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Convergence of metric graphs

and energy forms

Atsushi Kasue

Abstract

In this paper, we begin with clarifying spaces obtained as limits of
sequences of finite networks from an analytic point of view, and we
discuss convergence of finite networks with respect to the topology
of both the Gromov-Hausdorff distance and variational convergence
called I'-convergence. Relevantly to convergence of finite networks to
infinite ones, we investigate the space of harmonic functions of finite
Dirichlet sums on infinite networks and their Kuramochi compactifi-
cations.

0. Introduction

A finite (resistive) network consists of the set of vertices, the set of edges,
and the resistance that assigns a positive number to each edge. Regarding
the resistance of each edge as its length, we can introduce a distance, called
the geodesic distance or the path metric, on the set of vertices. On the other
hand, using a canonical energy form on the space of functions on the vertices,
we have a notion of the effective resistance between a pair of vertices. It
is well known that the effective resistance provides the set of vertices with
another metric called the resistance metric in Kigami [32], where convergence
of finite networks with the resistance metrics in a specific manner is discussed
and applied to the problem of constructing energy forms and Laplacians on
certain fractal sets called post critically finite self-similar sets. On the other
hand, infinite networks may be thought to be limits of sequences of finite
networks with the geodesic distances or the resistance metrics. Moreover
it is known that any compact geodesic space can be approximated by a
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sequence of finite networks with the geodesic distances with respect to the
Gromov-Hausdorff topology.

In this paper, we begin with adapting the general theory on Hilbert
spaces possessing reproducing kernels by Aronszajn [1] for our purpose, and
then, introducing resistance forms, we clarify spaces obtained as limits of
finite networks which are investigated in Kigami [32]. A separable space
endowed with a resistance form can be considered as the limit of finite subsets
coupled with the traces of the resistance form on them. Limits of finite
networks can be also taken in a similar manner to the Gromov-Hausdorff
convergence of metric spaces.

A pointed metric space (X, p) is a pair of a metric space X and a point
p € X. We say that a sequence {(X,,pn)} of pointed metric spaces con-
verges to a pointed metric space (X, p) in the Gromov-Hausdorff sense if the
following holds. For every p > 0 and ¢ > 0, there exists a positive integer ng
such that for any n > ng, there is a map f from the ball B,(p,) around p,
with radius p in X,, to X satisfying the following properties: (i) f(pn) = p;
(i) sup{|dx(f(z1), f(x2)) — dx, (21, 22)| | 21,22 € B,(ps)} < € ;(iii) the e-
neighborhood of the set f(B,(p,)) includes the ball B,_.(p) centered at p of
radius p — €.

Let (X, R) and {(I',,, R,,)} be a separable metric space and a sequence of
connected, finite networks with the resistance metrics R,,. Let p and p,, be
points of X and V}, respectively. Then it will be shown (cf. Theorem 5.1)
that the distance R of X is the resistance metric associated to a resistance
form on X if the pointed metric space (I, R,,p,) converges to (X, R,p)
as n — oQ.

Now we notice that the effective resistance between two vertices in a con-
nected network is less than or equal to the geodesic distance between them.
A locally finite graph is always assumed to be a network with unit resis-
tance. Taking this into account, we will discuss convergence of finite graphs
with geodesic distances and prove the following result (cf. Theorem 5.3):
Let {(G,,d,)} be a sequence of connected, finite graphs endowed with the
geodesic distance d,,, and let (G, dg) be a connected, locally finite, infinite
graph with the geodesic distance dg. Suppose that the pointed metric space
(Gy,dy, pn) converges, as n — 0o, to the pointed metric space (G,dg,p) in
the Gromov-Hausdorff sense. Then there exist a subsequence {G,,} and a
resistance form £ on G such that the pointed metric space (G, R, Pm)
with the resistance metric R,, converges, as m — oo, to the pointed met-
ric space (G, Rg,p) with the resistance metric Rg relative to the resistance
form £ in a similar manner to the above; moreover the from (£, D[€]) sat-
isfies that DylEq] C DIE] C D[&g|, E(u) > Eg(u) for all u € D[], and
E(u,v) = Eq(u,v) for all u € D[E] and v € Dy|Eg].
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Here on an infinite network I', we have two canonical resistance forms
of Dirichlet sums (of order 2), the minimal and the maximal ones denoted
by (EQ, Dyl€r]) and (Er, D[Er|) respectively. If the network is parabolic or
it admits no nonconstant harmonic functions of finite Dirichlet sums, we
have the uniqueness of limit forms. However, in the case that I" admits
nonconstant harmonic functions of finite Dirichlet sums, limit forms may be
different from the minimal and the maximal ones.

For instance, given a family of expanders, namely, a family of connected
finite graphs whose degrees are uniformly bounded from above and whose
spectral gaps are uniformly bounded away from zero, we can take a subse-
quence converging to an infinite graph in such a way that the limit form is
the minimal one; moreover starting with a certain family of expanders and
modifying it in certain manners, we will be able to get a subsequence which
converges to an infinite graph in such a way that the limit form is distinct
from the minimal and the maximal ones (cf. 7.1). In fact, the topology of
the Gromov-Hausdorff convergence on resistance metrics is finer than that
on geodesic distances.

Relevantly to convergence of finite networks to an infinite one, we inves-
tigate in section 7 the Kuramochi compactification of an infinite network
and the trace of the resistance form on the Kuramochi boundary. For ex-
ample, it is proved that the Kuramochi compactification of a connected,
infinite network inherits the resistance form if the diameter of the resistance
metric is finite (cf. Theorems 3.11 and 7.11). To study the compactifica-
tion, we employ the method of embedding networks into the Hilbert space
of square summable sequences by using the eigenvalues and eigenfunctions
with respect to certain self-adjoint operators. This method proves useful for
studying networks and their limit spaces.

Bérard, Besson and Gallot [5, 6] proposed the method of embedding com-
pact Riemannian manifolds into the Hilbert space above by using their eigen-
values and eigenfunctions, and introduced a distance on the set of their isom-
etry classes, proving the precompactness of a family of compact n dimen-
sional Riemannian manifolds whose Ricci curvature are uniformly bounded
from below and whose diameters are uniformly bounded from above. In [29],
[30], [26] and [27], the method was developed to study spectral convergence
of compact Riemannian manifolds or more generally certain Dirichlet spaces,
and analyze their limit spaces.

Convergence of finite networks can be also discussed from a variational
view point and in fact we will apply the idea of De Giorgi’s ['-convergence
to our problem (cf. Theorem 5.5).

Besides the relation to problems on convergence of networks, we are in-
terested in the space of harmonic functions of finite Dirichlet sums on an
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infinite network. When we restrict ourselves to a class of connected, infinite
graphs of bounded degrees, it is proved in [24] that this space is invariant
under quasi-isometries (cf. Remark 1.2) in the sense that quasi-isometries
between two connected infinite graphs of bounded degrees canonically induce
bounded linear isomorphisms between the spaces of harmonic functions of
finite Dirichlet sums; this is true for quasi-isometries between a connected
infinite graph of bounded degrees and a connected, complete, noncompact
Riemannian manifold such that the Ricci curvature is bounded from below
and the volume of every ball of radius one is bounded from below by a pos-
itive constant. In Sections 4 and 7, we make some observations on spaces of
functions of finite Dirichlet sums in relation to resistance metrics on infinite
networks (cf. Proposition 4.1, Theorem 4.2, Theorem 7.11).

Some of the main results of this paper were reported in [28].

1. Hilbert spaces of reproducing kernels

We first adapt the general theory of Hilbert spaces possessing reproducing
kernels in [1] for our later purpose.

1.1 Let X be aset and (&€, D[£]) a nonnegative quadratic form £ defined on
a linear subspace D[E] of the space ¢(X) of all real valued functions on X.
Let

Rg(m, y) = sup {M

E(u,u)

Our basic condition on the form is stated in the following:

| we D&, E(u,u) > 0}, z,y € X.

[H-1] 0 < Re(z,y) < +oo  forall z,y € X with x # v.

The form & is also regarded as a functional on ¢(X) by letting £(u) =
E(u,u) if u € D[&] and £(u) = 400 otherwise. From this point of view, we
consider the following:

[H-2] if a sequence of functions u, on X pointwise converges to a function
u as n — 0o, we have

E(u) < liminf &(u,) < +oo.

n—oo

Lemma 1.1 Under condition [H-1], [H-2] implies the following:

[H-3] for a point o € X, a quadratic form defined by E(u,v) + u(o)v(o)
provides a complete inner product on D[E), that is, (D[E],E+62) is a Hilbert

space; this holds for any o € X because of [H-1|, where §, stands for the
linear functional on ((X) defined by 6,(u) = u(o) for u € £(X).
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Proof. Let {u,} be a Cauchy sequence in (D[€],€ + §2). Since
U () — U (7)]* < 2Re(1,0)E (U — Up) + 20, (Up, — un)?, 7 € X,
u, converges pointwise to a function u on X. Hence by [H-2], we have

E(u) < liminf E(u,) < +o0;
n—oo
in particular, v € D[E]. Since w, — u,, pointwise converges to u, — u as
m — oo, we thus obtain
lim sup €(u, —u) < limsup lim inf £(u,, — u,,) = 0.

n—00 n—oo M—00

This shows that the inner product £ + §2 is complete. [ |
The proof above yields the following

Lemma 1.2 Suppose, in addition to [H-1], that sup, . x Re(x,y) is bounded.
Then [H-3] is implied by the following:

[H-2'] for a sequence of bounded functions u,, on X that uniformly converges
to a bounded function u, that is, lim, . SUp,cy |un(z) —u(x)| = 0, we have

E(u) <liminf &(u,) < +oo.

Now we consider the case where [H-1] and [H-3] are verified. Let K
be a nonempty subset of X and denote by DI[E; K] the space of functions
u € DI[E] such that u(z) = 0 for all z € K. Then the restriction of & to
DIE; K] provides a complete inner product, and for any x € X, we have

lu(z)]? < Re(z,2)E(u), ue D[E;K], z €K,

which implies that for any € X, there exists uniquely a function gg., €
DIE; K], the reproducing kernel of DI[E; K], satisfying

u(z) =E(9ra,u), u € D[E;K].

We write gx(x,y) instead of gx.(y) for z,y € X. Since £ is symmet-
ric, we see that gx(z,y) = grx(y,z). In the case where K consists of
a single point z, g.(z,y) stands for gp.y(z,y). We note that gx(z,z) =
E(gr (2, %), g (z, %)) < g.(z,2) = E(g.(x, *), g.(x, %)) for all z € K.

Let {u,} be a sequence in DI[E;{p}] for a point p € X, and assume
that €(u,) is bounded. Then a subsequence {u,,} weakly converges to a
function u in D[E; {p}] as m — oo, that is, € (u,,v) tends to €(u,v) for all
v € D[E;{p}]. By taking v = g,(z,*), z € X, we see that u,,(z) converges
to u(xz) as m — oo, and thus u,, converges to u pointwise on X. In this
way, we have the following
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Lemma 1.3 Suppose that [H-1] and [H-3] hold. Let {u,} be a sequence in
DIE; {p}] for a point p € X such that E(u,) is bounded as n — oo. Then uy,
weakly converges to a function u in D|E;{p}] as n — oo if and only if u,
converges pointwise to a function u € £(X) as n — oo. Moreover in these
cases, one has

E(u) < liggjlfg(un) < +o00.

Lemma 1.4 Suppose, in addition to [H-1] and [H-3], that
H-4] 1€ D[&] and £(1,1) = 0.
Then the following assertions hold:
(1) [H-2] is verified; moreover for a sequence of u,, € DI[E] such that E(u,,)
is bounded as n — o0, u,, weakly converges to a function u in D[] and u,(x)

tends to u(x) asn — oo for some x € X if and only if u,, converges pointwise
to a function uw € ({(X) as n — oo.
(i) Forallz,y € X, Re(x,y) = g,(y,y) = gy(z, ).

Proof. For any v € D[€] and each x € X, u — u(x) belongs to D[E; {z}]
and E(u — u(x)) = E(u). This, together with Lemma 1.3, proves the first
assertion. Moreover for any y € X, we have |u(y) — u(x)|* = £(g.(y, *),u —
u(®@))? = E(gu(y, #), u)? < E(galy, %))E(w) = gu(y, y)€(u); thus Re(z,y) <
g:(y,y). On the other hand, by letting u = g¢,(y,*), we get g.(y,y)? <

Rg(.T, y)g(gx(y> *)) = Ré’(x>y)gx(y>y)7 and hence gx(ya y) S Ré’(x>y)‘ Thus
the second assertion is verified. [ |

Now instead of condition [H-1], we assume that a form £ under consid-

eration satisfies
Ju(z)[*

H-5] Me(z) = {7
5] Me(e) = sp {5
As in Lemma 1.1, it is also evident that [H-2] verifies the completeness of
the form £ on DI[E]. On the other hand, if the latter is the case, then we
have the reproducing kernel or the Green function g : X x X — R of £
satisfying

| u € DIE], E(u) >0} <400 forall z € X.

E(gelr,),u) = u(z), ue DIE], x € X.
Using the Green function, we can verify [H-2]. Also it follows that Mg(x) =
ge(z,z) for all x € X. Thus we have the following

Lemma 1.5 Under [H-5], [H-2] holds true if and only if £ provides a com-
plete inner product on D[E]. Moreover in this case, for a sequence of u, €
DIE] with sup &(uy,) < +00, u, weakly converges to a function u in D[E]
and u,(z) tends to u(x) as n — oo for some v € X if and only if u,

converges pointwise to a function u € ¢(X) as n — oo, and also one has
Me(x) = ge(x,x) for allx € X.
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In what follows, we assume that (X, &) satisfies conditions [H-1], [H-2]
and [H-4], or conditions [H-5] and [H-2|, unless otherwise stated.

Definition 1.1 Given a nonempty subset K of X and a function u on K,
we set

A, ={veD[E] | vk =u}, D[] :={uecl(K) |A,#0},
and
Ex(u) :=nf{E(v) | ve A,}.
When A, is empty, we understand £ (u) = +oo. The induced form &}, on
((K) is called the trace of £ on K.

Lemma 1.6 Given u € D[E}], there exists a unique minimizer, denoted by
Hg ., of £ in A,. The minimizer is characterized as a function such that
Higo=u on K and E(Hk.,,v) =0 for all v € DIE] that vanish on K.

Proof. Let {v,} be a minimizing sequence in A,. Passing to a subsequence,
we may assume that v, weakly converges to a function v € D[E] as n — oo
and hence, by Lemma 1.3, v,, converges to v pointwise in X. Thus it follows
that & (u) < £(v) < liminf, . £(v,) = & (u) and v belongs to A,. This
shows that v is a minimizer in A,. We observe that a minimizer v in A,
satisfies £(v, w) = 0 for all w € D[€] vanishing on K, since & (v+tw, v+tw) >
E(v,v) for all real numbers ¢t. Moreover such a function v is unique. In fact,
for minimizers vy and vy in A, £(vy —ve, v1 —v2) = E(vy, v1 —v2) —E(va, V1 —
vg) = 0. This implies that v; — vs is constant in X and hence v; — vy = 0.
Finally for a function v € A,, we have

g(’U) = S(U — HK;u) + S(HK,u) 2 g(HK,u)
This completes the proof of Lemma 1.6. |
Lemma 1.7 The trace £; on K inherits the properties [H-1], [H-2] and
[H-4], or the properties [H-5] and [H-2] from .

Proof. It suffices to prove that £ + 62 provides a complete inner product
on D[E}] for any fixed point o of K if [H-1] is verified, and so does &}
if [H-5] is satisfied. In fact, if a sequence {u,} is fundamental in D[E}],
then {Hg.,, } is so in D[E], and thus it converges to a function H € D[E].
Let u = Hg. Then in view of Lemma 1.6, we have H = Hg,,, since
E(H,w) =lim,, . E(Hk ., w) = 0 for all w € D[&] that vanish on K. W

Lemma 1.8 Let K and L be two subsets of X such that K C L. Then one
has

Ex(uk) < Ef(u)
for u € D[E}], and the equality holds if and only if Hy ., = u on L, that
18, HK;u|K = Hp,, on X.
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Proof. For u € D[E}], it is easy to see that £ (u,v) = 0 for any v € D[E]]
vanishing on K if and only if £(Hp.,, w) = 0 for every w € DI[E] vanishing
on K. This, together with the definition of the traces, shows the lemma. B

Now as in the case of the functional & : ¢(X) — [0, +o0], we set

[w@) WP | prent g .
5;{(u) ‘ ED[gK]JgK( )7&0}7 7y€K

if [H-1] is satisfied, and also

Ju(z)]?
Ex(u)
if [H-5] is verified. Since it follows from Lemma 1.8 that the Green functions

g- (z € X) of € coincide with those of £ on K x K if z € K, we have the
following

RE}; (l‘, y) = sup {

Mg;((x):sup{ | ue D[E], Ex(u) >0}, re K

Lemma 1.9 (i) Forallz,y € K, one has Re: (v,y) = Re(w,y) if € satisfies
[H-1], [H-2] and [H-4].

(ii) Forallx € K, Mgx (v) = Mg(z) if [H-5] and [H-2] are verified.

In what follows, in addition to [H-1], [H-2] and [H-4], or [H-5] and [H-2],
we always assume the following condition:

[H-6] there is a distance d on X such that the metric space (X, d) is separable
and every function of D[€] is continuous on the space, that is, D[] C
C(X,d).

Lemma 1.10 Let {X,} be an increasing sequence of finite subsets X,, of X
such that the union U, X, is dense in X. Then one has

DE]={ueC(X,d)| lim & (yx,) < +oo};
E(u) = lim &% (ux,), u € DIE].

Proof. Let h, = Hx, ., for simplicity. Then {€(hy)} is an increasing se-
quence and lim,, o, €(h,,) < E(u) <+o00. Suppose that lim, ., £(h,) <+oc.
Then in view of Lemma 1.3, we can find a subsequence {h,,} which point-
wise converges to a function h on X as m — oo. Obviously h = u on
U, X, and hence everywhere on X, since h and u are both continuous and
Un X, is dense in X = (X, d). Thus h,, pointwise converges to u as n — oo,
and €(u) < lim, . E(h,) < +00, which implies that £(u) = lim,, . E(hy).
This proves Lemma 1.10. |
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Lemma 1.11 In the case where € verifies [H-1|, [H-2] and [H-4], taking a
complete orthonormal system {¢;} of the Hilbert space D|E; {o}], where o is
a fized point of X, one has

9=(2,y) = Z(Gﬁvz(fﬁ) = 0i(2))(¢iy) — ¢i(2)),  @y,2€ X;
Re(w,y) = ) _(0i(x) = 6i(y))*, @,y € X,
In the case where € verifies [H-5] and [H-2], taking a complete orthonormal
system {¢;} of D[], one has

T,y) = Z@Di(ﬂf)%(y), z,y € X.

Proof. We consider the first case. For v € D[E;{o}], we have
v = Z E(v

in D[E;{o}] and pointwise on X. If we fix two points x,z € X, then we
have

E(v, g:(z,%)) = Ze v, $i) i ZS v, )iz
= Z ¢i(x) = $i(2))E(v, 8:) = Y _(di(w) — Di(2))E (v, b — 6s(2))

%

= &(v, Z(¢z(x) — ¢i(2)) (i — ¢i(2)))

Thus it holds that

g-(,%) = > _(di(x) = 0i(2))(di() — ¢u(2))
weakly in D[E;{o}] and pointwise on X. Since Rg(z,2) = g¢.(x,z) =
9:(2,2), we get Re(z,2z) = >, (¢i(x) — ¢i(2))?. The same arguments are
valid for the second case. This completes the proof of Lemma 1.11. |

In view of the above lemma, we obtain fundamental identities in the
following

Theorem 1.12 In the case where € verifies [H-1], [H-2] and [H-4], one has

(1.1) Re(x,y) = g:(y,y) = gy(x, %) = g2(y, 2) + gy(7, 2),

(1.2) g.(z,y) = %{Rg(x, 2) + Re(2,y) — Re(x,1)}

forall x,y,z € X.
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There are many important examples of Hilbert spaces possessing repro-
ducing kernels. The following is used later (see Theorem 1.15).

Example 1.1 Consider the unit disk Q ={z=2z+v/—-1y € C| |z]| < 1}
in the complex plane, and let HDIQ] denote the Hilbert space of (real

valued) harmonic functions h on © with finite Dirichlet integrals Eq(h) =
[[o(0h/0x)? + (Oh/dy)*dxdy. Then the Green function can be computed

explicitly as follows:
- () ()] pazew;
1—pz 1—gz

1 p—ql

1
2 y :——l
9:(p, q) —log

in particular, we have

We observe that the hyperbolic distance p(p, ¢) between two points p, g of §2

is given by
1 —pq 1 —pq

and hence it holds that

pP—dq
p(p: q) = TRey (p, q) + 2log (1 + ‘ T D .

Remark 1.1 (i) If a nonnegative quadratic form & satisfies [H-1], then the
restriction & of € to D[E; K| verifies [H-5] (with Mg () = gk (z, x)) for any
nonempty subset K of X.

(ii) Let £ be a nonnegative quadratic form satisfying [H-5] and [H-2].
In the case where no nonzero constant functions belong to D[£], by letting
D[] = R+ D[] and E(c + u) = E(u) for any ¢ € R and u € D[E],
we have a nonnegative quadratic form € satisfying [H-1], [H-2] and [H-4J;
the Green function g.(z,y) (x,y,z € X) is given by ge(z,y) — ge(z,y) —
ge(x, 2) + ge(z, 2), and for z,y € X, the number Rg(z,y) = sup{|u(z) —
w(y)|?/E(u) | u € D[], E(u) > 0} is equal to ge(x, ) — 2g¢(x,y) + ge(y, y).

