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Convergence of metric graphs
and energy forms

Atsushi Kasue

Abstract

In this paper, we begin with clarifying spaces obtained as limits of
sequences of finite networks from an analytic point of view, and we
discuss convergence of finite networks with respect to the topology
of both the Gromov-Hausdorff distance and variational convergence
called Γ-convergence. Relevantly to convergence of finite networks to
infinite ones, we investigate the space of harmonic functions of finite
Dirichlet sums on infinite networks and their Kuramochi compactifi-
cations.

0. Introduction

A finite (resistive) network consists of the set of vertices, the set of edges,
and the resistance that assigns a positive number to each edge. Regarding
the resistance of each edge as its length, we can introduce a distance, called
the geodesic distance or the path metric, on the set of vertices. On the other
hand, using a canonical energy form on the space of functions on the vertices,
we have a notion of the effective resistance between a pair of vertices. It
is well known that the effective resistance provides the set of vertices with
another metric called the resistance metric in Kigami [32], where convergence
of finite networks with the resistance metrics in a specific manner is discussed
and applied to the problem of constructing energy forms and Laplacians on
certain fractal sets called post critically finite self-similar sets. On the other
hand, infinite networks may be thought to be limits of sequences of finite
networks with the geodesic distances or the resistance metrics. Moreover
it is known that any compact geodesic space can be approximated by a
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sequence of finite networks with the geodesic distances with respect to the
Gromov-Hausdorff topology.

In this paper, we begin with adapting the general theory on Hilbert
spaces possessing reproducing kernels by Aronszajn [1] for our purpose, and
then, introducing resistance forms, we clarify spaces obtained as limits of
finite networks which are investigated in Kigami [32]. A separable space
endowed with a resistance form can be considered as the limit of finite subsets
coupled with the traces of the resistance form on them. Limits of finite
networks can be also taken in a similar manner to the Gromov-Hausdorff
convergence of metric spaces.

A pointed metric space (X, p) is a pair of a metric space X and a point
p ∈ X. We say that a sequence {(Xn, pn)} of pointed metric spaces con-
verges to a pointed metric space (X, p) in the Gromov-Hausdorff sense if the
following holds. For every ρ > 0 and ε > 0, there exists a positive integer n0

such that for any n > n0, there is a map f from the ball Bρ(pn) around pn

with radius ρ in Xn to X satisfying the following properties: (i) f(pn) = p;
(ii) sup{|dX(f(x1), f(x2)) − dXn(x1, x2)| | x1, x2 ∈ Bρ(pn)} < ε ;(iii) the ε-
neighborhood of the set f(Bρ(pn)) includes the ball Bρ−ε(p) centered at p of
radius ρ− ε.

Let (X,R) and {(Γn, Rn)} be a separable metric space and a sequence of
connected, finite networks with the resistance metrics Rn. Let p and pn be
points of X and Vn respectively. Then it will be shown (cf. Theorem 5.1)
that the distance R of X is the resistance metric associated to a resistance
form on X if the pointed metric space (Γn, Rn, pn) converges to (X,R, p)
as n→ ∞.

Now we notice that the effective resistance between two vertices in a con-
nected network is less than or equal to the geodesic distance between them.
A locally finite graph is always assumed to be a network with unit resis-
tance. Taking this into account, we will discuss convergence of finite graphs
with geodesic distances and prove the following result (cf. Theorem 5.3):
Let {(Gn, dn)} be a sequence of connected, finite graphs endowed with the
geodesic distance dn, and let (G, dG) be a connected, locally finite, infinite
graph with the geodesic distance dG. Suppose that the pointed metric space
(Gn, dn, pn) converges, as n → ∞, to the pointed metric space (G, dG, p) in
the Gromov-Hausdorff sense. Then there exist a subsequence {Gm} and a
resistance form E on G such that the pointed metric space (Gm, Rm, pm)
with the resistance metric Rm converges, as m → ∞, to the pointed met-
ric space (G,RE , p) with the resistance metric RE relative to the resistance
form E in a similar manner to the above; moreover the from (E , D[E ]) sat-
isfies that D0[EG] ⊂ D[E ] ⊂ D[EG], E(u) ≥ EG(u) for all u ∈ D[E ], and
E(u, v) = EG(u, v) for all u ∈ D[E ] and v ∈ D0[EG].



Convergence of metric graphs and energy forms 369

Here on an infinite network Γ, we have two canonical resistance forms
of Dirichlet sums (of order 2), the minimal and the maximal ones denoted
by (E0

Γ, D0[EΓ]) and (EΓ, D[EΓ]) respectively. If the network is parabolic or
it admits no nonconstant harmonic functions of finite Dirichlet sums, we
have the uniqueness of limit forms. However, in the case that Γ admits
nonconstant harmonic functions of finite Dirichlet sums, limit forms may be
different from the minimal and the maximal ones.

For instance, given a family of expanders, namely, a family of connected
finite graphs whose degrees are uniformly bounded from above and whose
spectral gaps are uniformly bounded away from zero, we can take a subse-
quence converging to an infinite graph in such a way that the limit form is
the minimal one; moreover starting with a certain family of expanders and
modifying it in certain manners, we will be able to get a subsequence which
converges to an infinite graph in such a way that the limit form is distinct
from the minimal and the maximal ones (cf. 7.1). In fact, the topology of
the Gromov-Hausdorff convergence on resistance metrics is finer than that
on geodesic distances.

Relevantly to convergence of finite networks to an infinite one, we inves-
tigate in section 7 the Kuramochi compactification of an infinite network
and the trace of the resistance form on the Kuramochi boundary. For ex-
ample, it is proved that the Kuramochi compactification of a connected,
infinite network inherits the resistance form if the diameter of the resistance
metric is finite (cf. Theorems 3.11 and 7.11). To study the compactifica-
tion, we employ the method of embedding networks into the Hilbert space
of square summable sequences by using the eigenvalues and eigenfunctions
with respect to certain self-adjoint operators. This method proves useful for
studying networks and their limit spaces.

Bérard, Besson and Gallot [5, 6] proposed the method of embedding com-
pact Riemannian manifolds into the Hilbert space above by using their eigen-
values and eigenfunctions, and introduced a distance on the set of their isom-
etry classes, proving the precompactness of a family of compact n dimen-
sional Riemannian manifolds whose Ricci curvature are uniformly bounded
from below and whose diameters are uniformly bounded from above. In [29],
[30], [26] and [27], the method was developed to study spectral convergence
of compact Riemannian manifolds or more generally certain Dirichlet spaces,
and analyze their limit spaces.

Convergence of finite networks can be also discussed from a variational
view point and in fact we will apply the idea of De Giorgi’s Γ-convergence
to our problem (cf. Theorem 5.5).

Besides the relation to problems on convergence of networks, we are in-
terested in the space of harmonic functions of finite Dirichlet sums on an
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infinite network. When we restrict ourselves to a class of connected, infinite
graphs of bounded degrees, it is proved in [24] that this space is invariant
under quasi-isometries (cf. Remark 1.2) in the sense that quasi-isometries
between two connected infinite graphs of bounded degrees canonically induce
bounded linear isomorphisms between the spaces of harmonic functions of
finite Dirichlet sums; this is true for quasi-isometries between a connected
infinite graph of bounded degrees and a connected, complete, noncompact
Riemannian manifold such that the Ricci curvature is bounded from below
and the volume of every ball of radius one is bounded from below by a pos-
itive constant. In Sections 4 and 7, we make some observations on spaces of
functions of finite Dirichlet sums in relation to resistance metrics on infinite
networks (cf. Proposition 4.1, Theorem 4.2, Theorem 7.11).

Some of the main results of this paper were reported in [28].

1. Hilbert spaces of reproducing kernels

We first adapt the general theory of Hilbert spaces possessing reproducing
kernels in [1] for our later purpose.

1.1 Let X be a set and (E , D[E ]) a nonnegative quadratic form E defined on
a linear subspace D[E ] of the space �(X) of all real valued functions on X.
Let

RE(x, y) = sup

{ |u(x) − u(y)|2
E(u, u)

| u ∈ D[E ], E(u, u) > 0

}
, x, y ∈ X.

Our basic condition on the form is stated in the following:

[H-1] 0 < RE(x, y) < +∞ for all x, y ∈ X with x �= y.

The form E is also regarded as a functional on �(X) by letting E(u) =
E(u, u) if u ∈ D[E ] and E(u) = +∞ otherwise. From this point of view, we
consider the following:

[H-2] if a sequence of functions un on X pointwise converges to a function
u as n→ ∞, we have

E(u) ≤ lim inf
n→∞

E(un) ≤ +∞.

Lemma 1.1 Under condition [H-1], [H-2] implies the following:

[H-3] for a point o ∈ X, a quadratic form defined by E(u, v) + u(o)v(o)
provides a complete inner product on D[E ], that is, (D[E ], E+δ2

o) is a Hilbert
space; this holds for any o ∈ X because of [H-1], where δo stands for the
linear functional on �(X) defined by δo(u) = u(o) for u ∈ �(X).
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Proof. Let {un} be a Cauchy sequence in (D[E ], E + δ2
o). Since

|um(x) − un(x)|2 ≤ 2RE(x, o)E(um − un) + 2δo(um − un)2, x ∈ X,

un converges pointwise to a function u on X. Hence by [H-2], we have

E(u) ≤ lim inf
n→∞

E(un) < +∞;

in particular, u ∈ D[E ]. Since un − um pointwise converges to un − u as
m→ ∞, we thus obtain

lim sup
n→∞

E(un − u) ≤ lim sup
n→∞

lim inf
m→∞

E(un − um) = 0.

This shows that the inner product E + δ2
o is complete. �

The proof above yields the following

Lemma 1.2 Suppose, in addition to [H-1], that supx,y∈X RE(x, y) is bounded.
Then [H-3] is implied by the following:

[H-2’] for a sequence of bounded functions un on X that uniformly converges
to a bounded function u, that is, limn→∞ supx∈X |un(x)−u(x)| = 0, we have

E(u) ≤ lim inf
n→∞

E(un) ≤ +∞.

Now we consider the case where [H-1] and [H-3] are verified. Let K
be a nonempty subset of X and denote by D[E ;K] the space of functions
u ∈ D[E ] such that u(z) = 0 for all z ∈ K. Then the restriction of E to
D[E ;K] provides a complete inner product, and for any x ∈ X, we have

|u(x)|2 ≤ RE(z, x)E(u), u ∈ D[E ;K], z ∈ K,

which implies that for any x ∈ X, there exists uniquely a function gK;x ∈
D[E ;K], the reproducing kernel of D[E ;K], satisfying

u(x) = E(gK;x, u), u ∈ D[E ;K].

We write gK(x, y) instead of gK;x(y) for x, y ∈ X. Since E is symmet-
ric, we see that gK(x, y) = gK(y, x). In the case where K consists of
a single point z, gz(x, y) stands for g{z}(x, y). We note that gK(x, x) =
E(gK(x, ∗), gK(x, ∗)) ≤ gz(x, x) = E(gz(x, ∗), gz(x, ∗)) for all z ∈ K.

Let {un} be a sequence in D[E ; {p}] for a point p ∈ X, and assume
that E(un) is bounded. Then a subsequence {um} weakly converges to a
function u in D[E ; {p}] as m → ∞, that is, E(um, v) tends to E(u, v) for all
v ∈ D[E ; {p}]. By taking v = gp(x, ∗), x ∈ X, we see that um(x) converges
to u(x) as m → ∞, and thus um converges to u pointwise on X. In this
way, we have the following
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Lemma 1.3 Suppose that [H-1] and [H-3] hold. Let {un} be a sequence in
D[E ; {p}] for a point p ∈ X such that E(un) is bounded as n→ ∞. Then un

weakly converges to a function u in D[E ; {p}] as n → ∞ if and only if un

converges pointwise to a function u ∈ �(X) as n → ∞. Moreover in these
cases, one has

E(u) ≤ lim inf
n→∞

E(un) < +∞.

Lemma 1.4 Suppose, in addition to [H-1] and [H-3], that

[H-4] 1 ∈ D[E ] and E(1, 1) = 0.

Then the following assertions hold:

(i) [H-2] is verified; moreover for a sequence of un ∈ D[E ] such that E(un)
is bounded as n→ ∞, un weakly converges to a function u in D[E ] and un(x)
tends to u(x) as n→ ∞ for some x ∈ X if and only if un converges pointwise
to a function u ∈ �(X) as n→ ∞.

(ii) For all x, y ∈ X, RE(x, y) = gx(y, y) = gy(x, x).

Proof. For any u ∈ D[E ] and each x ∈ X, u − u(x) belongs to D[E ; {x}]
and E(u − u(x)) = E(u). This, together with Lemma 1.3, proves the first
assertion. Moreover for any y ∈ X, we have |u(y)− u(x)|2 = E(gx(y, ∗), u−
u(x))2 = E(gx(y, ∗), u)2 ≤ E(gx(y, ∗))E(u) = gx(y, y)E(u); thus RE(x, y) ≤
gx(y, y). On the other hand, by letting u = gx(y, ∗), we get gx(y, y)

2 ≤
RE(x, y)E(gx(y, ∗)) = RE(x, y)gx(y, y), and hence gx(y, y) ≤ RE(x, y). Thus
the second assertion is verified. �

Now instead of condition [H-1], we assume that a form E under consid-
eration satisfies

[H-5] ME(x) := sup
{ |u(x)|2

E(u)
| u ∈ D[E ], E(u) > 0

}
<+∞ for all x ∈ X.

As in Lemma 1.1, it is also evident that [H-2] verifies the completeness of
the form E on D[E ]. On the other hand, if the latter is the case, then we
have the reproducing kernel or the Green function gE : X × X → R of E
satisfying

E(gE(x, ∗), u) = u(x), u ∈ D[E ], x ∈ X.

Using the Green function, we can verify [H-2]. Also it follows that ME(x) =
gE(x, x) for all x ∈ X. Thus we have the following

Lemma 1.5 Under [H-5], [H-2] holds true if and only if E provides a com-
plete inner product on D[E ]. Moreover in this case, for a sequence of un ∈
D[E ] with sup E(un) < +∞, un weakly converges to a function u in D[E ]
and un(x) tends to u(x) as n → ∞ for some x ∈ X if and only if un

converges pointwise to a function u ∈ �(X) as n → ∞, and also one has
ME(x) = gE(x, x) for all x ∈ X.
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In what follows, we assume that (X, E) satisfies conditions [H-1], [H-2]
and [H-4], or conditions [H-5] and [H-2], unless otherwise stated.

Definition 1.1 Given a nonempty subset K of X and a function u on K,
we set

Au := {v ∈ D[E ] | v|K = u}, D[E∗
K ] := {u ∈ �(K) |Au �= ∅},

and
E∗

K(u) := inf{E(v) | v ∈ Au}.
When Au is empty, we understand E∗

K(u) = +∞. The induced form E∗
K on

�(K) is called the trace of E on K.

Lemma 1.6 Given u ∈ D[E∗
K ], there exists a unique minimizer, denoted by

HK;u, of E in Au. The minimizer is characterized as a function such that
HK;u = u on K and E(HK;u, v) = 0 for all v ∈ D[E ] that vanish on K.

Proof. Let {vn} be a minimizing sequence in Au. Passing to a subsequence,
we may assume that vn weakly converges to a function v ∈ D[E ] as n→ ∞
and hence, by Lemma 1.3, vn converges to v pointwise in X. Thus it follows
that E∗

K(u) ≤ E(v) ≤ lim infn→∞ E(vn) = E∗
K(u) and v belongs to Au. This

shows that v is a minimizer in Au. We observe that a minimizer v in Au

satisfies E(v, w) = 0 for all w ∈ D[E ] vanishing onK, since E(v+tw, v+tw) ≥
E(v, v) for all real numbers t. Moreover such a function v is unique. In fact,
for minimizers v1 and v2 in Au, E(v1−v2, v1−v2) = E(v1, v1−v2)−E(v2, v1−
v2) = 0. This implies that v1 − v2 is constant in X and hence v1 − v2 = 0.
Finally for a function v ∈ Au, we have

E(v) = E(v −HK;u) + E(HK;u) ≥ E(HK;u).

This completes the proof of Lemma 1.6. �
Lemma 1.7 The trace E∗

K on K inherits the properties [H-1], [H-2] and
[H-4], or the properties [H-5] and [H-2] from E .

Proof. It suffices to prove that E∗
K + δ2

o provides a complete inner product
on D[E∗

K ] for any fixed point o of K if [H-1] is verified, and so does E∗
K

if [H-5] is satisfied. In fact, if a sequence {un} is fundamental in D[E∗
K ],

then {HK;un} is so in D[E ], and thus it converges to a function H ∈ D[E ].
Let u = H|K . Then in view of Lemma 1.6, we have H = HK;u, since
E(H,w) = limn→∞ E(HK;un, w) = 0 for all w ∈ D[E ] that vanish on K. �
Lemma 1.8 Let K and L be two subsets of X such that K ⊂ L. Then one
has

E∗
K(u|K) ≤ E∗

L(u)

for u ∈ D[E∗
L], and the equality holds if and only if HK;u|K = u on L, that

is, HK;u|K = HL;u on X.
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Proof. For u ∈ D[E∗
L], it is easy to see that E∗

L(u, v) = 0 for any v ∈ D[E∗
L]

vanishing on K if and only if E(HL;u, w) = 0 for every w ∈ D[E ] vanishing
on K. This, together with the definition of the traces, shows the lemma. �

Now as in the case of the functional E : �(X) → [0,+∞], we set

RE∗
K
(x, y) = sup

{ |u(x) − u(y)|2
E∗

K(u)

∣∣ u ∈ D[E∗
K ], E∗

K(u) �= 0

}
, x, y ∈ K

if [H-1] is satisfied, and also

ME∗
K
(x) = sup

{ |u(x)|2
E∗

K(u)

∣∣ u ∈ D[E∗
K], E∗

K(u) > 0

}
, x ∈ K

if [H-5] is verified. Since it follows from Lemma 1.8 that the Green functions
gz (z ∈ X) of E coincide with those of E∗

K on K ×K if z ∈ K, we have the
following

Lemma 1.9 (i) For all x, y ∈ K, one has RE∗
K
(x, y) = RE(x, y) if E satisfies

[H-1], [H-2] and [H-4].

(ii) For all x ∈ K, ME∗
K
(x) = ME(x) if [H-5] and [H-2] are verified.

In what follows, in addition to [H-1], [H-2] and [H-4], or [H-5] and [H-2],
we always assume the following condition:

[H-6] there is a distance d onX such that the metric space (X, d) is separable
and every function of D[E ] is continuous on the space, that is, D[E ] ⊂
C(X, d).

Lemma 1.10 Let {Xn} be an increasing sequence of finite subsets Xn of X
such that the union ∪nXn is dense in X. Then one has

D[E ] =
{
u ∈ C(X, d) | lim

n→∞
E∗

Xn
(u|Xn) < +∞};

E(u) = lim
n→∞

E∗
Xn

(u|Xn), u ∈ D[E ].

Proof. Let hn = HXn;u|Xn
for simplicity. Then {E(hn)} is an increasing se-

quence and limn→∞ E(hn) ≤ E(u)≤+∞. Suppose that limn→∞ E(hn)<+∞.
Then in view of Lemma 1.3, we can find a subsequence {hm} which point-
wise converges to a function h on X as m → ∞. Obviously h = u on
∪nXn and hence everywhere on X, since h and u are both continuous and
∪nXn is dense in X = (X, d). Thus hn pointwise converges to u as n→ ∞,
and E(u) ≤ limn→∞ E(hn) < +∞, which implies that E(u) = limn→∞ E(hn).
This proves Lemma 1.10. �
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Lemma 1.11 In the case where E verifies [H-1], [H-2] and [H-4], taking a
complete orthonormal system {φi} of the Hilbert space D[E ; {o}], where o is
a fixed point of X, one has

gz(x, y) =
∑

i

(φi(x) − φi(z))(φi(y) − φi(z)), x, y, z ∈ X;

RE(x, y) =
∑

i

(φi(x) − φi(y))
2, x, y ∈ X.

In the case where E verifies [H-5] and [H-2], taking a complete orthonormal
system {ψi} of D[E ], one has

gE(x, y) =
∑

i

ψi(x)ψi(y), x, y ∈ X.

Proof. We consider the first case. For v ∈ D[E ; {o}], we have

v =
∑

i

E(v, φi)φi

in D[E ; {o}] and pointwise on X. If we fix two points x, z ∈ X, then we
have

E(v, gz(x, ∗)) = v(x) − v(z) =
∑

i

E(v, φi)φi(x) −
∑

i

E(v, φi)φi(z)

=
∑

i

(φi(x) − φi(z))E(v, φi) =
∑

i

(φi(x) − φi(z))E(v, φi − φi(z))

= E(v,
∑

i

(φi(x) − φi(z))(φi − φi(z)))

Thus it holds that

gz(x, ∗) =
∑

i

(φi(x) − φi(z))(φi(∗) − φi(z))

weakly in D[E ; {o}] and pointwise on X. Since RE(x, z) = gz(x, x) =
gx(z, z), we get RE(x, z) =

∑
i(φi(x) − φi(z))

2. The same arguments are
valid for the second case. This completes the proof of Lemma 1.11. �

In view of the above lemma, we obtain fundamental identities in the
following

Theorem 1.12 In the case where E verifies [H-1], [H-2] and [H-4], one has

RE(x, y) = gx(y, y) = gy(x, x) = gx(y, z) + gy(x, z),(1.1)

gz(x, y) =
1

2
{RE(x, z) +RE(z, y) − RE(x, y)}(1.2)

for all x, y, z ∈ X.
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There are many important examples of Hilbert spaces possessing repro-
ducing kernels. The following is used later (see Theorem 1.15).

Example 1.1 Consider the unit disk Ω = {z = x+
√−1 y ∈ C | |z| < 1}

in the complex plane, and let HD[Ω] denote the Hilbert space of (real
valued) harmonic functions h on Ω with finite Dirichlet integrals EΩ(h) =∫∫

Ω
(∂h/∂x)2 + (∂h/∂y)2dxdy. Then the Green function can be computed

explicitly as follows:

gz(p, q) = −1

π
log

∣∣∣∣ 1 −
(
p− z

1 − p̄z

)(
q − z

1 − q̄z

) ∣∣∣∣, p, q, z ∈ Ω;

in particular, we have

REΩ
(p, q) = −1

π
log

(
1 −

∣∣∣∣ p− q

1 − p̄q

∣∣∣∣
2)

, p, q ∈ Ω.

We observe that the hyperbolic distance ρ(p, q) between two points p, q of Ω
is given by

ρ(p, q) = log

(
1 +

∣∣∣∣ p− q

1 − p̄q

∣∣∣∣
)
− log

(
1 −

∣∣∣∣ p− q

1 − p̄q

∣∣∣∣
)
,

and hence it holds that

ρ(p, q) = πREΩ
(p, q) + 2 log

(
1 +

∣∣∣∣ p− q

1 − p̄q

∣∣∣∣
)
.

Remark 1.1 (i) If a nonnegative quadratic form E satisfies [H-1], then the
restriction E ′ of E to D[E ;K] verifies [H-5] (with ME ′(x) = gK(x, x)) for any
nonempty subset K of X.

(ii) Let E be a nonnegative quadratic form satisfying [H-5] and [H-2].
In the case where no nonzero constant functions belong to D[E ], by letting
D[Ê ] = R + D[E ] and Ê(c + u) = E(u) for any c ∈ R and u ∈ D[E ],
we have a nonnegative quadratic form Ê satisfying [H-1], [H-2] and [H-4];
the Green function ĝz(x, y) (x, y, z ∈ X) is given by gE(x, y) − gE(z, y) −
gE(x, z) + gE(z, z), and for x, y ∈ X, the number RÊ(x, y) = sup{|u(x) −
u(y)|2/Ê(u) | u ∈ D[Ê ], Ê(u) > 0} is equal to gE(x, x) − 2gE(x, y) + gE(y, y).

(iii) Under condition [H-1] and [H-3], supx,y∈X RE(x, y) is bounded if
and only if D[E ] = BD[E ], that is, any f ∈ D[E ] is bounded. In fact, it is
evident that the former implies the latter, and it follows from the bounded
inverse theorem that the latter implies the former. Similarly under condi-
tion [H-2] and [H-5], ME is bounded on X if and only if D[E ] = BD[E ]. See
Proposition 4.1, Theorem 4.2 and Theorem 7.11 for related results.
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(iv) Let (E , D[E ]) be a nonnegative quadratic form on a set X satisfying
[H-1] through [H-4]. Then

√
RE induces a distance on X and every function

u ∈ D[E ] uniquely extends to a continuous function û on the completion
X̂ of (X,

√
R). We define a quadratic form Ê on C(X̂) by letting D[Ê ] =

{û | u ∈ D[E ]} and Ê(û) = E(u) for û ∈ D[Ê ] and Ê(û) = +∞ otherwise. It
is evident that (X̂, Ê) also satisfies [H-1] through [H-4].

1.2 In this part, we consider a finite set X of cardinality N and a nonneg-
ative quadratic form E on �(X).

By letting c(x, y) = −E(χx, χy) for x, y ∈ X and d(x) = −∑y∈X c(x, y)
for x ∈ X, where χx stands for the characteristic function of a set {x}, the
form is expressed as

E(u, v) = −
∑

x,y∈X

c(x, y)u(x)v(y)

=
1

2

∑
x,y∈X

c(x, y)(u(x) − u(y)(v(x)− v(y)) +
∑
x∈X

d(x)u(x)v(x),

for u, v ∈ �(X). Given u ∈ �(X), we set

Lcu(x) = −
∑
y∈X

c(x, y)u(y) =
∑

y∈X,y �=x

c(x, y)(u(x)−u(y))+d(x)u(x), x ∈ X.

This is the self-adjoint operator associated to E relative to the counting
measure μc on X.

Now we consider the case where (E , D[E ]) satisfies [H-1] and [H-4]; the
latter is equivalent to the property: d(x) = 0 for all x ∈ X. For a point
z ∈ X, the definition of the Green functions gz reads

(1.3)
∑
y∈X

gz(x, y) c(y, w) = −δxw

for all x �= z and w �= z, where δxw = 1 if x = w and δxw = 0 otherwise.
In other words, letting (N − 1) × (N − 1) matrices Cz = (c(x, y)) and
Gz = (gz(x, y)) with x, y �= z, we have GzCz = IN−1 for z ∈ X, where IN−1

stands for the unit matrix. By (1.3), we get

(1.4)
∑

z,x,y∈X

gz(x, y) c(x, y) = −N(N − 1).

Moreover, recalling [H-1] saying that
∑

y∈X c(x, y) = 0 for all x, we can
derive from (1.2) and (1.4) the following identity:

(1.5) −1

2

∑
x,y∈X

RE(x, y) E(χx, χy) = N − 1.
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Now we mention a basic result derived from (1.1), (1.2) and (1.3) in the
following

Theorem 1.13 Let X be a finite set.

(i) For nonnegative quadratic forms Eα (α = 1, 2) on �(X) satisfying [H-1]
and [H-4], E1 = E2 if and only if RE1 = RE2.

(ii) Let K be a subset of X and E (resp. F) a nonnegative quadratic
form on �(X) (resp. �(K)) satisfying [H-1] and [H-4]. Then F = E∗

K if and
only if RF (x, y) = RE(x, y) for all x, y ∈ K.

The theorem corresponds to Theorem 2.1.12 and Corollary 2.1.13 in
Kigami [32], where the Markov property [H-7] below is assumed.

Definition 1.2 Let E be a nonnegative quadratic form on a subspace D[E ]
of the space of functions, �(X), on a set X.

(i) We say that E satisfies the Markov property if

[H-7] for any u ∈ D[E ], ū = max{0,min{1, u}} also belongs to D[E ] and
satisfies E(ū) ≤ E(u).

(ii) A form (E , D[E ]) on X satisfying [H-1], [H-3], [H-4] and [H-7] is
called a resistance form on X and RE(x, y) is called the effective resistance
between points x and y ∈ X.

In Kigami [32], a resistance form is required to satisfy the following
additional condition: for any finite subset V ofX and for any u ∈ �(V ), there
exists v ∈ D[E ] such that v|V = u. However this is a consequence of the other
conditions. In fact, the trace E∗

K on a subset K of X is also a resistance form
on K, since E∗

K(u) = E(HK;u) ≥ E(HK;u) ≥ E(HK;ū) = E∗
K(ū); in particular,

if K is a finite subset, then D[E∗
K ] = �(K), because D[E∗

K ] is an algebra of
unit element 1 in �(K) separating points of K (cf. Lemma 2.4).

Lemma 1.14 Let (E , D[E ]) be a nonnegative quadratic form on �(X). Sup-
pose that χx ∈ D[E ] for all x∈X. Then E satisfies the Markov property [H-7]
if and only if E(χx, χy) ≤ 0 for all x, y ∈ X with x �= y.

Proof. For all x, y ∈ X with x �= y, letting u = χx + tχy with a constant
t < 0, we have ū(= max{0,min{1, u}}) = χx and hence the Markov property
implies that E(χx, χx) + 2tE(χx, χy) + t2E(χy, χy) ≥ E(χx, χx); this is true
for all t < 0, and thus E(χx, χy) ≤ 0. �
1.3 Let G = (V,E) be a graph with the set of vertices V and the set of
edges E that consists of pairs of vertices. In this paper, a graph admits
no loops and multiple edges, and the set of vertices is finite or countably
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infinite. We say that a vertex x is adjacent to another y if {x, y} belongs
to E and write x ∼ y to indicate it. We also use the notation: |xy| for
{x, y} ∈ E. For each vertex x, the cardinality of the subset {y ∈ V | y ∼ x}
is called the degree of G at x and denoted by deg(x). When deg(x) is finite
for each vertex x, we say that G is locally finite. By a path of length n
in G, we mean a sequence of (n + 1) vertices c = (x0, x1, . . . , xn) such that
xi ∼ xi+1 (i = 0, 1, . . . , n − 1), and we say that c connects x0 to xn. G is
called a connected graph if for any pair of vertices x and y, there exist paths
connecting them. On a connected graph G, we can introduce a distance dG

on V , called the graph distance of G, by assigning to each pair of vertices x
and y the minimum of the length of a path connecting them. We are now
given a weight r on the set of edges E, that is a positive function on E with
the property that

c(x) =
∑
y∼x

1

r(|xy|) < +∞, ∀x ∈ V.

This is automatically satisfied in a locally finite graph. We call such a couple
(G, r) a network. Given a connected network Γ = (V,E, r), a nonnegative
quadratic form (EΓ, D[EΓ]) on �(V ) can be defined as follows:

D[EΓ] =
{
u ∈ �(V ) |

∑
x∼y

|u(x) − u(y)|2
r(|xy|) < +∞

}
;

and

EΓ(u) =
1

2

∑
x∼y

|u(x) − u(y)|2
r(|xy|) , u ∈ D[EΓ].

A weight r also gives rise to a distance dr on V by taking r(e) as the length
of an edge e. To be precise, a path c = (x0, x1, . . . , xn) has by definition
the length Lr(c) =

∑n−1
i=0 r(|xixi+1|), and for any pair of vertices x and y,

dr(x, y) denotes the infimum of Lr(c) over all paths c joining x and y. Then
dr : V × V → [0,+∞) is called the geodesic distance on V . For r = 1, we
write dG for d1. For a pair of vertices x and y, we connect x to y by a path
c = (x = x0, x1, . . . , xn = y). Then for a function u ∈ D[EΓ], we have

|u(x) − u(y)| ≤
n−1∑
i=0

|u(xi) − u(xi+1)|

≤
( n−1∑

i=0

|u(xi) − u(xi+1)|2
r(|xixi+1|)

)1/2( n−1∑
i=0

r(|xixi+1|)
)1/2

≤ EΓ(u)1/2Lr(c)
1/2.
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This holds for any path as above, and thus we get the following basic in-
equality:

(1.6) REΓ
(x, y) ≤ dr(x, y), x, y ∈ V.

In this way, a resistance form on V is provided by EΓ. The effective resis-
tance and the reproducing kernel or the Green function of the form will be
respectively denoted by RΓ and gΓ

z (x, y) (x, y, z ∈ V ). Let D0[EΓ] be the
closure of the set of finitely supported functions on V in D[EΓ] and E0

Γ the
restriction of EΓ to D0[EΓ]. Then the minimal effective resistance R0

Γ(x, y)
between points x, y ∈ V is introduced with respect to the form E0

Γ. It is
evident from the definition that R0

Γ ≤ RΓ. We recall here the fact (cf. [37],
Theorem (3.63) and the references therein) that the following conditions are
mutually equivalent: (i) E0

Γ satisfies [H-5], (ii) D0[EΓ] contains no constant
functions, (iii) D0[EΓ] �= D[EΓ]. If these are the cases, D[EΓ] is decomposed
into the direct sum of D0[EΓ] and the space HD[EΓ] of harmonic functions
of finite Dirichlet sums on V that is the orthogonal complement of D0[EΓ]
relative to the form; a function h on V belongs to HD[E0

Γ] if and only if
h ∈ D[EΓ] and Lch(x) =

∑
y∼x(h(x) − h(y))/r(|xy|) = 0 for all x ∈ V . We

write g0
Γ(x, y) and g0

z(x, y) respectively for the Green functions of (E0
Γ, D0[EΓ])

and the extended form (Ê0
Γ,R +D0[EΓ]) as in Remark 1.1 (ii).

A locally finite graph G = (V,E) is always assumed to be a network with
weight 1.

Example 1.2 Let T = (V,E) be a connected, locally finite tree and r
a weight on E. Then the effective resistance of the network Γ = (T, r)
coincides with the geodesic distance dr relative to r. When r = 1 and T is
a homogeneous tree of degree d ≥ 3, it is known that the minimal Green
function of E0

T is given by

g0
T (x, y) =

d− 1

d(d− 2)

(
1

d− 1

)dT (x,y)

, x, y ∈ V

(cf. [10]) and hence the minimal effective resistance of T is given by

R0
T (x, y) =

2(d− 1)

d(d− 2)

(
1 −

(
1

d− 1

)dT (x,y))
, x, y ∈ V.

Example 1.3 (cf. [13]) Let Gn be a subgraph of the integer lattice
Zd = {(x1, . . . , xd) | x1, . . . , xn ∈ Z} generated by the set of vertices Vn =
{(x1, . . . , xd) | |xi| ≤ n, i = 1, . . . , d}. Then the effective resistance Rn of Gn

satisfies
c2 log n ≤ max{Rn(x, y) | x, y ∈ Vn} ≤ C2 log n
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if d = 2, and

0 < cd ≤ min{Rn(x, y) | x, y ∈ Vn, x �= y} ≤ max{Rn(x, y) | x, y ∈ Vn} ≤ Cd

if d ≥ 3, where cd and Cd are positive constants depending only on d.

Let Γ = (V,E, r) be a connected, locally finite network. Regarding each
edge e as the segment [0, r(e)] of length r(e) and gluing the edges at the
vertices, we obtain a Riemannian polyhedron |Γ| of dimension one, which
is locally compact and connected. In this paper, a Riemannian polyhedron
of dimension one is called a geodesic graph for short. On the geodesic
graph |Γ|, we have a canonical Riemannian measure ds and the Riemannian
distance dr. The Dirichlet integral of a function u ∈ C(|Γ|) is by definition

E|Γ|(u) =
∑
e∈E

∫ r(e)

0

(
du

ds

)2

ds

if it is finite. Then (E|Γ|, D[E|Γ|]) is a resistance form on |Γ|. Moreover the
form is strong local in the sense that E|Γ|(u, v) = 0 if v is constant on the
support of u. The energy measure μ〈u〉 of a function u of finite Dirichlet
integral is defined by∫

|Γ|
φ dμ〈u〉 = E|Γ|(u, φu)− 1

2
E|Γ|(u2, φ)

=
∑
e∈E

∫ r(e)

0

φ

(
du

ds

)2

ds, φ ∈ C(|Γ|).

For functions u, v ∈ D[E|Γ|], we have the signed Radon measure defined by
μ〈u,v〉 = (μ〈u+v〉 − μ〈u〉 − μ〈v〉)/2. This means in this case that

∫
|Γ|
φ dμ〈u,v〉 =

∑
e∈E

∫ r(e)

0

φ
du

ds

dv

ds
ds, φ ∈ C(|Γ|).

The resistance form EΓ of Γ may be considered as the trace of E|Γ| on V . A
function u ∈ D[EΓ] is identified with a function ũ ∈ D[E|Γ|] which is linear on
each edge and equal to u on V . Moreover it holds that E|Γ|(ũ, φ) = EΓ(u, φ|V )
for u ∈ D[EΓ] and φ ∈ D[E|Γ|]; in particular, the Dirichlet sum of u is equal
to the Dirichlet integral of ũ.

Now we consider a nonnegative Markovian form E on a finite set X such
that χx ∈ D[E ] for all x ∈ V . A point of X is called a vertex, and a vertex x
is, by definition, adjacent to another y if c(x, y) := −E(χx, χy) > 0. If
this is the case, x and y are assumed to be joined by an edge of resistance
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r(|xy|) = c(x, y)−1. In this way, we get a finite (resistive) network (X,E, r),
where E stands for the set of edges, each of which is assigned the positive
number r. It is easy to see that if [H-1] holds, then the graph (X,E) is
connected, and conversely, if the graph is connected and d(x) = E(χx, 1) ≥ 0
for all x ∈ X, then [H-1] is verified.

Now in view of Example 1.1, we can prove the following

Theorem 1.15 Let G = (V,E) be a connected, locally finite, infinite graph
uniformly embedded in the unit disk Ω in C endowed with the hyperbolic
distance ρ, that is, V ⊂ Ω and there is a positive constant c such that

c−1ρ(x, y) ≤ dG(x, y) ≤ c ρ(x, y), x, y ∈ V.

Then there exist positive constants c′ and c′′ such that

c′(dG(x, y) − c′′) ≤ RG(x, y) ≤ c dG(x, y), x, y ∈ V.

Proof. In what follows, ci’s stand for positive constants depending only
on c as above and Ω is endowed with the Poincaré metric gP .

We first notice that for any x ∈ V , the degree at x, deg(x), and the
number of the vertices y such that Bc1(x) ∩ Bc1(y) �= ∅ are bounded from
above by c2, where Ba(x) denotes the metric ball of Ω around a point x with
radius a (cf. [11], [37, Chap. IV § 6]).

Secondly we observe that a function h ∈ HD[Ω] satisfies

|h(x) − h(y)|2 ≤ c3

∫
Bc4 (x)

|dh|2gP
dvgP

for all x, y ∈ V with x ∼ y. Therefore we have

EG(h|V ) =
1

2

∑
x∈V

∑
y∼x

|h(x) − h(y)|2 ≤ c3
∑
x∈V

deg(x)

∫
Bc4(x)

|dh|2gP
dvgP

≤ c5

∫
Ω

|dh|2gP
dvgP

= c5EΩ(h).

This shows that

|h(x) − h(y)|2
EΩ(h)

≤ c5
|h(x) − h(y)|2

EG(h|V )
≤ c5RG(x, y)

for all x, y ∈ V . Now given x, y ∈ V , letting h = gx(y, ∗), where gx(y, z)
denotes the Green function of EΩ exhibited in Example 1.1, we have

REΩ
(x, y) ≤ c5RG(x, y), x, y ∈ V.

In view of the relation between REΩ
and the hyperbolic distance described in

Example 1.1, we arrive at the required estimate. This completes the proof
of the theorem. �
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Remark 1.2 Suppose (X, dX) and (Y, dY ) are metric spaces. A map f :
X → Y is called a quasi-isometric embedding of X into Y if there exist
constants λ ≥ 1 and k ≥ 0 such that

1

λ
dX(x, x′) − k ≤ dY (f(x), f(x′)) ≤ λ dX(x, x′) + k

for all x, x′ ∈ X. If in addition, for each y ∈ Y , there exists x ∈ X such that
dY (f(x), y) ≤ k, then f is called a quasi-isometry (or a rough isometry).
Let G = (V,E) be a connected, locally finite, infinite graph of bounded
degrees and suppose that it is quasi-isometric embedded in the unit disk Ω
in C endowed with the hyperbolic distance ρ. Then the same conclusion of
Theorem 1.15 holds.

2. Resistance forms

In this section, we prove some fundamental results on resistance forms,
the maximum principle, Harnack’s inequality, Caccioppoli’s inequality and
so on.

2.1 Let Γ = (V,E, r) be a connected, finite network. Given a subset K
of V , H ∈ �(V ) satisfies EΓ(H, v) = 0 for all functions v vanishing on K if
and only if H satisfies LcH(x) =

∑
y∼x c(x, y)(H(x) − H(y)) = 0 for any

x ∈ X \K, where we put c(x, y) = r(|xy|)−1. Such a function H is said to
be harmonic on X \K. The nonnegativity of c(x, y) verifies the maximum
principle for harmonic functions as follows:

Lemma 2.1 Let Γ = (V,E, r) be as above and K a subset of V . Let H be
a function on V that is harmonic on V \K. Then one has

min
a∈K

H(a) ≤ H(x) ≤ max
a∈K

H(a), x ∈ V.

The maximum principle applied to the Green functions gz(x, y) yields
the fact that 0 ≤ gz(x, y) ≤ gz(x, x) for all x, y, z ∈ V . Therefore in view of
identity (1.2), the effective resistance RΓ of Γ satisfies the triangle inequality
(cf. [13], [38]), and thus RΓ provides a distance on V , called the resistance
metric of Γ in [32].

For a subset A of V , we denote by bA the subset of A consisting of the
vertices adjacent to some of V \A. Let K and A be subsets of V such that
K ∩A = ∅. Given a function H on X that is positive on (V \K) ∪ bK and
harmonic on V \ K, we consider a unique solution PH on V of equation:
LcPH = 0 in V \ (K ∪ bA), subject to the boundary condition: PH = 0 on K
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and PH = H on bA. Then the maximum principle verifies that PH = H
on A, PH ≤ H on (V \K) ∪ bK, and hence LcPH ≥ 0 outside of K. Note
that for any x ∈ A, we have

H(x) = PH(x) = E(PH , gK(x, ∗)) =
∑
y∈bA

gK(x, y)LcPH(y).

Let

C(V \K,A) = max

{
gK(x, z)

gK(y, z)
| x, y ∈ A, z ∈ bA

}
.

Then we have

H(x) =
∑
z∈bA

gK(x, z)

gK(y, z)
gK(y, z)LcPH(z)

≤ C(V \K,A)
∑
z∈bA

gK(y, z)LcPH(z)

= C(V \K,A)H(y)

for all x, y ∈ A. Thus we arrive at Harnack’s inequality in the following

Lemma 2.2 Let Γ = (V,E, r) be a connected, finite network. Let K and A
be subsets of V such that K ∩A = ∅. Then one has

max
x∈A

H ≤ C(V \K,A) min
x∈A

H

for any H ∈ �(V ) that is positive on (V \K)∪ bK and harmonic on V \K.

Now we prove a version of the Caccioppoli inequality on Γ.

Lemma 2.3 Let Γ = (V,E, r) be as above and K a subset of V . Let H be
a function on V that is harmonic on V \ K. Then for any ξ ∈ �(V ) with
ξ = 0 on K, one has

EΓ(ξH) ≤ 10 sup
V

|H|2 EΓ(ξ).

Proof. Let |Γ| be the metric graph associated to Γ. For u ∈ �(V ), we denote
by ũ the harmonic extension of u to |Γ|, namely the function on |Γ| which is
linear on the segment assigned to each edge of Γ and coincides with u on V .
Then we have

E|Γ|((ξH)∼) ≤ E|Γ|(ξ̃H̃) =

∫
H̃2dμ〈ξ̃〉 + 2

∫
ξ̃H̃dμ〈ξ̃,H̃〉 +

∫
ξ̃2dμ〈H̃〉

≤ 2

{∫
H̃2dμ〈ξ̃〉 +

∫
ξ̃2dμ〈H̃〉

}
.
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Since E|Γ|(ξ̃2H̃, H̃) = EΓ(ξ2H,H) = 0 and

E|Γ|(ξ̃2H̃, H̃) =

∫
ξ̃2dμ〈H̃〉 + 2

∫
ξ̃H̃dμ〈ξ̃,H̃〉 ≥

1

2

∫
ξ̃2dμ〈H̃〉 − 2

∫
H̃2dμ〈ξ̃〉,

we obtain ∫
ξ̃2dμ〈H̃〉 ≤ 4

∫
H̃2dμ〈ξ̃〉.

Therefore we get

E|Γ|((ξH)∼) ≤ 10

∫
H̃2dμ〈ξ̃〉 ≤ 10 sup

{
H̃(x)2 | x ∈ supp μ〈ξ̃〉

} E|Γ|(ξ̃).

This shows that
EΓ(ξH) ≤ 10 sup

V
|H|2 EΓ(ξ).

Thus the proof of Lemma 2.3 is completed. �

Finally we recall two basic properties of connected finite networks.

Lemma 2.4 Let Γ = (V,E, r) be as above. Then for all u, v ∈ �(V ), one has

EΓ(uv)1/2 ≤ sup |u| EΓ(v)1/2 + sup |v| EΓ(u)1/2.

Lemma 2.5 (Rayleigh’s monotonicity principle) Let Γ = (V,E, r) be
as above and Γ′ = (V ′, E ′, r′) a connected subnetwork, that is, V ′ ⊂ V ,
E ′ ⊂ E and r′ = r on E ′. Then

RΓ(x, y) ≤ RΓ′(x, y) for all x, y ∈ X ′.

Remark 2.1 For a finite, connected, network Γ = (V,E, r) of N vertices,
the identity (1.5) reads

1

2

∑
x∼y

RΓ(x, y)

r(|xy|) = N − 1.

This is a classical result due to Foster (cf. [20], [37], [38]).

2.2 In this part, we consider a resistance form E on a set X, where [H-6]
is assumed. To begin with, applying the results of the previous sections, we
can deduce the following

Proposition 2.6 For a resistance form E on a set X, it holds that

0 ≤ gz(x, y) ≤ gz(x, x), x, y, z ∈ X.
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Now the following is an immediate consequence from Lemma 2.1.

Theorem 2.7 Let K be a closed subset of X. Let H be a bounded function
in D[E ] that satisfies E(H, v) = 0 for all v ∈ D[E ;K]. Then one has

inf
K
H ≤ H(x) ≤ sup

K
H, x ∈ X.

In view of Lemma 2.2, we can deduce the following

Theorem 2.8 Let K be a closed subset ofX. If a positive functionH ∈ D[E ]
satisfies E(H, v) = 0 for all v ∈ D[E ;K], then for a compact subset A of
X \K, one has

H(x) ≤ C(X \K,A)H(y)

for all x, y ∈ A, where

C(X \K,A) = sup

{
gK(x, z)

gK(y, z)
| x, y, z ∈ A

}
.

In the following lemma, we prove a version of Caccioppoli inequality
on X.

Theorem 2.9 Let K be a closed subset of X. Let H be a bounded function
in D[E ] such that E(H, v) = 0 for all v ∈ D[E ;K]. Then one has

E(ξH) ≤ 10 sup
X

|H|2 E(ξ)

for all ξ ∈ D[E ;K].

Proof. We first take an increasing sequence of finite subsets Xn of X in
such a way that ∪nXn and K ∩ (∪nXn) are dense in X and K, respectively.
Let Hn be a unique function in D[E ] such that Hn = H on Kn = K∩Xn and
E(H, v) = 0 for all v ∈ D[E ;Kn]. Then as n→ ∞, E(Hn) tends to E(H) and
Hn converges to H pointwise in X. Let hn (resp. ξn ) denote the restriction
ofHn (resp. ξ) toXn. Then E∗

Xn
(hn, v) = 0 for all v ∈ D[E∗

Xn
;Kn]. Therefore

we are allowed to apply Lemma 2.3 to hn and ξn, obtaining

E∗
Xn

(ξnhn) ≤ 10 sup
Xn

|hn|2 E∗
Xn

(ξn).

Let Fn = HXn;ξnhn for simplicity. Then Fn converges to ξH pointwise in
∪nXn and hence in X, because E(Fn)(= E∗

Xn
(ξnHn)) is bounded and ∪nXn

is dense in X. Therefore we have

E(ξH) ≤ lim inf
n→∞

E(Fn) = lim inf
n→∞

E∗
Xn

(ξnhn) ≤ 10 sup |H|2E(ξ).

This completes the proof of Theorem 2.9. �
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In what follows, we assume further that the metric space (X, d) is com-
pact. Then E is a regular Dirichlet form on X defined on the L2-space
relative to a positive Radon measure on X with support X (cf. e.g. [21]).
Recall first that given a function u ∈ D[E ], a Radon measure μ〈u〉 on X,
called the energy measure of u, is defined by

∫
φdμ〈u〉 = E(u, φu)− 1

2
E(u2, φ)

for φ ∈ D[E ]. We note here that D[E ] is dense in C(X, d). Now given a
proper open set Ω of X and a closed subset A of Ω, we let

CapΩ(A) = inf{E(u) |u ∈ D[E ;X \ Ω], u ≥ 1 on A}.
This is called the capacity of A in Ω. We recall that there exists a unique
function eΩ,A ∈ D[E ;X \Ω] such that eΩ,A ≥ 1 on A and E(eΩ,A) = CapΩ(A);
the function is called the equilibrium potential of the subset A of Ω and
characterized as a function such that eΩ,A = 1 on A and E(eΩ,A, v) ≥ 0
for all v ∈ D[E ;X \ Ω] that are nonnegative on A (cf. ibid. Chap.2).
The equilibrium potential is expressed as eΩ,A(x) =

∫
gX\Ω(x, y) dν(y) for

x ∈ X, where ν is a positive Radon measure onX supported in A. Observing
that E(gX\Ω(z, ∗)/minx,y∈A gX\Ω(x, y)) = gX\Ω(z, z)/(minx,y∈A gX\Ω(x, y))2,
we have the following estimate for the capacity of A:

(2.1) CapΩ(A) ≤ minx∈A gX\Ω(x, x)

(minx,y∈A gX\Ω(x, y))2
.

Now we assume further that E is local in the sense that E(u, v) = 0 if
supp u ∩ supp v = ∅. Let us denote by DΩ,loc[E ] the space of functions u
on Ω such that for any relatively compact open subset ω of Ω, there exist
functions v ∈ D[E ] that coincide with u on ω. We say a function H on Ω
is E-harmonic if H ∈ DΩ,loc[E ] and E(H, v) = 0 for all v ∈ D[E ] supported
in Ω. Then Theorems 2.7 and 2.8 extend to the following

Theorem 2.10 Let X, Ω and E be as above. Let H be an E-harmonic in Ω.

(i) When H is bounded, one has

inf
X\Ω

H ≤ H(x) ≤ sup
X\Ω

H, x ∈ Ω,

where one set

inf
X\Ω

H = lim
δ→0

inf{H(x) | x ∈ Ω, d(x,X \ Ω) < δ};

sup
X\Ω

H = lim
δ→0

sup{H(x) | x ∈ Ω, d(x,X \ Ω) < δ}.

(ii) When H is positive, then given a closed subset A of Ω, one has

H(x) ≤ C(Ω, A)H(y)

for all x, y ∈ A.
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Now we prove the following

Theorem 2.11 Let X, Ω and E be as above. Then for any function f ∈
C(X \ Ω), there exists uniquely a function H ∈ C(X) ∩ DΩ,loc[E ] such that
H is equal to f on X \ Ω and E-harmonic in Ω.

Proof. Let K = X \ Ω and note that D[E∗
K ] is dense in C(K). Let {fn}

be a sequence in D[E∗
K] which uniformly converges to a given f ∈ C(K),

and let Hn = HK;fn ∈ D[E ]. Then in view of Theorem 2.10, {Hn} is a
Cauchy sequence in C(X) and we let H = limn→∞Hn. Then it follows
from Theorem 2.9 that E(eΩ,AHn) ≤ 10 supX |Hn|2CapΩ(A) for any closed
subset A of Ω and each n. Therefore we have

E(eΩ,AH) ≤ lim inf
n→∞

E(eΩ,AHn) ≤ 10 sup
K

|f |2CapΩ(A) < +∞.

Thus H belongs to DΩ,loc[E ] and E(eΩ,AH, v) = limn→∞ E(eΩ,AHn, v) for any
v ∈ D[E ] supported in Ω. Now choosing an open subset ω in such a way that
supp v ⊂ ω ⊂ ω̄ ⊂ Ω and considering the locality of the form, we obtain
E(H, v) = E(eΩ,ω̄H, v) = limn→∞ E(eΩ,ω̄Hn, v) = limn→∞ E(Hn, v) = 0. This
completes the proof of Theorem 2.11. �

3. Laplace operators

In this section, we introduce a certain measure on a space endowed with a
resistance form and carry out embedding the space into the Hilbert space of
square summable sequences, using the eigenvalues and eigenfunctions of the
self-adjoint operator to get a regular Dirichlet space containing the space as
a dense subset.

3.1 We consider a quadratic form E on a set X satisfying [H-1], [H-2], [H-4]
and [H-6]. Let μ be a Borel measure on X = (X, d) and K the support
of μ, supp μ, that is the complement of the union of open balls Br(p) with
μ(Br(p)) = 0. Note that continuous functions f and g coincide almost
everywhere in X if and only if f = g on K. Suppose that

(3.1) μ(X) < +∞;

∫
X

RE(o, x) dμ(x) < +∞.

Since any function u ∈ D[E ] satisfies |u(x)|2 ≤ 2E(u)RE(x, y)+2u(y)2 for all
x, y ∈ X, it belongs to L2(K,μ), and moreover, noting that

√
RE satisfies

the triangle inequality, we have

|u(x)|2 ≤ 2E(u)

∫
X

RE(x, y)dμ(y) + 2

∫
X

u(y)2dμ(y)

≤ 4E(u)

(∫
X

RE(o, y)dμ(y) +RE(o, x)μ(X)

)
+ 2

∫
X

u(y)2dμ(y)
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for all x ∈ X. This shows that u2 is bounded from above by an integrable
function on X depending only on E(u),

∫
X
u2dμ and μ(X). Therefore any

sequence of functions un ∈ D[E ] with supn(E(un) +
∫

X
u2

ndμ) < ∞ contains
a subsequence that converges to a function pointwise in X and hence in
L2(K,μ) because of Lebesgue’s convergence theorem. Thus the embedding
of D[E∗

K ] into L2(K,μ) is compact (cf. [32, 2.4]).

Now we denote by Lμ the self-adjoint operator associated with the closed
form E∗

K on the L2-closure of D[E∗
K ]; the domain D[Lμ] of Lμ consists of

functions u ∈ D[E∗
K] such that the functional on D[E∗

K ] defined by v →
E∗

K(u, v) is continuous with respect to the L2-norm, and for any u ∈ D[Lμ],
Lμu is the unique function (in the closure of D[E∗

K ] in L2(K,μ)) satisfying

E∗
K(v, u) =

∫
K

v Lμu dμ, v ∈ D[E∗
K ].

Thus we have the following

Lemma 3.1 Under condition (3.1), the embedding of D[E∗
K ] into L2(K,μ)

(K = supp μ) is compact, and the spectra of the operator Lμ consists of
a nondecreasing sequence of nonnegative numbers {λi(μ)} that diverges to
infinity as i→ ∞ unless D[E∗

K] is of finite dimension.

LetN = dimD[E∗
K ] ≤ +∞ and {φi : 0 ≤ i ≤ N−1} a complete orthonor-

mal system of eigenfunctions φi with eigenvalues λi(E∗
K ;μ) in L2(K,μ), where

φ0 = 1/
√
μ(K). We write λi(μ) for λi(E∗

K ;μ) if there is no confusion. In
view of Lemma 1.11, gz(x, y) and RE(x, y) can be expressed as follows:

gz(x, y) =
N−1∑
i=1

1

λi(μ)
(φi(x) − φi(z))(φi(y) − φi(z)),(3.2)

RE(x, y) =

N−1∑
i=1

1

λi(μ)
(φi(x) − φi(y))

2.(3.3)

Fix x, y ∈ K. Then the function gz(x, y) of z ∈ X is summable over K,
because of identity (1.2). We set

gμ(x, y) :=
1

μ(K)

∫
K

gz(x, y) dμ(z).

Then in view of (3.2) and (3.3), the following identities hold:

gμ(x, y) =
1

μ(K)

(N−1∑
i=1

1

λi(μ)

)
+

N∑
i=1

φi(x)φi(y)

λi(μ)
,(3.4)

∫
K

gμ(x, y) dμ(y) =
1

2μ(K)

∫ ∫
K×K

RE(y, z) dμ(y)dμ(z) =

N−1∑
i=1

1

λi(μ)
.(3.5)
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The last identity yields a lower bound for λi(μ) (i = 1, 2, . . . , N − 1) as
follows:

(3.6) λi(μ) ≥ 2μ(K)i∫∫
K×K

RE(y, z) dμ(y)dμ(z)
.

We put

g∗μ(x, y) := gμ(x, y) − 1

μ(K)

N−1∑
i=1

1

λi(μ)
=

N−1∑
i=1

φi(x)φi(y)

λi(μ)
, x, y ∈ K.

Notice that

E(g∗μ(x, ∗), g∗μ(y, ∗)) = g∗μ(x, y) =

N−1∑
i=1

φi(x)φi(y)

λi(μ)
, x, y ∈ K.

Now we define an operator on L2(K,μ) by

Gμu(x) =

∫
K

g∗μ(x, y)u(y) dμ(y), u ∈ L2(K,μ).

Then if we express a function u ∈ D[E∗
K ](⊂ L2(K,μ)) by the Fourier expan-

sion with respect to the basis {φi} as

u =
N−1∑
i=0

∫
K

uφidμ φi (in L2(K,μ)),

then we have

Gμu =

N−1∑
i=1

1

λi(μ)

∫
K

uφidμ φi

and also

Lμu =
N−1∑
i=1

λi(μ)

∫
K

uφidμ φi

if u ∈ D[Lμ]. Thus we have the following

Proposition 3.2 Under condition (3.1), Gμ is the Green operator of Lμ,
that is, it satisfies

I = Hμ + LμGμ on D[E∗
K ](⊂ L2(K,μ)),

I = Hμ + GμLμ on D[Lμ](⊂ D[E∗
K ]),

HμGμ = GμHμ = 0,

where

Hμu =
1

μ(K)

∫
K

u dμ.
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Now we shall prove the following

Proposition 3.3 Let μ be a Borel measure supported on a subset K of X.
Suppose that K is finite, and regard the measure μ as a positive function
on K. Then one has

RE(x, y) ≤ 2 max{μ(x)−1, μ(y)−1}
λ1(μ)

for all x, y ∈ K.

Proof. For a function u ∈ D[E∗
K ] and points x, y ∈ K, we have

|u(x) − u(y)|2 ≤ 2
(|u(x) −Hμu|2 + |u(y) −Hμu|2

)
≤ 2 max{μ(x)−1, μ(y)−1} (|u(x) −Hμu|2μ(x) + |u(y)−Hμu|2μ(y)

)
≤ 2 max{μ(x)−1, μ(y)−1}

∫
K

|u−Hμu|2dμ

≤ 2 max{μ(x)−1, μ(y)−1}
λ1(μ)

E∗
K(u).

This proves the inequality of the proposition. �

The monotonicity of λ1(E∗
K ;μ) with respect to finitely supported mea-

sures μ is described in the following

Lemma 3.4 Let μ and ν be respectively measures supported on finite sub-
sets K and L of X. Suppose that K ⊂ L and μ ≤ ν on K. Then one has

1

λ1(E∗
K ;μ)

≤ 1

λ1(E∗
L; ν)

.

Proof. Given u ∈ D[E∗
K], we denote by v the restriction of the minimizer

HK;u to L. Then we have

λ1(E∗
L; ν)

∫
K

|u−Hμu|2dμ ≤ λ1(E∗
L; ν)

∫
K

|u−Hνv|2dμ

≤ λ1(E∗
L; ν)

∫
K

|u−Hνv|2dν ≤ λ1(E∗
L; ν)

∫
L

|v −Hνv|2dν
≤ E∗

L(v) = E(HK;u) = E∗
K(u).

This holds for all u ∈ D[E∗
K ], and hence we get λ1(E∗

K;μ) ≥ λ1(E∗
L; ν). �

Definition 3.1 Let μc
X be the counting measure on X and

λ∗1(E ;μc
X) = inf

K
λ1(E∗

K ;μc
K),

where K ranges over all finite subsets of X.
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Theorem 3.5 Consider a quadratic form E on a set X satisfying [H-1],
[H-2], [H-4] and [H-6] and suppose that λ∗1(E ;μc

X) is positive. Then the fol-
lowing assertions hold.

(i) For all x, y ∈ X,

RE(x, y) ≤ 2

λ∗1(E ;μc
X)
.

(ii) The set of accumulation points Xd of the metric space (X, d) is
empty, or consists of a single point p∞.

(iii) For any u ∈ D[E ], there exists a constant a(u) such that u(xn) tends
to a(u) as n → ∞ for any sequence {xn} in X which diverges or converges
to p∞ if Xd is not empty (in this case, a(u) = u(p∞) ), and moreover one
has

λ∗1(E ;μc
X)

∫
X

|u− a(u)|2dμc
X ≤ E(u).

Proof. The assertion (i) is an immediate consequence from Proposition 3.3
and Lemma 3.4.

Let us now prove the remaining assertions. Observe first that any u ∈
D[E ] is bounded on X, since RE is bounded (see Remark 1.1 (iii)). Let us
take an increasing sequence of finite subsets Wn of X in such a way that
W = ∪Wn is dense in X. We write μn for μc

Wn
, and given u ∈ D[E ], we put

un = u|Wn and further an = Hμnun(=
∑

x∈Wn
u(x)/�Wn). Then we have

E(u) ≥ E∗
Wn

(un)

≥ λ1(E∗
Wn

;μc
n)
∑

x∈Wn

|un(x) − an|2

≥ λ∗1(E ;μc
X)
∑

x∈Wn

|un(x) − an|2.

Since u is bounded, an is also bounded as n → ∞, so that we may assume
that an tends to a number a as n→ ∞. Then for any finite subset K of W ,
we get

E(u) ≥ λ∗1(E ;μc
X)
∑
x∈K

|u(x) − a|2.

This holds for W . Moreover if we have an accumulation point p ∈ Xd, then
u(xk) tends to a for all xk in W converging to p, and hence a = u(p). This
verifies that if we have p, q ∈ Xd, then u(p) = u(q) for all u ∈ D[E ], which
implies that RE(p, q) = 0 and hence p = q. this completes the proof of
Theorem 3.5. �
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In what follows, we assume that E is a resistance form. Let K be a
finite subset of X. Then the characteristic functions χx for all x ∈ K
belong to D[E∗

K]. Set c(x, y) = −E∗
K(χx, χy) for x, y ∈ K , x �= y, and

πK(x) = E∗
K(χx, χx)(=

∑
y∈K,y �=x c(x, y)) for x ∈ K. Define a measure μp

K

on K by ∫
u dμp

K =
∑
x∈K

u(x)πK(x), u ∈ �(K).

Then the operator on L2(K,μp
K), denoted by Lp

μ, is expressed as follows:

Lp
Ku(x) =

1

πK(x)
Lcu(x) = u(x) −MKu(x),

where we put

MKu(x) =
1

πK(x)

∑
y∈K,y �=x

c(x, y)u(y).

We remark here that

min
x∈K

πK(x) λ1(μ
p
K) ≤ λ1(μ

c
K) ≤ max

x∈K
πK(x) λ1(μ

p
K).

By the same arguments as in Lemma 3.4, we have the following

Lemma 3.6 Let K and L be finite subsets of X such that K ⊂ L. Then
πK ≤ πL on K and λ1(E∗

K ;μp
K) ≥ λ1(E∗

L;μp
L).

Definition 3.2 Let

πX(x) := sup
K
πK(x), x ∈ X ; λ∗1(E ;μp

X) := inf
K
λ1(E∗

K ;μp
K),

where K ranges over all finite subsets of X.

Theorem 3.7 Let E be a resistance form on a set X satisfying [H-6] and
suppose that πX(x) is finite for all x ∈ X and λ∗1(E ;μp

X) is positive. Then
the following assertions hold.

(i) For all x, y ∈ X,

RE(x, y) ≤ 2 max{πX(x)−1, πX(y)−1}
λ∗1(E ;μp

X)
.

(ii) The set of accumulation points Xd of the metric space (X, d) is
empty, or consists of a single point p∞.

(iii) For any u ∈ D[E ], there exists a constant a(u) such that u(xn) tends
to a(u) as n → ∞ for any sequence {xn} in X which diverges or converges
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to p∞ if Xd is not empty (in this case, a(u) = u(p∞)), and moreover one
has

λ∗1(E ;μp
X)

∫
X

|u− a(u)|2dμp
X ≤ E(u).

Remark 3.1 (i) Let E be a resistance form on a finite or countably infinite
set X such that πX(x) is finite for any x ∈ X. A point of X is called a
vertex, and a vertex x is, by definition, adjacent to another y if c(x, y) :=
−E(χx, χy) > 0. If this is the case, x and y are assumed to be joined by
an edge of resistance r(|xy|) = c(x, y)−1. In this way, we get a connected
network (X,E, r), where E stands for the set of edges, each of which is
assigned the positive number r.

(ii) Let E be a quadratic from on a finite or countably infinite set X
satisfying [H-2] and [H-5]. The spectral gap of E in L2(X,μc) is given by the
number λ0(E ;μc) = inf{E(u) | u ∈ D[E ],

∑
x∈X u(x)

2 = 1}. When λ0(E ;μc)
is positive, we have supx∈X gE(x, x) ≤ 2/λ0(E ;μc).

3.2 In this part we investigate a resistance form E on a set X satisfying
condition [H-6].

Suppose μ is a Borel measure supported on a closed subset K of X such
that

(3.7) μ(K) <∞ ;

∫ ∫
K×K

RE(x, y)2dμ(x)dμ(y) < +∞.

Then we introduce a nonnegative symmetric function on K ×K by

Nμ(x, y) :=

(
1

μ(K)

∫
K

(gμ(x, z) − gμ(y, z))2dμ(z)

)1/2

, x, y ∈ K.

It is evident that Nμ satisfies the triangle inequality, and in fact it defines a
distance on K (see (3.8) below).

Let Φ = {φi | i = 0, 1, . . . , N − 1} be a complete orthonormal system
of eigenfunctions φi of Lμ with the i-th eigenvalues λi(μ), where N , 1 ≤
N ≤ +∞, stands for the cardinality of K. In what follows, we understand
φi/
√
λi(μ) = 0 for i ≥ N ifN is finite, and for simplicity, we assume N = ∞.

Recall that

RE(x, y) =

∞∑
i=1

(
φi(x)√
λi(μ)

− φi(y)√
λi(μ)

)2

, x, y ∈ K.

Relevantly to this expression, we define a map IΦ of K into the Hilbert space
of square summable sequences, �2 = {(ai) |

∑∞
i=1 a

2
i < +∞}, by

IΦ(x) =

(
φi(x)√
λi(μ)

)
, x ∈ K.
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Then IΦ gives rise to an isometric embedding of the metric subspace (K,
√
RE)

of (X,
√
RE) into �2; in fact, it satisfies

RE(x, y) = ‖IΦ(x) − IΦ(y)‖2
	2; g

∗
μ(x, y) = (IΦ(x), IΦ(y))	2, x, y ∈ K.

Then the distance Nμ can be expressed by

Nμ(x, y) =

(
1

μ(K)

∫
K

( ∞∑
i=1

1

λi(μ)
(φi(x) − φi(y))φi(z)

)2

dμ(z)

)1/2

=

(
1

μ(K)

∫
K

(IΦ(x) − IΦ(y), IΦ(z))2
	2dμ(z)

)1/2

.

Then by the Cauchy-Schwarz inequality, we get

Nμ(x, y) ≤
(

1

μ(K)

∫
K

g∗μ(z, z)dμ(z)

)1/2

RE(x, y)1/2

=

(
1

μ(K)

N−1∑
i=1

1

λi(μ)

)1/2

RE(x, y)1/2.

We observe here that a function u ∈ D[Lμ] is Lipschitz continuous with
respect to Nμ. In fact, we have by Proposition 3.2

|u(x) − u(y)| =

∣∣∣∣
∫

K

(g∗μ(x, z) − g∗μ(y, z))Lμu(z)dμ(z)

∣∣∣∣
≤
(

1

μ(K)

∫
K

(gμ(x, z) − gμ(y, z))2dμ(z)

)1/2(
μ(K)

∫
K

|Lμu|2dμ(z)

)1/2

,

and hence

(3.8) |u(x) − u(y)| ≤
(
μ(K)

∫
K

|Lμu|2dμ
)1/2

Nμ(x, y)

for all x, y ∈ K. In particular, if φ is an eigenfunction of Lμ with eigenvalue
λ �= 0, then

(3.9) |φ(x) − φ(y)| ≤ λ

(
μ(K)

∫
K

φ2dμ

)1/2

Nμ(x, y).

Let us now introduce another distance Sμ on K by

Sμ(x, y) = (pμ(1, x, x) − 2pμ(1, x, y) + pμ(1, y, y))1/2, x, y ∈ K,
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where pμ(t, x, y) denotes the kernel function of the semigroup exp(−tLμ)
generated by Lμ. The distance Sμ is written as

Sμ(x, y) =

(N−1∑
i=1

e−λi(μ)(φi(x) − φi(y))
2

)1/2

, x, y ∈ K.

Therefore it follows from (3.9) that

Sμ(x, y) ≤
(
μ(K)

∞∑
i=1

λi(μ)2e−λi(μ)

)1/2

Nμ(x, y)

≤ C0

(
μ(K)

∞∑
i=1

1

λi(μ)

)1/2

Nμ(x, y),(3.10)

where C0 is some absolute constant. Obviously an eigenfunction φ of Lμ

with eigenvalue λ is Lipschitz continuous with respect to Sμ; in fact, we
have

|φ(x) − φ(y)| ≤ eλ/2

(∫
K

φ2dμ

)1/2

Sμ(x, y).

Relevantly to the distance Sμ, we define a map JΦ : K → �2 by

JΦ(x) = (e−λi(μ)/2φi(x)), x ∈ K,

that is an isometric embedding of the metric space (K,Sμ) into �2. We
denote by K

μ
the completion of (K,Sμ). We notice that

0 ≤ gμ(x, y) ≤ gμ(x, x) =
1

μ(K)

∫
K

RE(x, z) dμ(z)

and ∫
K

gμ(z, z)2dμ(z) =
1

μ(K)2

∫
K

(∫
K

RE(z, w)dμ(w)

)2

dμ(z)

≤ 1

μ(K)

∫ ∫
K×K

RE(z, w)2dμ(z)dμ(w).

Using these estimates, we get

Nμ(x, y)2 ≤ 2

μ(K)

∫
K

gμ(z, z)2dμ(z)

≤ 2

μ(K)2

∫ ∫
K×K

RE(z, w)2dμ(z)dμ(w)(3.11)

for all x, y ∈ K.



Convergence of metric graphs and energy forms 397

In this way, the distance Nμ turns out to be bounded, and hence any
function of D[Lμ] is bounded. In particular, an eigenfunction φ with non-
trivial eigenvalue λ is bounded, and in view of (3.9), it satisfies

|φ(x)|2 ≤ 2λ2

μ(K)

∫ ∫
K×K

RE(z, w)2dμ(z)dμ(w)

∫
K

φ2dμ, x ∈ K.

Lemma 3.8 The completion K
μ

of (K,Sμ) is compact and any function of
D[Lμ] extends continuously to K

μ
.

Proof. We take a divergent sequence {si} of positive numbers, which will
be appropriately chosen later, and for r > 0, we denote by B1,2(r) (r > 0)
the subset of �2 consisting of elements (ai) with

∑∞
i=1(1 + si)a

2
i ≤ r2, that

is a compact subset of �2. We take a positive number M so that

1

2

(∫ ∫
K×K

RE(z, w)2dμ(z)dμ(w)

)1/2

≤M.

Since
∑∞

i=1 1/λi(μ) ≤ 1
2

(∫∫
K×K

RE(z, w)2dμ(z)dμ(w)
)1/2

by (3.5), we see

that λi(μ) ≥ i/M for all i = 1, 2, . . .. Therefore if we set si = i/M , then for
any x ∈ K, we have

∞∑
i=1

(1 + si)e
−λi(μ)φi(x)

2 ≤ 4M2μ(K)−1
∞∑
i=1

(1 + si)λi(μ)2e−λi(μ)

≤ C0M
2μ(K)−1

∞∑
i=1

(1 + si)e
−λi(μ)/2

≤ C0M
2μ(K)−1

∞∑
i=1

(1 + si)e
−si/2,

where C0 is some absolute constant. Letting r(M)2 = C0M
2μ(K)−1

∑∞
i=1(1+

si)e
−si, we conclude that JΦ(K) is included in B1,2(r(M)): in particu-

lar, (K
μ
,Sμ) turns out to be compact. Moreover given u ∈ D[Lμ], we

put un =
∑n

i=0

∫
K
uφidμ φi. Taking a point y ∈ K in such a way that

u(y) − un(y) = 0, applying (3.8) and using (3.11), we obtain

sup
x∈K

|u(x) − un(x)|2 ≤ μ(K)

(∫
K

(
∞∑

i=n+1

λi(μ)

∫
K

uφi dμ φi)
2dμ

)
sup
x∈K

Nμ(x, y)2

=
2

μ(K)

∫ ∫
K×K

RE(z, w)2dμ(z)dμ(w)

( ∞∑
i=n+1

λi(μ)2

(∫
K

u φi dμ

)2)
.

Since the right side tends to zero as n goes to infinity, we see that every u ∈
D[Lμ] is continuous relative to the distance Sμ and extends to a continuous
function on K

μ
. �



398 A. Kasue

The measure μ can be taken to be a Radon measure on the compact
metric space K

μ
, since the inclusion map from (K, d|K) to (K

μ
,Sμ) is con-

tinuous, and the form (E∗
K , D[E∗

K]) also can be considered as a Dirichlet form
on L2(K

μ
, μ). Moreover D[E∗

K ] ∩ C(K
μ
) is an algebra containing the unit

element 1 and D[Lμ] that separates points of K
μ
, and hence D[E∗

K ]∩C(K
μ
)

is dense in C(K
μ
) with uniform norm, and it is clearly dense in D[E∗

K ] with
norm E∗

K
1/2 + ‖ · ‖L2. Thus we have the following

Theorem 3.9 The Dirichlet form (E∗
K , D[E∗

K]) on L2(K
μ
, μ) is regular.

We refer the reader to e.g. [21] for the theory on Dirichlet spaces.

Let

Q(K, E∗
K) = the space of functions on K spanned by {gz(x, ∗) | x, z ∈ K}.

We observe that u ∈ D[E∗
K ] belongs to Q(K, E∗

K) if and only if there exists
a finite subset A of K such that E∗

K(u, v) = 0 for every v ∈ D[E∗
K ] that

vanishes on A. We note also that Q(K, E∗
K) is included in the family of

functions spanned by {gμ(x, ∗) | x ∈ K}, because we have

gz(x, y) =
1

μ(K)

∫
K

gz(x, w) dμ(w) + E(gμ(y, ∗), gz(x, ∗))

=
1

μ(K)

∫
K

gz(x, w) dμ(w) + gμ(y, x) − gμ(y, z).

Now we suppose that for each x ∈ K, there exists a positive constant cx
such that

(3.12) |u(x)| ≤ cx

(∫
K

u2dμ

)1/2

, ∀u ∈ D[E∗
K ].

Since u(x) = Hμu + E(u, gμ(x, ∗)), this is equivalent to the condition that
gμ(x, ∗) ∈ D[Lμ] for all x ∈ K, that is,

∑∞
i=1 φi(x) is finite for all x ∈ K. In

particular, for any fixed x ∈ K, the function gμ(x, y) of y ∈ K continuously
extends to K

μ
and gμ(x, y) is bounded from above by gμ(y, y) that is square

summable, since we have

gμ(y, y) =

∫
K

gz(y, y)dμ(z) =

∫
K

RE(z, y) dμ(z)

≤
∫

K

RE(z, o) dμ(z) +RE(0, y)μ(K),

where o is a fixed point of K. This, together with Lebesgue’s convergence
theorem, shows that the distance Nμ also extends continuously to K

μ
. In

this way, under the assumption (3.12), we have verified that the completion

K
N

of K with respect to the distance Nμ topologically coincides with K
μ
.
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Moreover Q(K, E∗
K) is taken to belong to C(K

μ
) and Q(K, E∗

K) separates

points of K
N

, so that the algebra generated by Q(K, E∗
K) is dense in C(K

μ
).

Thus we have the following

Theorem 3.10 Under the assumption (3.12), the completion K
N

is com-
pact and determined topologically by Q(K, E∗

K); moreover (E∗
K , D[E∗

K]) is a

regular Dirichlet form on L2(K
N
, μ).

Now we suppose, instead of (3.12), that the effective resistance RE of E
is bounded on K, that is RE(x, y) ≤ D for some positive constant D and all
x, y ∈ K. In this case, we have

|u(x) − u(y)|2 ≤ DE∗
K(u)

for all u ∈ D[E∗
K ] and x, y ∈ K. Therefore given u ∈ D[E∗

K ] and un =∑n
i=0

∫
K
uφidμ φi, we take a point y ∈ K in such a way that u(y)−un(y) = 0

and get

sup
x∈K

|u(x) − un(x)|2 ≤ D

( ∞∑
i=n+1

λi(μ)

(∫
K

uφidμ

)2)
.

The right side tends to zero as n → ∞. Thus un uniformly converges to u
on K and any un extend to a continuous function onK

μ
, and so does u itself.

Thus D[E∗
K ] may be regarded as a subspace of the Banach space C(K

μ
) and

the distance Nμ also yields the same topology on K
μ

as Sμ. Moreover for

any x, y ∈ K
N

, |u(x) − u(y)|2 ≤ D2E∗
K(u) for all u ∈ D[E∗

K]. This implies
that Ē∗

K satisfies [H-1]:

0 < RE∗
K
(x, y) = sup

{ |û(x) − û(y)|2
Ē∗

K(û)
| Ē∗

K(û) > 0

}
≤ D2 < +∞

for all x, y ∈ K
N
, x �= y, and moreover it inherits the properties [H-2]

through [H-7] except [H-5]. We note here that Nμ(x̄, ȳ) ≤ CRE∗
K
(x̄, ȳ)1/2

for all x̄, ȳ ∈ K
N

and some constant C, so that the identity map i :

(K
N
, RE∗

K
) → (K

N
,Nμ) is continuous; however it is not homeomorphic in

general (see Examples 5.3).

Thus we have shown the following

Theorem 3.11 Let (X, E) be a resistance form E on a set X satisfying [H-6]
and K a closed subset of X. Suppose that the effective resistance of E∗

K is

bounded. For a finite Borel measure μ supported on K, (K
N
,Nμ) is the com-

pact metric space to which every function of D[E∗
K ] extends continuously and

whose points are separated by D[E∗
K]. Moreover (E∗

K , D[E∗
K]) is a resistance

form on K
N
.
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Remark 3.1 (i) The distance introduced in 3.2 can be also written as
follows: for x, y ∈ K,

Nμ(x, y)2 =
1

μ(K)

∫
K

(
gy(x, z) − 1

μ(K)

∫
K

gy(x, w)dμ(w)

)2

dμ(z),

or

Nμ(x, y)2 =
1

μ(K)

∫
K

(
RE(x, z) − RE(y, z)

− 1

μ(K)

∫
K

RE(x, w) −RE(y, w)dμ(w)

)2

dμ(z).

(ii) The distance Nμ on K extends to X and gives a pseudo dis-
tance on X. In addition, using the minimizers HK;φi

for φi ∈ D[E∗
K ]

(i = 0, 1, 2, . . .), and letting p̂μ(t, x, y) =
∑∞

i=0 e
−tλiHK;φi

(x)HK;φi
(y) for

x, y ∈ X, we obtain a pseudo distance Ŝμ on X defined by Ŝμ(x, y) =

(p̂μ(1, x, x) − 2p̂μ(1, x, y) + p̂μ(1, y, y))1/2 for x, y ∈ X. Then Ŝμ is also
bounded by Nμ on X ×X as in (3.10).

(iii) In Theorem 3.10, condition (3.12) is always satisfied if the closed
subset K under consideration is discrete in (X, d).

(iv) In Theorem 3.11, the semigroup Pt = exp(−tLμ) induces a contrac-

tion semigroup of class (C0) on the Banach space C(K
N

), i.e., Pt(C(K
N

) ⊂
C(K

N
) and for f ∈ C(K

N
), limt→0 Ptf = f in C(K

N
).

4. Infinite networks

In this section, we introduce the Royden and the Kuramochi compactifica-
tions of infinite networks and illustrate some properties of these compactifi-
cations.

A compactification of any (discrete) set X is a compact Hausdorff space
which contains X as a dense subset and which induces the discrete topology
on X. It is known that given a family Φ of bounded functions on X, there
exists an (up to canonical homeomorphism) unique compactification C(X,Φ)
of X with the following properties (cf. e.g. [12]): (i) every function of Φ
extends to a continuous function on C(X,Φ) and (ii) the extended functions
separate the points of the boundary ∂C(X,Φ) = C(X,Φ) \ V . We remark
that if Ψ is a subfamily of Φ, then the identity map extends to a continuous
map from C(X,Φ) onto C(X,Ψ), and if Φ0 is a subfamily of Φ and each
function of Φ is a finite linear combination of functions in Φ0, then C(X,Φ)
and C(X,Φ0) are canonically homeomorphic; in particular, if in addition,
X and Φ0 is countable, then C(X,Φ) is metrizable.
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Now we consider a connected, infinite graph G = (V,E). The compacti-
fication relative to the space of bounded, locally constant functions is called
the end compactification of the graph. When a positive function r on E is
given, we have a distance dr on V . The compactification with respect to
the space of bounded Lipschitz functions on (V, dr) is denoted by Lb(V, dr).
We have the compactification relative to Q(V, EΓ), called the Kuramochi
compactification of the network Γ = (V,E, r) in [35] and [36]. This can be

topologically identified with the compact metric space (V
N
,Nμ) as shown

in Theorem 3.10. We denote by V
N

(EΓ) and ∂V
N

(EΓ) respectively the Ku-
ramochi compactification and the Kuramochi boundary of the network Γ.
Some important properties of this compactification will be discussed in 7.3.

The compactification relative to the space of bounded functions inD[EΓ],
BD[EΓ], is called the Royden compactification of the network Γ and denoted
by R(V, EΓ). The boundary ∂R(V, EΓ) is called the Royden boundary of Γ.
There is an important part of the Royden boundary referred to as the har-
monic boundary of Γ which is defined by

Δ(EΓ) = {x ∈ ∂R(V, EΓ) | g(x) = 0 for all g ∈ BD0[EΓ]}.

The following duality holds for the harmonic boundary (cf. [40] and [37,
Chap.VI]):

BD0[EΓ] = {g ∈ BD[EΓ] | g(x) = 0 for all x ∈ Δ(EΓ)}.

It is known (cf. [40], [31], [37, Chap.VI]) that Γ is nonparabolic, i.e.,
(E0

Γ, D0[EΓ]) satisfies [H-5] if and only if the harmonic boundary is not
empty, and also that if ∂R(V, EΓ) \ Δ(EΓ) is nonempty, then any set of
a single point there is not a Gδ set and for a nonempty closed subset F in
∂R(V, EΓ) \ Δ(EΓ), there exists a function g ∈ D0[EΓ] such that g(x) tends
to infinity as x ∈ V → F . In view of this property, we have the following

Proposition 4.1 The following conditions are mutually equivalent:

(i) supx∈V g
0
Γ(x, x) is finite.

(ii) D0[EΓ] = BD0[EΓ], that is, any g ∈ D0[EΓ] is bounded.

(iii) ∂R(V, EΓ) = Δ(EΓ), that is, for any g ∈ BD0[EΓ], g(x) tends to zero
as x ∈ V → ∞.

(iv) For any g ∈ D0[EΓ], g(x) tends to zero as x ∈ V → ∞.

Proof. Obviously (i) (resp. (iv)) implies (ii) (resp. (ii)). Suppose that (ii)
holds. Then the bounded inverse theorem shows that the two norms EΓ(u)1/2

+|u(o)| and EΓ(u)1/2 + ‖u‖∞ for u ∈ D0[EΓ] are equivalent, so that ‖u‖∞ ≤
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MEΓ(u)1/2 for some positive constant M and all u ∈ D0[EΓ]. This shows
that supx∈V gΓ(x, x) ≤M , and thus (ii) implies (i). It follows now from the
fact mentioned above that (ii) implies (iii). Finally we get (iv) from (iii),
since gn = min{max{g,−n}, n} ∈ BD0[EΓ] for any g ∈ D0[EΓ] and a positive
constant n > 0. This completes the proof of Proposition 4.1. �

We remark that the identity map of V induces a surjective continuous
map from Lb(V, d

1/2
r ) onto the Royden boundary, since BD[EΓ] belongs to the

space of bounded Lipschitz continuous functions on (V, d
1/2
r ), and moreover

that if the diameter of (V, d
1/2
r ) is bounded, then by (1.6), the effective

resistance of Γ is also bounded. This is equivalent to the condition that
D[EΓ] = BD[EΓ], as we have seen in the proof of Proposition 4.1. Thus
applying Theorem 3.11 to Γ, we have

Theorem 4.2 For a connected, infinite network Γ = (V,E, r), the following
conditions are equivalent:

(i) the effective resistance RΓ(= REΓ
) is bounded,

(ii) D[EΓ] = BD[EΓ], that is, any u ∈ D[EΓ] is bounded.

Moreover if these are the cases, then the canonical map from the Royden

boundary ∂R(V, EΓ) onto the Kuramochi boundary ∂V
N

(EΓ) is homeomor-
phic.

Now we shall consider two conditions under which the Royden boundary
of a connected, infinite network reduces to a single point.

Proposition 4.3 Let Γ = Γ1 × Γ2 be the cartesian product of connected,
infinite networks Γ1 = (V1, E1, r1) and Γ2 = (V2, E2, r2). If Γ2 satisfies the
conditions in Proposition 4.1, then the Royden boundary of Γ consists of a
single point.

Proof. Let f be a function in BD[EΓ]. We would like to show that f(x, y)
tends to a constant as (x, y) ∈ V = V1 × V2 → ∞. For a fixed x ∈ V1, we
have a function fx on V2 defined by fx(y) = f(x, y) (y ∈ V2). We decompose
fx as fx = hx + gx, where hx ∈ BHD[EΓ2] and gx ∈ BD0[EΓ2]. By the
assumption, every gx vanishes at infinity.

Now for any pair of points x, x′ ∈ V1, we take a path {xi, i = 0, 1, . . . , k}
in Γ1 connecting x(= x0) and x′(= xk), and then we have

|fx(y) − fx′(y)| ≤
k−1∑
i=0

|f(xi, y) − f(xi+1, y)|

≤
( k−1∑

i=0

|f(xi, y) − f(xi+1, y)|2
r1(|xixi+1|)

)1/2( k−1∑
i=0

r1(|xixi+1|)
)1/2

.
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This shows that |fx(y) − fx′(y)| goes to zero as y ∈ V2 → ∞ and hence so
does |hx(y)− hx′(y)|. Therefore we get hx = hx′ for all x, x′ ∈ V1. Moreover
we see that EΓ2(hx) = 0, that is, hx is equal to a constant c, because we have∑

x′∈V1

EΓ2(hx) =
∑
x′∈V1

EΓ2(hx′) ≤
∑
x′∈V1

EΓ2(fx′) ≤ EΓ(f) < +∞.

Since |gx(y)| ≤ MEΓ2(gx) = MEΓ2(fx) for some constant M and all y ∈ V2,
and EΓ2(fx) tends to zero as x ∈ V1 → ∞, it follows that f − c vanishes at
infinity. This completes the proof of Proposition 4.3. �

Proposition 4.4 Let Γ = (V,E, r) be a connected, infinite network. Let
{Un} and {Vn} increasing sequences of finite subsets of V such that Vn ⊂ Un

and ∪nVn = V . Suppose that Γ satisfies the conditions in Proposition 4.1 and
that the finite subnetwork Γn of Γ generated by An = Un \ Vn is connected,
and for infinitely many n, the effective resistance of Γn is bounded by a
constant independent of n. Then ∂R(V, EΓ) = {∞}. In particular, the
effective resistance of Γ is also bounded.

Proof. Since any function in D0[EΓ] vanishes at infinity, it is enough to
show that a bounded harmonic function h in D[EΓ] is constant. Let hn be
the restriction of h to An. Then by the assumption,

sup
x,y∈An

|h(x) − h(y)|2 = sup
x,y∈An

|hn(x) − hn(y)|2 ≤ CEΓn(hn)

for some constant C and infinitely many n. Since EΓn(hn) goes to zero
as n → ∞, it follows from the maximum principle that h(x) tends to a
constant as x ∈ V → ∞, and indeed it is constant. This completes the
proof of Proposition 4.4. �

Vanishing theorems on L2-harmonic forms on complete Riemannian man-
ifolds have been investigated by many authors. As mentioned in Introduc-
tion, a connected, locally finite, infinite graph has no nonconstant harmonic
functions of finite Dirichlet sums if it is quasi-isometric to a complete, non-
compact Riemannian manifold such that the Ricci curvature is bounded
from below, the volume of every unit ball is bounded away from zero, and
it possesses no nontrivial L2-harmonic one forms.

Now we consider a connected, locally finite, infinite graph G = (V,E).
There are certain cases where the compactifications Lb(V, dr) relative to
weight functions r : E → [0,+∞) play important roles in geometries of G.
Let dG the graph distance on V . Fix a vertex o of V and set S(n) = {x ∈
V | dG(X, o) = n} and E(n) = {|xy| ∈ E | x, y ∈ S(n) or x ∈ S(n), y ∈
S(n− 1)}.
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An extended real number e(G) is assigned to G as follows:

e(G) = lim sup
n→∞

1

n
log �E(n) ∈ [0,+∞].

Let us consider a special family of weights on E, {rδ | δ > 0}, defined by
rδ(x, y) = e−δn for |xy| ∈ E(n) (n = 1, 2, 3, . . .). In what follows, dδ, Γδ and
Eδ stand for the distance drδ

, the network (V,E, rδ) and the Dirichlet sum
EΓδ

, respectively. Since the diameter of the metric space (V, dδ) is bounded
and the effective resistance of Eδ is also bounded, the identity map of V
induces a homeomorphism between the Royden boundary ∂R(V, Eδ) and

the Kuramochi boundary ∂V
N

(Eδ) of Γδ.

Lemma 4.5 (i) Any function in D[Eδ] is Lipschitz continuous with respect
to the distance dδ/2, so that the identity map of V induces a continuous map
from ∂C(V, dδ/2) onto ∂R(V, Eδ).

(ii) If e(G) is finite, then for positive constants δ and η with η < 2δ −
e(G), any Lipschitz continuous function with respect to the distance dδ be-
longs to D[Eη], so that the identity map of V induces a continuous map from
∂R(V, Eη) onto ∂Lb(V, dδ).

Proof. For u ∈ D[Eδ], Eδ(u) =
∑∞

n=1 e
δn
(∑

e∈E(n) |du(e)|2
)

is finite, and

hence supe∈E(n) |du(e)|2 is bounded by b2e−δn, where b is a positive constant.
Given any pair of points x, y ∈ V , let C = {x = x0, x1, . . . , xk = y} be a
path connecting x to y. Then we have

|u(x) − u(y)| ≤
k−1∑
i=0

|u(xi) − u(xi+1)| ≤ b Lrδ/2
(C),

and hence |u(x) − u(y)| ≤ bdδ/2(x, y). In this way, the first assertion is
verified.

Let v be a function satisfying |v(x) − v(y)| ≤ bdδ(x, y) for some positive
constant b and all x, y ∈ V . Then, since |dv(e)|2 ≤ b2e2δn for e ∈ E(n), we
get

Eη(v) =

∞∑
n=1

eηn
∑

e∈E(n)

|dv(e)|2 ≤ b2
∞∑

n=1

e(η−2δ)n�E(n),

which is finite if 0 < η < 2δ − e(G). This proves the second assertion. �

Now we assume that a graph G = (V,E) under consideration is hyper-
bolic in the sense of Gromov, that is, the geodesic graph |G| is hyperbolic
in the sense of Gromov. Then it is known (cf. [23], [15]) that there ex-
ists δ0(G) ∈ (0,+∞] such that for any positive constant δ < δ0(G), the
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completion of dδ coincides with the compactification Lb(V, dδ) and moreover
∂Lb(V, dδ) is homeomorphic to the Gromov boundary ∂HG of G. Then the
following can be deduced from Lemma 4.5.

Proposition 4.6 Let G = (V,E) be a connected, locally finite, infinite
graph which is hyperbolic in the sense of Gromov. Suppose that e(G) <
2δ0(G). Then for any 0 < η < 2δ0(G) − e(G), ∂R(V, Eη) is homeomorphic
to ∂HG; in particular, the identity map of V extends continuously from the
Royden boundary of G onto the Gromov boundary of G.

Now we are given a metric space (Y, dY ) and a compactification Ỹ of Y
which is separated by the distance dY , i.e., lim infx→p,y→q dY (x, y) > 0 for
all x ∈ Y → p ∈ ∂Y and y ∈ Y → q ∈ ∂Y if p �= q. We define the Dirichlet
sum of a map φ from Γ = (V,E, r) to Y by

EΓ;Y (φ) =
1

2

∑
x∼y

dX(φ(x), φ(y))2

r(|xy|) .

If φ possesses finite Dirichlet sum, then it extends to a continuous map from
the Royden compactification of Γ onto the closure of the image φ(V ) in Ỹ .
Indeed, for any bounded Lipschitz function f on Y , the composition f ◦ φ
belongs to BD[EΓ].

For instance, let r be a weight on E that is square integrable, i.e.,∑
e∈E r(e)

2 is finite. Then considering the identity map I of V as a map
from the graph G = (V,E) onto the metric space (V, dr), the Dirichlet sum
of I is just equal to

∑
e∈E r(e)

2, so that I extends to a continuous map from
the Royden compactification of G onto Lb(V, dr) which sends the Royden
boundary onto ∂Lb(V, dr).

Here we refer to a result due to Cartwright and Woess [11] (see also [37,
Chap. IV § 6]). Let G = (V,E) be, as in Theorem 1.15, a connected, locally
finite, infinite graph uniformly embedded in the unit disk Ω of the complex
plane. We assume that Ω is endowed with the Euclidean distance dE. Let ι
be the inclusion of V into the metric space (Ω, dE) and V ′ the accumulation
points of V on the unit circle. Then it is proved in [11] that the Dirichlet sum
of ι is finite if G satisfies a strong isoperimetric inequality, and as a conse-
quence, for every Lipschitz continuous function φ on the Euclidean closure Ω
of Ω, there exists a unique function h on V ∪V ′ such that h coincides with φ
on V ′ and the restriction of h to V is in HD[EG]. We recall that G satisfies
a strong isoperimetric inequality if and only if E0

G has a positive spectral
gap λ0 in L2(V, μc), that is,

∑
x∈V u(x)

2 ≤ λ0
−1E0

G(u) for all u ∈ D0[EG]
(cf. e.g., [37, Theorem (4.27)]). If these are the cases, the minimal Green
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function g0
G of G is bounded from above by 2/λ0 (cf. Remark 3.1 (ii)), so

that the conditions of Proposition 4.1 are satisfied. Therefore ι as above
extends to a continuous map of the harmonic boundary Δ(G) of G onto V ′,
and thus if V ′ has more than one point, then G has nonconstant harmonic
functions of finite Dirichlet sums. We refer the reader to [3] and [4] for
related results.

Now we consider a finitely generated, infinite, properly discontinuous
subgroup Π of isometries of a proper geodesic space (Y, dY ). Fix a point
o of Y and let ψ : Π → Y be a map from Π into Y defined by ψ(g) =
g−1(o), g ∈ Π. We take a finite generating set S of Π with S = S−1 and
consider the Cayley graph GΠ = (Π, ES). First we carry out ”conformal”
changes of the metric of Y as in the case of graphs. For a positive continuous
function w on Y , the w-length Lw(c) of an arc-length parametrized curve

c : [a, b] → (Y, dY ) is given by Lw(c) =
∫ b

a
w(c(t))dt. Then we define a

distance dw(x, y) between two points x and y of Y by the infimum of Lw(c)
where c ranges over all arc-length parametrized curves joining x and y. As in
the case of graphs, we are interested in the case when wε = exp(−εdY (∗, o)),
where ε is a positive constant. Then the Dirichlet sum of the map ψ from GΠ

into the metric space Yε = (Y, dwε) is given by

EGΠ;Yε(ψ) =
1

2

∑
g∈Π,a∈S

dwε(ψ(g), ψ(ag))2.

Proposition 4.7 Suppose that the completion Y
ε
of the metric space (Y, dwε)

is compact, and suppose that the critical exponent of Π defined by

ē(Π) = inf{s > 0 |
∑
g∈Π

exp(−sdY (o, g(o))) < +∞}

is finite and 2ε > ē(Π), then ψ extends to a continuous map of the Royden
boundary of the Cayley graph GΠ onto the intersection of the closure of the
orbit Π(o) in Y

ε
and the boundary of Y

ε
.

This is an extension of Theorem 2 with p = 2 in [8], where the space
of functions of finite Dirichlet sums of order p(> 1) are studied and the
theorem is concerning isometric actions on a proper CAT(-1) space. The
arguments there are valid for a proof of Proposition 4.7 and further it is
possible to show the proposition for functions of finite Dirichlet sums of
order p > 1. We refer the reader to [2] for some related results to Proposi-
tion 4.3, [7], [19] for those to Proposition 4.6, and [25] for some extensions
of Proposition 4.1, Theorem 4.2 and Proposition 4.7 to the case of Dirichlet
sums of order p > 1.
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5. Gromov-Hausdorff and variational convergence of
networks

In this section, we study Gromov-Hausdorff and variational convergence of
networks and exhibit some examples.

5.1 We begin with verifying that a connected, infinite network Γ = (V,E, r)
is the limit of an exhausting family of connected subnetworks of Γ. Given a
subset W of V , we denote by ΓW = (W,EW , rW ) the subnetwork generated
by W and write EW and RW for EΓW

and REW
respectively. It follows from

Lemma 2.5 that for subsets W and U with W ⊂ U , REΓ
(x, y) ≤ RU(x, y) ≤

RW (x, y) for all x, y ∈ W . Let W be a finite subset of V and take an
increasing sequences of finite subsets Vi of V such that W ⊂ Vi, V = ∪iVi

and ΓVi
is connected. The family of the traces E∗

Vi;W
of EVi

on W satisfies
E∗

Vi;W
(u) ≤ E∗

Vj ;W
(u) ≤ E∗

Γ;W (u) for i < j and u ∈ �(W ). Given u ∈ �(W ),
let ui be a unique function on Vi such that ui = u on W , EVi

(ui, v) = 0
for all v ∈ �(Vi) vanishing on W , and EVi

(ui) = E∗
Vi;W

(u) (cf. Lemma 1.6).
Then the maximum principle implies that minW u ≤ ui ≤ maxW u on Vi.
Then passing to a subsequence, we assume that ui converges pointwise to a
function u∞ on V as i→ ∞. For a fixed j, we have

EVj
(u∞|Vj

) = lim
i→∞

EVj
(ui|Vj

) ≤ lim
i→∞

EVi
(ui) ≤ E∗

Γ;W (u).

Therefore letting j go to infinity, we get EΓ(u∞) ≤ E∗
Γ;W (u). Since u∞ = u

on W , we see that EΓ(u∞) = E∗
Γ;W (u), that is, u∞ is a unique minimizer of

EΓ in the family {f ∈ D[EΓ] | f(x) = u(x), x ∈ W}. Moreover it follows
from the above argument that limi→∞ E∗

Vi;W
(u) = limi→∞ EVi

(ui) = E∗
Γ;W (u).

This holds for all u ∈ �(W ), which shows that limi→∞RVi
(x, y) = RΓ(x, y)

for all x, y of W , and hence V .

Now we prove the following

Theorem 5.1 Let (X,R) and {Γn = (Vn, En, rn, Rn)} be a separable metric
space and a sequence of connected, finite networks with the resistance met-
rics Rn. Let p and pn be points of X and Vn respectively. Suppose that there
exist sequences of positive numbers {ρn} and {εn} with limn→∞ ρn = +∞
and limn→∞ εn = 0, and a sequence of maps fn : Bρn(pn) → X from the
metric ball Bρn(pn) of Vn around pn of radius ρn to X such that fn(pn) = p,
|Rn(x, y) − R(fn(x), fn(y))| ≤ εn for all x, y ∈ Bρn(pn), and furthermore
any finite subset W of X is included in the εn-neighborhood of the image
fn(Bρn(pn)) for all n large enough. Then the distance R of X is the resis-
tance metric on X associated to a resistance form (E , D[E ]).
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Proof. Given a finite subset W = {x1, . . . , xk} of X, we take a finite subset
Wn = {x1;n, . . . , xk;n} of Vn in such a way that R(fn(xi;n), xi) tends to 0
as n → ∞ for all i = 1, . . . , k. Then from (1.1), (1.2), (1.3) and (1.5) in
section 1, we can deduce that there exists a unique resistance form E∗

W onW ,
the resistance metric associated to which is just the metric R restricted
to W . Moreover we observe that for any finite subsets W1, W2 of X, E∗

W1
is

the trace of E∗
W2

on W1 if W1 ⊂ W2; in particular, E∗
W1

(u|W1) ≤ E∗
W2

(u) for
any u ∈ �(W2). Let us now choose an increasing sequence of finite subsets
Wi of X in such a way that W∗ = ∪iWi is dense in X, and define a form E
on a subspace D[E ] of �(W∗) by

D[E ] = {u ∈ �(W∗) | lim
i→∞

E∗
Wi

(u|Wi
) < +∞}; E(u) = lim

i→∞
E∗

Wi
(u|Wi

).

Then it is easy to see that the effective resistance RE(x, y) between two
points x and y of W∗, that is, RE(x, y) = sup{|u(x) − u(y)|2/E(u)|u ∈
D[E ], E(u) > 0} is equal to R(x, y). Thus every function u ∈ D[E ] uniquely
extends to a continuous function on X and the form is considered to be
defined on a subspace of C(X,R). It is evident that E verifies the conditions
[H-2], [H-4] and [H-7]. This completes the proof of Theorem 5.1. �

Corollary 5.2 Let (X, E) and Γn = (Vn, En, rn) be as in Theorem 5.1. Then
one has

lim sup
n→∞

λ1(EΓn;μc
Vn

) ≤ λ∗1(E ;μc
X).

Proof. For a finite subset W of X, let Wn be a finite subset of Vn as in the
proof of Theorem 5.1. Then as n→ ∞, the first nonzero eigenvalue of E∗

Wn
,

λ1(μ
c
Wn

), converges to that of E∗
W , λ1(μ

c
W ). Therefore we have

lim sup
n→∞

λ1(μ
c
Vn

) ≤ lim sup
n→∞

λ1(μ
c
Wn

) = λ1(μ
c
W ).

This holds for all finite subsets W of X, and so does for λ∗1(μ
c
X). This

completes the proof of the corollary. �

Definition 5.1 Given two metric spaces X, Y and a positive number ε,
a (not necessarily continuous) map f : X → Y is called an ε-Hausdorff
approximation if

sup
x1,x2∈X

|dY (f(x1), f(x2)) − dX(x1, x2)| < ε

and the image f(X) of f is an ε-net in Y , i.e., dY (y, f(X)) < ε for every
y ∈ Y . We say that a sequence of compact metric spaces {Xn} converges
to a compact metric space X in the Gromov-Hausdorff sense if there exist
εn-Hausdorff approximations fn : Xn → X with limn→∞ εn = 0.
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We remark that every compact geodesic space can be obtained as a
Gromov-Hausdorff limit of compact geodesic graphs endowed with their
geodesic distances (cf. [9, Proposition 7.5.5]).

Definition 5.2 A pointed metric space (X, p) is a pair of a metric space
X and a point p ∈ X. We say that a sequence {(Xn, pn)} of pointed metric
spaces converges to a pointed metric space (X, p) in the Gromov-Hausdorff
sense if the following holds. For every ρ > 0 and ε > 0, there exists a positive
integer n0 such that for any n > n0, there is a map f from the ball Bρ(pn)
around pn with radius ρ in Xn to X satisfying the following properties:

(i) f(pn) = p;

(ii) sup{|dX(f(x1), f(x2)) − dXn(x1, x2)| | x1, x2 ∈ Bρ(pn)} < ε;

(iii) the ε-neighborhood of the set f(Bρ(pn)) includes the ball Bρ−ε(p)
centered at p of radius ρ− ε.

Now we prove the following

Theorem 5.3 Let {Γn = (Vn, En, rn)} be a sequence of connected, locally
finite networks endowed with the geodesic distance drn, and let Γ = (V,E, r)
be a connected, locally finite, infinite network with the geodesic distance dr

such that for each vertex p and each positive number ρ, the metric ball Bρ(p)
in (V, dr) consists of finite vertices. Suppose that the pointed metric space
(Vn, pn, drn) converges, as n→ ∞, to the pointed metric space (V, p, dr) in the
Gromov-Hausdorff sense, and that for any large ρ, there exist positive con-
stants aρ, bρ and a positive integer nρ such that aρ ≤ rn ≤ bρ on the geodesic
ball Bρ(pn) for all n ≥ nρ. Then there exist a subsequence {Γm} and a re-
sistance form E on V such that the pointed metric space (Vm, pm, RΓm) with
the effective resistance RΓm relative to (EΓm, D[EΓm]) converges, as m→ ∞,
to the pointed metric space (V, p, RE) with the resistance metric RE relative
to the resistance form E in the sense of Theorem 5.1. Moreover the from E
satisfies that D0[E0

Γ] ⊂ D[E ] ⊂ D[EΓ], E(u) ≥ EΓ(u) for all u ∈ D[E ], and
E(u, v) = EΓ(u, v) for all u ∈ D[E ] and v ∈ D0[E0

Γ].

Proof. We take sequences of positive numbers {ρn} and {εn} respectively
with limn→∞ ρn = +∞ and limn→∞ εn = 0 in such a way that there exists a
sequence of approximating maps fn of the metric balls Bρn(pn) of (Vn, drn)
to V satisfying fn(pn) = p, sup{|dr(fn(x1), fn(x2)) − drn(x1, x2)| | x1, x2 ∈
Bρn(pn)} < εn, and the εn-neighborhood of the set fn(Bρn(pn)) includes the
ballBρn−εn(p) centered at p of radius ρn−εn in (V, dr). In addition, we choose
approximating maps hn : Bρn/2(p) → Bρn(pn) such that dr(fn(hn(x)), x) ≤
2εn for all x ∈ Bρn/2(p). Then in view of (1.6), we are able to choose
a subsequence {Γm} in such a way that for any x, y ∈ V with x �= y,
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the effective resistance RΓm(hm(x), hm(y)) between hm(x) and hm(y) in Vm

converges to a positive number R(x, y) as m→ ∞. In fact, as we have seen
in Theorem 5.1, the limit R(x, y) is equal to the effective resistance RE(x, y)
between x and y in V with respect to a resistance form E on V ; moreover if
we denote by E∗

m;ρ (resp. E∗
ρ ) the trace of EΓm on the metric ball Bρ(pm) of

(Vm, drm) (resp. the trace of E on the metric ball Bρ(p) of (V, dr)), then we
have

E∗
ρ (χx, χy) = lim

m→∞
E∗

m;ρ(χhm(x), χhm(y))

for all x, y ∈ Bρ(p). Since 0 < aρ ≤ rm ≤ bρ, we see that for any x, y ∈
V with x �= y and for all ρ and m large enough, E∗

m;ρ(χhm(x), χhm(y)) =
EΓm(χhm(x), χhm(y)), which is equal to −rm(|hm(x)hm(y)|)−1 if x ∼ y, and
equal to 0 otherwise; thus E∗

ρ(χx, χy) = limm→∞−rm(|hm(x)hm(y)|)−1 =
−r(|xy|)−1 if x ∼ y and E∗

ρ (χx, χy) = 0 otherwise. In the same way, we
get E∗

ρ (χx) =
∑

z∼x r(|xz|)−1. Since E(χx) = limρ→∞ E∗
ρ (χx), it follows that

χx ∈ D[E ] and for all x, y ∈ V ,

E(χx, χy) =

⎧⎨
⎩
∑

z∼x r(|xz|)−1 for x = y,
−r(|xy|)−1 for x ∼ y,

0 otherwise.

As a consequence, for any finitely supported function u on V , we have E(u) =
EΓ(u) = 1

2

∑
x∼y |u(x)− u(y)|2/r(|xy|). Moreover for any function v ∈ �(V ),

we have
E∗

ρ (v|Bρ(p)) = lim
m→∞

E∗
m;ρ((v ◦ fm)|Bρ(pm)),

∑
x,y∈Bρ(p):x∼y

|v(x) − v(y)|2
r(|xy|) = lim

m→∞

∑
x,y∈Bρ(pm):x∼y

|v ◦ fm(x) − v ◦ fm(y)|2
rm(|xy|)

and

1

2

∑
x,y∈Bρ(pm):x∼y

|v ◦ fm(x) − v ◦ fm(y)|2
rm(|xy|) ≤ E∗

m;ρ((v ◦ fm)|Bρ(pm)),

and hence we get

1

2

∑
x,y∈Bρ(p):x∼y

|v(x) − v(y)|2
r(|xy|) ