ξ|αû(ξ),
where û denotes the Fourier transform of u.

Equation (1.1) describes many physical processes involving diffusion and
interaction of particles (see for example [9] and [8]). When α = 2, the at-
tractive case μ = −1 models the evolution of particles in a cloud interacting
via gravitational attraction (see [23] for more details). In this case (1.1) can
also be regarded as a simplification of the classical Keller-Segel model [14].
On the other hand, the repulsive case μ = 1 models the Brownian dif-
fusion of charged particles with Coulomb repulsion (see [2]). The regime
0 < α < 2 was studied in [8] and it corresponds to the so-called anoma-
lous diffusion which in probabilistic terms has a connection with stochastic
equations driven by Lévy α-stable processes. As mentioned in [8], an im-
portant technical difficulty lies in the fact that non-Gaussian Lévy α-stable
(0 < α < 2) semigroups have densities which decay only at an algebraic rate
|x|−2−α as |x| → ∞ while the Gaussian kernel α = 2 decays exponentially
fast. Equation (1.1) shares a similar form with several other models with dif-
ferent choices of the kernel B. For example, if one takesB(u) = (−Δ)−1∇⊥u,
where ∇⊥u := (−∂x2u, ∂x1u), then equation (1.1) with this choice of B and
ν = 0 is the 2D Euler equation in vorticity form for which global solu-
tions exist under rather general conditions on the initial data (see for ex-
ample [20]). Another closely related model is the surface quasi-geostrophic
equation for which B(u) = (−Δ)−1/2∇⊥u ([10]). We refer the interested
reader to [1, 12, 15, 16, 17, 18, 19, 21] where other equations with frac-
tal type diffusion have been considered. We also mention that analogous
problems of (1.1) in bounded domains were studied in [2, 3, 4, 5, 6, 7].

The main goal of this paper is to study in detail classical solutions of (1.1)
in the unbounded domain R2. Depending on the sign of the interaction
kernel B, we investigate conditions for global in time existence or finite time
blowup. Part of the results obtained here complement those of [8], where
blowup in the case α = 2 and μ = −1 was obtained. In particular we solve
a problem left open by Biler and Woyczyński [8], namely the existence of
blowing-up solutions in the case μ = −1 and 0 < α < 2 (see, for example, [8,
Proposition 4.1] and preceding remarks there; see also Theorem 1.10 below).
In the case α = 2 and μ = −1 considered in [8], the existence of blowing-up
solutions is proved by a virial argument. More precisely one studies the
evolution of the integral

∫
u|x|2dx and proves that the ODE associated to

its evolution generates a negative solution in finite time for sufficiently large
initial data. This argument no longer works in the fractal case 0 < α < 2
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since the weight function |x|2 makes the linear term too strong to be con-
trolled by the nonlinear part. To solve this problem, we use a truncated virial
argument choosing the same weight function but multiplied by a smooth cut-
off function. We then control the remainders by proving a mass localization
lemma (see Lemma 7.4) which prevents the mass from evacuation for a short
time. For a properly chosen time interval and sufficiently localized initial
data, we show that the truncated virial expression which is nonnegative
becomes negative in finite time and thus obtain a contradiction.

We now state more precisely our main results. The first theorem estab-
lishes the local wellposedness of (1.1) in Sobolev space.

Theorem 1.1. (Local existence and uniqueness of solutions). Let μ = ±1
and ν ≥ 0. For any u0 ∈ Hs

x(R
2) ∩ Lq

x(R
2) with s > 3 and 1 < q < 2, there

exists T = T (‖u0‖H2
x(R2), ‖u0‖Lq

x(R2)) > 0 and a unique solution u of (1.1)
in C([0, T ), Hs

x(R
2) ∩ Lq

x(R
2)). Moreover we have u ∈ C1([0, T ), Hs0

x (R2)),
where s0 = min{s− α, s− 1} > 1.

Remark 1.2. In the local theory we do not assume that u0 is nonnegative.
The assumption s>3 in Theorem 1.1 can be weakened further although we
shall not do it here. We chose these conditions simply for the sake of conve-
nience. If ν = 0, the constructed solution is in fact in C1([0, T ), Hs−1

x (R2)).

Remark 1.3. The analysis here should be compared with the case α = 2
in [8]. There (see [8, Remark 3.2]) it is mentioned that a small data result
can be proved by using a perturbation argument. A conditional result for
classical solutions is also proved there for bounded domains with no-flux
boundary condition (see [8, Section 6]).

The next two results establish the continuation criteria of solutions and
further properties of the solutions.

Theorem 1.4. (Blow up –continuation of solutions criteria). Let μ = ±1
and ν ≥ 0. Let u0 ∈ Hs

x(R
2) ∩ Lq

x(R
2) with s > 3 and 1 < q < 2. Assume

u ∈ C([0, T ), Hs
x(R

2) ∩ Lq
x(R

2)) is the maximal-lifespan solution obtained in
Theorem 1.1. Then either T = +∞, in which case we have a global solution,
or T <∞, and we have

lim
t→T

∫ t

0

‖u(s)‖L∞
x (R2)ds = +∞.

Theorem 1.5. (Further properties of solutions). Assume μ = ±1 and
ν ≥ 0. Let u0 ∈ Hs

x(R
2) ∩Lq

x(R
2) with s > 3 and 1 < q < 2. If u0 ≥ 0, then

the corresponding solution obtained in Theorem 1.1 remains non-negative,
i.e. u(t) ≥ 0 for any 0 ≤ t < T . If in addition u0 ∈ L1

x(R
2), then

‖u(x, t)‖L1
x(R2) = ‖u0‖L1

x(R2) for any 0 ≤ t < T .
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Remark 1.6. If u0 ∈ Hs
x(R

2)∩L1
x(R

2) for some s > 3 and u0 ≥ 0, then by an
elementary argument u0 ∈ Hs

x(R
2)∩Lq

x(R
2) for any 1 < q <∞. Theorem 1.5

asserts that we can obtain a solution in C([0, T ), Hs
x(R

2) ∩ Lq
x(R

2)) in any
1 < q < 2. Note that although we prove that the L1

x norm of u is preserved,
the additional strong continuity in C([0, T ), L1

x) is not shown here. We
conjecture this is the case.

The following theorem deals with the case μ = 1, proving that the solu-
tion to (1.1) is global.

Theorem 1.7. (Global well-posedness in the repulsive case). Assume μ = 1
and ν ≥ 0. Let u0 ∈ Hs

x(R
2) ∩ Lq

x(R
2) with s > 3, 1 ≤ q < 2 and u0 ≥ 0.

Then the corresponding solution obtained as in Theorem 1.1 is global. More
precisely, if 1 < q < 2, then u ∈ C([0,∞), Hs

x(R
2) ∩ Lq

x(R
2)). If q = 1,

then u ∈ C([0,∞), Hs
x(R

2) ∩ Lr
x(R

2)) for any 1 < r < 2 and ‖u(t)‖L1
x(R2) =

‖u0‖L1
x(R2) for any t ≥ 0. In all cases (ν ≥ 0) and for all 1 ≤ r ≤ ∞, the

Lr
x-norm of u is non-increasing, i.e., for any 0 ≤ t1 < t2 <∞, we have

‖u(t1)‖Lr
x(R2) ≥ ‖u(t2)‖Lr

x(R2).

In the inviscid case (ν = 0), with q = 1 we have more precise estimates.
They are as follows. For any 1 ≤ p ≤ ∞, we have

‖u0‖Lp
x(R2)·(1 + C1‖u0‖L∞

x (R2)t)
−(1− 1

p
) ≤ ‖u(t)‖Lp

x(R2) ≤
≤ ‖u0‖

1
p

L1
x(R2) · ‖u0‖1− 1

p

L∞
x (R2) · (1 + C1‖u0‖L∞

x (R2)t)
−(1− 1

p
), ∀ t ≥ 0,(1.4)

where C1 is the same constant as in (1.3).

Remark 1.8. Note that the estimate (1.4) shows that in the inviscid case
(ν = 0), the Lp

x-norm of u decays only algebraically fast. In particular for
1 < p ≤ ∞ the estimate is sharp and the Lp

x-norm of u decays at a rate

exactly proportional to t−(1− 1
p
) (provided, of course, that the initial data u0

does not vanish identically). More precisely we have the following theorem.

In the case with no diffusion and μ = −1, we expect the blowup of
solutions for generic initial data (even for initial data that are not necessarily
nonnegative).

Theorem 1.9. (Blowup in the attractive case with no diffusion). Assume
μ=−1 and ν=0. Let u0 ∈ Hs

x(R
2) ∩ Lq

x(R
2) for some 1 <q< 2, s> 3 (u0

is not necessarily nonnegative) and u be the corresponding maximal-lifespan
solution. Assume the set {y ∈ R2 : u0(y) > 0} is nonempty and define the
blowup time T by

T := inf
y∈R2,u0(y)>0

1

C1u0(y)
,

where C1 is the same constant as in (1.3).
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Then the maximal lifespan of u is exactly given by [0, T ). More precisely, we
have u ∈ C([0, T ), Lq

x(R
2)∩Hs

x(R
2)) and the following sharp estimate holds:

1

C1 · (T − t)
≤ ‖u(t)‖L∞

x (R2) ≤ max
{
‖u0‖L∞

x (R2),
1

C1 · (T − t)

}
,(1.5)

for all t < T . In particular this implies that limt→T ‖u(t)‖L∞
x (R2) = ∞.

The last result gives the existence of blowing-up solutions for a class
of well-chosen initial data. Here Aδ,a,b denotes a class of functions defined
precisely below (Definition 7.1).

Theorem 1.10. (Finite time blow up in the attractive, diffusive case). As-
sume μ = −1 and ν > 0. Let u0 ∈ Hs

x(R
2) ∩ L1

x(R
2) with s > 3 and u0 ≥ 0.

Then there exists an open set of parameters δ, a, b such that if u0 ∈ Aδ,a,b,
then the corresponding solution of equation (1.1) blows up in finite time.
More precisely, there exists T <∞, such that

lim
t→T

‖u(t)‖L∞
x (R2) = +∞.

Outline of the paper. This paper is organized as follows. In Section 2 we
collect some basic estimates and preparatory lemmas. Section 3 is devoted
to the proof of local wellposedness in Sobolev spaces (Theorem 1.1). The
proofs of Theorem 1.4, 1.5, 1.7 and 1.9 are given in Section 4, Section 5 and
Section 6. Lastly in Section 7 we prove the existence of blowing-up solutions
(Theorem 1.10).

2. Preliminaries

In this section we compile the notation, auxiliary results from harmonic
analysis and other lemmas used throughout the paper.

Notation. Throughout the paper we denote by Lp
x = Lp

x(R
2) , for

1 ≤ p ≤ ∞, the usual Lebesgue spaces on R2. For s > 0, s being an integer
and 1 ≤ p ≤ ∞, W s,p

x = W s,p
x (R2) denotes the usual Sobolev space

W s,p
x =

{
f ∈ S ′(R2) : ‖f‖W s,p =

∑
0≤|j|≤s

‖∂j
xf‖Lp

x(R2) <∞
}
.