(iii) Under condition [H-1] and [H-3], sup, ,cx Re(7,y) is bounded if
and only if D[E] = BD[£], that is, any f € D[£] is bounded. In fact, it is
evident that the former implies the latter, and it follows from the bounded
inverse theorem that the latter implies the former. Similarly under condi-
tion [H-2] and [H-5], M¢ is bounded on X if and only if D|€] = BD[£]. See
Proposition 4.1, Theorem 4.2 and Theorem 7.11 for related results.
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(iv) Let (£, D[€]) be a nonnegative quadratic form on a set X satisfying
[H-1] through [H-4]. Then /R¢ induces a distance on X and every function
u € D[&] uniquely extends to a continuous function % on the completion
X of (X,v/R). We define a quadratic form & on C(X) by letting D[E] =
{a | u € DIE]} and &(i) = E(u) for & € D[E] and £() = +oo otherwise. It
is evident that (X, &) also satisfies [H-1] through [H-4].

1.2 In this part, we consider a finite set X of cardinality N and a nonneg-
ative quadratic form € on ¢(X).

By letting c(z,y) = —€(Xa» Xxy) for 2,y € X and d(z) = =3 (2, )
for x € X, where y, stands for the characteristic function of a set {z}, the
form is expressed as

E(u,v) =— Z c(z, y)u(z)v(y)

= % > e, y)(u(z) — uly)(v(z) —v(y) + Y d(z)u(@)v(z),

for u,v € £(X). Given u € {(X), we set

Lou(z) = =Y clwyuly) = Y clz,y)(ulz)~uly)+d@)uz), = X.

yeX yeX,y#x

This is the self-adjoint operator associated to £ relative to the counting
measure (¢ on X.

Now we consider the case where (£, D[E]) satisfies [H-1] and [H-4]; the
latter is equivalent to the property: d(z) = 0 for all x € X. For a point
z € X, the definition of the Green functions g, reads

(13) Z gz('rv y) C(yv U}) - _53311)

for all x # z and w # z, where 6., = 1 if x = w and d,, = 0 otherwise.
In other words, letting (N — 1) x (N — 1) matrices C, = (¢(x,y)) and
G, = (g9.(x,y)) with x,y # z, we have G,C, = Iy_; for z € X, where Iy_;
stands for the unit matrix. By (1.3), we get

(1.4) > gulwy) ez, y) = =N(N = 1).

Moreover, recalling [H-1] saying that >° _ c(z,y) = 0 for all z, we can
derive from (1.2) and (1.4) the following identity:

(1.5) —% > Re(x,9)E(Xexy) =N — L.

z,yeX
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Now we mention a basic result derived from (1.1), (1.2) and (1.3) in the
following

Theorem 1.13 Let X be a finite set.

(i) For nonnegative quadratic forms &, (o = 1,2) on €(X) satisfying [H-1]
and [H-4], & = & if and only if Re, = Re,.

(ii) Let K be a subset of X and & (resp. F) a nonnegative quadratic
form on £(X) (resp. {(K)) satisfying [H-1] and [H-4]. Then F = &}, if and
only if Rg(z,y) = Re(x,y) for all z,y € K.

The theorem corresponds to Theorem 2.1.12 and Corollary 2.1.13 in
Kigami [32], where the Markov property [H-7] below is assumed.

Definition 1.2 Let £ be a nonnegative quadratic form on a subspace D[£]
of the space of functions, ¢(X), on a set X.

(i) We say that & satisfies the Markov property if

[H-7] for any u € D[], © = max{0, min{1,u}} also belongs to D[] and
satisfies £(u) < E(u).

(ii) A form (€, DI[E]) on X satisfying [H-1], [H-3], [H-4] and [H-7] is
called a resistance form on X and Rg(z,y) is called the effective resistance
between points x and y € X.

In Kigami [32], a resistance form is required to satisfy the following
additional condition: for any finite subset V' of X and for any u € ¢(V'), there
exists v € D[€] such that vy = u. However this is a consequence of the other
conditions. In fact, the trace £ on a subset K of X is also a resistance form
on K, since £ (u) = E(Hy.,) > E(Hy.) > E(Hy.q) = E5(1); in particular,
if K is a finite subset, then D[£};] = ¢(K), because D[E}] is an algebra of
unit element 1 in ¢(K) separating points of K (cf. Lemma 2.4).

Lemma 1.14 Let (€, D[E]) be a nonnegative quadratic form on (X). Sup-
pose that x, € D[E] for allx € X. Then & satisfies the Markov property [H-7]
if and only if E(Xa, Xy) < 0 for all z,y € X with x # y.

Proof. For all z,y € X with x # y, letting u = x, + tx, with a constant
t < 0, we have (= max{0, min{1,u}}) = x, and hence the Markov property
implies that €(xz, Xz) + 26E (Xas Xy) + 2E(Xys Xy) = E(Xa, Xo); this is true
for all ¢t < 0, and thus €(x., xy) < 0. [

1.3 Let G = (V, E) be a graph with the set of vertices V' and the set of
edges E that consists of pairs of vertices. In this paper, a graph admits
no loops and multiple edges, and the set of vertices is finite or countably
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infinite. We say that a vertex x is adjacent to another y if {z,y} belongs
to £ and write x ~ y to indicate it. We also use the notation: |zy| for
{z,y} € E. For each vertex z, the cardinality of the subset {y € V | y ~ z}
is called the degree of G' at z and denoted by deg(z). When deg(z) is finite
for each vertex x, we say that G is locally finite. By a path of length n
in G, we mean a sequence of (n + 1) vertices ¢ = (g, x1,...,Z,) such that
x; ~ xi1 (1 =0,1,...,n — 1), and we say that ¢ connects zy to x,. G is
called a connected graph if for any pair of vertices x and y, there exist paths
connecting them. On a connected graph GG, we can introduce a distance dg
on V', called the graph distance of GG, by assigning to each pair of vertices x
and y the minimum of the length of a path connecting them. We are now
given a weight r on the set of edges F, that is a positive function on E with
the property that

< 400, VzelVl.

This is automatically satisfied in a locally finite graph. We call such a couple
(G,r) a network. Given a connected network I' = (V| E,r), a nonnegative
quadratic form (Er, D[Er]) on (V') can be defined as follows:

D] = {ueuv) }:W i < +00};

o Iwyl

and

Iy MOl e g

Ixyl

zwy

A weight r also gives rise to a distance d, on V' by taking r(e) as the length
of an edge e. To be precise a path ¢ = (xg,21,...,x,) has by definition
the length L,(c) = Y. r(|ziz;11]), and for any pair of vertices z and y,
d,(x,y) denotes the infimum of L,(c) over all paths ¢ joining = and y. Then
d, : V xV — [0,+00) is called the geodesic distance on V. For r = 1, we
write dg for dy. For a pair of vertices  and y, we connect x to y by a path

c=(r=uwxy,21,...,2, =y). Then for a function u € D[], we have
n—1
[u(z) —uly)] < Y fulz:) — @)
i=0
n—1 1/2 ,n-1 1/2
h%mJ—WK%+OP) ( )
< r(|ziTis]
(Z () 2 rlimainl)

I‘ U 1/2Lr( )1/2'
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This holds for any path as above, and thus we get the following basic in-
equality:

(]-6) Rgr(xay) S dT(‘rvy)v z,y eV.

In this way, a resistance form on V' is provided by &r. The effective resis-
tance and the reproducing kernel or the Green function of the form will be
respectively denoted by Rr and ¢! (z,y) (z,y,z € V). Let Dy[€r] be the
closure of the set of finitely supported functions on V' in D[r] and &2 the
restriction of & to Dy[Er]. Then the minimal effective resistance R2(x,y)
between points z,y € V is introduced with respect to the form £2. It is
evident from the definition that R < Rp. We recall here the fact (cf. [37],
Theorem (3.63) and the references therein) that the following conditions are
mutually equivalent: (i) &P satisfies [H-5], (ii) Dg[Er] contains no constant
functions, (ili) Dy[Er] # D[Er]. If these are the cases, D[Er] is decomposed
into the direct sum of Dy[€r| and the space HD[Er| of harmonic functions
of finite Dirichlet sums on V' that is the orthogonal complement of Dy[&r]
relative to the form; a function h on V belongs to HDI[E]D] if and only if
h € D[ér] and LN(x) = >, . (M(z) — h(y))/r(|lzy|) = 0 for all z € V. We
write g2(z, y) and ¢%(z, y) respectively for the Green functions of (€2, Dy[Er])

~

and the extended form (£, R + Dy[€r]) as in Remark 1.1 (ii).

A locally finite graph G = (V| F) is always assumed to be a network with
weight 1.

Example 1.2 Let 7" = (V, E) be a connected, locally finite tree and r
a weight on E. Then the effective resistance of the network I' = (7', 7)
coincides with the geodesic distance d,. relative to . When r =1 and T is
a homogeneous tree of degree d > 3, it is known that the minimal Green
function of £ is given by

d—1 1 dr(z,y)
0 _
gT(x?y)_d(d—Q) (d—l) ’ x??/ev

(cf. [10]) and hence the minimal effective resistance of 1" is given by

Example 1.3 (cf. [13]) Let G, be a subgraph of the integer lattice
7% = {(x1,...,2q) | T1,..., 2, € Z} generated by the set of vertices V;, =
{(x1,...,2q) | |z:] <n,i=1,...,d}. Then the effective resistance R, of G,
satisfies

cologn < max{R,(z,y) | z,y € V,} < Cylogn
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if d =2, and
0 < Cd S IIllIl{Rn(l‘,y) |.T,y € Vm Y 7£ y} S maX{Rn(mvy) | xvy € Vn} S Od

if d > 3, where ¢4 and Cy are positive constants depending only on d.

Let I' = (V, E,r) be a connected, locally finite network. Regarding each
edge e as the segment [0,7(e)] of length r(e) and gluing the edges at the
vertices, we obtain a Riemannian polyhedron |I'| of dimension one, which
is locally compact and connected. In this paper, a Riemannian polyhedron
of dimension one is called a geodesic graph for short. On the geodesic
graph |I'|, we have a canonical Riemannian measure ds and the Riemannian
distance d,. The Dirichlet integral of a function u € C(|I'|) is by definition

s =3 [ (7)o

ecE

if it is finite. Then (&), D[En)]) is a resistance form on |I'|. Moreover the
form is strong local in the sense that &qp(u,v) = 0 if v is constant on the
support of u. The energy measure p, of a function u of finite Dirichlet
integral is defined by

/|r|¢ dpwy = Eri(u, pu) — 15|r|(uQ’<J5)

-y /T(e (d—“) is, o o(r)).

eeE

For functions u,v € D[&p|], we have the signed Radon measure defined by
Piuwy = (Pluto) — Moy — H(wy)/2. This means in this case that

du d
O = ZE/ 6 5 Tds, ().

The resistance form &r of I' may be considered as the trace of Erjon V. A
function v € D[] is identified with a function @ € D[&r|] which is linear on
each edge and equal to v on V. Moreover it holds that &p((@, ¢) = Er(u, Py )
for u € D[&r| and ¢ € D[&p|]; in particular, the Dirichlet sum of u is equal
to the Dirichlet integral of u.

Now we consider a nonnegative Markovian form £ on a finite set X such
that x, € D[€] for all z € V. A point of X is called a vertex, and a vertex x
is, by definition, adjacent to another y if c(z,y) := —E(xu, xy) > 0. If
this is the case, x and y are assumed to be joined by an edge of resistance
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r(|zy|) = c(z,y)~'. In this way, we get a finite (resistive) network (X, E,r),
where E stands for the set of edges, each of which is assigned the positive
number r. It is easy to see that if [H-1] holds, then the graph (X, F) is
connected, and conversely, if the graph is connected and d(z) = E(x,, 1) > 0
for all z € X, then [H-1] is verified.

Now in view of Example 1.1, we can prove the following

Theorem 1.15 Let G = (V, E) be a connected, locally finite, infinite graph
uniformly embedded in the unit disk Q0 in C endowed with the hyperbolic
distance p, that is, V C ) and there is a positive constant ¢ such that

C_lp(.T,y) < dG(-T,y) < Cp(x>y)7 T,y € V.
Then there exist positive constants ¢ and ¢’ such that
C,(dG(xuy)_C”) SRG(‘rvy) SCdG(«T,y), vaJEV

Proof. In what follows, ¢;’s stand for positive constants depending only
on ¢ as above and () is endowed with the Poincaré metric gp.

We first notice that for any = € V, the degree at z, deg(x), and the
number of the vertices y such that B, (z) N B, (y) # 0 are bounded from
above by c¢s, where B,(x) denotes the metric ball of Q around a point = with
radius a (cf. [11], [37, Chap.IV §6]).

Secondly we observe that a function h € HD|(Q] satisfies

ha) = h) <o [ (b, oy,
Be, ()
for all z,y € V with x ~ y. Therefore we have

Ealhy) = ZZVL W <3y deg( / ()|dh|§Pdng

xEV Yy~ eV

< / (dh[2, vy, = csEalh).
Q

This shows that
[A(z) = h(y)P* _  [h(x) =~ h(y)]?
Ea(h)  — 7 &)

for all z,y € V. Now given z,y € V| letting h = ¢,(y, %), where g,(y, 2)
denotes the Green function of £, exhibited in Example 1.1, we have

RSQ(‘r7y) SCE)RG(‘%‘?y)? xver

S C5RG('I7 y)

In view of the relation between Rg, and the hyperbolic distance described in
Example 1.1, we arrive at the required estimate. This completes the proof
of the theorem. [ ]
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Remark 1.2 Suppose (X,dx) and (Y, dy) are metric spaces. A map f :
X — Y is called a quasi-isometric embedding of X into Y if there exist
constants A > 1 and £ > 0 such that

1

T dx(2,2") =k < dy(f(2), f(2')) < Adx(z,2') + &
for all x, 2’ € X. If in addition, for each y € Y, there exists x € X such that
dy (f(z),y) < k, then f is called a quasi-isometry (or a rough isometry).
Let G = (V, E) be a connected, locally finite, infinite graph of bounded
degrees and suppose that it is quasi-isometric embedded in the unit disk €2

in C endowed with the hyperbolic distance p. Then the same conclusion of
Theorem 1.15 holds.

2. Resistance forms

In this section, we prove some fundamental results on resistance forms,
the maximum principle, Harnack’s inequality, Caccioppoli’s inequality and
SO on.

2.1 Let I' = (V,E,r) be a connected, finite network. Given a subset K
of V, H € (V) satisfies Er(H,v) = 0 for all functions v vanishing on K if
and only if H satisfies L°H(z) = >, c(z,y)(H(z) — H(y)) = 0 for any
z € X \ K, where we put c(x,y) = r(Jzy|)~!. Such a function H is said to
be harmonic on X \ K. The nonnegativity of ¢(z,y) verifies the maximum
principle for harmonic functions as follows:

Lemma 2.1 Let I' = (V, E,r) be as above and K a subset of V. Let H be
a function on V that is harmonic on V' \ K. Then one has

min H(a) < H(z) <max H(a), z€V.
acK acK
The maximum principle applied to the Green functions g.(z,y) yields
the fact that 0 < g.(z,y) < g.(x,x) for all z,y,z € V. Therefore in view of
identity (1.2), the effective resistance Rr of I satisfies the triangle inequality
(cf. [13], [38]), and thus Rr provides a distance on V, called the resistance
metric of I' in [32].

For a subset A of V', we denote by bA the subset of A consisting of the
vertices adjacent to some of V' \ A. Let K and A be subsets of V' such that
K NA=1{. Given a function H on X that is positive on (V' \ K) UbK and
harmonic on V' \ K, we consider a unique solution Py on V' of equation:
L°Py =01in V' \ (K UbA), subject to the boundary condition: Py = 0 on K
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and Py = H on bA. Then the maximum principle verifies that Py = H
on A, Pg < H on (V \ K)UbK, and hence L¢Py > 0 outside of K. Note
that for any x € A, we have

H(z) = Pu(x) = (P, gic(x,%)) = > g, y)LPu(y).

yEbA

Let

C(V\K,A) = max{gK(x’Z) |2,y €A, 2 € bA} .
9k (Y, 2)

Then we have

H(z) = ZgK“ 2)L Py ()

zELA gK Y.<

< CW\K.A)S gicly. 2)LPu(2)

= C(V\K,A)H(y)
for all x,y € A. Thus we arrive at Harnack’s inequality in the following

Lemma 2.2 Let I' = (V, E,r) be a connected, finite network. Let K and A
be subsets of V such that K N A =0. Then one has

max H < C(V\ K, A) mmH

€A
for any H € L(V') that is positive on (V \ K)UbK and harmonic on V' \ K.

Now we prove a version of the Caccioppoli inequality on I'.

Lemma 2.3 Let I' = (V, E,r) be as above and K a subset of V. Let H be
a function on V' that is harmonic on V' \ K. Then for any & € {(V) with
¢ =0 on K, one has

Er(§H) < 10sup |H* &r(8).

Proof. Let |I'| be the metric graph associated to I'. For u € ¢(V'), we denote
by @ the harmonic extension of u to |I'|, namely the function on |I'| which is
linear on the segment assigned to each edge of I" and coincides with u on V.
Then we have

5\F\((§H)N) < 5\F\(éﬁ) = /ﬁQdM@ +2/§~gdﬂ<£,ﬁ> +/§~2dﬂ<f1>
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Since & (€2H, H) = &r(82H, H) = 0 and

L 3 . 1 [ - .
(@ H ) = [ Edugy+2 [Edug gy = 5 [ Edngy 2 [ B,
we obtain
&2 r72
/5 dpiy < 4/H GE
Therefore we get
Er((EH)™) < 10/[?%1#@ < 10sup {H(x)* | = € supp g } Ery(&)-

This shows that
Er(¢H) < 10s3p|H|2 Er(£).

Thus the proof of Lemma 2.3 is completed. |
Finally we recall two basic properties of connected finite networks.
Lemma 2.4 LetT' = (V, E,r) be as above. Then for allu,v € £(V'), one has
Er(uw)'/? < sup |u| Ep(v)V? + sup |v| Ep(u)/2.

Lemma 2.5 (Rayleigh’s monotonicity principle) Let I' = (V, E,r) be
as above and T" = (V' E',r") a connected subnetwork, that is, V' C V,
E'C Eandr" =r on E'. Then

Rr(z,y) < Rr/(z,y) for all x,y € X'.

Remark 2.1 For a finite, connected, network I' = (V, E/, ) of N vertices,
the identity (1.5) reads

EZM:N—L

2 2~ r(|zyl)

T~y
This is a classical result due to Foster (cf. [20], [37], [38]).

2.2 In this part, we consider a resistance form & on a set X, where [H-6]
is assumed. To begin with, applying the results of the previous sections, we
can deduce the following

Proposition 2.6 For a resistance form £ on a set X, it holds that

0<g.(z,y) < g.(z,z), =z,y,z€ X.
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Now the following is an immediate consequence from Lemma 2.1.

Theorem 2.7 Let K be a closed subset of X. Let H be a bounded function
in D[] that satisfies E(H,v) =0 for all v € D[E; K|. Then one has

inf H < H(zx)<supH, z¢€X.
K K

In view of Lemma 2.2, we can deduce the following

Theorem 2.8 Let K be a closed subset of X. If a positive function H € D[E]
satisfies E(H,v) = 0 for all v € D[E; K], then for a compact subset A of
X\ K, one has

H(z) < C(X\ K, A)H(y)

for all x,y € A, where

C(X\K,A) :sup{?;g:i; | z,y, 2 € A}.

In the following lemma, we prove a version of Caccioppoli inequality
on X.

Theorem 2.9 Let K be a closed subset of X. Let H be a bounded function
in D[E] such that E(H,v) =0 for all v € D[E; K]. Then one has

E(EH) < 10sup |H|* £(€)
X

for all ¢ € D[E; K.

Proof. We first take an increasing sequence of finite subsets X,, of X in
such a way that U, X,, and K N (U,X,,) are dense in X and K, respectively.
Let H, be a unique function in D[£] such that H,, = H on K,, = KNX,, and
E(H,v) =0forallv € D[E; K,]. Then asn — oo, £(H,) tends to £(H) and
H,, converges to H pointwise in X. Let h, (resp. &, ) denote the restriction
of H, (resp. £) to X,,. Then €% (h,,v) = 0forallv € D[£%, ; K,]. Therefore
we are allowed to apply Lemma 2.3 to h, and &,, obtaining

Ex (&nhn) < 10sup |hal® EX, (&n)-

Let I, = Hx,¢,n, for simplicity. Then F,, converges to {H pointwise in
Un X, and hence in X, because £(F,)(= £%, ({,Hy)) is bounded and U, X,
is dense in X. Therefore we have

E(EH) < liminf E(F,) = liminf E% (£,h,) < 10sup [H?E(E).

n—oo

This completes the proof of Theorem 2.9. |
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In what follows, we assume further that the metric space (X, d) is com-
pact. Then & is a regular Dirichlet form on X defined on the L2-space
relative to a positive Radon measure on X with support X (cf. e.g. [21]).
Recall first that given a function v € D[], a Radon measure jg,) on X,
called the energy measure of u, is defined by [ ¢dpy = &(u, pu) — 3E(u?, ¢)
for ¢ € D[E]. We note here that D[£] is dense in C(X,d). Now given a
proper open set 2 of X and a closed subset A of €2, we let

Capg(A) = inf{E(u) |[u e D[E; X\ Q], u>1on A}.

This is called the capacity of A in 2. We recall that there exists a unique
function eq 4 € D[E; X'\ Q] such that eq 4 > 1 on A and E(eq,4) = Capg(A):
the function is called the equilibrium potential of the subset A of 2 and
characterized as a function such that eg 4 = 1 on A and E(eqa,v) > 0
for all v € D[E; X \ Q] that are nonnegative on A (cf. ibid. Chap.2).
The equilibrium potential is expressed as eq a(z) = [ gx\o(z,y) dv(y) for
r € X, where v is a positive Radon measure on X supported in A. Observing
that S(QX\Q(Z’ %)/ ming ye gX\ﬂ(%Q)) = gX\Q(Z’ z)/(ming yea gX\Q(LE, y))?%,
we have the following estimate for the capacity of A:

minxeA gx\Q (.23', .CE)

21 Capg(A) < — :
(2.1) a(4) (ming yea gx\o(z,y))?

Now we assume further that £ is local in the sense that &(u,v) = 0 if
supp u Nsupp v = (. Let us denote by Dgq,c[€] the space of functions u
on () such that for any relatively compact open subset w of €2, there exist
functions v € D[£] that coincide with u on w. We say a function H on
is &-harmonic if H € Dgq /€] and E(H,v) = 0 for all v € D[E] supported
in 2. Then Theorems 2.7 and 2.8 extend to the following
Theorem 2.10 Let X, Q and &€ be as above. Let H be an £-harmonic in €.

(i) When H is bounded, one has

inf H< H(z) <sup H, z €,
X\Q X\Q

where one set

}{I{E)H = (lsl_r%mf{H(x) | € Q,d(x, X\ Q) <d};

sup H = limsup{H (z) | z € Q,d(z, X \ Q) < 6}.

(ii) When H is positive, then given a closed subset A of 2, one has
H(z) < C(Q,A)H(y)
for all z,y € A.
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Now we prove the following

Theorem 2.11 Let X, Q and £ be as above. Then for any function f €
C(X \ Q), there exists uniquely a function H € C(X) N Dq0c[€] such that
H is equal to f on X \ Q and E-harmonic in .

Proof. Let K = X \ Q and note that D[E}] is dense in C(K). Let {f,}
be a sequence in D[E}| which uniformly converges to a given f € C(K),
and let H, = Hg.,, € D[E]. Then in view of Theorem 2.10, {H,} is a
Cauchy sequence in C(X) and we let H = lim,,_.o, H,. Then it follows
from Theorem 2.9 that £(eqaH,) < 10supy |H,|*Capg(A) for any closed
subset A of 2 and each n. Therefore we have

E(eqaH) <liminf &(eq 4aH,) < 10sup |f|?Capg(A) < +oo.
n—oo K

Thus H belongs to Dq jo.[€] and E(eq,aH, v) = lim,,_. E(eq aH,,v) for any
v € DI[E] supported in Q2. Now choosing an open subset w in such a way that
supp v C w C @ C €2 and considering the locality of the form, we obtain
E(H,v) = E(eqoH,v) = lim, o E(eqoHy,v) = lim, o E(H,,v) = 0. This
completes the proof of Theorem 2.11. [ |

3. Laplace operators

In this section, we introduce a certain measure on a space endowed with a
resistance form and carry out embedding the space into the Hilbert space of
square summable sequences, using the eigenvalues and eigenfunctions of the
self-adjoint operator to get a regular Dirichlet space containing the space as
a dense subset.

3.1 We consider a quadratic form € on a set X satisfying [H-1], [H-2], [H-4]
and [H-6]. Let u be a Borel measure on X = (X,d) and K the support
of p, supp pu, that is the complement of the union of open balls B, (p) with
w(B(p)) = 0. Note that continuous functions f and g coincide almost
everywhere in X if and only if f = g on K. Suppose that

(3.1) H(X) < +oo: /X Re(0,7) dp(x) < 400,

Since any function u € D[] satisfies |u(z)]? < 2E(u)Re(z, y) + 2u(y)? for all
z,y € X, it belongs to L*(K, i), and moreover, noting that \/Rg satisfies
the triangle inequality, we have

u@)P < 26() /X Re (o, y)du(y) + 2 /X u(y)?du(y)
< 4E() ( / Rg<o,y>du<y>+Rg<o,x>u<x>)+2 [ wtwrauty
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for all € X. This shows that 2 is bounded from above by an integrable
function on X depending only on &(u), [, 2du and u(X). Therefore any
sequence of functions u,, € D[£] w1th supn(é' un) + [ uidp) < co contains
a subsequence that converges to a function pointwise in X and hence in
L*(K, u) because of Lebesgue’s convergence theorem. Thus the embedding
of D|E] into L*(K, i) is compact (cf. [32, 2.4]).

Now we denote by L, the self-adjoint operator associated with the closed
form &£ on the L*-closure of D[E}]; the domain D[L,] of £, consists of
functions v € D[E)] such that the functional on D[E}| defined by v —
Er(u,v) is continuous with respect to the L?-norm, and for any u € D[L,],
L,u is the unique function (in the closure of D[] in L*(K, p)) satisfying

Ex(v,u) = / v L,udp, ve DEE
K
Thus we have the following

Lemma 3.1 Under condition (3.1), the embedding of D[E};] into L*(K, )
(K = supp p) is compact, and the spectra of the operator L, consists of
a nondecreasing sequence of nonnegative numbers {\;(u)} that diverges to
infinity as i — oo unless D[E};] is of finite dimension.

Let N = dim D[&};] < 400 and {¢; : 0 <i < N—1} a complete orthonor-
mal system of eigenfunctions ¢; with eigenvalues \;(Ej; p) in L?(K, ), where

oo = 1/v/u(K). We write A\;(p) for \;(Ex; ) if there is no confusion. In
view of Lemma 1.11, gz(x y) and Rg(z,y) can be expressed as follows:

1

(3.2) g:-(x,y) = "y u — ¢i(2))(ds(y) — ¢i(2)),

B3 Relew) = 3 () - )

=1

—

Fix z,y € K. Then the function gz(ac,y) of z € X is summable over K,
because of identity (1.2). We set

1 /

— | g.(x,y) du(z).
W(K) Ji (:9) du(z)

Then in view of (3.2) and (3.3), the following identities hold:

(3.4) aulz,y) = (Z)\ >+;W

(3.5) /Kgp(x, y) du(y) =

gu(ac, y) =

Re(y, ) du(y)dp(z) = i

KxK i—1 Ai(1)
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The last identity yields a lower bound for A\;(x) (i = 1,2,...,N — 1) as
follows:

‘ 2u(K)i
(3:6) M) 2 R ) )Gz
We put
o 1 = 1 = a@)ey)
) =0 ) e 2 T a0 YK
Notice that
(5 0). (0 4) = 1) = Y % vy € K.

Now we define an operator on L?(K, ) by

Gou(r) = /K g wuly) duly), ue LK, p).

Then if we express a function u € D[E}](C L*(K, p)) by the Fourier expan-
sion with respect to the basis {¢;} as

N—1
= zd i I L2Ka )
u ;/Kucbm (in L2(K, 1))

then we have
N-1

1
6= Y 1 | i o

=1

and also
N-1
Euu = Z Az‘(ﬂ)/ ugidp ¢;
i=1 K
if w € D[L,]. Thus we have the following

Proposition 3.2 Under condition (3.1), G, is the Green operator of L,,
that is, it satisfies
I = Hy+ LG, on DIEFI(C LXK, 1),
I = H,+G.,L, onD[L,](C DIEF]),
HuWG, = GH,=0,

where
1

Hu:—/udu.
! 1K) Ji
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Now we shall prove the following

Proposition 3.3 Let p be a Borel measure supported on a subset K of X.
Suppose that K s finite, and regard the measure |1 as a positive function
on K. Then one has

2max{pu(r)~", ply) '}
fele) = =

Proof. For a function v € D[E};] and points z,y € K, we have

forall z,y € K.

() = u(y)|* < 2 (lu(x) = Hyul® + [u(y) = Hyul?)
< 2max{p(z) ™, p(y) ™'} (Jule) = Huu*u(e) + uly) — Huul*p(y))
< 2max{ita) ™ )} [ fu=Hyldy

2max{pu(z)" uly) '} _,
SToam o G

This proves the inequality of the proposition. |

The monotonicity of A\ (Ej; n) with respect to finitely supported mea-
sures p is described in the following

Lemma 3.4 Let p and v be respectively measures supported on finite sub-
sets K and L of X. Suppose that K C L and u < v on K. Then one has

1 1
< .
M(Eip) — M€ v)

Proof. Given u € D[E}], we denote by v the restriction of the minimizer
Hp.,, to L. Then we have

)\1(52;1/)/ |u—Huu|2du§)\1(5}’:;V)/ lu — H,v*du
K K

<n(E) [

K

< E1(v) = E(Hi) = Ex(u),

lu — H,vPdy < M (E;v) / v — H,v|*dv
L

This holds for all u € D[E}], and hence we get A\ (5 1) > M(E5;v). M
Definition 3.1 Let u5 be the counting measure on X and
Ni(E: ) = inf A (et ).

where K ranges over all finite subsets of X.
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Theorem 3.5 Consider a quadratic form € on a set X satisfying [H-1],
[H-2], [H-4] and [H-6] and suppose that Xj(E; n) is positive. Then the fol-
lowing assertions hold.

(i) Forall z,y € X,

2
Re(r,y) < oo
A& p%)

(ii) The set of accumulation points X¢ of the metric space (X,d) is
empty, or consists of a single point pso.

(i) For anyu € DIE], there exists a constant a(u) such that u(x,) tends
to a(u) as n — oo for any sequence {x,} in X which diverges or converges
to Poo if X is not empty (in this case, a(u) = u(ps) ), and moreover one
has

X (E: 1) /X o — au) Py < E(u).

Proof. The assertion (i) is an immediate consequence from Proposition 3.3
and Lemma 3.4.

Let us now prove the remaining assertions. Observe first that any v €
DIE] is bounded on X, since R¢ is bounded (see Remark 1.1 (iii)). Let us
take an increasing sequence of finite subsets W,, of X in such a way that
W = UW, is dense in X. We write y, for ufy, , and given u € D[£], we put
U, = upw, and further a, = Hy,, un(= >, oy u(z)/8W,). Then we have

E, (un)
> (&, 1) Z |un () — an|?

:BEWn

E(u)

v

> (& pk) Z |un () _an|2'

IEWTL

Since v is bounded, a,, is also bounded as n — oo, so that we may assume
that a, tends to a number a as n — oo. Then for any finite subset K of W,
we get

E(w) > X(E; %) Y lu(x) — af”.

zeK

This holds for W. Moreover if we have an accumulation point p € X, then
u(xy) tends to a for all x; in W converging to p, and hence a = u(p). This
verifies that if we have p,q € X9, then u(p) = u(q) for all u € D[£], which
implies that Rg¢(p,q) = 0 and hence p = ¢. this completes the proof of
Theorem 3.5. |
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In what follows, we assume that £ is a resistance form. Let K be a
finite subset of X. Then the characteristic functions y, for all x € K
belong to D[Ef]. Set c(x,y) = —Ej(Xas Xy) for x,y € K |  # y, and

T (7) = Ef(Xar Xa) (= D yere yrn €(T,y)) for z € K. Define a measure i
on K by

/u duhe = Zu(w)m{(x), u € l(K).

Then the operator on L*(K, uk), denoted by Lh, is expressed as follows:

Lhu(x) = le(x) LU(x) = u(r) — Mgu(z),
where we put
Miu(w) = —— 3 clr.y)u(y)

yeK y#x
We remark here that

min e (2) Ar(p) < Ai(pk) < max () A (k).

By the same arguments as in Lemma 3.4, we have the following

Lemma 3.6 Let K and L be finite subsets of X such that K C L. Then
g <7 on K and M\ (Efy; phy) > M(EF; 1f).

Definition 3.2 Let

mx(x) :=supmg(z), xze€X; A\(&uk) = i%f)\l(é'};u%),
K

where K ranges over all finite subsets of X.

Theorem 3.7 Let £ be a resistance form on a set X satisfying [H-6] and
suppose that wx(x) is finite for all x € X and N{(&; i) is positive. Then
the following assertions hold.

(i) Forall z,y € X,

2max{my(z), mx(y)"'}
X (&5 %) '

(ii) The set of accumulation points X of the metric space (X,d) is
empty, or consists of a single point pso.

Rg(x,y) S

(iii) For anyu € D[E], there exists a constant a(u) such that u(x,) tends
to a(u) as n — oo for any sequence {x,} in X which diverges or converges
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to poo if X is not empty (in this case, a(u) = u(ps)), and moreover one
has

N(E: ) [ ualwldit < )

Remark 3.1 (i) Let £ be a resistance form on a finite or countably infinite
set X such that mx(x) is finite for any € X. A point of X is called a
vertex, and a vertex x is, by definition, adjacent to another y if ¢(z,y) :=
—&(Xa, Xy) > 0. If this is the case, x and y are assumed to be joined by
an edge of resistance r(|zy|) = c(z,y)'. In this way, we get a connected
network (X, F,r), where E stands for the set of edges, each of which is

assigned the positive number 7.

(ii) Let &£ be a quadratic from on a finite or countably infinite set X
satisfying [H-2] and [H-5]. The spectral gap of £ in L*(X, u°) is given by the
number A\o(&; p¢) = inf{€(u) | v € D[E], 3, cx u(z)* =1}, When A\o(E; 1)
is positive, we have sup,cy ge(x,z) < 2/Xo(E; p°).

3.2 In this part we investigate a resistance form &£ on a set X satisfying
condition [H-6].

Suppose p is a Borel measure supported on a closed subset K of X such
that

(3.7) MM<KH/AKmeﬂMMW@<+w

Then we introduce a nonnegative symmetric function on K x K by

Nu(z,y) = (ﬁ /K(gu(%Z) —gu(y,Z))Qdu(Z))l/2> z,y € K.

It is evident that N, satisfies the triangle inequality, and in fact it defines a
distance on K (see (3.8) below).

Let ® = {¢; | i = 0,1,..., N — 1} be a complete orthonormal system
of eigenfunctions ¢; of £, with the i-th eigenvalues A;(x), where N, 1 <
N < 400, stands for the cardinality of K. In what follows, we understand
¢i//Ai(p) = 0fori > N if N is finite, and for simplicity, we assume N = oo.
Recall that

oS () ey N
ftelv) ;(\/Ai(u) \/)\z’(ﬂ))’ ven

Relevantly to this expression, we define a map Ig of K into the Hilbert space
0o 9

of square summable sequences, ? = {(a;) | Y. o0, a? < +o0}, by

=1 "

In(z) = <%) rek.
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Then I gives rise to an isometric embedding of the metric subspace (K, v/ Rg)
of (X,v/Rg) into £?; in fact, it satisfies

Re(z,y) = |la(z) = Lo @)l2: g(x.y) = (Ta(2) La(y))e, 7.y € K.

Then the distance N, can be expressed by

o

N = (o |- (Z%(@(@—¢i<y>>¢i<z>)2du<z>)

=1

- (ﬁ [ ttato) - f@<y>,f¢<z>>?2du<z>)m.

Then by the Cauchy-Schwarz inequality, we get

1/2

Nu(z,y) < (ﬁ/}(gi(z,z)du(z))l/zRg(x’y)l/z

—1 1/2
_ 1/2

=1

We observe here that a function v € D[L,] is Lipschitz continuous with
respect to NV,. In fact, we have by Proposition 3.2

ule) - uly)] = ' [ 6:602) - g0 £yt

g(ﬁ [ (6u60.2) = g0 2) Pt ) ( ) [ 1eupant: )

and hence

1/2

(38) o) = )] < () [ |uaPdu) - Moo

for all z,y € K. In particular, if ¢ is an eigenfunction of £, with eigenvalue
A # 0, then

(3.9) o00) — o)) < A4 [ ) Moo
Let us now introduce another distance $* on K by

Su(r,y) = (pu(1,2,2) — 2p,(1,2,y) + pu(1,y,9)"?, 1,y €K,
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where p,(t,z,y) denotes the kernel function of the semigroup exp(—tL,)
generated by £,. The distance S, is written as

N-1

1/2
Sea) = (LU0 = 0)?) . ek

Therefore it follows from (3.9) that

(S 1/2
XEO RN (05D SEY S AR

1/2
(3.10) < Co(u(K)Z%M)) Nz, y),

i=1 ’(

where (Y is some absolute constant. Obviously an eigenfunction ¢ of £,
with eigenvalue A is Lipschitz continuous with respect to §,; in fact, we
have

o) — ot < ([ oan) U5

Relevantly to the distance S#, we define a map Jg : K — ¢2 by
Jo(x) = (MW Pgy(x)), €K,

that is an isometric embedding of the metric space (K,S*) into 2. We
denote by K" the completion of (K, S*). We notice that
1
0 < gu9) < gulina) = s [ Rela2) dut)
8 8 W(K) Jx

and

[ = o [ ([ R ae)
< 5 [ ReCuwrdun),

Using these estimates, we get
2
N < o [ gt 2Paut)
K

(3.11)

IN

for all z,y € K.
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In this way, the distance N, turns out to be bounded, and hence any
function of D[L,] is bounded. In particular, an eigenfunction ¢ with non-
trivial eigenvalue A is bounded, and in view of (3.9), it satisfies

0@ < s [ [ Recwldut)auto) [ o« e K.

Lemma 3.8 The completion F_ﬂ of (K,S,) is compact and any function of
D[L,] extends continuously to K.

Proof. We take a divergent sequence {s;} of positive numbers, which will
be appropriately chosen later, and for r > 0, we denote by B“?(r) (r > 0)
the subset of ¢2 consisting of elements (a;) with Y77 (1 + s;)a? < r?, that
is a compact subset of 2. We take a positive number M so that

: ( / /K XKRg<z,w>2du<z>du<w>)l/2 <M.

1/2
Since > 1/\i(u) < 2 (ffoK (z,w)?du(z )du(w)) by (3.5), we see
that A\;(p) > i/M for all i=1,2,.... Therefore if we set s; = i/M, then for
any r € K, we have
D (T s)e W) < AMPp(K) ™Y (1 + si)Ao(p) e
i=1

=1

CoMu(K)™) (1 + s;)e /2
=1

< CoMPu(K)™Y (14 si)e /2,

i=1

IN

where (Y is some absolute constant. Letting 7(M)? = CoM?u(K)™' 22 (14
s;)e %, we conclude that Jg(K) is included in B“?(r(M)): in particu-
lar, (K" S*) turns out to be compact. Moreover given u € D[L,], we
put u, = >, fK ug;dp ¢;. Taking a point y € K in such a way that
u(y) — u,(y) = 0, applying (3.8) and using (3.11), we obtain

suplu(@) — (D) < (K ( / > ) s du 6% ) sup (o,

reK imnt1

i s £ 07 (o))

i=n+1
Since the right side tends to zero as n goes to infinity, we see that every u €

DI[L,] is contlnuous relative to the distance S, and extends to a continuous
function on K" . [}
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The measure p can be taken to be a Radon measure on the compact
metric space K, since the inclusion map from (K, djx) to (K", S,,) is con-
tinuous, and the form (€}, D[€};]) also can be considered as a Dirichlet form
on L*(K", ). Moreover D[Ex] N C(K") is an algebra containing the unit
element 1 and D[L£,] that separates points of K, and hence D[Ex]NC(K")
is dense in C(K") with uniform norm, and it is clearly dense in D[£}] with
norm &%+ || - || 2. Thus we have the following

Theorem 3.9 The Dirichlet form (€5, D[EE]) on L*(K", 1) is regular.

We refer the reader to e.g. [21] for the theory on Dirichlet spaces.
Let

Q(K, &) = the space of functions on K spanned by {g.(z,*) | z,z € K}.

We observe that v € D[E}] belongs to Q(K, E);) if and only if there exists
a finite subset A of K such that £ (u,v) = 0 for every v € D[E};] that
vanishes on A. We note also that Q(K,E&};) is included in the family of
functions spanned by {g,(z,*) | x € K}, because we have

g:(e) = ﬁ /K - (2, w) dps(w) + E(guly, #), 9-(, %))
- ﬁ /K g2, w) dps(w) + g,(y,7) — guly, 2).

Now we suppose that for each x € K, there exists a positive constant c,
such that

(3.12) ()] < c, </K u2du) " e

Since u(x) = H,u + E(u, gu(z, *)), this is equivalent to the condition that
gu(z,%) € D[L,] for all x € K, that is, >~ ¢;(x) is finite for all z € K. In
particular, for any fixed x € K, the function g,(z,y) of y € K continuously
extends to K' and g,(z,y) is bounded from above by g, (y,) that is square
summable, since we have

uly.y) = /K 0:(y, 9)dp(z) = /K Re(z,y) du(2)

< /K Re(2,0) du(2) + Re (0, y)u(K),

where o is a fixed point of K. This, together with Lebesgue’s Convergence
theorem, shows that the distance ./\/ also extends continuously to K. In
this way, under the assumption (3. 12) we have verified that the completion

K" of K with respect to the distance NV, topologically coincides with K"
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Moreover Q(K, £;) is taken to belong to C(K") and Q(K, ;) separates

points of FN, so that the algebra generated by Q(K, &};) is dense in C' (?ﬂ)
Thus we have the following

Theorem 3.10 Under the assumption (3.12), the completion K" is com-
pact and determined topologically by Q(K,E;); moreover (Ef;, D[E]) is a
reqular Dirichlet form on L? (FN, ).

Now we suppose, instead of (3.12), that the effective resistance Rg of £

is bounded on K, that is Re(z,y) < D for some positive constant D and all
x,y € K. In this case, we have

[u(z) — u(y)|* < DEK(u)

for all u € D[] and z,y € K. Therefore given v € D[E)] and u, =
Yoo Jr udidp @i, we take a point y € K in such a way that u(y) —u,(y) = 0
and get

swwm—mesn(fium(megﬁ.

eek i=n+1

The right side tends to zero as n — oo. Thus u,, uniformly converges to u
on K and any u, extend to a continuous function on &', and so does u itself.
Thus D[£}] may be regarded as a subspace of the Banach space C'(K") and
the distance N, also yields the same topology on K" as S,.. Moreover for
any z,y € K, lu(z) — u(y)|* < D*E}(u) for all u € D[E}]. This implies
that &}, satisfies [H-1]:

i) — iy
()

for all z,y € ?N,x # y, and moreover it inherits the properties [H-2]

through [H-7] except [H-5]. We note here that N,(z,7) < CRe: (z,7)"/?

for all z,y € K" and some constant C, so that the identity map @ :

0<Rg;<(:v,y)=sup{ IE;;(&)>0} < D? < 400

(FN, Rexr) — (KN,./\/'#) is continuous; however it is not homeomorphic in
general (see Examples 5.3).
Thus we have shown the following

Theorem 3.11 Let (X, E) be a resistance form € on a set X satisfying [H-6]
and K a closed subset of X. Suppose that the effective resistance of Ej s

bounded. For a finite Borel measure p supported on K, (K, N,,) is the com-
pact metric space to which every function of D[E}] extends continuously and
whose points are separated by D[Ef]. Moreover (€5, D[E}]) is a resistance

—N
form on K .
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Remark 3.1 (i) The distance introduced in 3.2 can be also written as
follows: for x,y € K,

Nyt = s | (gmz) - | gy<x,w>du<w>)2du<z>,
Nt = [ (Reto2) = ety

1

p(K)

(ii)  The distance N, on K extends to X and gives a pseudo dis-

tance on X. In addition, using the minimizers Hp,,, for ¢; € DI[Ex]

(i = 0,1,2,...), and letting pH(¢t,z,y) = Py e‘t’\iHK;d,i(x)Hfgm(y) for

x,y € X, we obtain a pseudo distance S* on X defined by S¥(z,y) =

(p*(1, z, x) —2ﬁ“(1,x,y)—|—ﬁ“(1,y,y))l/2 for x,y € X. Then S* is also
bounded by N, on X x X as in (3.10).

(iii) In Theorem 3.10, condition (3.12) is always satisfied if the closed
subset K under consideration is discrete in (X, d).

| Bete.w) - Ret w)du<w>)2du<z>.

(iv) In Theorem 3.11, the semigroup P, = exp(—tL,,) induces a contrac-
tion semigroup of class (Cp) on the Banach space C(FN), ie., Pt(C’(?N) C

C(FN) and for f € C(FN), limy, o P.f = f in C’(?N).

4. Infinite networks

In this section, we introduce the Royden and the Kuramochi compactifica-
tions of infinite networks and illustrate some properties of these compactifi-
cations.

A compactification of any (discrete) set X is a compact Hausdorff space
which contains X as a dense subset and which induces the discrete topology
on X. It is known that given a family ® of bounded functions on X, there
exists an (up to canonical homeomorphism) unique compactification C(X, ®)
of X with the following properties (cf. e.g. [12]): (i) every function of ®
extends to a continuous function on C(X, @) and (ii) the extended functions
separate the points of the boundary dC(X,®) = C(X,®) \ V. We remark
that if ¥ is a subfamily of ®, then the identity map extends to a continuous
map from C(X,®) onto C(X, V), and if @y is a subfamily of & and each
function of @ is a finite linear combination of functions in ®,, then C'(X, ®)
and C(X, ®g) are canonically homeomorphic; in particular, if in addition,
X and ®y is countable, then C'(X, ®) is metrizable.
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Now we consider a connected, infinite graph G = (V, E)). The compacti-
fication relative to the space of bounded, locally constant functions is called
the end compactification of the graph. When a positive function r on E is
given, we have a distance d, on V. The compactification with respect to
the space of bounded Lipschitz functions on (V,d,) is denoted by £,(V, d,).
We have the compactification relative to Q(V, &r), called the Kuramochi
compactification of the network I' = (V, E,r) in [35] and [36]. This can be
topologically identified with the compact metric space (VN,NM) as shown

in Theorem 3.10. We denote by VN(EF) and 8VN(EF) respectively the Ku-
ramochi compactification and the Kuramochi boundary of the network I'.
Some important properties of this compactification will be discussed in 7.3.

The compactification relative to the space of bounded functions in D[&r],
BD|&r], is called the Royden compactification of the network I' and denoted
by R(V,&r). The boundary OR(V, &r) is called the Royden boundary of T
There is an important part of the Royden boundary referred to as the har-
monic boundary of I' which is defined by

A(ér) ={x € OR(V,&r) | g(x) =0 for all g € BDy[Er]}-

The following duality holds for the harmonic boundary (cf. [40] and [37,
Chap. VI)):

BDylér]) = {9 € BD[&r] | g(x) =0 for all x € A(&r)}.

It is known (cf. [40], [31], [37, Chap.VI]) that I' is nonparabolic, i.e.,
(ER, Dol€r]) satisfies [H-5] if and only if the harmonic boundary is not
empty, and also that if OR(V,&r) \ A(Er) is nonempty, then any set of
a single point there is not a G set and for a nonempty closed subset F' in
OR(V,Er) \ A(&r), there exists a function g € Dy[€r| such that g(x) tends
to infinity as x € V' — F. In view of this property, we have the following

Proposition 4.1 The following conditions are mutually equivalent:
(1) SUPzev gg‘('ra .I') is ﬁnlte
(ii) Do[ér| = BDy[&r], that is, any g € Dy[Er] is bounded.

(iii) OR(V, &r) = A(&r), that is, for any g € BDy|Er], g(x) tends to zero
asr €V — 0.

(iv) For any g € Do[ér], g(x) tends to zero as x € V — oo.

Proof. Obviously (i) (resp. (iv)) implies (ii) (resp. (ii)). Suppose that (ii)
holds. Then the bounded inverse theorem shows that the two norms &p(u)*/?
+|u(o)| and Ep(u)'/? + ||ul|s for u € Dy[Er] are equivalent, so that [|ul|s <



402 A. KASUE

MEr(u)'/? for some positive constant M and all u € Dg[€r]. This shows
that sup,cy gr(z, ) < M, and thus (ii) implies (i). It follows now from the
fact mentioned above that (ii) implies (iii). Finally we get (iv) from (iii),
since ¢, = min{max{g, —n},n} € BD[&r] for any g € Dy[Er] and a positive
constant n > 0. This completes the proof of Proposition 4.1. [ |

We remark that the identity map of V' induces a surjective continuous
map from Ly(V v/ 2) onto the Royden boundary, since BD[Er] belongs to the
space of bounded Lipschitz continuous functions on (V, d}«/ 2), and moreover
that if the diameter of (V,d,/*) is bounded, then by (1.6), the effective
resistance of I' is also bounded. This is equivalent to the condition that
D[ér] = BDI&r], as we have seen in the proof of Proposition 4.1. Thus
applying Theorem 3.11 to I', we have

Theorem 4.2 For a connected, infinite network I' = (V, E, 1), the following
conditions are equivalent:

(i) the effective resistance Rr(= Reg.) is bounded,

(ii) D[&r] = BD[&r], that is, any u € D[&r] is bounded.
Moreover if these are the cases, then the canonical map from the Royden
boundary OR(V,Er) onto the Kuramochi boundary 0VN(€F) is homeomor-
phic.

Now we shall consider two conditions under which the Royden boundary
of a connected, infinite network reduces to a single point.

Proposition 4.3 Let I' = I'y x I'y be the cartesian product of connected,
infinite networks I'y = (Vi, Eq,1r1) and Ty = (Va, B, r9). If Ty satisfies the
conditions in Proposition 4.1, then the Royden boundary of I' consists of a
single point.

Proof. Let f be a function in BD[Er|. We would like to show that f(z,y)
tends to a constant as (z,y) € V = V) x V5 — oo. For a fixed x € V}, we
have a function f, on V5 defined by f.(y) = f(z,y) (y € Va). We decompose
fz as fu = hy + g., where h, € BHDI[&r,] and g, € BDy[ér,]. By the
assumption, every ¢, vanishes at infinity.

Now for any pair of points x, 2z’ € Vi, we take a path {z;, i =0,1,... k}
in I'; connecting x(= xy) and 2'(= xy), and then we have

|fe(y) — for(y)| < Z|f($z‘,y)_f($z‘+1,y)|

(ki |f(2i,y) = f@iyga, y)l2> 1/2 ( ’“i T1(|xixi+1|)> 1/2‘

r(|ziwigal) i=0

IN
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This shows that |f.(y) — fo(y)| goes to zero as y € Vo — oo and hence so
does |h,(y) — ha (y)|. Therefore we get h, = h, for all z, 2" € V;. Moreover
we see that &r,(h,) = 0, that is, h, is equal to a constant ¢, because we have

Do () = ) Enlhe) < ) Enlfur) < En(f) < +oo.

eV eV eV

Since |g:(y)| < M&r,(g.) = M&r,(f:) for some constant M and all y € V5,
and &r,(f.) tends to zero as x € V; — oo, it follows that f — ¢ vanishes at
infinity. This completes the proof of Proposition 4.3. |

Proposition 4.4 Let ' = (V, E,r) be a connected, infinite network. Let
{Un} and {V,,} increasing sequences of finite subsets of V' such that V,, C U,
and U, V,, = V. Suppose that I satisfies the conditions in Proposition 4.1 and
that the finite subnetwork Iy, of T' generated by A, = U, \ V,, is connected,
and for infinitely many n, the effective resistance of I, is bounded by a
constant independent of n. Then OR(V,&) = {oo}. In particular, the
effective resistance of I' is also bounded.

Proof. Since any function in Dy[Er] vanishes at infinity, it is enough to
show that a bounded harmonic function h in D[&r] is constant. Let h, be
the restriction of h to A,,. Then by the assumption,

sup |h(z) = h(y)|* = sup [hn(2) — ha(y)* < C&r, (hn)

z,yEAn T,y€An
for some constant C' and infinitely many n. Since &r, (h,) goes to zero
as n — o0, it follows from the maximum principle that h(z) tends to a
constant as ¢ € V — o0, and indeed it is constant. This completes the
proof of Proposition 4.4. [ |

Vanishing theorems on L?-harmonic forms on complete Riemannian man-
ifolds have been investigated by many authors. As mentioned in Introduc-
tion, a connected, locally finite, infinite graph has no nonconstant harmonic
functions of finite Dirichlet sums if it is quasi-isometric to a complete, non-
compact Riemannian manifold such that the Ricci curvature is bounded
from below, the volume of every unit ball is bounded away from zero, and
it possesses no nontrivial L2-harmonic one forms.

Now we consider a connected, locally finite, infinite graph G = (V, E).
There are certain cases where the compactifications L£,(V,d,) relative to
weight functions r : £ — [0, +00) play important roles in geometries of G.
Let d¢ the graph distance on V. Fix a vertex o of V and set S(n) = {z €
V | dg(X,0) = n} and E(n) = {lzy| € E | z,y € S(n) or x € S(n), y €
S(n—1)}.
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An extended real number e(G) is assigned to G as follows:

e(G) = limsup % log#E(n) € [0, 400].
Let us consider a special family of weights on E, {rs | 6 > 0}, defined by
rs(z,y) = e~ for |vy| € E(n) (n=1,2,3,...). In what follows, ds, I's and
&s stand for the distance d,;, the network (V, E,rs) and the Dirichlet sum
&r;, respectively. Since the diameter of the metric space (V, ds) is bounded
and the effective resistance of & is also bounded, the identity map of V
induces a homeomorphism between the Royden boundary OR(V,&s) and

the Kuramochi boundary 0VN(€5) of T's.

Lemma 4.5 (i) Any function in D[Es| is Lipschitz continuous with respect
to the distance dsj, so that the identity map of V' induces a continuous map
from OC(V, dss2) onto OR(V, Es).

(ii) If e(G) is finite, then for positive constants 6 and n with n < 26 —
e(G), any Lipschitz continuous function with respect to the distance ds be-

longs to D[E,], so that the identity map of V induces a continuous map from
OR(V,E,) onto OL,(V, ds).

Proof. For u € D[&|, E(u) = 3207, €™ (X e pm ldule)]?) is finite, and
hence sup, g, |du(e)|? is bounded by b*e~°", where b is a positive constant.
Given any pair of points z,y € V, let C = {& = x¢,21,..., 2 = y} be a
path connecting x to y. Then we have

N
—_

u(@) —u(y)| < ) Jule:) —u(wi)] < b L

%

(@),

Ts5/2

Il
o

and hence |u(z) — u(y)| < bdsj2(z,y). In this way, the first assertion is
verified.

Let v be a function satisfying |v(x) — v(y)| < bds(x,y) for some positive
constant b and all x,y € V. Then, since |dv(e)|? < b2e®™ for e € E(n), we
get

E)(v) =) ™ D |dv(e) <b* ) e B(n),
n=1 ecE(n) n=1

which is finite if 0 < 7 < 2§ — e(G). This proves the second assertion. W

Now we assume that a graph G = (V, E) under consideration is hyper-
bolic in the sense of Gromov, that is, the geodesic graph |G| is hyperbolic
in the sense of Gromov. Then it is known (cf. [23], [15]) that there ex-
ists 0p(G) € (0,+o0] such that for any positive constant § < Jo(G), the
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completion of ds coincides with the compactification L,(V, ds) and moreover
0Ly(V,ds) is homeomorphic to the Gromov boundary dgG of G. Then the
following can be deduced from Lemma 4.5.

Proposition 4.6 Let G = (V,E) be a connected, locally finite, infinite
graph which is hyperbolic in the sense of Gromov. Suppose that e(G) <
260(G). Then for any 0 < n < 260(G) — e(G), OR(V,E,) is homeomorphic
to Oy G, in particular, the identity map of V' extends continuously from the
Royden boundary of G onto the Gromov boundary of G.

Now we are given a metric space (Y, dy) and a compactification Y of Y
which is separated by the distance dy, i.e., liminf, .,, ., dy(z,y) > 0 for
allzeY - pedY andy €Y — q €Y if p# q. We define the Dirichlet
sum of a map ¢ from I' = (V, E,r) to Y by

1 ¢ dx(d(2), 8(y))*
éry (o) == )
(0= 5 2 T
If ¢ possesses finite Dirichlet sum, then it extends to a continuous map from
the Royden compactification of I' onto the closure of the image ¢(V) in Y.
Indeed, for any bounded Lipschitz function f on Y, the composition f o ¢
belongs to BD[Er].

For instance, let r be a weight on E that is square integrable, i.e.,
> ecpr(e)? is finite. Then considering the identity map I of V as a map
from the graph G = (V, E) onto the metric space (V,d,.), the Dirichlet sum
of I is just equal to >, 7(e)? so that I extends to a continuous map from
the Royden compactification of G onto L,(V,d,) which sends the Royden
boundary onto 0L(V,d,).

Here we refer to a result due to Cartwright and Woess [11] (see also [37,
Chap.IV§6]). Let G = (V, E) be, as in Theorem 1.15, a connected, locally
finite, infinite graph uniformly embedded in the unit disk €2 of the complex
plane. We assume that 2 is endowed with the Euclidean distance dg. Let ¢
be the inclusion of V' into the metric space (€2, dg) and V' the accumulation
points of V' on the unit circle. Then it is proved in [11] that the Dirichlet sum
of ¢ is finite if G satisfies a strong isoperimetric inequality, and as a conse-
quence, for every Lipschitz continuous function ¢ on the Euclidean closure Q
of €2, there exists a unique function A on VUV’ such that h coincides with ¢
on V" and the restriction of h to V' is in HD[Eg]. We recall that G satisfies
a strong isoperimetric inequality if and only if £ has a positive spectral
gap Ao in L*(V, p©), that is, Y., o u(z)? < Ao 'E&(u) for all u € Dy[&q]
(cf. e.g., [37, Theorem (4.27)]). If these are the cases, the minimal Green
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function g of G is bounded from above by 2/)\¢ (cf. Remark 3.1 (ii)), so
that the conditions of Proposition 4.1 are satisfied. Therefore ¢ as above
extends to a continuous map of the harmonic boundary A(G) of G onto V”,
and thus if V/ has more than one point, then G has nonconstant harmonic
functions of finite Dirichlet sums. We refer the reader to [3] and [4] for
related results.

Now we consider a finitely generated, infinite, properly discontinuous
subgroup II of isometries of a proper geodesic space (Y,dy). Fix a point
oof Y and let ¢ : I — Y be a map from II into Y defined by ¢(g) =
g '(0), g € TI. We take a finite generating set S of IT with S = S~! and
consider the Cayley graph G = (II, Eg). First we carry out ”conformal”
changes of the metric of Y as in the case of graphs. For a positive continuous
function w on Y, the w-length L, (c) of an arc-length parametrized curve
¢ : la,b] — (Y,dy) is given by L,(c) = fabw(c(t))dt. Then we define a
distance d,(x,y) between two points x and y of Y by the infimum of L, (c)
where ¢ ranges over all arc-length parametrized curves joining x and y. Asin
the case of graphs, we are interested in the case when w. = exp(—edy (%, 0)),
where € is a positive constant. Then the Dirichlet sum of the map ¢ from Gp
into the metric space Y. = (Y, d,,) is given by

Sonr )= 5 Y du(0(9), vlag))”

g€ll,acS

Proposition 4.7 Suppose that the completion Y of the metric space (Y, d,,.)
s compact, and suppose that the critical exponent of I1 defined by

é(Il) = inf{s > 0 | Zexp(—sdy(o,g(o))) < +oo}

g€ell

is finite and 2e > e(Il), then 1 extends to a continuous map of the Royden
boundary of the Cayley graph G onto the intersection of the closure of the
orbit I1(0) in Y~ and the boundary of Y.

This is an extension of Theorem 2 with p = 2 in [8], where the space
of functions of finite Dirichlet sums of order p(> 1) are studied and the
theorem is concerning isometric actions on a proper CAT(-1) space. The
arguments there are valid for a proof of Proposition 4.7 and further it is
possible to show the proposition for functions of finite Dirichlet sums of
order p > 1. We refer the reader to [2] for some related results to Proposi-
tion 4.3, [7], [19] for those to Proposition 4.6, and [25] for some extensions
of Proposition 4.1, Theorem 4.2 and Proposition 4.7 to the case of Dirichlet
sums of order p > 1.
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5. Gromov-Hausdorff and variational convergence of
networks

In this section, we study Gromov-Hausdorff and variational convergence of
networks and exhibit some examples.

5.1 We begin with verifying that a connected, infinite network I' = (V, E, r)
is the limit of an exhausting family of connected subnetworks of I'. Given a
subset W of V', we denote by I'yy = (W, Ey, ry) the subnetwork generated
by W and write & and Ry for &r, and Rg,, respectively. It follows from
Lemma 2.5 that for subsets W and U with W C U, Re.(z,y) < Ry(z,y) <
Ry (z,y) for all z,y € W. Let W be a finite subset of V' and take an
increasing sequences of finite subsets V; of V' such that W C V;, V = U,;V}
and I'y; is connected. The family of the traces &y, yy, of &y on W satisfies
Evaw(u) < & (u) < gy (u) for @ < j and u € ((W). Given u € (W),
let u; be a unique function on V; such that u; = v on W, &y, (u;,v) = 0
for all v € £(V;) vanishing on W, and &y (u;) = &y (u) (cf. Lemma 1.6).
Then the maximum principle implies that miny v < u; < maxy v on V.
Then passing to a subsequence, we assume that u; converges pointwise to a
function uy, on V as ¢ — oo. For a fixed j, we have

Ev; (toopy;) = lim Ev; (uipy;) < lim Ev (w;) < Epy(w).

Therefore letting j go to infinity, we get &r(uq) < Ef gy (u). Since us = u
on W, we see that &r(us) = Efyy(u), that is, us is a unique minimizer of
Er in the family {f € D[&r] | f(x) = u(z), © € W}. Moreover it follows
from the above argument that lim; ... &7y (v) = lim; .o Ev; (u;) = Efgy (u).
This holds for all w € ¢(WW), which shows that lim;_,., Ry, (z,y) = Rr(z,y)
for all z,y of W, and hence V.

Now we prove the following

Theorem 5.1 Let (X, R) and {I';, = (V,,, B, 70, Ry)} be a separable metric
space and a sequence of connected, finite networks with the resistance met-
rics R,. Let p and p, be points of X and V,, respectively. Suppose that there
exist sequences of positive numbers {p,} and {e,} with lim,,_ p, = +o0
and lim,,_. €, = 0, and a sequence of maps f, : B, (pn) — X from the
metric ball B, (p,) of Vi, around p,, of radius p, to X such that f,(p,) = p,
|R,(z,y) — R(fu(2), fu(y))] < &, for all z,y € B, (p,), and furthermore
any finite subset W of X s included in the e,-neighborhood of the image
fn(By,(pn)) for all n large enough. Then the distance R of X is the resis-
tance metric on X associated to a resistance form (€, D[E]).
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Proof. Given a finite subset W = {1, ..., 2%} of X, we take a finite subset
W, = {Z1m, ..., Tin} of V,, in such a way that R(f,(zin),z;) tends to 0
asn — oo for all i = 1,..., k. Then from (1.1), (1.2), (1.3) and (1.5) in
section 1, we can deduce that there exists a unique resistance form &£j;, on W,
the resistance metric associated to which is just the metric R restricted
to W. Moreover we observe that for any finite subsets W, W5 of X, &}, is
the trace of &, on Wy if Wi C Wy; in particular, &, (ujw,) < &, (u) for
any u € ¢(W5). Let us now choose an increasing sequence of finite subsets
W; of X in such a way that W, = U;W; is dense in X, and define a form &
on a subspace D[E] of £(W,) by

i

DIE = {u € ((W.) | lim &, (ws) < +oo); E(u) = lim &, (uw,).

Then it is easy to see that the effective resistance Rg(z,y) between two
points z and y of W,, that is, Re(x,y) = sup{|u(x) — u(y)]*/E(u)|u €
DI€],E(u) > 0} is equal to R(z,y). Thus every function u € D[] uniquely
extends to a continuous function on X and the form is considered to be
defined on a subspace of C'(X, R). It is evident that & verifies the conditions
[H-2], [H-4] and [H-7]. This completes the proof of Theorem 5.1. [ |

Corollary 5.2 Let (X, &) and T, = (V,,, E,, 1) be as in Theorem 5.1. Then
one has

limsup A1 (Er,; uy, ) < AL(E; p)-

n—~o0

Proof. For a finite subset W of X, let WW,, be a finite subset of V,, as in the
proof of Theorem 5.1. Then as n — oo, the first nonzero eigenvalue of &y, |
A1(pfy, ), converges to that of £, A1(pfy). Therefore we have

lim sup Ay (py; ) < limsup Ay (pgy, ) = A (ugy)-

This holds for all finite subsets W of X, and so does for Aj(u%). This
completes the proof of the corollary. [ |

Definition 5.1 Given two metric spaces X, Y and a positive number &,
a (not necessarily continuous) map f : X — Y is called an e-Hausdorff
approximation if

sup |dy (f(21), f(22)) — dx (21, 32)[ <€
r1,2€X
and the image f(X) of f is an e-net in Y, i.e., dy(y, f(X)) < ¢ for every
y € Y. We say that a sequence of compact metric spaces {X,} converges
to a compact metric space X in the Gromov-Hausdorff sense if there exist
ep-Hausdorft approximations f, : X,, — X with lim,, .., €, = 0.
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We remark that every compact geodesic space can be obtained as a
Gromov-Hausdorff limit of compact geodesic graphs endowed with their
geodesic distances (cf. [9, Proposition 7.5.5]).

Definition 5.2 A pointed metric space (X, p) is a pair of a metric space
X and a point p € X. We say that a sequence {(X,,p,)} of pointed metric
spaces converges to a pointed metric space (X, p) in the Gromov-Hausdorff
sense if the following holds. For every p > 0 and € > 0, there exists a positive
integer ny such that for any n > ng, there is a map f from the ball B,(p,)
around p, with radius p in X,, to X satisfying the following properties:

(i) f(pn) =D;
(i) sup{|dx(f(21), f(22)) — dx, (v1,72)| | 21,72 € By(pn)} < &

(ili) the e-neighborhood of the set f(B,(p,)) includes the ball B,_.(p)
centered at p of radius p — €.

Now we prove the following

Theorem 5.3 Let {I',, = (V,,, E,, 7))} be a sequence of connected, locally
finite networks endowed with the geodesic distance d,.,, and let T' = (V, E, )
be a connected, locally finite, infinite network with the geodesic distance d,
such that for each vertex p and each positive number p, the metric ball B,(p)
in (V,d,) consists of finite vertices. Suppose that the pointed metric space
(Vi P, dy,) converges, asmn — oo, to the pointed metric space (V) p,d,) in the
Gromov-Hausdorff sense, and that for any large p, there exist positive con-
stants a,, b, and a positive integer n, such that a, < r, < b, on the geodesic
ball B,(py) for all n > n,. Then there exist a subsequence {I',,} and a re-
sistance form € on' V' such that the pointed metric space (Vy, pm, Rr,,) with
the effective resistance Ry, relative to (Er,,, D[Er,,]) converges, as m — oo,
to the pointed metric space (V,p, Re) with the resistance metric Rg relative
to the resistance form &€ in the sense of Theorem 5.1. Moreover the from &
satisfies that Do[EQ] C D[E] C D[ér], E(u) > Er(u) for all uw € DIE], and
E(u,v) = Er(u,v) for allu € D[E] and v € Dy|EY].

Proof. We take sequences of positive numbers {p,} and {¢,} respectively
with lim,, ., p, = +00 and lim,, ., €, = 0 in such a way that there exists a
sequence of approximating maps f, of the metric balls B, (p,) of (V,,d,,)
to V satisfying fn(pn) =D SUP{|dr(fn(x1)>fn(x2)) - drn(xbx?)l | T1,T2 €
B,,(pn)} < €n, and the e,-neighborhood of the set f,(B,, (p,)) includes the
ball B, .. (p) centered at p of radius p,,—¢,, in (V,d,). In addition, we choose
approximating maps hy, : B, 2(p) — B,,(pn) such that d.(f,(hn(z)),z) <
2, for all x € B, /2(p). Then in view of (1.6), we are able to choose
a subsequence {I',,} in such a way that for any z,y € V with x # y,
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the effective resistance Rr,, (hm(x), him(y)) between hp,(x) and h,,(y) in V,,
converges to a positive number R(z,y) as m — oo. In fact, as we have seen
in Theorem 5.1, the limit R(z,y) is equal to the effective resistance Re(x,y)
between x and y in V' with respect to a resistance form £ on V'; moreover if
we denote by &, (resp. &) the trace of &r,, on the metric ball B,(pn,) of
(Vin,d,,) (resp. the trace of £ on the metric ball B,(p) of (V,d,)), then we
have

Ey(Xas Xy) = T EL (X (@) Xt ()

for all z,y € B,(p). Since 0 < a, < 1, < b,, we see that for any z,y €
V with  # y and for all p and m large enough, & (Xnm(), Xhm(y) =
Er, (Xt (2)s Xhm(y))» Which is equal to —ry,(|hm(2)hm(y)]) ™t if  ~ y, and
equal to 0 otherwise; thus & (xz,X,) = limm, o Ty ([An () h (9)])7F =
—r(lzy])~" if 2 ~ y and E(Xa, xy) = 0 otherwise. In the same way, we
get Ex(Xaz) = D.pr(|z2]) 7" Since E(x;) = lim,_.o0 £5(X2), it follows that
Xz € D[E] and for all z,y € V,

Y s r(|lxz])™! for z =y,
E(Xas Xy) = —r(jzy))™t forxz ~y,
0 otherwise.

As a consequence, for any finitely supported function u on V', we have €(u) =
Er(u) = 5>, lu(x) —u(y)[*/r(lzy|). Moreover for any function v € £(V)),
we have

& (0, ) = lim E5 (v o fm)i,pm),

s b@—P s ke = ve ()

r(lzyl) =00 rm(lzy])

z,y€B,(p):xz~y z,YEBy(Pm ):x~y
and

| 2

1 VO fmlx) —vo f,
LS [vo fin(x) fm(y)

Tm(lxy|) S S;;p((v © fm)‘Bp(pm))a

2,Y€By(pm )~y

and hence we get
SR LG

)= ol

z,yEBy(p):z~y
Letting p — 00, we arrive at
Er(v) <E(w) < 400, velV).

In the same way, we can show that for u € DI[E] and finitely supported func-
tions v on V', £(u,v) = Ep(u, v). This completes the proof of Theorem 5.3. B
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Remark 5.1 (i) The limit form £ of Theorem 5.3 does not in general
coincide with the Dirichlet sum & of the network I'. See Remark 7.1 (i).

(ii) Given positive numbers a, b and ¢, we consider a set of locally
finite, connected networks I' = (V, E,r) such that « < r < b on E and
the degree of any point of V' is bounded from above by c¢. Then the set of
pointed metric spaces (V,p,d,) is compact with respect to the topology of
the Gromov-Hausdorft convergence.

5.2 We begin with

Definition 5.3 Given a compact separable Hausdorft space Y, a sequence
of such spaces X,,, and a sequence of maps f, : X,, — Y, we say that a
sequence of functions u, € C(X,) uniformly converges to a function u €
C(Y) (via f,) if lim, .o supy, |uo f, —u,| = 0. Let F : C(Y) — [0, 400
and F, : C(X,) — [0, +0o0] be lower semi-continuous functionals on C(Y)
and C(X,,) respectively. We say that F, I'-converges to F if the following
conditions are satisfied: (i) if a sequence of functions u,, € C(X,,) uniformly
converges to a function u € C(Y'), then we have
F(u) < 117?1 gffn(un) (< 400);

(ii) for any u € C(Y), there exists a sequence of functions u,, € C'(X,,) such
that u,, uniformly converges to v and

lim sup F, (u,) < F(u) (< 400).

n—oo

The following is a basic fact on this variational convergence.

Theorem 5.4 Let Y and {X,} be respectively a compact separable Haus-
dorff space and a sequence of such spaces. Given a sequence of maps f, :
X, — Y and a sequence of lower semi-continuous functionals F,, : C(X,) —
[0, 4+00], there exists a subsequence, {X,,}, and a lower semi-continuous
functional F : C(Y') — [0, +00] such that F,, I'-converges to F as m — oo.

Proof. Using the idea of De Giorgi’s I'-convergence (cf. e.g., [16]), we
introduce a functional on C(Y) as follows: Let B = {O;} be a countable
basis of C'(Y') such that O; is totally bounded. Given O; and a positive
integer k, let

Oixn={v € C(X,) | sup|uo f, —v| < 1/k for some u € O;},
Xn

and
Ei,k;n = lnf{Fn(U) | (S Oi,k;n} (S +OO)
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Then passing to a subsequence, {X,,}, we may assume that for any O; and
every k, E; .., tends to an extended number E;j, € [0, 400] as m — oo, and
thus we are able to obtain a lower semi-continuous functional F : C(Y) —
[0, +00] defined by

F(u) =sup{E;r | u € O;k >0}, uelY),
to which F,, ['-converges as m — oo. |

Let F, : C(X,) — [0,+0oc] and F : C(Y) — [0,400] be as in Theo-
rem 5.4. If F, is induced from a quadratic form &, on a subspace D|E,]
of C(X,), that is, F,(u) = &,(u,u) for u € D[E,] and F,(u) = +oo for
u € C(X,)\ D[], then the I'-limit F : C(Y) — [0, 00) is also induced from
a quadratic form &€ on a subspace D[E] of C(Y'). For the functional induced
from a quadratic form £ : D[] x D[] — R, we do not distinguish between
the functional and the form &. If all &, satisfy [H-4] and/or [H-7], then so
does the I'-limit €.

Now we consider a sequence {(X,, R,)} of metric spaces associated to
resistance forms &, on sets X,,. We assume that the following conditions are
satisfied:

(i) Each (X, R,) is compact.
(ii) There exist a compact, separable Hausdorff space Y, a sequence of

maps f, : X, — Y and also a sequence of maps h, : ¥ — X, such that
fn o h, uniformly converges to the identity map of Y as n — oo.

(iii) The functional &, I'-converges (via f,) to a functional £ : C(Y) —
0, +00] as n — oo.

(iv) For any sequence of functions u, € D[E,] such that sup, maxy,, |u,|
< 400 and sup, &,(u,) < oo, there exists a subsequence {u,,} which
uniformly converges to a function u € C(Y') as m — oo.

Our main result is stated in

Theorem 5.5 Under the above conditions, the following assertions hold:
(v) Let

Ju(z) — u(y)|?
&(u)

Then Re 'Y xY — [0,+00] induces a continuous pseudo-distance on 'Y
(admitting +o00 in its values), and one has

Rg(x,y):sup{ |u€D[5],5(u)7é0}, r,y €Y.

0 < Re(z,y) = lim Ry (hn(2), hn(y)) < +00, z,y €Y.

n—oo
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(vi) OnY, an equivalence relation ~y is introduced as follows: x ~y, y if
and only if Re(z,y) < +00. Then 'Y is decomposed into a finite number of
the equivalence classes Y, (o = 1,...,p); each class Y, is open and closed
i Y. Moreover for each o and large n, the inverse image of Y, by fn,
Xna = [ 1 (Ya), is open and closed in X,, and one has

n

Tim sup{|Ru(,9) = Re(fal@), fuly))] | 2, € Xa} =0

lim sup Re(fn(Xna),y) =0.
0 yeYa
(vii) Let xo be the characteristic function of the subspace Y, (1 < a < p).
Then xo € D[E] and E(Xa,u) =0 for all u € DIE], and if E(u,u) =0, then
u s a linear combination of the characteristic functions x, (1 < a < p).
Moreover let D[E,] = {u € D[] | supp u C Y,} and Ey(u,v) = E(u,v) for
u,v € D[E,]. Then DIE] =>""_, DI&,] and E(u,v) =>°F _, Ea(Xalt, Xav)-

a=1 a=1 %Y

(viii) Another equivalence relation ~q on Y is introduced as follows:
x ~o y if and only if Re(z,y) = 0. Let Y* =Y/ ~g and Y5 =Y,/ ~o
(v = 1,...,p) be respectively the quotient spaces of Y and Y,. Then for
each o, Rg provides Y. a distance R, which induces the same topology as
the original one, and D[E,] is included in the pull-back of C(Y)) by the
canonical projection p, of Yo onto Y. Thus the form &, can be assumed to
be defined on C(Y)); (Ea, D[Ea]) becomes a resistance form on Y. and R,
18 the associated resistance metric, that is,

|u(z*) — u(y*)|?
Ea(u)

R.(x*,y") = sup{ | u € DIE,], Ealu) # 0} , L yteyY].

Moreover a sequence of the compact metric spaces (Xp.q, Rn) converges to
(Y, R,) as n — oo in the Gromov-Hausdorff sense via the approzimating
maps po © fn @ Xpo — Y3, and the form €% on C(Xya) [-converges to
E, asn — 00. ’

Now we mention two consequences of the theorem.

Corollary 5.6 Let {K,} be a sequence of subspaces of compact geodesic
graphs |I'y| associated to connected, finite networks Iy, = (V,,, En,1y), and
suppose that the metric space K, with the induced geodesic distance d,,
converges to a compact metric space (X, dx) in the Gromov-Hausdorff sense
via approximating maps f, : K, — X. Then the resistance metric Ry,
restricted to K, converges to a continuous pseudo-distance R on X with
respect to the Gromov-Hausdorff distance (via the same approzimating maps)
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if and only if the resistance form Ej; T'-converges to a functional € on C(X)
as n — oco. In these cases, one has

OSR(x,y)SdX(-T,y), x?QGXa

and R is given by

u(z) — uy)P?

&(u)

Corollary 5.7 Let {(X,, R,)} be a sequence of compact metric spaces of
resistance forms &, which converges to a compact metric space (Y, Ry) in
the Gromov-Hausdorff sense via approrimating maps f, : X,, — Y. Then
the resistance form &, I'-converges, as n — 00, to a resistance form &
on C(Y) via the approximating maps f,, and the limit distance Ry is the
resistance metric associated to the form &.

R(;E,y):sup{ |u€D[5],€(u)7é0}, z,y € X.

In these corollaries, the definition of a resistance metric allows us to apply
Ascoli-Arzela’s theorem to the sequences and verify that the compactness
condition (iv) holds true.

Proof of Theorem 5.5. The proof will be divided into 4 steps.
Step 1. We first note that for u € D[€] and a sequence of u,, € D[E,] which

uniformly converges to u as n — oo, we have

(@) —u@)? . Jun(hn(@) — (A ()2
Ty = lmsup &, (un)

for all z,y € Y, since £(u) < liminf, o &, (uy).

Now for any u € D[E], we take a sequence of u,, € DI[E,] in such a way
that u, uniformly converges to u and &, (u,,) tends to £(u) as n — oo. Then
we have

)~ u@P . Jala(e) — (@)
E(u) n—o00 Enuy)
< liminf Re, (hn(2), ha(y)) (< +00)

for all =,y € Y. This shows that

(5.1) Re(z,y) < liminf Re, (hn(x), hp(y)) (< +0), z,y €Y.

n—oo
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Given distinct two points z,y € Y, let r = limsup,,_, Re, (hn(z), hn(y))
(< +00) and then take a subsequence {m} such that Rg, (h,(2),hn(y))
tends to r as m — oo. For z,, = h,(z) and y,, = hn(y), let v, be a
unique function in D[E,,] satisfying vy, (Tm) = Re,, (Tm; Ym) Y2, Vm(Ym) =0
and &, (vy,) = 1.

Suppose first that r is finite. Then {v,,} is uniformly bounded, since
0 < v < Re, (Tm,ym)"/?. Therefore by condition (iv), passing to a sub-
sequence if necessarily, we may assume that v, uniformly converges to a
function v € D[] as m — oo. Then v(z) = r/2 v(y) = 0 and E(v) <
liminf,, o En(vm) = 1. In the case where £(v) > 0, we have Rg(x,y) >
lv(z) —v(y)]?/E(v) > r, and hence it follows from (5.1) that Re(x,y) =1 =
lim,, o0 Re,, (Tm, Ym); in addition, v satisfies v(z) = Re(x,y)"?, v(y) = 0
and £(v) = 1. In the case where £(v) = 0, we can deduce that v(z) = 0,
and as a result, 7 = 0 and hence lim,,_,o Rg,, (hn(2), hn(y)) = Re(x,y) = 0.
In fact, suppose contrarily that v(x) # 0; then for w € D[E] with £(w) > 0
and w(y) = 0, and for any € > 0, we would have |v(x) +ew(z)]?/E(v+ew) =
lv(z) + ew(x)]?/e2E(w) < Re(z,y), and hence letting e — 0, we would get
Re¢(x,y) = 400 and hence r = +00 by (5.1). This is a contradiction.

Suppose secondly that r = +00. Let w,, be a unique function in DIE,,]
such that wp,(z,) = 1, wp(ym) = 0 and &, (wy,) = Re, (Tm, ym) . Due
to the maximum principle, we see that 0 < w,, < 1, and the assump-
tion implies that &,,(w,,) tends to 0 as m — oo. Therefore passing to a
subsequence, we may assume that w,, uniformly converges to a function
w € DI[E] such that w(z) = 1, w(y) = 0 and £(w) = 0. This implies that
Re(z,y) = limy,—.0o Re,, (hm(x), him(y)) = +00. Thus we have shown that
0 < Re(z,y) = limpoo(hn (2), hin (y)) < +00.

Now we have two equivalence relations ~¢ and ~; on Y defined respec-
tively by x ~¢ y < Re(z,y) =0 and = ~, y & Re(z,y) < +0o. We denote
by Y* and Y** respectively the quotient spaces induced from the equiva-
lence relations ~y and ~j,. Then we are allowed to assume that D[] is a
subalgebra of the space of continuous functions on Y*, C(Y*), and & is a
functional on C'(Y*) with values in [0, +o0].

Step 2. In this step, we prove that Rg : Y X Y — [0, +00] is continuous.
We first claim that Rgn(i>(hn(i) (23), hngiy(y)) goes to zero as i — oo for any
y € Y and a sequence of points z; € Y tending to y, and for every divergent
sequence {n(i)}.

To see this, suppose contrarily that limsup; ., e, (hn@) (i), hniiy (y))
= +4o00. Then we choose a subsequence, say {n(j)}, in such a way that
Re, ., (hn(j) (%), hnjy(y)) diverges to infinity as j — oo. Let v, be a
unique function of D[&,;)] such that v,y (hy)(2;)) = 1, Uny(hng)(y)) =0
and &,y (vn()) = Re, ) (hug)(x5); hugy(y)) ™" Passing to a subsequence,
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we may assume that v,y uniformly converges to a function v € D[£]
with £(v) = 0. Since lim; o [V(fng) © Angy(2;)) — 1] = limj_o [v(fag) ©
hn() () = Vn(g) () (25))] = 0, Tim oo fug) © Py (25) = y and v is contin-
uous, we get v(y) = 1. On the other hand, since lim;_. [v( fu(j) 0 hn)(¥))| =
imj oo [V(fai) © Py (¥)) = Vny (M) (y))] = 0, we get v(y) = 0. This is a
contradiction. Thus Rgn(i)(hn(i) (23), hngiy(y)) is bounded as i — oo.

Let wy;) be a unique function of D&, ] satisfying wna)(hn (@) =
Re, o (Pniy (), Py ()2, wngay (Pniy (y)) = 0 and Engiy(wniy) = 1. Passing
to a subsequence, we assume that w,) uniformly converges to a function
w € D[E] as i — oo. Then |wy)(hni)(2:)) — w(fr@) © b (2:))] tends to
zero as i — oo and hence we have w(y) = lm; oo w(fnp) © hny(2s)) =
lim; o Re, ;) (P (i), hugiy(y))/2. On the other hand, we have w(y) =
lim; oo w(fr(i) © (i) (1)) = 0, since [w(fugi) © hnge) (4))] = [w0(fugy © hngy (y)) —
Wa (i) (hn@)(y))| tends to zero as ¢ — oo; thus lim; . Re, . (i) ()5 hni) (1))
= 0. As a result, we see that Re(z,y) goes to zero as x — y and hence
Re 1Y xY — [0,+00] is continuous. Note also that each equivalence class
with respect to the relation ~; is open and closed. Since Y is compact, Y **
is a finite set, and Y is decomposed into the p equivalence classes Y7, ..., Y.
Notice that Rg is bounded if Y is connected.

Step 3. In this step, we show that

(i) lim sup Rg,(z,hyo fu(x)) =0 and

n—0o0 CEEXTL

(i) lm sup |Rg,(z,y) — Re(ful(z), fu(y))|=0 foreach a=1,...,p.

n—oo ﬂ%yGXn;a

To prove the first assertion (i), let us consider a sequence of points x, € X,
and let y,, = hy, o f,(z,) € X,,. For the proof, we may assume that x,, # y,.
Let v, be a unique function of DI[E,] satisfying v,(z,) = Re,(Tn, yn)"?,
n(yn) = 0 and &,(v,) = 1. In the case where Rg,(x,,y,) is bounded
as n — oo, passing to a subsequence, we may assume that v, uniformly
converges to a function v € D[E] as n — oo. Then |v,(z,) — v(fu(zn))],
[0 (Yn) — v(fn(yn))| and d(fn(zn), fu(yn)) tend to zero as n — oo, where
d is a distance on Y that induces the same topology of Y, and hence we
get lim, oo Re, (Tn, Yn) = liMy oo U0 (2,)? = lim, oo vn(yn)? = 0. This
shows the first assertion, since {z,} is arbitrarily chosen. In the case where
Re, (2, y,) diverges to infinity as n — oo, we consider a sequence of func-
tions w, = v,/Re, (Tn,yn)"/?. Then passing to a subsequence, we may as-
sume that w, uniformly converges to a function w € D[] as n — oo and
we can deduce that lim, . w(f,(z,)) = 1 and lim, o w(fn(y,)) = 0. But
this contradicts to the continuity of w, since d(f,(x,), fn(ys)) tends to zero
as n — oQ.
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Step 4. Given a closed subset K of Y and a continuous function v on K, we
set as before A, := {v € D[] | vix = u}, D[E;] := {u € C(K) |A, # 0},
and & (u) := inf{€(v) | v € A,}. When A, is empty, we understand
Er(u) = 400, and when A, is not empty, there exist minimizers h in A,.
They are uniquely determined on Y, if K NY, # ), and they are constants,
not uniquely determined, on Y, otherwise. In what follows, we consider
a finite subset K = {z1,...,2n} of Y such that 0 < Rg(z;, x;)(< +00)
for any pair of i,7 with ¢ # j, and further K intersects every Y,. For
any u € ((K), we denote by Hg,, the unique minimizer of A,. Let K, =
{hn(z1),..., hp(zN)} C X, Since Rg,(hn(x;), hn(x;)) tends to Re(z;, x;)
as n — 00, hig : K — K, is bijective and the trace £ on K, I'-converges
to the trace £ on K as n — o0o. Let x; = Xa, € €(K) and Xpni = Xhn(z:) €
((Ky) for simplicity. Then we can deduce that £ (Xnis Xn;i) is bounded as
n — oo. In fact, letting ¢, j = —Ex (Xnii, Xnyj) and recalling (1.5), we have

Z Cn;i,jRgn(h’n(xi)’ hn(.T])) - 2(N - 1)’

ij=1
and hence

0 < cnij < 2(N — 1) Re, (hn(x3), ha(5))
for i # j. The right side tends to (N —1)Rg(z;, ;)" as n — oo, and hence
Cnyi,; are bounded uniformly from above by a constant 0. Therefore we have

i = Z Criij < (N —1)b.
J#i

Note that as n — 00, ¢, ; goes to zero if x; € Y, and z; € Y3 with o # (.
Moreover we claim that £ (x;, x;) = 0 for such a pair of 4, j. In fact, we
take a function ¢,,; € C(K,) in such a way that ¢, uniformly (pointwise
in this case) converges to x; and £ (¢n;) tends to Ex(x;) as n — oo. Then
we see that £ (Pnyi, Xnyj) goes to Ex(Xi, X;) as n — o0o. On the other hand,
we have

g}k{n (nsis Xnij) = Z —Cnyjk(Onsi (P (25)) — i (A (1))
K
kj
the right side tends to 0 as n — oo. Thus the claim is verified.

Now we choose an increasing sequence of finite subsets K; = {z1,...,zn,}
of Y in such a way that U, K, is dense in Y* and furthermore for z,y € K,
Re(z,y) > 0if x # y. Then we can deduce that u € D[] C C(Y) if and only
if limy o €, (U)x,) < 400 and in this case, &£(u) = limy_. £, (v k,) < +00.
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Moreover as we have shown, it holds that

S}k(t (u|Kt’ U|Kt) = Z S}k(t (Xau‘Kim XQU‘Kt)

for all u,v € D[E]. This proves the assertion (vii). The last (viii) follows
from the others. This completes the proof of Theorem 5.5. |

In the case where a sequence of connected, finite networks (V, E,, r,)
with the same set of vertices V' is considered, letting f, as in Theorem 5.5
be the identity map of V', we see that the condition (iv) is always satisfied.
Therefore we can apply our theorem to this case. See Example 5.4, and also
Colin de Verdiere, Pan and Ycart [14] for related results.

5.3 Now we consider a family of resistance forms £ on sets X satisfying
[H-6] endowed with Borel measures p on X such that u(X) = 1 and the
resistance metrics Re are bounded from above by a positive constant D?.
Then as shown in subsection 3.2, we have isometric embeddings of the metric
spaces (X, S,,) into a fixed compact subset B%?(r(D)) of the Hilbert space ¢2,
Recall here the fact that the set of closed subspaces of a compact metric space
is indeed compact with respect to the Hausdorff distance (cf. e.g., [9]). We
intend to apply this fact to our family.

Let (X, En, iin) be a sequence in the family. Suppose for simplicity that
the measure (i, is positive on each X,,, that is supp p, = X,,. Let {\,.| i =
0,1,...} be the set of eigenvalues in nondecreasing order of the self-adjoint
operator £, associated to the form &, on L*(X,,, iu,). We take a complete
orthonormal system ®,, of eigenfunctions ¢, ; of £,, with the i-th eigenvalues
Aniy and consider the map J, : X,, — (2 defined by J,(x) = (e_’\"%i/%n;i)
as in subsection 3.2. Then every image J,(X,) of X, stays in a compact
subset BM2(r(D)) of £2. Therefore passing to a subsequence, we assume
that J,(X,) converges to a compact subspace Z of B?(r(D)) with respect
to the Hausdorff distance on the set of closed subsets of BY?(r(D)). In
other words, there exists a sequence of positive numbers ¢,, tending to zero
as n — oo such that for any point x € X,,, we find a point f,(z) € Z
satisfying || fn(x) — Ju(2)]le < en, and also for any point a € Z, we get a
point h,(a) € X, satisfying ||a — J,,(hn(a))|lz < €,. Using the coordinate
functions v; : > > R (i = 1,2,...) of 2, v;((x;)) = z;, these inequalities are
written as follows: Y0° (vi(fu(z)) — e i/2¢,,.4(x))? < €2, for all x € X,,;
S (vila) — e i 2¢,.4(h,(a)))? < €2 for all a € Z.

Now using the eigenvalue estimate in (3.6) and passing to a subsequence,
we assume that for each i, \,; goes to an extended number \; € (0, +0o0] as
n — 0o. We define functions ¢; on Z by

¢i(a) = M?y(a), a€Z
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In the case where Ay_; < 400 but Ay = +o0o for some finite N, we have
vi(a) = 0 for all i« > N, and we assume that ¢; = 0 for all ¢ > N for our
convenience. Then the inequalities mentioned above are expressed as

o0

S (€ fal@) = e g0 < 2 we X,
=1

> (e Pgi(a) — e Rgi(ha(a)? < €2, a€ Z.
i=1
In particular, for each 7, ¢, uniformly converges to ¢; as n — oo.
In view of Theorem 5.4, we can pass to a subsequence so that the func-
tional &, on C(X,, S#") I'-converges to a functional £ on C(Z) as n — oo.
Then we observe that ¢; € D[] and E(¢;) < \;, since

Let

2
Re(a,b) = sup {M | ue DIE], E(u) > 0} , a,beZ.
&(u)

Then 0 < Rg(a,b) < D? for all a,b € Z with a # b, since we have |u(a) —
u(b)|? < D?*E(u) for all u € DIE]; the positivity of Rg is a consequence of the
separation of points of Z by the family {¢;}. The functional &£ satisfies [H-2’],
namely it is lower semi-continuous with respect to the uniform norm of C'(7),
hence [H-3] follows. Obviously [H-4] and [H-6] hold true.

Since p,(X,) = 1, by passing to a subsequence, we assume that the image
measure f,. i, vaguely converges to a Radon measure @ on Z as n — oo.
Let K be the support of the limit measure 1 and consider the trace £} on
K of €. Let I be a nonnegative integer and u a function in D[] such
that [ wi;dp = 0 for ¢ = 0,1,...,1 — 1, where we put ¢); = ¢;x and no
conditions are imposed if I = 0. Let H., be the unique minimizer in A,,
and then choose a sequence of functions w,, € DI[E,] such that as n — oo,
u,, uniformly converges to H, and &, (u,) tends to Ex(u) = E(Hk.,). Let
Up.p = Up — Zf;ol(f UnPr:idfin) G, where we understand w,.o = u, if I = 0.
Then we have

)\n;[/ui;] dpt, < gn(un;f)
-1 I-1 2
= &0l =23, [ttt o) + 5 i [ i
i=0 =0
I-1 2
/Un¢n;idﬂn Sn(un)1/2 + Z)‘n;i (/ un(bnﬂ'd””) :
=0

I-1
< Ealun) +2) N7
=0



420 A. KASUE

Therefore letting n — oo, we get

)q/u2d,u < Ex(u).

This shows in particular that u = 0 if u € D[] and [ wi);dp = 0 for all i.
Moreover applying this to u = 1); and using (5.2), we have

Ar = Ex (Y1) = E(¢r)

:inf{c‘:}“((u)) /u2du=1,/utﬁiduzo(izO,l,...,]—l)};

in addition it is easy to see that £(¢;, ¢;) = d;;A; fori,j =0,1,2,....

Now we are given u € D[€)]. Let v be a function in A, and {v,} a
sequence of functions in D[E,] such that v, uniformly converges to v and
En(vy) tends to E(v) as n — oo. Since

I-1 2 I-1 2
=0

1=0

for all positive integers I, we get

(5.3) 2 M < / widu)Q < ().

Let hry = S0, [uhdp ¢; for 0 < I < J < +oo. Then we take a point
y € K so that hy;(y) = 0 (such a point exists, since [ hrydp = 0). Then we
have

2
hiy(z)? < D*E(hyy) = DQZA (/m/)idu) . z€eZ

Since the right side tends to 0 as I — oo, Y oo [utp;dp ¢; uniformly con-
verges and we put h = > 2, [ u);dp ¢;. Then we obtain

E£(h) < iA (/ widu)Q.

This together with (5.3) implies that

Ex(u Z)\ (/widu)z.
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Thus we see that given u € D[E}], Hrw = Y oy Judidp ¢; in C(Z) and

Eie() = & (Hicuuy) = z (/ugﬁidﬂ)z.

In what follows, given u € D[E}], we write @ instead of H., for short.
To state a result on spectral convergence, we need some definitions. We
define a linear map T, : D[Ef] — L*(Xp, pn) by To(u) = fra for u €
DI[Er]. A sequence of functions w, € L*(X,,u,) is said to L? strongly
(resp. L? weakly) converge to a function v € L*(K,p) if there exists a
sequence of functions v; in D[E)] such that lim; .o [|v; — 2k = 0
and lim; o limsup,, o |70 (vi) — unl|L2(xp ) = O (resp. if, for every v €
L*(K, p) and any sequence of v, € L?(X,,, u,) which L?-strongly converges
t0 v, My, o0 (Un, V) 22X pn) = (U, V) 220k, ) (cf. [33]).

Theorem 5.8 Let {(X,,En, pin)} be a sequence of triplets {( Xy, En, in)} as
above such that the effective resistance Rg, is uniformly bounded from above
by a positive constant D? and the total mass 1, (X,) is equal to one. Then
there exist a subsequence {(Xm,Em, bm)} and a triplet (Z,€, ) satisfying
the same conditions as above and the following:

(i) The metric space (Z,S") is compact and the sequence of metric spaces
(X, S*m) converges to it in the Gromov-Hausdorff sense via approzimating
Borel maps f, : X, — Z and hy, : Z — X,,.

(i) The sequence of the forms £, I'-converges to & and D[E] € C(Z, 5").

(iii) The image measure fo.fim weakly converges to p.

(iv) It holds that
SH(x,y) < Re(x,y)Y? <liminf Ry, (hp(z), hin(y))* < D, z,y € Z.

v) If a sequence of functions u, € L*(X,,, ) L?-strongly converges to
(v) u
a function u € L*(K, ) as n — oo, then one has
E(u) <liminf &, (u,) < +oo.
(vi) Let {u,} be a sequence of functions u,, € D[E,] with sup,, &, (u,) +
HunH%Q(Xn’Mn) < +00. Then there exist a subsequence {u,,} that L*-strongly
converges to a function v € D[E] as n — oo.

(vii) Let {u,} be a sequence of functions u, € L*(X,,u,) such that
sup,, [[tnl|L2(x0 ) < +00 and suppose {u,} is L*-weakly converges to a
function w € L*(K,u). Then for any a > 0, w, = R, .aly uniformly
converges to w = (Rqu)™ and E,(wy) tends to Ej(w) as n — oo, where
Rynia and R, are respectively the resolvents of the operators L, and L,,.
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Now we investigate a nonnegative quadratic form £ on a set X satisfying
[H-5], [H-2] and [H-6], and endowed with finite Borel measure p such that
[ Me(z) du(z) < +oo. Let K = supp pand ® = {¢; | i = 1,2,...} a
complete orthonormal system of eigenfunctions ¢; of the operator £,, acting
on L*(K,p) with eigenvalues ;. The Green function gg(z,y) is expressed

on K as
o0

ge(@,y) = Z %@(x)@(y), r,y € K.

i=1

In particular, we have

[ getez) duto) = Y- 1

so that
)

" Tosloa)due)

Let St(z,y) = (3202, e (¢i(x) — ¢i(y))?)Y? for 2,y € K. Then S* provides
a distance on K which is isometrically realized in ¢? by an imbedding Jg :
K — { defined by Jg(z) = (e /%¢;(x)), v € K.

Suppose that sup,cx gs(z,2) < D? and u(K) < M for some positive
numbers D and M. Then the image J3(K) is included in a compact space
in £2, so that the completion (K, S*) is compact. Moreover as in Lemma 3.8,
every function u € D[€] extends to a continuous function # on K and the
eigenfunction expansion of 4, 4 = Y .o, [ugidu ¢;, converges in C(K).
Now, repeating the same arguments as above, we can deduce an analogue
of Theorem 5.8.

A

i=1,2,....

In the rest of this section, some examples are exhibited.

Example 5.1 Let I' = (V, E,r) be a connected, finite network and |I'| the
metric graph associated to I'. We take a sequence of Radon measures p,, on
|| with supp p,, = |T'| and suppose that u,, vaguely converges to a measure
v such that g =3, m(v)?d,, where 7 is a positive function on V. Then
the limit of (|I'|, &y, ttn) as n — oo in the sense of Theorem 5.8 is described
as follows: (Z,&,u) = (V,&p, u), supp p =V (and hence & = &r) and the
approximating maps are given by the identity map.

Example 5.2 Let K, = (V,,, E,,r,) be the complete graph of n vertices,
say V, ={1,2,...,n}, endowed with resistance r = n/2. Then the effective
resistance R, is equal to 1. Let (£, D[€x]) be a quadratic form on NU{occo}
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defined by
D[] = {u € ((NU {oo)}) ‘ Z (i) — u(o0)|? < +oo};
u) =2 |u(i) — u()|>, € DIE].

1€EN

We assume that V), sits in N U {oo} and consider the trace £Z., of &
on V;,. Then the effective resistance of £ .y, is equal to 1 and (K,, &k, ) can
be identified with (V;,, €%y, ). The limit of £ ., as n — oo is given by the
trace £ of £, on N, that is

DIE N = {uef )‘ Z|u(2’)—c|2<+oo for some CER};

1€EN

Era() =23 Juli) — u(s)?, w e DIE,
1€eN
where u(00) = limy, o Y ;cy. u(i)/n. Let 7 be a positive function on N such
that >,y 7(i)* < +o00. Then (Vi,,E v, fin = D ey, m(0)?0;) converges to
(N, &L it = Y ;en7(i)%0;) as m — oo in the sense of Theorem 5.8; the
approximating maps are given by the inclusion maps.

Example 5.3 Let G,, be a subgraph of the integer lattice Z? generated
by the set of vertices V,, = {(z1,...,2q) | |z:| < n,0 = 1,...,d}. We
consider the case where d > 3 and a sequence of measures pu,, on V,, defined
by pn(u) = > ey u(z)m(z)? (u € £(V,)), where 7 is a positive function
on Z* such that > ;. 7(2)* < 400. Then we have a compact metric space
(Z*U{oo}, S, 1) to which the sequence of G, with the measure i, converges
in the sense of Theorem 5.8. However the effective resistance of Z? U {oo}
provides it with the discrete topology.

Example 5.4 We consider Markov forms on a finite set X and their I'-
limits. Let M be a family of Markov forms £ on ¢(X') such that the resistive
networks associated to the forms £ are connected and there exist functions
u satisfying €(u) = 0 and [, v® dus(= Y, oy u(z)?) = 1; such functions
do not change their signs and here after we take the positive ones, denoted
by me. Associated to such a form £, we have a Markov form & defined by
E(u,v) = E(ume, vre) for u,v € ((X), that satisfies [H-1] and [H-4].

We are now given a sequence {&€,} in M and suppose that as n — o0,
the associated forms &, I-converges to a form & defined on a subspace D[E]
of /(X) in the same manner described as in Theorem 4.5. We keep the
notations there. Then D[&] can be identified with the space of functions on
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the quotient space X* = X/ ~¢ and the limit form € will be also considered
relative to the equivalence relation ~y, £ splits into the sum of the forms
Ex on X (= Xao/ ~p). Now we assume that the functions m,(= 7¢,) on X

pointwise converges to a function m on X as n — oo, and define a function 7
on X* by 7(z*) = > 1 m(@) for 27 € X7 Let p: X — X* be

N

the canonical projection and &% the trace of & on the support K of the
function 7. For a function v € D[é}f{], we assume that the minimizer Hg,,

vanishes in the component X7 that does not intersect K. We define a linear
map S of £(X*) into {(X) by S(v) = mHg,, op for v € £(X*). Then S is
injective, and a Markov form (&, D[£]) on X is given by letting £(S(v)) =
SA;(’U) for S(v) and £(u) = +oo for a function u that does not stay in the
image of S. In what follows, we prove that the Markov forms &, on ¢(X)
[-converges to £ as n — oo. To do this, it suffices to verify that if &, I'-
converges to a form &', then & = &. Let v be a function on K. We take a
sequence of functions u, on X in such a way that u, converges to Hg., o p
pointwise on X and é'n(un)(: En(mruy)) tends to é(Hf(;v o p). Since T, Uy,
converges to S(v) = mHg,, o p, we get

E'(S(v)) < lim inf &, (myu,) = lim En(un) = E(S(v)).

On the other hand, for ¢ € D[E'], we have a sequence of functions ¢, on
X such that ¢, converges to ¢ pointwise in X and &,(¢,) tends to £'(¢)
as n — oo. Here we may assume that ¢, /7, € L*(X,72u¢) L*-strongly
converges to vop € L2 X, 72uc) for some v € ¢(K). Then we have S(v) = ¢
and

c‘f}{(v) < lim inf Enldn/mn) = E'(9).

Thus we have shown that & = €.

Now we illustrate a particular example of I'-convergence of Markov forms
described above. Let (X, E,r) be a finite network and £ the associated form
on /(X ). Given a sequence of positive functions m,, on X, we have a sequence
of Markov forms &, on ¢(X) defined by

En(u,v) = E(u/my,v/m,), u,vel(X).

Suppose that m, converges to a nonnegative function 7., on X. Let u,
(resp. fiso) be measures on X given by p,(u) = >y u(z)m,(x)® (resp.
froo () = 37 u(®)Too(2)?), where K stands for the support of m.,. Then
as n — oo, the symmetric operator of L*(V, u,) associated to £ converges
to that of L2(K, j1s0) associated to the trace £ on K in the sense of Theo-
rem 5.8. Moreover the form &, I'-converges to a Markov form (€, D[E])
on £(X) defined by D[€x] = {Hk. | v € ((K)} and Eo(Hiw) = E(Hk ).
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6. Convergence of potentials and harmonic functions

In this section, we consider a sequence of compact metric space (X,,, R,,) of
the resistance forms &,, and assume that it converges to a compact metric
space (Y, Ry) in the Gromov-Hausdorff sense via approximating maps f, :
X, — Y as in Corollary 5.7. Let &y be the resistance form on Y associated
to the metric Ry.

Let us begin with stating the following

Lemma 6.1 Let {u,} and {v,} be sequences of functions u, and v, in
DIE,] such that as n — oo, E,(uy) and also &,(vy,) are bounded and further-
more u, and v, uniformly converge to continuous functions u and v on 'Y,
respectively. Suppose that E,(uy,) tends to Ey(u) as n — oco. Then one has

Ey (u,v) = lim &, (up,vy).

See Lemma 3.4 in [26] for the proof of this lemma.
Now we show the following

Lemma 6.2 Suppose that a sequence of functions u, € DI[E,] uniformly
converges to a function u € D[Ey] and E,(uy,) tends to Ey(u) as n — oo.
Then a sequence of the energy measures i, vaguely converges to the energy
measure Ly of u in the sense that

ti [ 26 dugy = [ 6 dueo, o€ CY)

Proof. Since D[Ey] is dense in C(Y'), it suffices to prove the lemma for
¢ € D[Ey]. Then we take a sequence of functions ¢,, € DI[E,] in such a way
that ¢, uniformly converges to ¢ and &,(¢,) tends to Ey(¢) as n — oc.
Then in view of Lemma 6.1, we see that

lim | ¢, dig,y = Um E(Pntin, uy) — %5 (¢, u2)
= Ey(pu,u) — —Ey /(b d ()

Hence we get

ti [ 26 ducuy = Y [(516 = 6,) diguy + [ 00 du,) = /¢w

This completes the proof of Lemma 6.2.

We say that a sequence of closed subsets K, of X,, converges to a closed
subset K of Y if f,(K,,) converges to K in Y as n — oc.
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Lemma 6.3 Let {K,} be a sequence of closed subsets of X, which converges
to a closed subset K of Y asn — oco. Then given u € D[Ey; K|, there exists
a sequence of functions u, € DI[E,; K,] such that as n — oo, u, uniformly
converges to u and &,(uy) tends to Ey (u).

Proof. For a positive number a, let Q,(—a) = {z € X,, | R.(z, K,,) > a}
and Q(—a) ={z € Y | Ry(z, K) > a}. Given u € D[Ey; K], we may assume
that u is supported in Q(—a) for some a > 0, because we can approximate u
by functions supported in Y\ K. Then we can take a sequence of functions
v, € D[E,] which uniformly converges to u in such a way that &,(v,) tends
to Ey(u) as n — oo. Let €, = 2sup{|v,(z)| | z € X,, \ Qu(—a)}, and put
u, = max{v], e} — max{v,,e}. Then u, vanishes on K, and uniformly
converges to u as n — oo, since ¢, tends to 0 as n — oo. Moreover noting
that &,(u,) < &,(v,), we have
Ey(u) < ligriirolf En(uy) <limsup &, (v,) = Ey(u).

This shows that lim, . E,(u,) = Ey(u), and the proof of the lemma is
completed. [

In Lemma 6.3, we assume further that u € D[€y; K] is nonnegative on a
closed subset L of Y with K N L = (J; then for a sequence of closed subsets
L, of X, which converges to a closed subset L, we can find a sequence of
functions u, € D[E,; K,| as above with u,, > 0 on L,.

Theorem 6.4 Given a sequence of proper closed subsets K, of X, which
converges to a proper closed subset K of Y, the Green function gk, of
DIE,; K] uniformly converges to the Green function gx of D[Ey; K] as
n — oo, that is,

lim sup gk, (2, y) — gx(fu(®), fu(y))] = 0.

n—oo r,yEXn

Moreover let {v,} be a sequence of signed Radon measures v, on X, with
sup,, |vn|(Xn) < 400, and suppose that v, vaguely converges to a signed
Radon measure v on'Y. Then the function U,, () = v, (9K, (2, %)) (x € X,,)
uniformly converges to the function U,(z) = v(gr(z,%)) (x € Y), and
E.(U,,) tends to Ey(U,) as n — oo.

Proof. We assume that the diameter of (K,, R,,) is bounded from above
by a positive constant b. Let U,, = U,, and U = U, for simplicity. Then we
have

Un(@)] < EU)2H2, 2 € X,

and hence
En(Un) = v, (Uy) < gn(Un)1/2bl/2|Vn|(Xn)‘
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These imply that &,(U,) < blv,|(X,)? and |U,| < b|v,|(X,,). Therefore
it follows from the compactness property of the convergence, 5.3 (iv), that
there exists a subsequence {Uy} which uniformly converges to a function
V € D[éy] as k — oo. For any u € D[Ey; K], Lemma 6.3 allows us to take
a sequence of functions u, € D|[E,; K,| which uniformly converges to u in
such a way that &,(u,) tends to &y (u). Then by Lemma 6.1, we have

Ey(V, u):ljirglo Ex (U, uk)Z;}EEO Un(ug) = kll_{go Un(ug—fru)+v,(fou) = v(u).

This shows that V' = U, and hence U,, uniformly converges to U and fur-
thermore

E(U)=vU) = Lm vn(Up) = lim &,(U,).

n—oo n—oo

Let {x,} be a sequence of points x, of X,, which converges to a point x
of Y as n — oo. Then we apply the above result to the point measures J,,
and ¢, supported at x, and x respectively, obtaining that gk, (x,,*) uni-
formly converges to gx(z,*) as n — oo. Thus we can conclude that g,
uniformly converges to gx as n — oo. This completes the proof of Theo-
rem 6.4. |

Corollary 6.5 Let {€,} be a sequence of proper, connected open subsets
of X, which converges to a proper, connected open subset Q of Y; let {L,}
be a sequence of compact subsets of 2, which converges to a compact subset
L of Q). Then the sequence of the numbers C(Q,, L,) relative to €, and L,
defined in Theorem 2.8 tends to the number C'(£2, L) relative to Q and L as
n — oo. Moreover the equilibrium potential of L, in ), eq, 1., uniformly
converges to that of L in Q, eqr, in such a way that lim,_..&En(eq, 1,) =
Ey(eq.r), that is, the capacity of L, relative to Q, converges to that of L
relative to 2.

Proof. The first assertion is a direct consequence of Theorem 6.4. To prove
the second one, let e, = eq, 1, and e = eq 1, and note that the capacity
Capg, (Ly) of L, in €2, are uniformly bounded by (2.1). Therefore we can
take a subsequence {e;} such that e, uniformly converges to a function ¢’ €
D[€y]. Clearly ¢ =1 on L. Moreover for any v € D[Ey;Y \ ] with v > 0
on L, it follows that there exists a sequence of functions v,, € D[E,; X, \ Q4]
such that v, > 0 on L,, v, uniformly converges to v, and &,(v,) tends to
Ey(v) as n — oo. Since &, (e, v,) > 0 for all n, we also have Ey(e/,v) > 0.
Thus the characterization of the equilibrium potentials allows us to conclude
that ¢/ = e, that is, e,, uniformly converges to e as n — oo.

It remains to prove that lim, . &,(e,) = &y (e). For this, we choose a
sequence of functions e/, € DI[E,; X, \ ©,] which uniformly converges to e
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and whose energy tends to that of e as n — oco. By multiplying a suitable
constant to e, which is close to 1, we may assume that e, > 1 on L,.
Therefore we have

Ey(e) <liminf &, (e,) < liminf &,(e)) < limsup &,(e),) = Ey (e).

n—0oo n—o0

Thus we see that &,(e,) tends to &y (e) as n — oo. This completes the proof
of Corollary 6.5. |

Letting

GQn,Ln(ﬂf) = /an\Qn(xay)dVQn,Ln(y)§ €Q,w($) = /9Y\Q(93>?/)dVQ,L(y)

in Corollary 6.5, then we see that the measure vq, 1, vaguely converges to
the measure vg 1, as n — oo.

Let {L,} be a sequence of closed subsets of X,, that converges to a closed
subset L as n — oco. By changing approximations f, : X,, — Y slightly,
we may assume that the restriction of f, to L, gives approximation of L,
to L. Via these approximations, the trace &;.; on L, I'-converges to the
trace & on L.

Moreover we have the following

Theorem 6.6 Let {L,} be a sequence of compact subsets of X,, that con-
verges to a compact subset L of Y asn — oo.

(i) Let {u,} be a sequence of functions in DI|E,] such that u, uniformly
converges to a function u € D[Ey] and E,(uy,) tends to Ey(u) as n — oo.
Let H,, be a unique minimizer among functions with the same values as u,
on L,. Then H, uniformly converges to the minimizer H for u on L in such
a way that the energy measure of H, vaguely converges to that of H in'Y as
n — oo.

(ii) Suppose that each &, is local. Then for a sequence of continuous
functions u, on X, which uniformly converges to a continuous function u
on 'Y, the unique solution H, in Theorem 2.11 for w,r, uniformly converges
to the unique solution H for w, and further the energy measure of H, in
X, \ Ly, vaguely converges to that of H in'Y \ L, that is, for any continuous
function ¢ supported in'Y \ L, one has

/¢ dpymy = Ji_{glo/f% dfim,)-

Proof. We prove the first assertion. Let @, = w, — H, € DI[E,; L,] and
Q =u—H € D[ly;L]. Since &,(Qn) = En(un) — E,(H,) is bounded,
we can find a subsequence {Q} and a function Q' € D|[Ey; L] such that Qy
uniformly converges to Q" as k — oco. Let H' = u—)', to which Hy, = u,—Q
uniformly converges.
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For any v € D[€y; L], by Lemma 6.3, we can take a sequence of functions
v, € DI[&,; Ly] in such a way that as n — oo, v, uniformly converges to v
and &, (v,) tends to & (v). Then in view of Lemma 6.1, we get

Sy(H/,’U) = khm gk(Hkavk) =0.

This shows that H = H’, and thus H,, uniformly converges to H. Moreover
we have

Ey(u) = Ey(H) + & (Q) < liminf &,(H,,) + liminf &,(Q,,)
< i sup Eu(H,) + £a(Qu) = lim sup £ (1) = Ex (u).

n—oo n—oo

Thus we can conclude that lim, .. &,(H,) = E(H). Now we prove the
second assertion. Given a positive number &, we take a function v, € DI[Ey]|
such that supy |u — v.| < e. Let {v,} be a sequence of functions in DIE,]
which uniformly converges to v. and whose energy tends to that of v.. Let
H! (resp. H.) be a unique minimizer in the set of functions with the same
values as v, (resp. v.) on L, (resp. L). Then as we have just seen, H)
uniformly converges to H. and &,(H),) tends to & (H.) as n — oo. Note
that

sup |H), — H,| < sup |v, — u,| < 2sup v, —u| < 2¢

Xn Ln L

for n large enough. Hence we have

sup |H, — fiH| <sup|H, — H||+sup |H, — fiH.|+sup|fiH.— fiH| < 4e
Xn Xn Xn Ly

for n sufficiently large. Thus letting ¢ — 0, we can conclude that H,, uni-
formly converges to H.

It remains to prove that for any function ¢ € C(Y') supported in Y\ L,
[ f*é dum, tends to [ ¢ dugy. To see this, we may assume that ¢ is of
finite energy. Then we can take a sequence of functions ¢,, € DI[E,; L,] such
that each ¢, is supported in Q,(—4a)(={z € X,, | R.(x, X, \ ©,) > 4a})
for some positive constant a, and ¢, uniformly converges to ¢ as n — oo.
Then applying Theorem 2.9, we get

/|f;§¢ — Ol ditm,y < sup | frd — énl dpa,
7.(=3a) ,(—3a)
< sup |fié—dul sup [Hu|? Capg, (Qn(—3a)),
Qn(—3a) Qn(—2a)

and hence we obtain

tin [ 1726~ 6 iy =0



430 A. KASUE

For a positive number ¢, let H/, and H. be as above and observe that

‘/¢n(dﬂ<Hn) = dM(H;))' <

sup |¢n| (1
< 2' | (—/ A, — i) +€/ dl/'(Hn-i-H;L))
€ JQn(-3a) Qn(—3a)

sup |¢,| (1
< # (—/ i, ) + 2€ </ djus,) +/ d“<Hh>))
€ Jar (—a) Qn(—3a) Qn(—3a)

N 1
< S o, (0(~30) (g sup | Hy, — HiJ? + 22 sup(| H, > + lHé'Q’)
Qn Qn

N 1
< %Wl Capg, (0(—3a)) (E SUp |uy, — ul|? + 2e sup(Jun|? + |“;l|2)) '
L

n n

Hence we can deduce that

'/¢n(du<Hn> — dM<Hn>)' < b Capg, (2u(—3a)) €

for all large n and some constant b independent of n and €. By the same
reason, we have

' [ o G - dM<Hs>)‘ < b Capg(Q~3a)) <.

These estimates imply that for all large n,
'/¢ndM<Hn>—/¢ dpm)

Letting ¢ — 0, we can conclude that

< 2b Capg(Q(—a))e + ‘ / On dpsiry — / ¢ dpur.)
< (4b Capg(Q(—a)) +1) e.

ti [ 26 dpin,y =t [ 6, duny = [ 6 d,

This completes the proof of Theorem 6.6. |

Corollary 6.7 Let {(X,, R,)} be a sequence of compact metric spaces of
resistance forms &, and suppose that it converges to a compact metric space
(Y, Ry) with respect to the Gromov-Hausdorff distance. Suppose that each &,
15 local. Then one has the following assertions:

(i) Let H be a harmonic function on an open subset Q0 of Y. Then there
exists a sequence of open subsets €2, of G,, which converges to ) as n — oo,
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and a sequence of &,-harmonic functions H, on §2, such that H, uniformly
converges to H on each compact subset of () and the energy measure of H,
vaguely converges to that of H in Q as n — oo.

(i) Let {Q,} be a sequence of open subsets of X, which converges to an
open subset Q2 of Y. Let {H,} be a sequence of E,-harmonic functions on Q,
and suppose that H,(o,) is uniformly bounded as n — oo for a sequence of
points o, € (), which converges to a point of €. Then there exists a subse-
quence {Hy} and an Ey-harmonic function H on S such that Hy uniformly
converges to H on each compact subset of 2 and the energy measure of Hy,
vaguely converges to that of H in Q as n — oo.

We refer to [27] for related results to those in this section.

7. Resistance forms on infinite networks

Let ' = (V,E,r) be a connected, infinite network. In this section, we
consider, besides 2 and &r, a resistance form (€, D[E]) on ¢(V') such that
Dyl&R] € DIE] C DI&r], E(u) > Ep(u) for all u € DI[E], and E(u,v) =
Er(u,v) for all u € D[] and v € Dy|&r] (cf. Theorem 5.3). We call such £
a resistance form on I'.

7.1 We consider two canonical measures on V', the counting measure pyj, =
Y sev 0z and the measure pf, defined by pf, = >\, 7y ()65, where 7y () =
>y r(|zy|)~'. With respect to these measures, we have two spectral gaps
of I' defined by

(D) :inf{% | u eeo(V)},
() :inf{% | eeom}.

For a resistance form &£ under consideration, we can define two nonnegative
numbers Aj(E; u§) and Aj(E; ) associated to the measures p$, and uy,
respectively (cf. Definitions 3.1 and 3.2). We compare them in the following

Proposition 7.1 Under the above notations, it holds that A} (E; u§,) < A§(I)
and X;(E; 1},) < X§(T). Moreover in the case where \§(I') > 0, the following
are mutually equivalent:

(1) A& py) >0,
(ii) (&, D[E]) = (&2, R+ Dy[r]),
(iil) AJ(E;pg) = AG(T).
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Similarly in the case where N5(T') > 0, the following are mutually equivalent:
(i) A(&py) >0,
(ii) (€,D[E]) = (£ R + Dolér]),
(i) AT(E; ) = AG(D).
Proof. Let u be a finitely supported function on V. Then &p(u) = & (uy;,)
for large n, where {V,,} is an exhaustion of V', and hence we have

Er(u) 2 a5y, [ (0= Mg, ),

n

Letting n — oo, we obtain

Er(w) = M(Eut) [ .

v
This shows that A§(I") > Ai(&; uS)).

We consider the case where A§(I') > 0. It follows from Theorem 3.5
that (i) implies (ii). Suppose that (ii) holds. Then for any n, we take a
function u, on V, such that Hye u, = 0, fvn urdpS, =1 and & (u,) =
N (& sms. ). Let Hy, = Hy,,,, € DIE] (see Lemma 1.6). Then by the
assumption, H, — ¢, € Do[€r] for some constant ¢,,. Hence we have

N(E ) = E(Hy) > A(T) / Hy — colPdpsy

N(T) [ [ Hy = cal*dps,
Vi

v

A(T) /V i,
> )\S(F).

Letting n — oo, we get A{(&;us) > A§(I"), so that the equality holds.
Obviously (iii) implies (i). The same arguments are valid for the case of
M5(T) and Aj(&; ph,). This completes the proof of Proposition 7.1. [ |

Corollary 7.2 Let I';, = (V,,, En,rn) and I' = (V,E,r) be as in Theo-
rem 5.3. Then

limsup Ay (Ep,; py,) < AGI)  and  limsup Ay (Ep,; pf, ) < AG(D).
It is known (cf. e.g., [39]) that A}(G) < 1 — 2v/d —1/d and \§(G) <
d — 2v/d — 1 for an infinite graph G = (V, F) with degree bounded by a
positive integer d. Thus we have the following
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Theorem 7.3 (Alon-Boppana, Grigorchuk-Zuk [22]) Let G, = (V,,, E,,) be
a sequence of finite graphs such that the degrees of G, are bounded by a
positive integer d and the cardinality of V,, tends to infinity as n — oo.
Then one has

d—1
limsup Ay (Eq,; py;,) < d—2vVd =1 and limsup \y(Eq,; py, ) < 1-2 :

n—oo n—oo

As a consequence of Proposition 7.1, together with Example 1.2, we have
the following

Corollary 7.4 Let {G, = (V,,, E,)} be a sequence of finite graphs such that
the degrees of G, are bounded by a positive integer d and \(Eq,; 15, ) is
bounded away from zero by a positive constant. Let T = (Vp, Er) be the ho-
mogeneous tree of degree d. Suppose that a pointed metric space (V,,,dg, , pn)
converges to a pointed metric space (Vp,dr,p) as n — oo. Then one has

. 2(d — 1) 1o
lim sup |Rg,(z,y)— —"7—7=|1— (—)
"0 2,y By (pn) (@) d(d —2) < d—1

for any p > 0.

Let G = (V,E) be a connected, finite graph. The girth of G is by
definition the length of the shortest circuit in G. We consider a family of
connected finite graphs G, = (V,, E,) as in Corollary 7.4 satisfying fur-
ther the property that the girth of GG, diverges as n — oo. It is known
(cf. [17] and the references therein) that there exists such a family {G,}
with limy, o A1 (4§, ) = d — 2v/d — 1 for certain d’s. As we have seen, for
such a family, the resistance metric of G,, converges to the minimal one of the
homogeneous tree T' of degree d as n — co. Moreover using this family and
modifying it appropriately, we can construct another family {G/} converg-
ing to T" with respect to the geodesic distances such that the limit resistance
form £ on T is different from the minimal one; for example, the dimension
of the space HD[Er] N D[] is finite and equal to any given positive integer.

=0

7.2 Let & be a resistance form on a connected infinite network I' = (V| E, 7).
We denote by ¢(z,y) and Rg, respectively, the Green function and the
effective resistance of €. Set He = HD[Ep| N D[E]. For z,y,z € V, let

he (2, y) = g2 (w,y) — (g0(z,y) — gp(w, 2) — gp(y. 2) + g2 (2, 2)).
Then hé(z,y) = h(y, x) and the functions hé(z,y) of y belongs to He and
satisfies hé (z,2) = 0, hé(z,2) = Re(x,2)— RA(x,y), —R%(z,2) < hf(x,y) <
Re(z, 2) for ally € V', where we put R2(z,y) = g2(z, ) —2¢%(x, y)+¢%(2, 2).
In fact, hé(z,y) is the Green function of the form & restricted to Hg, that
is, E(h,(x,*),h) = h(x) — h(z) for any h € Hg.
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Let N = dim Hg — 1(< +00). In what follows, we assume that 1 <
N < +o0, and fix a point 0 € V. Let {h; | 1 <i < N + 1} be a complete
orthonormal system of the Hilbert space ({h € Hg | h(o) = 0},&). Then it
holds that
N

> (hi(x) = hi(2)(hily) = hi(2)), 9,2 € V;

=1

K (z,y)

N
hf(m,x) = Rg(l',Z) - Rg('ra Z) = Z(hZ('r) - hz(z))Qv T,z € v
i=1
(cf. Lemma 1.11). )
Suppose here that I' is locally finite. Let Re(z) =>_, ., Re(x,y)/r(x,y)
and R} (z) = > . Ri(z,y)/r(z,y) for x € V (cf. [37], p. 98). Then we
have

N
P P (hi(z) = hi(y))?
Re(x) — R (2) = , xelV.
5( ) F( ) ; yzN; T(.T, y)
It follows from the maximum principle that the set {x € V | Re(z) —
RY%(z) > 0} is empty (resp. an infinite subset) if and only if dim He = 1
(resp. dim Hg > 1). Thus we arrive at the following

Proposition 7.5 Let (£, D[E]) be a resistance form on a connected, locally
finite, infinite network I'. Then one has

LS Rew) — R(x) < dim He — 1(< +o0),
2

and in the case where £ = &Er,

%Z Rr(z) — R(x) = dim HD[Er] — 1(< +o0).

Let € be a resistance form on I'. For a bijective map ¢ : V — V|
it is easy to see that ¢ preserves the effective resistance of &£, that is,
Re(p(x),d(y)) = Re(w,y) for all z,y € V if and only if ¢ satisfies the
property that £(¢*u) = £(u) for all uw € D[E]. We remark that such a map
¢ must be an automorphism of the network I' = (V, E,r), since £ coincides
with E2 on Dy[EL]. We denote by Aut(T, £) the group of all automorphisms
of I' preserving the effective resistance of £. Then it is evident that Rg — R
is constant on an orbit of Aut(I',£) on V. This shows the following

Corollary 7.6 Let I' and (€, D[E]) be as in Proposition 7.5. Suppose that
there exists an orbit K of Aut(T',E) such that Re — RY. is positive on K and
the cardinality of K is infinite. Then Hg is of infinite dimension.
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7.3 In this part, we study the compactification described in 3.2 with
respect to a resistance form € of a connected, infinite network I' = (V, E, r).
In what follows, we assume that I' is nonparabolic, that is, there exists the
minimal Green function gf(x,y).

To begin with, we recall the following

Lemma 7.7 (Green’s formula) Let u be a function in D[Er]. Then for any
function g € Dy|Er], one has

Erlug) = [ afudi iy Lue LV,
1%

Proof. The identity holds if g is finitely supported. For g € Dy[Er], we can
take a sequence of finitely supported functions g, such that |g,| < |g| and
gn converges to g in D[Er|. Since |g,L| < |gLC|, Lebesgue’s convergence
theorem implies that lim, o [i, gnLudps, = [, gLdys,. This shows the
lemma. |

Let £ be a resistance form on I'. Associated to the space of bounded
functions in D[£], we have a compactification of V', which we will call the
Royden compactification R(V,E) of £. The boundary OR(V,E) = R(V,E) \
V' will be called the Royden boundary of £. The harmonic boundary of €
is defined by A(E) = {x € OR(V,E) | g(x) =0, Vg € Do[ér]}. We recall a
basic fact concerning Dirichlet problems on the Royden boundary OR(V, )
(cf. e.g., [37, Chap. VI]): for any continuous function f on IR(V,E), there
exists a unique harmonic function Hy on I' such that for any £ € A(E),
limgev_e Hy(z) = f(£), and supy |Hy| < maxae) | f|. Given a point a € V,
letting v, (f) = Hy(a) for f € C(OR(V,E)), we have a Radon measure v, on
OR(V,E), called the harmonic measure with respect to the point a. In view
of the Harnack inequality, v, and 14, are mutually absolutely continuous for
any pair of points a,b € V, and the harmonic measures are supported on
the harmonic boundary of £.

Let u be a finite measure supported on V' such that

[ ReloPduta)duty) < +oc.
VxV

Condition (3.12) is automatically satisfied in this case.

In what follows, to indicate the dependency on the form &, we denote by
New, VN(é' ) and Lg,,, respectively, the distance on V' introduced in 3.2, the
completion of the metric space (V,Ng,) and the infinitesimal generator of
the form & in L2(V, p). Let 9V (&) = V' (£)\ V. We will call V" (€) and
8VN(5 ), respectively, the Kuramochi compactification and the Kuramochi
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boundary of a resistance form £. A function of D[L¢,,| is regarded as a
continuous function on VN(S ) (see Lemma 3.8 and Theorem 3.10). Given

u € D[Lg,], we denote by Teu the restriction of u to the boundary 8VN(5).

The identity map of V' extends to a continuous map from R(V, &) onto

VN(S ). We denote by p the induced map from OR(V, ) onto GVN(S ). Let

AN(E) = p(A(E)) and w, = p.v, (a € V). Here and after, we fix a point
o € V and write w for w,.

Now we study Neumann problems on (9VN(5 ), referring to [18] and [34]
where analysis on Green spaces are carried out.

Lemma 7.8 For any u € D[L¢,,] and a € V', one has
/ (Teu)*dw, < 2gp(a,a) E(u) + 2u(a)’.
v (&)

Proof. Put f=TeueC (87?). We first observe that
LY(Hp — (Hp)*)(x) = Y r(ley) ™ (Hy(2) = Hy(y)?, z €V,

Yy~T
which implies
/ LE(Hpz — (Hy)?)dps, = 2E0(Hy).
v

Since (Hy)? — H 2 belongs to Do[Er], using Lemma 7.7 with g = ¢g{(a, %) and
noting

| shlaa) et = () @) o) < 20 e () < +oc.
we obtain
Hp(a) — Hy(a)* = Ep(Hp — (Hy)? gr(a, %))
= [ aea) (0 = (1)) @) (o)
Tn this way, we get
Hy2(a) < 2¢p(a,a)ér(Hy) + Hyp(a)?, a€V.

Finally we have

Hi(a)® < 2u(a)® +2(u(a) — Hy(a))®
< 2u(a)® +2&r(u — Hy, gp(a, *))?
< 2u(a)® + 2&0(u — Hy)Er(gr(a, %))
= 2u(a)® + 2g2(a, a)(E(u) — E(Hy)).

Thus we obtain the required estimate. This completes the proof of
Lemma 7.8. [ ]
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Lemma 7.8 shows that the linear operator T¢ from D[L¢,,] into C’(@VN €))
extends uniquely to a bounded operator T¢ from D[] into LQ(GVN(é' ),w)

which sends bounded functions in D[£] into L* (8VN(8 ),w), and any u €
DI[€] = He + Dy[&r] can be written as

u(z) = /_N Teu dw, + g(x), g€ Dolér], z€V.
v (&)

Definition 7.1 We say that a function u € D[£] has a normal derivative
¢ in L2(87N(5), w) if [ |Leul|dps, is finite and w satisfies

S(u,v):/vﬁcu d/ﬁ,—l—/ (Tev) ¢ dw
1% v (&)
for all bounded functions v in DI[E].

A normal derivative ¢ of u if it exists is unique in L? (8VN, w). Moreover
it depends on the choice of a reference point o, but the measure ¢ dw is
independent.

In terms of Definition 7.1, it holds that a function u € D[E] belongs to
D|L¢,] if and only if [, [£ou(x)|*pu(z) ™" dus () < +oo and u has a normal

derivative zero in L? (8VN(8 ),w); in particular, for a function f on a finite
subset K of V, the minimizer Hg.r € D[£] has a normal derivative zero in

L2V (E),w).
Now we prove the following

Theorem 7.9 A function ¢ € LQ((‘?VN(E),LU) is the normal derivative of a
harmonic function in D[E] if and only if faVN(g) ¢ dw = 0.

Proof. We are given ¢ € L2(0VN(€ ),w). If it is the normal derivative of
h € Hg, then faVN(g) ¢ dw = faVN(s) ¢T1 dw = E(h,1)=0.

Suppose now that faVN(g) ¢ dw=0. Let H,={h € He | h(o) = 0}. we
define a functional on H, by assigning [ a7 (€) ¢Tehdw to h € H,. Then this
functional is bounded, since

/  ¢Teh dw
v (&)

2

< / (bzdw/ (Teh)*dw
v (&) v (&)

< 22(0.0) / & dw (1),

v (&)

where we used Lemma 7.8.
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Therefore there exists a unique hy, € H, such that (hg, h) = [ ¢Teh dw
for any h € H,. Any bounded v € D[£] is decomposed as v = h + g, where
h € He and g € Dyl&r]. Then we have

Elhor) = Elhonh) = Elhosh—h(o) = [ 6 Telh—hio)) do

v (&)
= /N ngTgde:/N ¢ Tev dw.
v (&) oV (€)

This shows that iy has a normal derivative ¢ in LQ((‘?Vg, w). This completes
the proof of Theorem 7.9. |

By Theorem 7.9, we can deduce the following

Theorem 7.10 The space of functions h in He with normal derivatives in
L2(0Vx ,w) is dense in He.

Proof. Let NH stand for the space above. Suppose N H is not dense in
Hg. Then there exists h € Hg such that h # 0, h(o) = 0, and E(h, ') =0
for all W € NH. Since [Tehdw = h(o) = 0, applying Theorem 7.9 to Tgh,
we have W' € NH such that Teh is the normal derivative of h'. Therefore
we have 0 = E(h, h') = [(Teh)*dw, and hence h = 0. This is a contradiction
and thus the proof is completed. [ |

Now we shall prove the following

Theorem 7.11 Let € be a resistance form on a connected, infinite network
' = (V, E,r) that is nonparabolic.
(I) sup, yev Re(x,y) is finite if and only if every function in D[E] is bounded.
Moreover if these are the cases, then OR(V,E) = A(€) = aVN(E).
(IT) The following conditions are mutually equivalent:

(i) sup, yev hi(y,y) is finite.

(ii) Every function in He is bounded.

(iii) For any u € D€, Teu is continuous on AN (E).

(iv) A nonnegative function u in D[E] satisfying LU(z) < 0 is bounded.

Moreover under these conditions, the projection p restricted to the harmonic
boundary A(E) onto AN(E) induces a homeomorphism between them.

Proof. The assertion (I) and also the equivalence between the conditions (i)
and (i) in (II) can be deduced from the same reasons as in Theorem 4.2.
Condition (iv) follows (ii) in (II), since for any h € Hg, we have L°h*(z) =
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=23, (h(x) = h(y)?/r(z,y) < 0. In view of the maximum principle, we
see that (iii) implies (ii). To prove the converse, we consider a subspace Ag
of D[€] which consists of functions extending continuously up to 07?. Then
Ag is dense in D[€], because Ag contains the domain D[Lg,,] of the Laplace
operator Lg., on L*(V, u), where p is a finite measure on V satisfying (3.7):
[[ RE(x,y)du(z)du(y) < +oo. Suppose that (ii), or (i) holds. Then there
exists a constant C' such that for any h € He,

sup [h| < C(E(h)' + |h(o]),

zeV

where o is a fixed point of V. Thus we have

sup [Teu(§)] < C'(E(u)'? + |u(0])
EeAN(E)

for some C” and all u € Ag. This proves (iii), because Ag is dense in D[E].

It remains to prove that (ii) implies (iv). Let u be a nonnegative function
in D[€] such that £ is nonpositive in V. Let {V,,} be an exhaustion of V.
We decompose h on V,, as follows: w = h, + g,, where h,, is harmonic on
V,, and g, coincides with u on the boundary of V,,. Then it follows from the
maximum principle that g, is nonpositive. Letting n go to infinity, h, and
gn respectively converges to a function h € Hg and g € Dy[Er] and we can
express u as u = h + g on V. Since g is nonpositive, 0 < u < h, and by the
assumption, h is bounded, so that u is bounded. This completes the proof
of Theorem 7.11. [ ]

Remark 7.1 (i) Let (F, D[F]) be a Dirichlet form on a closed linear sub-
space of L2(8VN(5),w) with F(1) = 0 and define a form (£x, D[EF]) on V
by

Er(u) = E(u) + F(Teu); D[EF] = {u € D[] | Teu € D[F]}.

Then £ is a resistance form on I'. Moreover for a positive number ¢, we
set Exy(u) = E(u) + tF(Teu). Then the limit of the forms as t — +o0 also
gives a resistance form on TI'.

(ii) If we restrict ourselves to a class of connected, infinite graphs G =
(V, E) with bounded degree, the conditions in Proposition 4.1 and The-
orem 7.11 for the resistance forms &; of the graphs are invariant under
quasi-isometries, after the result in [24] mentioned in the introduction.

7.4 Before exhibiting examples of the Kuramochi boundaries of infinite
networks, we make some observations.

Let I' = (V, E,r) be a connected, infinite network and £ a resistance
form on I'. Given an infinite subset K of V, let W = V \ K and I'yy =
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(W, Ew,rw) be the subnetwork of I" generated by W. We decompose 'y,
into the connected components {I'; = (W;, E;, r;) }ies. For any I';, we denote
by K; (resp. E! ) the set of vertices of K which are adjacent to some of W;
(resp. the set of edges which connect K; to W;). Then we get connected
subnetworks ['; = (V~Vz, Ez-,fz-), where W, = W, UK, E; = E; U E! and 7; is
the restriction of r to Fj.

Proposition 7.12 Let I' and Ty = (W, E;, ) (i € I) be as above. Sup-
pose that every K; is a finite subset. Let € be a resistance form on I' and
Iy = (K, E*,r*) the connected infinite network associated to the trace ;. of
E on K. Then the inclusion map v of K to'V extends to a continuous map t

of the Kuramochi compactification FN(E}Q) of Ef; into the Kuramochi com-
pactification VN(é') of € such that © sends injectively the boundary 0FN(5}§)
into the boundary 8VN(5). Moreover suppose that any [; is a finite sub-
network and the effective resistance Ry of T'; is uniformly bounded, that is,

for some positive constant C, Ry (v,y) < C for all v,y € W; and i. Then
r: ?N(E}}) — VN(S) induces a homeomorphism between GFN(S}) and
8VN(5) which maps AN () onto AN ().

Proof. Let g.(z,y) and g}(a,b) be respectively the Green functions of I'
and I'y. Let ¢..(y) = g:(2,y) for z, z € Vand ¢} ,(b) = gZ(a,b) fora,c € K.
Then in view of Lemma 1.9 and (1.2), we see that

(71) ¢C,a(b) - ¢:,a(b)7 b € K
Moreover we claim that for x € W; and z € W},
(72) ¢z,m\K € Q(K7 S}k()

In fact, letting H = Hp,y, ., we see that [ has a normal derivative zero

in L%@V?, w) and satisfies
g;{(¢z,m|K7 U)(: E(H, HK;'U)) =0

for all v € D[] which vanish on K; U K, because

E(H,Hk,) = /HK;vECH duy, = Z v(x)L°H (z) = 0.

IEKZ‘UK]'

In view of (7.1) and (7.2), we see that ¢ : K — V extends to a unique contin-
uous map of K(E5) to VN(S ) which sends injectively 0FN(5;}) to 0VN(S ).
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Suppose that 7(§) € AN(E). Let u € Dyl€}] and take a sequence of
functions w, on K with finite supports in such a way that &5 (u — u,) =
E(Hg.y—Hg,) tends to 0 as n — oo. Since all H,,,, are finitely supported
in V', we see that Hy ., belongs to Do[Er]. Hence for any sequence {a,} in K
going to &, u(a,) = Hg..(t(a,)) tends to 0 as n — oo, because of the
assumption. This shows that £ € AN (Ex).

Now we assume that Ry (z,y) < C for all ,y € W, and i. Let n be a

point of 0VN(S ) and {x,} a sequence in V which converges to n. To show
that ¢ is surjective, we may assume that z,, belongs to some Wj(,) for all
sufficiently large n. Take a point a,, in K;). Then for all z,z € V,

(7.3) |¢z,m($n) - ¢z,m(an)|2 < ngi(éz,mlwi(n))’

which tends to 0 as n — oo if we fix z and z. As a result we have ¢, .(n) =
limy, oo @z 0(2n) = limy, o0 @2 1(ay,) for all z,x € V. This implies that a,
converges to 7 as n — o0o. Thus we have shown that 7 is surjective.

Finally let us prove that 7(£) € AN(E) if € € AN(E). Let {z,} be a
sequence in V' going to £(£) and u a function in Dy[Er|. Take a sequence {u,}
of functions with finite supports on V' in such a way that £(u — u,) tends
to 0 as n — oo. Since Ej (ujx —Unx) < E(u—wuy), we see that ujx € Do[Ef].
We may assume that x, belongs to some W, for all sufficiently large n.
By (7.3), we can take a sequence {a,} in K in such a way that a, € Ky
and a,, tends to £ as n — oo. Then uk(a,)(= u(a,)) goes to 0 and hence
so is u(x,), since we have

2 - -
fue,) — ula) < CE&, (u,,).
This completes the proof of Proposition 7.12. |

Let G = (V,E) be a connected, locally finite, infinite graph. For a
positive integer n, we denote by B, = (V,,, E,) the graph with the set of
vertices {x, z1, ..., z,,y} and the set of edges {|zz|, |zy|,i =1,...,n}. By
assigning a positive integer v(e) to each edge e € E and replacing each edge
e = |zy| € E with the graph B, (), we obtain a connected, locally finite,
infinite graph G, = (V,,, E,)), where V is assumed to be a subset of V,,. We
remark that two metric spaces (V, dg) and (V,,, dg, ) are quasi isometric in the
sense of Gromov. A weight function r, on FE is defined by r,(e) = 2v(e)™!
for e € E. Then we get a network I' = (V| E,r,) so that the identity map
of V' extends to a continuous map of OR(G) onto IR(V, Er). Moreover the
inclusion map of V' into V,, extends to a homeomorphism between OR(V, &r)
and OR(G,) which induces also a homeomorphism between the Kuramochi

boundaries 8VN(G) and 0VVN(GV). For instance, we assume that a given
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graph G = (V| E) is hyperbolic in the sense of Gromov and 0 < ¢(G) <
260(G) (cf. Proposition 4.6). Then we choose a function v : E — Z* such
that C~'exp(nn) < v(e) < Cexp(nn)ife € E(n) (n=1,2,...), where C is
a constant greater than 1 and 7 is a positive number less than 20o(G) —e(G).
Then it turns out that OR(G,) = (9VI,N(G1,) is homeomorphic to the Gromov
boundary of G. Note that the degree of (G, is unbounded.

Example 7.1 We are given a connected, locally finite, infinite graph
G = (V, E). First we take a family of locally finite, infinite graphs indexed
by the set of the vertices V of G, {G, = (V,, E4) | « € V'}, in such a way that
the effective resistance of GG, is uniformly bounded by a positive constant C,
and each G, admits no nonconstant harmonic functions of bounded Dirichlet
sum. This implies that the Royden compactification of G, for any a € V
consists of V,, and a single point p,. Secondly we choose a sequence {p,., } of
vertices in V,, tending to p, for each a € V', and then for any edge (c ﬁ) €F,

we connect V, with Vj by a family of paths (Cug, Eug) = {( aﬂ , E ) | n =

..} joining {pa:n} to {pg.n}, that is,
Oa,@ - {pan - 'Tgyﬁ)O’ xg,bﬁ)b ce 7x£ynﬁ);r(n) = p,@,n}a

Eé%) - {(xggz’xglﬁ)zﬂ) |i=0,...,7(n) — 1},

and the length r(n) of the path cl ﬁ is assumed to satisfy

= 1
7.4 — =
(7.4) ; )
Let V = (UaevVa) U (U(a,ﬂ)eEOaﬂ) and £ = (Uaev Eq) U (U(a,ﬂ)eEEaﬂ)-
Then we get a connected, locally finite, infinite graph G = (V, E), the
end compactification of which is the one-point compactification, that is, the
metric graph |G| is connected at infinity. Note that the degree of G is
bounded if those of G and G,, for all a are bounded by a positive integer.

In what follows, we illustrate the Kuramochi boundary of G.
For a function f on V, we say that f is linear on C’g;) if

f(pﬁ;n) - f(pa;n)
r(n)
and denote by II the space of functions on V which are linear on all C’gg. It

a function f belongs to II, then we have
1

Z &a, f|Va) + 5 Z Z (L (Pasn) — f(pﬂ;n))2~

acV a,BeV,a~Bn=1.2,...

flal) = i+ f(pam), i=0,1,....r(n),
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To a function u on V', we can assign a function f, of II such that f, = u(«)
on V,, for all & € V. Then it holds that

(7.5) Ea(u) = Eq(fu)-

Moreover we see that L£¢f,(z) = LU(a)/r(n) if * = pam, and Lf,(z) =0
otherwise. It is possible to choose finite measures p on V and i on V
satisfying (3.7) in such a way that fi(pa.n) = p(a)/r(n) for all p,.,. Then it
is evident that f, € D[L;] if u e D[L,].

Now we are given f € DI[Ez]. The restriction of f to Vi, fa, be-
longs to D[€q,] and hence f,(x) tends to a constant, denoted by u(w),
as x € V, — p,. Note that

fal2) = faW)I® < CEq,(fa)
for all z,y € V,,, so that we have
(7.6) |fa(@) —us(@)]” < Céa,(fo)
for all x € V,,. Moreover in view of (7.4) and (7.6), we see that
(7.7) Ealuy) <3(C+1)Ea(S).

Indeed, we have

Eaup) =5 3 (ugla) — ug(5))
a,BeV,a~p
< g Z % ((uf(a) - f(pa;n))2 + (f(Pasn) — f(Psin))
a,BeV,a~Bn=1.2,...

<30 Ea.(fa) + g D (f(pa;n)r— f(Psin))”

acV a,BeV,a~Bn=1.2,... (TL)

Here we claim that f € Dy[€s] if and only if uy = 0. Indeed, for f € Dy[Ez],
we take a sequence of functions f, finitely supported on V in such a way that
lim, oo Ea(f — fn) = 0 and lim,, ., fu(x) = f(z) for each z € V. Then in
view of (7.6), we see that for all &« € V', us(a) = lim,, oo us_y, (o) = 0. Now
suppose that uy = 0. Let f = h + g, where h € HD[Ez] and g € Dy[E¢].
Then up, = uy = 0, so that h(z) tends to zero as x € V — oo. Thus the
maximum principle implies that h = 0. In this way, we have seen that the
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correspondence f — s gives rise to a linear isomorphism between HD|[E4]
and D[Eg]. In other words, for a function u € D[&g], let f, = Hy + gu,
where H, € HD[Eg] and g, € Dy[€g]. Then assigning H,, to u, we have a
linear isomorphism between D[Eq| and HDI[Ex]. A quadratic form on D[Eg|
is defined by

E(u,v) = E(H,, Hy,), wu,ve D[E].
Then we have

1

The first inequality follows from (7.7) and the second one holds true, because
Ea(Hy) < Ea(fu) = Eg(u) by (7.5). From (7.8), we see that the effective
resistance [z of the resistance form £ on V is estimated as follows:

Ra(a, B) < Rg(a, f) < 3(C +1)(1 + Ra(e, ), o, feV.
In addition, we can observe that
Re(a, ) < Ra(z,y) <9(C+ 1)1+ Re(a, 5)), x €V, BEVp

The first inequality is a consequence from (7.5) and the second one can be
verified as follows: for any = € V,, and y € Vj, and for any f € D[&z],
letting f’ be the function of IT that is equal to f on Uuey Ve, we get

1f(x) = f@)PP = 1f(x) = f'(y)”
=3(1f'(x) —up ()P + [ugp(a) = up(B)* + lup(8) = f'(v)°)
=3(C&q,(fa) + Rala, B)Ea(uy) + CEqy(fa))
3(2C + 3Ra(a, B)(C +1))Ea(1)
9(C+ 1)1+ Re(a, B)Ea(f)-

Now for u € D[Eg], we consider a function on V' defined by

<
<

@u(a):Z%, acV.

n=1

Then Ou belongs to D[Eg]. In fact, we have

(i Hu(poz;nzn(—n)Hu(p@m))2

n=1
- Hu(pﬁ,n))Q

> Hu an
< ;( (p ; )r(n)

(Ou(a) — Ou(pB))*

= gcaﬁ (Hu\Cag)v
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and hence

£a(Ou) = 3 Y (Ou(0) ~ Ou()* < 5 3 Eo,u(Huje,,) < E(H) = Elu).
a~ a~f

Obviously ©1 = 1 and we can deduce that

E(u,v) = Eq(u, Ov), wu,v e D&,

since we have

5(u,v) = gé(Hua Hv) = gé(fm Hv)
= 5 3 (u(0) — u(3))(©v(a) - B()) = Eg(u, Ov).

a~f

Let
Onp =Oxo, aelV.

Then we have &(Xa, X3) = —3(LO4(3) + LOs()). Letting
Ce, ) = 5(£°0a(5) + £05(a),

we can express the form & as follows:

Let w be the harmonic measure (relative to a fixed point o of V) on the har-
monic part of the Kuramochi boundary of G, AN (é), which includes the set
of vertices V of G as an open dense subset. Then w(V) =3 ., Hy (o) =1,
so that w(AN(G) \ V) = 0. Finally we observe that for v € D[£], H, has a
normal derivative ¢ dw in L2(AN(Q)) if and only if u € D[L,)], and if these

are the cases, then ¢ dw = £,(0u) dw = L°(Ou) du® and it holds that

Es(f,H) =) u(@)L(Ou)(a), [ e BDIE].

acV

Remark 7.2 In the case where the effective resistance of the form &g is
bounded from above by a positive constant, G satisfies the conditions in
Theorem 7.11 (II), the Kuramochi boundary of G is homeomorphic to the
Royden compactification of the metric graph |G| associated to G, R(|G|),
that is the union of |G| and the Royden boundary of G, and furthermore the
part of regular points A(é) is homeomorphic to the Royden compactification
of G.
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