When p = 2, we write Hs
x = Hs

x(R
2) = W s,2

x (R2) and ‖ · ‖Hm
x

as its norm.
We will also use the Sobolev space of fractional power Hs

x(R
2), s ∈ R, which

is defined via the Fourier transform:

‖f‖Hs = ‖(1 + |ξ|)sf̂(ξ)‖L2
ξ
.
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For any s ≥ 0, the space CW ([0, T );Hs
x(R

2)) consists of functions which are
continuous in the weak topology of Hs

x, i.e., u ∈ CW ([0, T );Hs
x(R

2)) if and
only if for any φ ∈ Hs

x(R
2), the scalar product (φ, u(t))s is a continuous

function of t on [0, T ), where

(φ, u)s =

∫
R2

φ̂(ξ)û(ξ)(1 + |ξ|)2sdξ.

Finally, for any two quantities X and Y , we use X � Y or Y � X
whenever X ≤ CY for some constant C > 0. A constant C with subscripts
implies the dependence on these parameters. We use X ∼ Y if both X � Y
and Y � X holds.

2.1. Basic harmonic analysis

Let ϕ(ξ) be a radial bump function supported in the ball {ξ ∈ Rd : |ξ| ≤ 11
10
}

and equal to 1 on the ball {ξ ∈ Rd : |ξ| ≤ 1}. For each number N ∈ Z, we
define the Fourier multipliers

P̂≤Nf(ξ) := ϕ(2−Nξ)f̂(ξ)

P̂>Nf(ξ) := (1 − ϕ(2−Nξ))f̂(ξ)

P̂Nf(ξ) := ψ(2−Nξ)f̂(ξ) := (ϕ(2−Nξ) − ϕ(2−N+1ξ))f̂(ξ)

and similarly P<N and P≥N . We also define

PM<·≤N := P≤N − P≤M =
∑

M<N ′≤N

PN ′

whenever M < N .

Lemma 2.2. (Bernstein estimates). For 1 ≤ p ≤ q ≤ ∞,∥∥|∇|±sPNf
∥∥

Lp
x(R2)

∼ 2±sN‖PNf‖Lp
x(R2),

‖P≤Nf‖Lq
x(R2) � 2( 2

p
− 2

q
)N‖P≤Nf‖Lp

x(R2),

‖PNf‖Lq
x(R2) � 2( 2

p
− 2

q
)N‖PNf‖Lp

x(R2).

Lemma 2.3. (Commutator estimate). For any f, g ∈ S(R2), consider the
commutator

[PkD, f ]g = PkD(fg)− fPkDg.

We have, for any 1 ≤ p ≤ ∞,

‖[PkD, f ]g‖Lp
x(R2) � ‖Df‖L∞

x (R2)‖g‖Lp
x(R2).
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Proof. We have∣∣∣(PkD(fg))(x)− f(x)(PkDg)(x)
∣∣∣ =

=

∣∣∣∣∫
R2

23k(Dψ̂)(2k(x− y))g(y)(f(x)− f(y))dy

∣∣∣∣
≤ ‖Df‖L∞

x (R2)

∫
R2

22k2k|x− y||(Dψ̂)(2k(x− y))||g(y)|dy

Define ψ1(x) = |x|(Dψ̂)(x), then by Minkowski’s inequality we have

‖[PkD, f ]g‖Lp
x(R2) � ‖Df‖L∞

x (R2)‖ψ1‖L1
x(R2)‖g‖Lp

x(R2) � ‖Df‖L∞
x (R2)‖g‖Lp

x(R2).

�

Lemma 2.4. Let s ≥ 0, then

∑
k>0

22ks

∣∣∣∣∫
R2

PkD(uf)Pkudx

∣∣∣∣ �

� (‖u‖L∞
x (R2) + ‖Df‖L∞

x (R2))‖P>−20u‖2
Ḣs

x(R2)
+ ‖u‖L∞

x (R2)‖P>−20f‖2
Ḣs+1

x (R2)
.

Proof. By frequency localization, we have∫
R2

PkD(uf)Pkudx =

=

∫
R2

PkD(uf≤k−5)Pkudx+

∫
R2

PkD(uf≥k−4)Pkudx

=

∫
R2

[PkD, f≤k−5]uPkudx+

∫
R2

f≤k−5(PkDu)Pkudx

+

∫
R2

PkD(uf≥k−4)Pkudx

=

∫
R2

[PkD, f≤k−5]u[k−9,k+9]Pkudx− 1

2

∫
R2

(Df≤k−5)|Pku|2dx

+

∫
R2

PkD(uf[k−4,k+8])Pkudx+

∫
R2

PkD(uf≥k+9)Pkudx

=: Ak +Bk + Ck +Dk.(2.1)

The assumption s ≥ 0 will be needed in the estimate of Dk. We begin with

Estimate of Ak. By Lemma 2.3, we have

|Ak| � ‖Df‖L∞
x (R2)‖u[k−9,k+9]‖L2

x(R2)‖Pku‖L2
x(R2).
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Clearly then∑
k>0

22ks|Ak| � ‖Df‖L∞
x (R2)

∑
k>0

2ks
(
‖u[k−9,k+9]‖2

L2
x(R2) + ‖Pku‖2

L2
x(R2)

)
� ‖Df‖L∞

x (R2)

∑
k>−10

22ks‖Pku‖2
L2

x(R2).

This will be enough for us.

Estimate of Bk. This is rather straightforward. We have∑
k>0

22ks|Bk| � ‖Df‖L∞
x (R2)

∑
k>0

22ks‖Pku‖2
L2

x(R2),

which will suffice to complete the proof.

Estimate of Ck. By integration by parts and Bernstein’s inequality, we
have∑

k>0

22ks|Ck| =
∑
k>0

22ks

∣∣∣∣∫
R2

uf[k−4,k+8]P
2
kDudx

∣∣∣∣
�

∑
k>0

22ks‖u‖L∞
x (R2)‖f[k−4,k+8]‖L2

x(R2)2
k‖Pku‖L2

x(R2)

� ‖u‖L∞
x (R2)

∑
k>0

22ks
(
(2k‖f[k−4,k+8]‖L2

x(R2))
2 + ‖Pku‖2

L2
x(R2)

)
� ‖u‖L∞

x (R2)

∑
k>−10

(
22k(s+1)‖Pkf‖2

L2
x(R2) + 22ks‖Pku‖2

L2
x(R2)

)
.

This is again sufficient.

Estimate of Dk. By frequency localization, we have

Dk =

∫
R2

PkD(u≥k+3f≥k+9)Pkudx

=
∑

j≥k+9, j′≥k+3
|j−j′|≤1

∫
R2

PkD(uj′fj)Pkudx =
∑

j≥k+9, j′≥k+3
|j−j′|≤1

∫
R2

uj′fjP
2
kDudx.

By Bernstein’s inequality, we then have

|Dk| �
∑

j≥k+9, j′≥k+3
|j−j′|≤1

‖uj′‖L2
x(R2)‖fj‖L2

x(R2)2
k‖u‖L∞

x (R2).
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Therefore, interchanging the sums over j and k (here we use the fact s ≥ 0
to get

∑
0<k<j 2k(2s+1) � 2j(2s+1)), we obtain∑

k>0

2ks|Dk| �
∑
k>0

22ks
∑

j≥k+9, j′≥k+3
|j−j′|≤1

2k‖uj′‖L2
x(R2)‖fj‖L2

x(R2)‖u‖L∞
x (R2)

�
∑

j≥9, j′≥3
|j−j′|≤1

22js · 2j‖uj′‖L2
x(R2)‖fj‖L2

x(R2)‖u‖L∞
x (R2)

� ‖u‖L∞
x (R2)

∑
j>0

(
22j(s+1)‖fj‖2

L2
x(R2) + 22js‖uj‖2

L2
x(R2)

)
.

This is clearly good for us. The lemma is proved. �

Lemma 2.5. Given u ∈ Hs(R2)∩Lq(R2), for s > 1 and 1 ≤ q ≤ 2, we have

‖u‖L∞
x (R2) + ‖DB(u)‖L∞

x (R2) + ‖u‖Ḣs
x(R2) �

�‖u‖Lq
x(R2) +

(∑
k>0

22ks‖Pku‖2
L2

x(R2)

) 1
2
.(2.2)

with B as in (1.2).

Proof. The proof is elementary. We only sketch the main ideas. For k ≤ 0,
by Bernstein’s inequality we have (using that q ≤ 2)

‖Pku‖L∞
x (R2) + ‖PkDB(u)‖L∞

x (R2) + ‖Pku‖Ḣs
x(R2) � (2k + 2ks)‖u‖Lq

x(R2).

For k ≥ 0, we also have

‖Pku‖L∞
x (R2) + ‖PkDB(u)‖L∞

x (R2) � 2k(1−s) · 2ks‖Pku‖L2
x(R2).

Note that the high frequency part of the Ḣs
x norm is already bounded by

the RHS of (2.2). Summing over all k ∈ Z and applying Cauchy-Schwartz
quickly yields the result. �

Lemma 2.6. Given u ∈ Ḣ2(R2) ∩ L∞(R2), let Bu be as in (1.2). We have

‖DB(u)‖L∞
x (R2) � log(e+ ‖u‖Ḣ2

x(R2))(1 + ‖u‖L∞
x (R2)) + ‖u‖L2

x(R2).

Proof. Let k0 be a number to be chosen later. By Bernstein’s inequality
we have

‖DB(u)‖L∞
x (R2) �

∑
k>k0

2−k‖Pku‖Ḣ2
x(R2) +

∑
k≤0

2k‖Pku‖L2
x(R2)

+
∑

0<k<k0

‖Pku‖L∞
x (R2)

� 2−k0‖u‖Ḣ2
x(R2) + ‖u‖L2

x(R2) + k0‖u‖L∞
x (R2)
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If ‖u‖Ḣ2
x(R2) ≤ 2e then just choose k0 = 1.

Otherwise choose k0 = [log2(‖u‖Ḣ2
x(R2))] (here [x] denotes the integer part

of x) and this quickly yields the result. �

Lemma 2.7. (Positivity lemma). Let 0 < α ≤ 2, T > 0. Denote ΩT =
(0, T ] × R2. Let u ∈ C1,2

t,x (ΩT ) ∩ C0
t,x(Ω̄T ) ∩ Lp

t,x(ΩT ) for some 1 ≤ p < ∞.

Assume g : R2 → R, g ∈ C(R2), f : ΩT → R2 and f ∈ C0,1
t,x (ΩT ) are given

functions and the following conditions hold.

1. u satisfies the following inequality pointwise:{
∂tu+ ∇ · (fu) ≥ −ν(−Δ)α/2u, (t, x) ∈ ΩT ,

u(0, x) = g(x), x ∈ R2.

Here ν ≥ 0 is the viscosity coefficient.

2. u, together with its derivatives, is bounded: there exists a constant
M1 > 0 such that

sup
ΩT

(|∂tu| + |Du|+ |D2u|) + sup
Ω̄T

|u| ≤ M1 <∞.

3. g ≥ 0 and there exists a constant M2 > 0 such that

sup
ΩT

|div(f)| < M2 <∞.

Under all the above assumptions, we have u ≥ 0 in Ω̄T .

Proof. We will argue by contradiction. Consider v(t, x) = u(t, x)e−2M2t and
assume that there exists a constant δ > 0 such that

inf
(t,x)∈ΩT

v(t, x) = −δ < 0.

Such a constant δ exists since by our assumption v is bounded. It is not
difficult to see that the infimum must be attained at some (t∗, x∗) ∈ Ω̄T .
If it were not true, then there exist (tn, xn) becoming unbounded such that
v(tn, xn) → −δ as n → ∞ which is a contradiction to our assumption that
u ∈ Lp(ΩT ) and u has bounded derivatives in (t, x). It is evident that
0 < t∗ ≤ T . But then we compute

(∂tv)(t
∗, x∗) = −2M2v(t

∗, x∗) + (∂tu)(t
∗, x∗)e−2M2t∗

≥ (−2M2 − div(f))v(t∗, x∗) − ν((−Δ)α/2v)(t∗, x∗).
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Since v attains infimum at (t∗, x∗), we have

(2.3) −((−Δ)α/2v)(t∗, x∗) = Cα P.V.

∫
R2

v(t∗, y) − v(t∗, x∗)
|y − x∗|2+α

dy ≥ 0,

where Cα is a positive constant. The integral representation (2.3) is valid
since we are assuming u is bounded and has bounded derivatives up to
second order (in space). We now obtain

(∂tv)(t
∗, x∗) ≥M2δ > 0.

But this is obviously a contradiction to the fact that v attains its infimum
at (t∗, x∗). The lemma is proved. �

The following pointwise estimate for fractional derivatives is proved in[13]
and represents an improvement of an earlier estimate by Córdoba and Cór-
doba [11].

Lemma 2.8. (Pointwise estimate). Assume f ∈ S(R2), 0 ≤ α ≤ 2 and
β ≥ −1. Then the following pointwise inequality holds:

|f(x)|βf(x)(−Δ)α/2f(x) ≥ 1

β + 2
(−Δ)α/2|f(x)|β+2.

Proof. See Proposition 3.3 of [13]. �

3. Local wellposedness and continuation criteria

3.1. Basic a priori estimates

We first derive some a priori estimates needed later for the contraction ar-
gument. Throughout this subsection we assume u ∈ C([0,∞), Lq

x(R
2) ∩

Hs
x(R

2)), v ∈ C([0,∞), Lq
x(R

2)∩Hs
x(R

2)) for some 1 < q < 2 and s > 3 and
they satisfy the equation

∂tu+ ∇ · (uB(v)) = −ν(−Δ)
α
2 u,(3.1)

where ν ≥ 0 and 0 < α < 2 are same parameters as in (1.1). Assume also
that at t = 0, we have

u(0, x) = v(0, x) = u0(x), ∀ x ∈ R2,

where u0 ∈ Hs
x(R

2) ∩ Lq
x(R

2) is a given function. We shall estimate the
Lp

x (q ≤ p ≤ ∞) and Hs
x norms of u in terms of those norms of v. Such

estimates will be used later in the contraction argument (specifically we will
be taking u = un+1, v = un, cf. (3.28)). To simplify the presentation, we
divide the estimates into three steps.
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Step 1. Lp
x estimate for q ≤ p ≤ ∞. Let ε > 0 be a small number.

We first take p such that q ≤ p < ∞. Multiplying both sides of (3.1) by
|u|p−2u · e−ε|x| and integrating, we obtain

1

p

d

dt

∫
R2

|u|pe−ε|x|dx =

∫
R2

|u|p−2u∂tue
−ε|x|dx

= −
∫

R2

∇ · (uB(v))|u|p−2ue−ε|x|dx− ν

∫
R2

(−Δ)α/2u|u|p−2ue−ε|x|dx

= −
∫

R2

(∇ · B(v))|u|pe−ε|x|dx−
∫

R2

B(v) · (∇u)|u|p−2ue−ε|x|dx

− ν

∫
R2

(−Δ)α/2u|u|p−2ue−ε|x|dx

= − (1 − 1

p
)

∫
R2

(∇ · B(v))|u|pe−ε|x|dx− ε

p

∫
R2

(B(v) · x|x|)|u|
pe−ε|x|dx

− ν

∫
R2

(−Δ)α/2u|u|p−2ue−ε|x|dx(3.2)

≤ C · (‖v‖L∞
x (R2) + ε‖B(v)‖L∞

x (R2))

∫
R2

|u|pe−ε|x|dx

− ν

∫
R2

(−Δ)α/2u|u|p−2ue−ε|x|dx,(3.3)

where the last inequality follows from the fact that ∇ · B(v) = Const · v
(see (1.3)). By1 Lemma 2.8, choosing β = p− 2, we have

−
∫

R2

(−Δ)α/2u|u|p−2ue−ε|x|dx ≤ −1

p

∫
R2

(−Δ)α/2(|u|p)e−ε|x|dx

= −1

p

∫
R2

|u|p(−Δ)α/2(e−ε|x|)dx.(3.4)

Now choose r ∈ R such that

2

α
< r <∞, if 0 < α ≤ 1,

and

2 ≤ r <
2

α− 1
, if 1 < α < 2.

We can then bound

‖(−Δ)α/2(e−ε|x|)‖Lr
x(R2) ≤ εα−

2
r ‖(−Δ)α/2(e−|x|)‖Lr

x(R2)

≤ εα−
2
r · const ·

∥∥∥∥∥ |ξ|α
(1 + |ξ|2) 3

2

∥∥∥∥∥
L

r
r−1
ξ (R2)

≤ Cεα−
2
r ,

1Strictly speaking, in order to apply Lemma 2.8, one needs to assume that u ∈ S(R2).
But this can be easily fixed by a standard density argument.
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where C is a constant depending on (α, r). It is not difficult to check that
the last integral in ξ converges due to our choice of the number r. By this
last inequality and Hölder, we obtain

|RHS of (3.4) | ≤ C

p
‖u‖p

L
pr

r−1
x (R2)

· εα− 2
r .(3.5)

Plugging this estimate into (3.3) and integrating in time, we get

1

p

∫
R2

|u(t)|pe−ε|x|dx ≤

≤ 1

p
‖u0‖p

Lp
x(R2)

+ C

∫ t

0

(‖v(τ)‖L∞
x (R2) + ε‖B(v)(τ)‖L∞

x (R2))‖u(τ)‖p
Lp

x(R2)
dτ

+ ν
C

p

∫ t

0

‖u(τ)‖p

L
pr

r−1
x (R2)

dτ εα−
2
r .

Now since ‖B(v)‖L∞
x (R2) � ‖v‖Lq

x(R2) + ‖v‖L∞
x (R2) and therefore is bounded,

taking ε→ 0 gives us

1

p
‖u(t)‖p

Lp
x(R2)

≤ 1

p
‖u0‖p

Lp
x(R2)

+ C

∫ t

0

‖v(τ)‖L∞
x
· ‖u(τ)‖p

Lp
x(R2)

dτ.

Gronwall then yields

‖u(t)‖Lp
x(R2) ≤ ‖u0‖Lp

x(R2) · exp

(
C

∫ t

0

‖v(τ)‖L∞
x (R2)dτ

)
.(3.6)

This is the first estimate we need. Now taking p→ ∞ in (3.6) gives us

‖u(t)‖L∞
x (R2) ≤ ‖u0‖L∞

x (R2) · exp

(
C

∫ t

0

‖v(τ)‖L∞
x (R2)dτ

)
.(3.7)

Now assume T > 0 is such that

T · max
0≤t≤T

‖v(t)‖L∞
x
≤ log 2

C
,(3.8)

then clearly

exp

(
C

∫ T

0

‖v(τ)‖L∞
x (R2)dτ

)
≤ 2.

Plugging this estimate back into (3.7) and we obtain

sup
0≤t≤T

‖u(t)‖L∞
x (R2) ≤ 2‖u0‖L∞

x (R2).

Using the last two estimates and (3.6), we finally get

sup
0≤t≤T

‖u(t)‖Lp
x(R2) ≤ 2‖u0‖Lp

x(R2), ∀ q ≤ p ≤ ∞.(3.9)

This concludes the Lp
x estimate.
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Remark 3.2. In the Lp
x estimate above, we need to use the function e−ε|x| as

a cut-off to make the integral containing the diffusion term converge. More
precisely, for 1 < q < 2, the integral∫

R2

(−Δ)α/2u|u|q−2udx

may not converge since we are only assuming that u ∈ Hs
x(R

2)∩Lq
x(R

2). This
is the reason why we use this regularization instead of multiplying directly
by |u|p−2u.

Step 2. Ḣs
x estimate for s > 0. Since the low frequency part of the Ḣs

x

norm of the function u can be readily controlled by its Lq
x (q ≤ 2) norm,

it suffices for us to derive a priori estimates for the high frequency part of
the Ḣs

x norm of the function u, i. e., the quantity

‖u(t)‖2
Y s(R2) :=

∑
k>0

22ks‖Pku(t)‖2
L2

x(R2).(3.10)

Applying the projector Pk to both sides of (3.1), multiplying by Pku and
integrating, we have

1

2

d

dt
‖Pku‖2

L2
x(R2) + ν‖(−Δ)α/4Pku‖2

L2
x(R2) =

= −
∫

R2

Pk∇ · (uB(v))Pkudx.(3.11)

By Lemma 2.4, we have the bound

∑
k>0

22ks
∣∣∣ ∫

R2

Pk ∇ · (uB(v))Pkudx
∣∣∣ �

� (‖u‖L∞
x (R2) + ‖DB(v)‖L∞

x (R2))‖P>−20u‖2
Ḣs

x(R2)

+ ‖u‖L∞
x (R2)‖P>−20B(v)‖2

Ḣs+1
x (R2)

� (‖u‖L∞
x (R2) + ‖DB(v)‖L∞

x (R2))‖P>−20u‖2
Ḣs

x(R2)

+ ‖u‖L∞
x (R2)‖P>−20v‖2

Ḣs
x(R2)

,(3.12)

where the last inequality follows from (1.3) and the fact that the Riesz
operator |∇|−1∇ is bounded on L2

x(R
2):

‖P>−20B(v)‖Ḣs+1
x (R2) � ‖P>−20|∇|sv‖L2

x(R2) � ‖P>−20v‖Ḣs
x(R2).
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Therefore by (3.10), (3.11) and (3.12), we obtain

1

2

d

dt
‖u(t)‖2

Y s(R2)+ ν
∑
k>0

22ks‖Pk(−Δ)α/4u‖2
L2

x(R2) �

� (‖u‖L∞
x (R2) + ‖DB(v)‖L∞

x (R2))‖P>−20u‖2
Ḣs

x(R2)

+ ‖u‖L∞
x (R2)‖P>−20v‖2

Ḣs
x(R2)

(3.13)

Step 3. Conclusion of the estimates. Taking s = 2 in (3.13) and using
Lemma 2.5, we have

d

dt
‖u(t)‖2

Y 2(R2) � (‖u(t)‖L∞
x (R2) + ‖DB(v)‖L∞

x (R2))·
· (‖u(t)‖2

Lq
x(R2) + ‖u(t)‖2

Y 2(R2)) + ‖u‖L∞
x (R2)‖P>−20v‖2

Ḣ2
x(R2)

� (‖u(t)‖L∞
x (R2) + ‖v(t)‖Lq

x(R2) + ‖v(t)‖Y 2(R2))·
· (‖u(t)‖2

Lq
x(R2) + ‖u(t)‖2

Y 2(R2)) + ‖u‖L∞
x (R2)‖P>−20v‖2

Ḣ2
x(R2)

.(3.14)

By (3.9) and choosing T satisfying (3.8), we then have

d

dt
‖u(t)‖2

Y 2(R2) � (2‖u0‖L∞
x (R2) + ‖v(t)‖Y 2(R2) + ‖v(t)‖Lq

x(R2))·
· (4‖u0‖2

Lq
x(R2) + ‖u(t)‖2

Y 2(R2)) + 2‖u0‖L∞
x (R2)‖P>−20v‖2

Ḣ2
x(R2)

� (‖u0‖Lq
x(R2) + ‖u0‖Y 2(R2) + ‖v(t)‖Y 2(R2) + ‖v(t)‖Lq

x(R2))·
· (‖u0‖2

Lq
x(R2) + ‖u(t)‖2

Y 2(R2)) + ‖u0‖H2
x(R2)‖P>−20v‖2

Ḣ2
x(R2)

,(3.15)

where the last inequality follows from Lemma 2.5 and Sobolev embedding.
Now choose T such that

1. T satisfies (3.8).

2. The Y 2 and Lq
x norm of v on [0, T ] is not too large:

max
0≤t≤T

(‖v(t)‖Y 2(R2)+‖v(t)‖Lq
x(R2))≤4 · (‖u0‖Y 2(R2) + ‖u0‖Lq

x(R2)

)
.(3.16)

3. T also satisfies

T ≤ C̃1

‖u0‖H2
x(R2) + ‖u0‖Lq

x(R2)

,(3.17)

where the constant C̃1 depends only on q, ν, α and will later be made
suitably small.
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Then for any t ≤ T , we have

RHS of (3.15) �
� (‖u0‖Lq

x(R2) + ‖u0‖Y 2(R2)) · (‖u0‖2
Lq

x(R2) + ‖u(t)‖2
Y 2(R2))

+ (‖u0‖Lq
x(R2) + ‖u0‖Y 2(R2))

3

� (‖u0‖Lq
x(R2) + ‖u0‖Y 2(R2)) ‖u(t)‖2

Y 2(R2) + (‖u0‖Lq
x(R2) + ‖u0‖Y 2(R2))

3.

By the assumptions on T , (3.17), choosing C̃1 sufficiently small , a simple
Gronwall argument yields

sup
0≤t≤T

‖u(t)‖Y 2(R2) ≤ 2 · (‖u0‖Lq
x(R2) + ‖u0‖Y 2(R2)).(3.18)

By (3.9), this implies

sup
0≤t≤T

(‖u(t)‖Lq
x(R2) + ‖u(t)‖Y 2(R2)

) ≤≤4 · (‖u0‖Y 2(R2) + ‖u0‖Lq
x(R2)

)
.(3.19)

This ends the estimate for s = 2. By the assumptions on T , (3.8), (3.16)
and Lemma 2.5, it is not difficult to see that

sup
0≤t≤T

(
‖u(t)‖L∞

x (R2) + ‖DB(v(t))‖L∞
x (R2)

)
≤

≤C̃2 · (‖u0‖Y 2(R2) + ‖u0‖Lq
x(R2)),(3.20)

where C̃2 is a constant depending on q. Plugging the estimate (3.20) in-
to (3.13), we obtain for any t ≤ T and s ≥ 2:

1

2

d

dt
‖u(t)‖2

Y s(R2) � (‖u0‖Y 2(R2) + ‖u0‖Lq
x(R2)) · ‖P>−20u(t)‖2

Ḣs
x(R2)

+ ‖u0‖L∞
x (R2) · ‖v(t)‖2

Hs
x(R2)

� (‖u0‖Y 2(R2) + ‖u0‖Lq
x(R2)) · (‖u(t)‖2

Y s(R2) + ‖v(t)‖2
Y s(R2))

+ (‖u0‖Y 2(R2) + ‖u0‖Lq
x(R2))

3.

Now a simple Gronwall argument gives that for any t ≤ T ,

‖u(t)‖2
Y s(R2) ≤ e

C̃3t·(‖u0‖Y s(R2)+‖u0‖L
q
x(R2)

)·
·
(
‖u0‖2

Y s(R2) + 2t · (‖u0‖Y 2(R2) + ‖u0‖Lq
x(R2))

3

+ 2t(‖u0‖Y 2(R2) + ‖u0‖Lq
x(R2)) · max

0≤τ≤t
‖v(τ)‖2

Y s(R2)

)
,

where C̃3 is a constant depending on the numbers (s, q).
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Choosing T as in (3.17) and letting the constant C̃1 be sufficiently small,
we then have

max
0≤t≤T

‖u(t)‖2
Y 2(R2) ≤

≤ 2‖u0‖2
Y s(R2) +

1

2
(‖u0‖Y 2(R2) + ‖u0‖Lq

x(R2))
2 +

1

2
· max

0≤t≤T
‖v(t)‖2

Y s(R2)

≤ 2‖u0‖2
Y s(R2) + ‖u0‖2

Y 2(R2) + ‖u0‖2
Lq

x(R2) +
1

2
· max

0≤t≤T
‖v(t)‖2

Y s(R2).

Now if we assume that

max
0≤t≤T

‖v(t)‖2
Y s(R2) ≤ 4‖u0‖2

Y s(R2) + 2‖u0‖2
Y 2(R2) + 2‖u0‖2

Lq
x(R2),

then we obtain

max
0≤t≤T

‖u(t)‖2
Y s(R2) ≤ 4‖u0‖2

Y s(R2) + 2‖u0‖2
Y 2(R2) + 2‖u0‖2

Lq
x(R2),

Next plugging this estimate together with (3.16), (3.9) and (3.20) into (3.13),
we obtain for some constant C̃4 > 0 depending on ( ‖u0‖Hs

x(R2), ‖u0‖Lq
x(R2) ),

1

2

d

dt
‖u(t)‖2

Y s(R2) + ν‖u(t)‖2

H
s+ α

2
x (R2)

≤ C̃4,

where we have used the fact that the low frequency part of the H
s+ α

2
x (R2)

and Hs
x(R

2) norms of u can be controlled by its Lq
x(R

2)-norm which in turn
is bounded by (3.9). Integrating on [0, T ] and we get

ν

∫ T

0

‖u(t)‖2

H
s+ α

2
x (R2)

dt ≤ C̃5,

where C̃5 is another constant depending on (‖u0‖Hs
x(R2), ‖u0‖Lq

x(R2)).

Finally, we summarize the basic a priori estimates as follows. There exist
a constant c̃1 > 0 depending on the numbers (q, s) such that if T satisfies
the following conditions:

(i) The Lq
x and Y 2 norms of v are not too large:

(3.21) max
0≤t≤T

(‖v(t)‖Lq
x(R2)+‖v(t)‖Y 2(R2)) ≤ 4·(‖u0‖Lq

x(R2)+‖u0‖Y 2(R2));

(ii) The Y s norm of v is not too large:

max
0≤t≤T

‖v(t)‖2
Y s(R2) ≤ 4‖u0‖2

Y s(R2) + 2‖u0‖2
Y 2(R2) + 2‖u0‖2

Lq
x(R2);(3.22)
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(iii) T satisfies the bound2:

T ≤ c̃1
‖u0‖H2

x(R2) + ‖u0‖Lq
x(R2)

;(3.23)

then for the function u we have the following:

(a) The Lq
x and Y 2 norms of u are not too large:

max
0≤t≤T

(‖u(t)‖Lq
x(R2) + ‖u(t)‖Y 2(R2)) ≤

≤ 4 · (‖u0‖Lq
x(R2) + ‖u0‖Y 2(R2));(3.24)

(b) The Y s norm of u is not too large:

max
0≤t≤T

‖u(t)‖2
Y s(R2) ≤ 4‖u0‖2

Y s(R2) + 2‖u0‖2
Y 2(R2) + 2‖u0‖2

Lq
x(R2);(3.25)

(c) The following bound also holds:

sup
0≤t≤T

‖u(t)‖Hs
x(R2) + ν

∫ T

0

‖u(t)‖2

H
s+ α

2
x (R2)

dt ≤ D̃1;(3.26)

(d) For any t ≤ T ,

‖u(t)‖Y s(R2) ≤ eD̃2t(‖u0‖Y s(R2) + D̃3t).(3.27)

Here D̃1, D̃2 and D̃3 are positive constants depending on ‖u0‖Hs
x(R2) and

‖u0‖Lq
x(R2). Note that for the control of the Y s-(semi)norm of u, the esti-

mate (3.27) is slightly better than the mere boundedness in (3.26). We shall
need (3.27) later to show the continuity of u in Hs-norm at t = 0 (see (3.38)).

Remark 3.3. As indicated before the above estimates will be used in the
contraction argument. We remark that (a) and (b) above ((3.24) and (3.25))
are the same estimates as the ones assumed for v, (3.21) and (3.22). This will
be required later to guarantee that the estimates obtained for the sequence
of approximate solutions un are uniform in n.

2Note here by the Sobolev embedding inequality ‖f‖L∞
x (R2) ≤ ‖f‖H2

x(R2), the condi-
tion (3.8) can be taken care of by making c̃1 sufficiently small.
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3.4. Contraction arguments

We assume that the initial data u0 ∈ Lq
x(R

2) ∩Hs
x(R

2) for some 1 < q < 2
and s > 3. We will construct a sequence of functions {uk}∞k=1in the following
manner. Define u1(t, x) = u0(x). We define un+1 (n ≥ 1) as the solution of{

∂tun+1 + ∇ · (un+1B(un)) = −ν(−Δ)α/2un+1,

un+1(0) = u0.
(3.28)

Since we are assuming high regularity on the initial data, no regularization
is needed in this approximation scheme.

Step 1: Properties of solutions to the linear problem. For all n ≥ 1, we
have un ∈ C([0,∞), Hs

x(R
2) ∩ Lq

x(R
2)). This can be shown by an induction

on n. The claim obviously holds for n = 1 since u1(t, x) ≡ u0 and u0 ∈
Hs

x(R
2)∩Lq

x(R
2). Assume the statement is true for un with n ≥ 1. Then for

un+1, using the fact that un ∈ C([0,∞), Hs
x(R

2)∩Lq
x(R

2)), it is not difficult
to show that (3.28) has a unique solution in C([0,∞), Hs

x(R
2)). To show

un+1 ∈ C([0,∞), Lq
x(R

2)), we use (3.28) and Duhamel’s formula to write
un+1 as

un+1(t) = e−νt(−Δ)α/2

u0 −
∫ t

0

e−ν(t−τ)(−Δ)α/2∇ · (un+1(τ)B(un)(τ))dτ.

We note that the above expression for un+1, with the obvious interpre-
tation, can be used for the case ν = 0.

Now use the fact that

‖e−νt(−Δ)α/2

f‖Lp
x(R2) � ‖f‖Lp

x(R2)

for any t ≥ 0, 1 ≤ p ≤ ∞, we quickly obtain

‖un+1(t)‖Lq
x(R2) � ‖u0‖Lq

x(R2) +

∫ t

0

‖∇ · (un+1(τ)B(un)(τ))‖Lq
x(R2)dτ

� ‖u0‖Lq
x(R2) +

∫ t

0

(
‖∇un+1(τ)‖L2

x(R2) · ‖(−Δ)−1∇un(τ)‖
L

2q
2−q
x (R2)

+ ‖un+1(τ)‖L∞
x (R2)‖un(τ)‖Lq

x(R2)

)
dτ

� ‖u0‖Lq
x(R2) +

∫ t

0

‖un+1(τ)‖Hs
x(R2)‖un(τ)‖Lq

x(R2)dτ,

where the last inequality follows from Sobolev embedding. This estimate
shows that the Lq

x norm of un+1 is bounded on any finite time interval.
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By a similar argument we can show the strong continuity (at any finite t
including right continuity at t = 0) of un+1. Therefore we conclude un+1 ∈
C([0,∞), Lq

x(R
2)).

Step 2: Uniform estimates on the sequence un. We claim that there
exists a constant c1 > 0 depending only on (α, q, ν), such that if

0 < T ≤ c1
‖u0‖H2

x(R2) + ‖u0‖Lq
x(R2)

,(3.29)

then for any s ≥ 2, q ≤ p ≤ ∞, n ≥ 1, we have

(3.30) sup
0≤t≤T

(‖un(t)‖Lp
x(R2) +‖un(t)‖Hs

x(R2))+ν

∫ T

0

‖un(t)‖2

H
s+ α

2
x (R2)

dt ≤ D1,

and for any t ≤ T ,

‖un(t)‖Y s(R2) ≤ eD2t(‖u0‖Y s(R2) +D3t).(3.31)

Here D1, D2 and D3 are positive constants depending on ‖u0‖Hs
x(R2) and

‖u0‖Lq
x(R2). This claim can be proved using the a priori estimates derived

earlier and an induction on n. Specifically take T > 0 such that

T ≤ c̃1
‖u0‖H2

x(R2) + ‖u0‖Lq
x(R2)

,

where c̃1 is the same as in (3.23). Then for n = 1 the claim obviously holds
since u1(t, x) ≡ u0. For n ≥ 2, the claim also holds by induction (note that as
pointed out in remark 3.3 the estimates (3.21) and (3.24), (3.22) and (3.25)
are consistent with each other). We leave the details to the interested reader.

Step 3: Contraction in C([0, T ′], Lq
x(R

2)) for some T ′ ≤ T . Here we
need to show the convergence of the whole sequence in order to pass to the
limit in (3.28). Denote wn+1 = un+1 − un. Using (3.28), a direct calculation
shows that wn+1 satisfies

∂twn+1 + ∇ · (wn+1B(un)) + ∇ · (unB(wn)) = −ν(−Δ)α/2wn+1.(3.32)

Let ε > 0 be a small number which we will send to 0 later. Multiplying both
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sides of (3.32) by |wn+1|q−2wn+1e
−ε|x| and integrating, we obtain

1

q

d

dt

∫
R2

|wn+1|qe−ε|x|dx =

∫
R2

|wn+1|q−2wn+1∂twn+1e
−ε|x|dx

= −
∫

R2

∇ · (wn+1B(un))|wn+1|q−2

wn+1e
−ε|x|

dx

−
∫

R2

∇ · (unB(wn))|wn+1|q−2

wn+1e
−ε|x|

dx

− ν

∫
R2

(−Δ)α/2wn+1|wn+1|q−2wn+1e
−ε|x|dx

= −C1 · (1 − 1
q
)

∫
R2

un|wn+1|qe−ε|x|dx

−
∫

R2

∇ · (unB(wn))|wn+1|q−2

wn+1e
−ε|x|

dx

− ε

q

∫
R2

(B(un) · x|x|)|wn+1|qe−ε|x|dx

− ν

∫
R2

(−Δ)α/2wn+1|wn+1|q−2

wn+1e
−ε|x|

dx

� (‖un‖L∞
x (R2) + ‖B(un)‖L∞

x (R2))

∫
R2

|wn+1|qe−ε|x|dx

− ν

∫
R2

(−Δ)α/2wn+1|wn+1|q−2wn+1e
−ε|x|dx

− C1

∫
R2

unwn|wn+1|q−2

wn+1e
−ε|x|

dx

−
∫

R2

(B(wn) · ∇un)|wn+1|q−2wn+1e
−ε|x|dx

=: A1 + A2 + A3 + A4.

We estimate each term separately.

Estimate of A1. By the inequality

‖B(un)‖L∞
x (R2) � ‖un‖L∞

x (R2) + ‖un‖Lq
x(R2)

and using the uniform estimate (3.30), we obtain

|A1| �
∫

R2

|wn+1|qe−ε|x|dx,(3.33)

where the implicit constant depends only on (‖u0‖Lq
x(R2) and ‖u0‖H2

x(R2)).
The same convention will be used below in the estimates of A2, A3 and A4.
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Estimate of A2. (Notice that in the inviscid case this term is 0). We
can repeat the argument used in estimating (3.4) (see estimate (3.5) ). Us-
ing (3.30), we then get

|A2| � ‖wn+1‖r

L
qr

r−1
x (R2)

· εα− 2
r � εα−

2
r ,(3.34)

where r is a positive number satisfying

2

α
< r <∞, if 0 < α ≤ 1,

and

2 ≤ r <
2

α− 1
, if 1 < α < 2.

Estimate of A3. By Hölder’s inequality and (3.30), we get

|A3| � ‖un‖L∞
x (R2) · ‖wn‖Lq

x(R2) ·
(∫

R2

|wn+1|qe−ε q
q−1

|x|dx
) q−1

q

� ‖wn‖Lq
x(R2) ·

(∫
R2

|wn+1|qe−ε|x|dx
) q−1

q

,(3.35)

since q
q−1

> 1.

Estimate of A4. Using Sobolev embedding, Hölder’s inequality
and (3.30), we have

‖∇un · B(wn)‖Lq
x(R2) � ‖∇un‖L2

x(R2)‖(−Δ)−1∇wn‖
L

2q
2−q
x (R2)

� ‖un‖H2
x(R2)‖wn‖Lq

x(R2) � ‖wn‖Lq
x(R2).(3.36)

Hence Hölder gives us

|A4| � ‖wn‖Lq
x(R2) ·

(∫
R2

|wn+1|qe−ε|x|dx
) q−1

q

.(3.37)

Collecting the estimates (3.33), (3.34), (3.35) and (3.37), we finally obtain

d

dt

∫
R2

|wn+1(t)|qe−ε|x|dx �

�
∫

R2

|wn+1(t)|qe−ε|x|dx+ ‖wn(t)‖Lq
x(R2) ·

(∫
R2

|wn+1(t)|qe−ε|x|dx
) q−1

q

+ εα−
2
r

�
∫

R2

|wn+1(t)|qe−ε|x|dx+ ‖wn(t)‖q
Lq

x(R2)
+ εα−

2
r ,

where the last step follows from Young’s inequality. Here the implicit con-
stants depend only on q, ‖u0‖H2

x(R2) and ‖u0‖Lq
x(R2).
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Now by choosing T ′ < T sufficiently small (but still depending only on
‖u0‖H2

x(R2), ‖u0‖Lq
x(R2) ) and using a Gronwall argument it is easy to see that

(note that wn(0, x) = 0)

sup
0≤t≤T ′

∫
R2

|wn+1(t, x)|qe−ε|x|dx ≤ δq sup
0≤t≤T ′

(‖wn(t)‖q
Lq

x(R2)
+ εα−

2
r ),

where 0 < δ < 1 is a constant which is independent of ε. Taking ε → 0
gives us

sup
0≤t≤T ′

‖wn+1(t)‖Lq
x(R2) ≤ δ sup

0≤t≤T ′
‖wn(t)‖Lq

x(R2).

This shows that (un)n≥1 forms a Cauchy sequence in C([0, T ′], Lq
x(R

2)).
Therefore there exists a limiting function u ∈ C([0, T ′], Lq

x(R
2)) such that

un → u as n→ ∞.

Step 4. Properties of the limiting function u. By using the interpolation
inequality:

‖f‖Hs′
x (R2) � ‖f‖

s−s′
2
q −1+s

Lq
x(R2)

‖f‖
2
q −1+s′
2
q −1+s

Hs
x(R2) ,

which holds for any 0 ≤ s′ ≤ s and 1 ≤ q ≤ 2, and using (3.30), it is easy to
see that un → u also in C([0, T ′], Hs′

x (R2)) for any s′ < s. Therefore we have
u ∈ C([0, T ′], Hs′

x (R2) ∩ Lq
x(R

2)) for any s′ < s. By a standard argument u
is a classical solution to (1.1). We still have to show u ∈ C([0, T ′], Hs

x(R
2)).

It is clear that u ∈ Cw([0, T ′], Hs
x(R

2)). By (3.31), it is not difficult to
show that

(3.38) lim
t→0

‖u(t)‖Y s(R2) = ‖u0‖Y s(R2).

Together with the fact that u ∈ C([0, T ′], Lq
x(R

2)), this implies

lim
t→0

‖u(t)‖Hs
x(R2) = ‖u0‖Hs

x(R2),

and therefore the strong continuity of u at t = 0 is proved (since u ∈
Cw([0, T ′], Hs

x(R
2))). To show the strong continuity at any 0 < t ≤ T ′,

we discuss two cases. In the inviscid case (i.e. ν = 0), then this case is
rather simple and one can repeat the argument for t = 0 to prove the strong
continuity at t. In the case with diffusion (i.e. ν > 0), we use (3.30) to

conclude that u ∈ L2
tH

s+ α
2

x ([0, T ′] × R2). Consequently for any δ > 0 there

exists t−δ < t0 < t such that u(t0) ∈ H
s+ α

2
x (R2). Taking u(t0) as initial data

we obtain a solution in C([t0, T
′′], Hs′

x (R2)) for any s′ < s+ α
2
. Here the time

of existence T ′′ − t0 depends only on (‖u(t0)‖H2
x(R2) and ‖u(t0)‖Lq

x(R2)) and
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therefore has a uniform lower bound independent of t0. By uniqueness of the
solution and interpolation inequality (since s+ α

2
> s) we obtain the strong

continuity of u at time t. Therefore we conclude u ∈ C([0, T ′], Hs
x(R

2)).
Finally we need to show that u ∈ C1([0, T ), Hs0

x (R2)) with s0 = min{s −
α, s− 1}. This is rather straightforward. Let 0 ≤ τ0, τ < T ′, by using (1.1)
we then estimate

‖(∂tu)(τ) − (∂tu)(τ0)‖H
s0
x (R2) ≤

≤ ‖∇ · ((u(τ) − u(τ0))∇K∗ u(τ))‖H
s0
x (R2)

+‖∇·(u(τ0)(∇K∗ (u(τ)−u(τ0))))‖
H

s0
x (R2)

+ν‖(−Δ)α/2(u(τ0)−u(τ))‖
H

s0
x (R2)

� ‖(u(τ) − u(τ0))∇K ∗ u(τ)‖
H

s0+1
x (R2)

+ ‖u(τ0)(∇K ∗ (u(τ)− u(τ0)))‖
H

s0+1
x (R2)

+ ν‖u(τ0) − u(τ)‖
H

s0+α
x (R2)

.

Using the fact that Hr
x(R

2) is an algebra when r > 1, we have

‖(∂tu)(τ) − (∂tu)(τ0)‖H
s0
x (R2) �

� ‖u(τ) − u(τ0)‖H
s0+1
x (R2)

‖∇K ∗ u(τ)‖
H

s0+1
x (R2)

+‖u(τ0)‖H
s0+1
x (R2)

‖∇K∗ (u(τ)−u(τ0))‖H
s0+1
x (R2)

+ ν‖u(τ)−u(τ0)‖H
s0+α
x (R2)

� C‖u(τ) − u(τ0)‖Hs
x(R2) → 0,

as we take τ → τ0. Therefore ∂tu ∈ C([0, T ′), Hs0
x (R2)) completing the proof

of Theorem 1.1.

4. Proof of Theorems 1.4 and 1.5

Proof of Theorem 1.4. Let u0 ∈ Hs
x(R

2) ∩ Lq
x(R

2) with s > 3 and 1 <
q < 2. To prove the theorem it suffices to show the impossibility of the case
when u is the corresponding maximal lifespan solution in C([0, T ), Lq

x(R
2)∩

Hs
x(R

2)) with T <∞ and∫ T

0

‖u(s)‖L∞
x (R2)ds <∞.

We shall derive a contradiction from the above assumptions. By Theorem 1.1
we can continue the solution as long as we have a priori control of the
H2

x(R2)+Lq
x(R

2)-norm. Since ‖u‖H2
x(R2) � ‖u‖Lq

x(R2) +‖u‖Y 2(R2) (see (3.10)),
it suffices to control the Y 2(R2) + Lq

x(R
2)-norm. By (3.6) (taking v = u),

we have for any q ≤ p <∞
sup

0≤t<T
‖u(t)‖Lp

x(R2) < C1 <∞,(4.1)

where C1 is some constant depending on u0 and T .
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Therefore we only need to control the Y 2(R2) norm of solution. By (3.13)
and using the fact that

‖P>−20u(t)‖Ḣ2
x(R2) � ‖u(t)‖Y 2(R2) + ‖u(t)‖L2

x(R2) � ‖u(t)‖Y 2(R2) + C1,

we have for any 0 < t < T ,

d

dt
‖u(t)‖2

Y 2(R2) � (‖u(t)‖L∞
x (R2) + ‖DB(u)‖L∞

x (R2))(‖u(t)‖2
Y 2(R2) + C2

1 ).

By Lemma 2.6 and (4.1), we have

‖DB(u(t))‖L∞
x (R2) � log(e+ ‖u(t)‖Ḣ2

x(R2))(1 + ‖u(t)‖L∞
x (R2)) + ‖u(t)‖L2

x(R2)

� log(C2 + ‖u(t)‖Y 2(R2))(1 + ‖u(t)‖L∞
x (R2)) + C3,

where C2 > e, C3 > 0 are constants, and we have used the fact that

‖u(t)‖Ḣ2
x(R2) � ‖u(t)‖Y 2(R2) + ‖u(t)‖L2

x(R2) � ‖u(t)‖Y 2(R2) + C1.

Thus we obtain the following inequality

d

dt
(C4+‖u(t)‖2

Y 2(R2)) ≤
≤ C5(1 + ‖u(t)‖L∞

x (R2))(C4 + ‖u(t)‖2
Y 2(R2)) log(C4 + ‖u(t)‖2

Y 2(R2)),

where C4 > e, C5 > 0 are constants. Now a Gronwall argument shows that
for any 0 < t < T ,

‖u(t)‖2
Y 2(R2) ≤ exp

(
exp

(
C5

∫ t

0

(1 + ‖u(s)‖L∞
x (R2))ds

))
(C4 + ‖u0‖2

Y 2(R2)).

This shows that ‖u(t)‖Y 2(R2) can be controlled up to time T and therefore
we have obtained a contradiction. The Theorem is proved. �

Proof of Theorem 1.5. We divide the proof into two steps.

Step 1. Nonnegativity of the solution. Let u0 ∈ Hs
x(R

2) ∩ Lq
x(R

2) for
some s > 3 and 1 < q < 2. Assume u0 ≥ 0 and let u be the corresponding
maximal lifespan solution obtained in Theorem 1.1. Let 0 < T ′ < T and
denote ΩT ′ = R2 × (0, T ′]. By Theorem 1.1 we have u ∈ C([0, T ′], Hs

x(R
2) ∩

Lq
x(R

2))∩C1([0, T ′], Hs0
x (R2)) with s0 = min{s− α, s− 1} > 1. By Sobolev

embedding we have

u ∈ C1,2
t,x (ΩT ′) ∩ C0

t,x(Ω̄T ′) ∩ L2
t,x(ΩT ′).

It is not difficult to check that u0 ∈ C2(R2), f = ∇K ∗ u ∈ C0,1
t,x (ΩT ′) with

sup
ΩT ′

|div(f)| = sup
ΩT ′

|ΔK ∗ u| � ‖u‖L∞
t Hs

x(ΩT ′ ) <∞.
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Also we have

sup
ΩT ′

(|∂tu| + |Du| + |D2u|) + sup
Ω̄T ′

|u| � ‖u‖L∞
t Hs

x(ΩT ′ ) <∞.

Therefore by Lemma 2.7, we conclude u ≥ 0 in ΩT ′ . Since T ′ is arbitrary
we conclude u(t) ≥ 0 for any 0 ≤ t < T .

Step 2. L1
x(R

2) conservation of the solution. Assume that u0 ∈ Hs
x(R

2)∩
L1

x(R
2) with s > 3 and u0 ≥ 0. This easily implies that u0 ∈ Hs

x(R
2)∩Lq

x(R
2)

for any 1 < q < ∞. Let u be the corresponding maximal life span solution
obtained in Theorem 1.1. Then clearly u ∈ C([0, T ), Hs

x(R
2) ∩ Lq

x(R
2)) for

any 1 < q < 2. By the result of step 1 we obtain u(t) ≥ 0 for any 0 ≤ t < T .
To prove L1

x conservation, it is enough to prove the statement on any interval
[0, T ′] for T ′ < T . By the fact that u ∈ C([0, T ′], Lq

x(R
2)), we have

sup
0≤t≤T ′

‖u(t)‖Lq
x(R2) ≤ C1 <∞,(4.2)

where C1 is a positive constant. Now take ψ ∈ C∞
c (R2) such that ψ(x) ≡ 1

for |x| ≤ 1 and ψ ≥ 0. Take R > 0, we then compute by using (1.1),∣∣∣ d
dt

∫
R2

u(t, x)ψ( x
R
)dx

∣∣∣ =

=

∣∣∣∣−∫
R2

∇ · (uB(u))ψ( x
R
)dx− ν

∫
R2

(−Δ)α/2u(t, x)ψ( x
R
)dx

∣∣∣∣
=

∣∣∣∣ 1

R

∫
R2

uB(u) · (∇ψ)( x
R
)dx− ν

1

Rα

∫
R2

u(t, x)((−Δ)α/2ψ)( x
R
)dx

∣∣∣∣
≤ 1

R
· R 2(q−1)

q ‖u(t)‖Lq
x(R2)‖∇ψ‖

L
q

q−1
x (R2)

‖B(u)‖L∞
x (R2)

+ ν
1

Rα
· R 2(q−1)

q ‖u(t)‖Lq
x(R2)‖(−Δ)α/2ψ‖

L
q

q−1
x (R2)

,

where we will take q = 1 + ε with ε > 0 sufficiently small. Since u ∈
C([0, T ′], Hs

x(R
2) ∩ Lq

x(R
2)),

‖B(u)‖L∞
x (R2) ≤ C‖|∇|−2∇u‖L∞

x (R2) � (‖u‖Lq
x(R2) + ‖u‖Hs

x(R2)) � C2,(4.3)

where C2 is a constant. By (4.2) (4.3) and taking ε sufficiently small, we
have for any 0 < t ≤ T ′,∣∣∣∣ ddt

∫
R2

u(t, x)ψ( x
R
)dx

∣∣∣∣ ≤ C3

R
1
2

+
C4

R
α
2

,(4.4)

where C3, C4 are constants.
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Using (4.4) and integrating over the time interval [0, t] with 0 < t ≤ T ,
we obtain ∫

|x|≤R

u(t, x)dx ≤ ‖u0‖L1
x(R2) + T ( C3

R
1
2

+ C4

R
α
2
),

where we have used the fact that ψ ≥ 0 and ψ(x) ≡ 1 for |x| ≤ 1. Since u is
nonnegative, sending R → ∞ and using Lebesgue’s Monotone Convergence
Theorem we immediately obtain

‖u(t)‖L1
x(R2) ≤ ‖u0‖L1

x(R2).

On the other hand, by using (4.4) again and integrating over [0, t] gives us

‖u(t)‖L1
x(R2) ≥

∫
R2

u(t, x)ψ( x
R
)dx ≥

∫
R2

u0(x)ψ( x
R
)dx− T ( C3√

R
+ C4

R
α
2
),

sending R → ∞ gives us ‖u(t)‖L1
x(R2) ≥ ‖u0‖L1

x(R2) and therefore the L1
x

conservation is proved. The theorem is proved. �

5. Proof of Theorem 1.7

Proof of Theorem 1.7. Assume u0 ∈ Hs
x(R

2) ∩ Lq
x(R

2) with s > 3,
1 ≤ q < 2 and u0 ≥ 0. Let u be the corresponding maximal-lifespan
solution. By Theorem 1.4, to prove that u is global it suffices for us to
control the L∞

x -norm of u. By Theorem 1.5 we have u(t) ≥ 0 for any t ≥ 0.
Now let 1 < p < ∞ be arbitrary, by a similar calculation as in the a priori
estimate in Section 3 (see equation (3.2)), we have

1

p

d

dt

∫
R2

|u|pe−ε|x|dx =

= −C1 · (1 − 1

p
)

∫
R2

|u|p+1e−ε|x|dx− ε

p

∫
R2

(B(u) · x|x|)|u|
pe−ε|x|dx

− ν

∫
R2

(−Δ)α/2u|u|p−2ue−ε|x|dx

≤ ε

p
‖B(u)‖L∞

x (R2) ‖u‖p
Lp

x(R2)
+
C

p
ν tεα−

2
r ‖u‖p

L
pr

r−1
x (R2)

,(5.1)

where the last inequality follows from (3.5). Let 0 ≤ t1 < t2 be arbitrary but
in the lifespan of u. By Theorem 1.4 we have u ∈ C([0, t2], L

q
x(R

2)∩Hs
x(R

2)),
and this gives

sup
0≤t≤t2

(
‖B(u)(t)‖L∞

x (R2) · ‖u(t)‖p
Lp

x(R2)
+ C · ‖u(t)‖p

L
pr

r−1
x (R2)

)
≤

≤ C(‖u0‖Lq
x(R2), ‖u0‖Hs

x(R2), t2) <∞.
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Plugging this estimate into (5.1) and integrating on the time interval [t1, t2],
and we get

1

p

∫
R2

|u(t2, x)|pe−ε|x|dx ≤ 1

p

∫
R2

|u(t1, x)|pe−ε|x|dx+O(ε+ εα−
2
r ),

where the term O(ε + εα−
2
r ) → 0 as ε → 0. Taking ε → 0 in the above

expression, we immediately obtain

‖u(t2)‖Lp
x(R2) ≤ ‖u(t1)‖Lp

x(R2),(5.2)

for any 1 < p < ∞. By Sobolev embedding we know ‖u(t)‖L∞
x (R2) < ∞ for

any 0 ≤ t ≤ t2. Taking p→ ∞ in (5.2), we finally get

‖u(t2)‖L∞
x (R2) ≤ ‖u(t1)‖L∞

x (R2), ∀ t1 < t2.

This estimate shows that ‖u(t)‖L∞
x (R2) is under control for any t and therefore

our solution is global. The same estimate also shows that ‖u(t)‖Lr
x(R2), 1 <

r ≤ ∞ is a non-increasing function of t. The rest of the statements of
Theorem 1.7 except the estimate (1.4) now follows easily from Theorem 1.5.
Therefore it remains for us to prove the estimate (1.4). For this we will use
the method of characteristics. Define the characteristic lines X(t, α) which
solve the following ODE:⎧⎨⎩

d

dt
X(t, α) = B(u(t))(X(t, α)),

X(0, α) = α, α ∈ R2.

Since our solution u ∈ C([0,∞), Lq
x(R

2)∩Hs
x(R

2)), it is rather easy to check
that X(t, α) are well defined for all time. Denote ũ(t, α) = u(t, X(t, α)).
Then by the definition of the characteristics, we have

d

dt
ũ(t, α) = −C1ũ(t, α)2,(5.3)

where C1 is the same constant as in (1.3). It is rather straightforward to
solve the ODE (5.3) and this gives us

ũ(t, α) =
u0(α)

C1u0(α)t+ 1
.(5.4)

We then have

‖u(t)‖L∞
x (R2) ≤ sup

α∈R2

ũ(t, α) ≤ ‖u0‖L∞
x (R2)

1 + C1‖u0‖L∞
x (R2)t

.(5.5)
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Interpolating this L∞ bound with the trivial L1
x bound, we get for any

1 ≤ p ≤ ∞,

‖u(t)‖Lp
x(R2) ≤ ‖u0‖

1
p

L1
x(R2)‖u(t)‖

1− 1
p

L∞
x (R2)

≤ ‖u0‖
1
p

L1
x(R2) · ‖u0‖1− 1

p

L∞
x (R2) · (1 + C1‖u0‖L∞

x (R2)t)
−(1− 1

p
).

This finishes the proof of the upper bound in Theorem 1.7, equation (1.4).
For the lower bound we compute directly the Lp

x-norm of u for 1 < p <∞ as

1

p

d

dt
‖u(t)‖p

Lp
x(R2)

= −C1 · (1 − 1

p
)‖u(t)‖p+1

Lp+1
x (R2)

≥ −C1 · (1 − 1

p
)‖u(t)‖L∞

x (R2)‖u(t)‖p
Lp

x(R2)
.

Integrating in the time and using the upper bound of ‖u(t)‖L∞
x (R2) in (5.5),

we get

‖u(t)‖Lp
x(R2) ≥ ‖u0‖Lp

x(R2) · exp

(
−C1

(
1 − 1

p

)∫ t

0

‖u(τ)‖L∞
x (R2)dτ

)
≥ ‖u0‖Lp

x(R2) exp

(
−C1 ·

(
1 − 1

p

)∫ t

0

‖u0‖L∞
x (R2)

1 + C1‖u0‖L∞
x (R2)τ

dτ

)
≥ ‖u0‖Lp

x(R2) (1 + C1‖u0‖L∞
x (R2)t)

−(1− 1
p
).

This gives the lower estimate for 1 < p < ∞. The corresponding estimate
for p = 1 is trivial. For p = ∞, just observe that the inequality in (5.5) is
actually an equality. The theorem is proved. �

Remark 5.1. We again point out that the role of the function e−ε|x| used in
the proof of Theorem 1.7 is to regularize the integral involving the fractional
diffusion in the case 1 < p < 2. In fact if 2 ≤ p <∞, we do not need to use
this regularization and directly compute by using Lemma 2.8,

1

p

d

dt

∫
R2

|u|pdx = −C1 ·
(
1 − 1

p

)∫
R2

|u|p+1dx− ν

∫
R2

(−Δ)α/2u|u|p−2udx

≤ −C1 ·
(
1 − 1

p

)∫
R2

|u|p+1dx ≤ 0.

Note that in the case 2 ≤ p < ∞ the integral involving the fractional
diffusion term converges since

‖(−Δ)α/2uup−1‖L1
x(R2) � ‖(−Δ)α/2u‖Lp

x(R2)‖u‖p−1
Lp

x(R2)

� C(‖u‖Lq
x(R2), ‖u‖Hs

x(R2)) <∞.
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6. Proof of Theorem 1.9

Before we present the proof of Theorem 1.9, we establish a slightly weaker
proposition which uses a virial argument. The actual proof of Theorem 1.9
uses a different argument. The proof of Proposition 6.1 can be compared
with the proof of Theorem 1.10 where a truncated virial argument is used
(see Section 7).

Proposition 6.1. (Blow up in the attractive case with no diffusion: virial
argument). Assume μ = −1 and ν = 0. Let u0 ∈ Hs

x(R
2)∩L1

x(R
2) with s > 3

and u0 ≥ 0, with u0 not identically 0. Assume further that |x|2u0 ∈ L1
x(R

2),
then the corresponding solution u blows up in finite time, i.e., there exists
T <∞ such that

lim
t→T

‖u(t)‖L∞
x (R2) = +∞.

In particular, any solution with smooth compactly supported initial data
(nonnegative and with nonzero mass) will blow up in finite time. More-
over on the time interval [0, T ), for any 1 ≤ r ≤ ∞, the norm ‖u(t)‖Lr

x(R2)

is a non-decreasing function of t.

Proof of Proposition 6.1. Let u0 ∈ Hs
x(R

2)∩L1
x(R

2) with s > 3. Assume
u0 ≥ 0 and |x|2u0 ∈ L1

x(R
2). Let u be the corresponding maximal lifespan

solution obtained by Theorem 1.1. By Theorem 1.4, to prove the finite time
blowup of L∞

x -norm of u, we only need to show that u cannot be a global
solution. Indeed assume this is the case. We first prove that for any t > 0,
|x|2u(t, ·) ∈ L1

x(R
d). Let 0 < ε < 1 and T > 0 be fixed but arbitrary. We

then compute for 0 < t ≤ T ,

d

dt

∫
R2

u(t, x)|x|2e−ε|x|dx = −
∫

R2

∇ · (uB(u))|x|2e−ε|x|dx

=

∫
R2

uB(u) · 2xe−ε|x|dx− ε

∫
R2

uB(u) · x|x|e−ε|x|dx

≤
∫

R2

u(|B(u)|2 + |x|2)e−ε|x|dx+ ‖B(u)‖L∞
x (R2)

∫
R2

u(t, x)|x|2e−ε|x|dx

≤ ‖B(u)‖2
L∞

x (R2)‖u0‖L1
x(R2) + (1 + ‖B(u)‖L∞

x (R2))

∫
R2

u(t, x)|x|2e−ε|x|dx,

where the last step follows from the L1
x preservation of u. Now we have

‖B(u)‖L∞
x (R2) � ‖(−Δ)−1∇u‖L∞

x (R2) � ‖u‖L∞
x (R2) + ‖u‖L1

x(R2)

≤ C(T, ‖u0‖L1
x(R2), ‖u0‖Hs

x(R2)) <∞.
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A Gronwall argument then yields that

sup
0≤t≤T

∫
R2

u(t, x)|x|2e−ε|x|dx ≤ C(T, ‖u0‖L1
x(R2), ‖u0‖Hs

x(R2)) <∞.

Letting ε→ 0 and using Lebesgue’s Monotone Convergence Theorem imme-
diately we conclude that |x|2u(t, x) ∈ L1

x(R
2). To prove finite time blowup,

we compute by using (1.2),

d

dt

∫
R2

u(t, x)|x|2dx = −
∫

R2

∇ · (uB(u))|x|2dx

= −2

∫
R2

x

∫
R2

y

x ·
(

x− y

|x− y|2
)
u(x)u(y)dxdy = −‖u0‖2

L1
x(R2),

where the last step follows from symmetrizing the integral in x and y. It is
now clear that the integral

∫
R2 u(t, x)|x|2dx must become negative in finite

time. This is a contradiction and thus we have proved the finite time blowup.
Lastly to show the monotonicity of ‖u(t)‖Lr

x(R2), 1 < r ≤ ∞, before the
blowup time T , we calculate for any 1 < p <∞,

1

p

d

dt

∫
R2

|u|pdx =
(
1 − 1

p

)∫
R2

(∇ · B(u))|u|pdx =
(
1 − 1

p

)∫
R2

C1u
p+1dx ≥ 0.

Therefore we conclude that for any 0 ≤ t1 < t2 < T , ‖u(t1)‖Lp
x(R2) ≤

‖u(t2)‖Lp
x(R2). Taking p→ ∞ quickly yields the result. �

Proof of Theorem 1.9. Instead of using the virial argument, we will use
the method of characteristics which yields slightly better results. Define the
characteristic lines X(t, α) which solve the following ODE:⎧⎨⎩

d

dt
X(t, α) = B(u(t))(X(t, α)),

X(0, α) = α, α ∈ R2.

It is not difficult to check that X(t, α) are well defined on a time interval
[0, T ′) as long as the corresponding solution u ∈ C([0, T ′), Lq

x(R
2)∩Hs

x(R
2)).

By a slight abuse of notation we denote u(t, α) = u(t, X(t, α)). Then by the
definition of the characteristics, we have

d

dt
u(t, α) = C1u(t, α)2,(6.1)

where C1 is the same constant as in (1.3). It is rather straightforward to
solve the ODE (6.1) and this gives us

u(t, α) =
u0(α)

1 − C1u0(α)t
.(6.2)
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Now define
M = sup

α∈R2

u0(α).

Since by assumption u0 ∈ Lq
x(R

2) ∩ Hs
x(R

2) and the set {y : u0(y) > 0} is
nonempty, we conclude that 0 < M <∞ and there exists α∗ ∈ R2 such that
u0(α

∗) = M . Let T = 1
C1M

. We first show that the maximal lifespan of u is
given by [0, T ). Assume the lifespan of u is given by [0, T ′). Clearly T ′ ≤ T
since

lim sup
t→T

‖u(t)‖L∞
x (R2) ≥ lim

t→T
u(t, α∗) = ∞,

where the last equality follows from (6.2). On the other hand if T ′ < T ,
then by (6.2) we have

lim sup
t→T ′

‖u(t)‖L∞
x (R2) ≤ lim sup

t→T ′

(
sup
α∈R2

∣∣∣∣ u0(α)

1 − C1u0(α)t

∣∣∣∣) ≤ ‖u0‖L∞
x (R2)

1 − T ′
T

<∞.

This is obviously a contradiction to the blowup criteria and we conclude that
the maximal lifespan of u is precisely given by [0, T ). It remains for us to
verify the blowup rate (1.5). The lower bound is a consequence of (6.2) and
the fact that u(t, α∗) = 1

C1·(T−t)
. For the upper bound we discuss two cases.

If α is such that u0(α) ≤ 0, then by (6.2) we obtain |u(t, α)| ≤ ‖u0‖L∞
x (R2).

If α is such that u0(α) > 0, then again by (6.2), we have

|u(t, α)| ≤ 1

C1
· 1

1
C1u0(α)

− t
≤ 1

C1
· 1

T − t
,

where the last inequality follows from the fact that u0(α) ≤ u0(α
∗) = 1

C1T
.

The theorem is proved. �

7. Proof of Theorem 1.10

To prove the formation of finite time singularities, we introduce the following
set of functions.

Definition 7.1. (Admissible initial conditions). Let 0 < δ < 1, a > 0, b > 0
be constants, the set Aδ,a,b consists of nonnegative functions f ∈ L1

x((1 +
|x|2)dx) satisfying the following conditions:

1. The L1
x mass of f is localized near the origin:∫

|x|≥ δ
2

f(x)dx ≤ δ

4
‖f‖L1

x
.



Nonlocal evolution problem 327

2. f satisfies the following inequality:∫
R2

f(x)|x|2dx− a‖f‖L1
x

+ b < 0.

Remark 7.2. The first condition in the above definition quantifies the fact
that the initial mass of the solution is concentrated near the origin. The
second condition is a technical condition which we need to prove by contra-
diction the existence of finite time singularities (see (7.9)).

Lemma 7.3. For any 0 < δ < 1, a > 0, b > 0, the set Aδ,a,b defined in 7.1
is nonempty. Moreover, Aδ,a,b ∩ L1 ∩Hs is nonempty.

Proof . This is almost trivial. Let 0 < δ < 1, a > 0, b > 0 be given. Take a
function ψ ∈ C∞

c (R2), ψ ≥ 0 such that

−a ‖ψ‖2
L1

x

‖ψ‖L1
x

+ 1
+ b < 0(7.1)

Then consider the rescaled function ψε(x) := ε−2ψ(x/ε). This scaling trans-
formation leaves the L1

x norm unchanged. Then consider f = ψε. For
sufficiently small ε > 0, it is not difficult to see that the first inequality in
Definition 7.1 is satisfied for f = ψε. For the second inequality, just note
that ∫

R2

ψε|x|2dx = ε4
∫

R2

ψ(x)|x|2dx→ 0

as we take ε→ 0. This together with (7.1) and the fact that ‖ψε‖L1
x

= ‖ψ‖L1
x

proves the second inequality in Definition 7.1 for ψε. The lemma is proved. �
We are going to take φ ∈ C∞

c (R2) with 0 ≤ φ ≤ 1, and

φ(x) =

{
1, |x| ≤ 1

0, |x| ≥ 2
(7.2)

Lemma 7.4. (Mass localization for short time). Let u0 ∈ L1
x(R

2) ∩Hs
x(R

2)
for some s > 3. Assume u0 ∈ Aδ,a,b for some a > 0, b > 0, 0 < δ < 1

4
. Let

u be the corresponding solution and assume it is global. Then there exists a
constant C = C(δ, α) > 0 and

T =
δ

C · (‖u0‖L1
x(R2) + ν)

such that

sup
0≤t≤T

∫
|x|≥δ

u(t, x)dx ≤ δ‖u0‖L1
x
.
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Proof . We take φδ(x) := φ(2x/δ) where φ is defined in (7.2). Then since
the L1

x norm of the solution is preserved, we have by using (1.2),

d

dt

∫
R2

u(t, x)(1 − φδ(x))dx = − d

dt

∫
u(t, x)φδ(x)dx

=

∫
∇ · (uB(u))φδ(x)dx+ ν

∫
(−Δ)α/2uφδdx

=

∫
R2

∫
R2

u(t, x)u(t, y)
x− y

|x− y|2 · ∇φδ(x)dxdy + ν

∫
R2

u(t, x)(−Δ)α/2φδdx.

Symmetrizing the last double integral in x and y gives us

d

dt

∫
R2

u(t, x) (1 − φδ(x))dx

=
1

2

∫
R2

∫
R2

u(t, x)u(t, y)
(x− y) · (∇φδ(x) −∇φδ(y))

|x− y|2 dxdy

+ ν

∫
R2

u(t, x)(−Δ)α/2φδ(x)dx

≤ ‖u0‖2
L1

x
· C1‖∂i∂jφδ‖L∞

x
+ ν‖u0‖L1

x
‖(−Δ)α/2φδ‖L∞

x
,(7.3)

where C1 is a positive constant. The quantity ‖(−Δ)α/2φδ‖L∞
x

can be easily
bounded through its Fourier transform and therefore is finite due to our
assumption on φ:

‖(−Δ)α/2φδ‖L∞
x
≤ ‖|ξ|αφ̂δ(ξ)‖L1

ξ
<∞.(7.4)

Putting together the estimates (7.3) and (7.4), we obtain

d

dt

∫
R2

u(t, x)(1 − φδ(x))dx ≤ C2 · (‖u0‖2
L1

x
+ ν‖u0‖L1

x
),(7.5)

where C2 = C2(‖∂i∂jφδ‖L∞
x
, ‖(−Δ)α/2φδ‖L∞

x
) is a positive constant. Now it

is not difficult to see that if we take

T =
δ‖u0‖L1

x

2C2 · (‖u0‖2
L1

x
+ ν‖u0‖L1

x
)
,

then for any 0 ≤ t ≤ T , by (7.5) we have∫
|x|≥δ

u(t, x)dx ≤
∫

R2

u(t, x)(1 − φδ(x))dx ≤
∫

R2

u0(x)(1 − φδ(x))dx+
δ

2
‖u0‖L1

x

≤
∫
|x|≥ δ

2

u0(x)dx+
δ

2
‖u0‖L1

x
≤ δ‖u0‖L1

x
,

where the last inequality follows from our assumption on u0. The lemma is
proved. �
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Now we are ready to prove Theorem 1.10.

Proof of Theorem 1.10. We argue by contradiction. Assume the initial
data u0 ∈ Hs

x(R
2) ∩ L1

x(R
2) for some s > 3 and u0 is nonnegative with

nonzero L1
x mass. Assume u0 ∈ Aδ,a,b for some 0 < δ < 1

4
, a > 0, b > 0

whose values are to specified in the course of the proof. Let w(x) = |x|2φ(x)
where φ is defined in (7.2). We first compute the truncated virial integral

d

dt

∫
R2

u(t, x)w(x)dx =

∫
R2

uB(u) · ∇wdx− ν

∫
R2

u(−Δ)α/2wdx

= −
∫

R2

∫
R2

u(t, x)u(t, y)
(x− y) · ∇w(x)

|x− y|2 dxdy − ν

∫
R2

u(−Δ)α/2wdx

=− 1

2

∫
R2

∫
R2

u(t, x)u(t, y)
(x−y)·(∇w(x)−∇w(y))

|x− y|2 dxdy−ν
∫

R2

u(−Δ)α/2wdx,

(7.6)

where the last equality follows from symmetrizing the integral in x and y.
We now break the last double integral into two parts. Denote

Ω1 =
{

(x, y) ∈ R2 × R2 : |x| ≤ 1

4
, |y| ≤ 1

4

}
.

On Ω1 we have w(x) = |x|2 and w(y) = |y|2 due to our assumption on φ.
Therefore∫

Ω1

u(t, x)u(t, y)
(x− y) · (∇w(x) −∇w(y))

|x− y|2 dxdy

= 2

∫
Ω1

u(t, x)u(t, y) dxdy = 2

(∫
|x|≤ 1

4

u(t, x)dx

)2

.(7.7)

For those pairs (x, y) /∈ Ω1, we have

|∇w(x) −∇w(y)| ≤ C1‖∂i∂jw‖L∞
x
|x− y|,

where C1 is an absolute positive constant. Therefore we have the estimate∣∣∣∣ ∫
R2×R2\Ω1

u(t, x)u(t, y)
(x− y) · (∇w(x) −∇w(y))

|x− y|2 dxdy

∣∣∣∣
≤ C1‖∂i∂jw‖L∞

x

∫
R2×R2\Ω1

u(t, x)u(t, y)dxdy

≤ 2C1‖∂i∂jw‖L∞
x
‖u0‖L1

x

∫
|x|≥ 1

4

u(t, x)dx.(7.8)
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Collecting the estimates (7.6), (7.7) and (7.8), we have

d

dt

∫
R2

u(t, x)w(x)dx ≤ −
( ∫

|x|≤ 1
4

u(t, x)dx

)2

+ C1‖∂i∂jw‖L∞
x
‖u0‖L1

x

∫
|x|≥ 1

4

u(t, x)dx+ ν‖u0‖L1
x
‖(−Δ)α/2w‖L∞

x
.

By Lemma 7.4 and the choice of T , we then obtain for each 0 ≤ t ≤ T ,

d

dt

∫
R2

u(t, x)w(x)dx ≤
≤ (−(1 − δ)2 + C1‖∂i∂jw‖L∞

x
δ
) ‖u0‖2

L1
x

+ ν‖(−Δ)α/2w‖L∞
x
‖u0‖L1

x
.

Integrating over [0, T ] gives us∫
R2

u(T, x)w(x)dx ≤

≤
∫

R2

u0(x)w(x)dx+
δ
(−(1 − δ)2 + C1‖∂i∂jw‖L∞

x
δ
) ‖u0‖2

L1
x

C · (‖u0‖L1
x

+ ν)

+
δ‖(−Δ)α/2w‖L∞

x
‖u0‖L1

x

C · (‖u0‖L1
x

+ ν)
,

where the constant C is the same as in Lemma 7.4. Now let δ be sufficiently
small such that

−(1 − δ)2 + C1‖∂i∂jw‖L∞
x
δ ≤ −1

2
.

We can choose such a δ because C1 is an absolute constant and w is a fixed
function. With this choice of δ, we have∫

R2

u(T, x)w(x)dx ≤

≤
∫

R2

u0(x)w(x)dx− δ

2C
‖u0‖L1

x
+
δ‖(−Δ)

α
2w‖L∞

x

C
(7.9)

≤
∫

R2

u0(x)|x|2dx− δ

2C
‖u0‖L1

x
+
δ‖(−Δ)

α
2w‖L∞

x

C
(7.10)

< 0,(7.11)

where the last inequality holds as long as we choose our initial data u0 ∈
Aδ,a,b with a = δ

2C
and b =

δ‖(−Δ)
α
2 w‖L∞

x

C
. But this is a contradiction since∫

R2

u(T, x)w(x)dx ≥ 0.

Finally it is easy to see that the set of values (δ, a, b) is open for which our
previous argument goes through. The theorem is proved. �
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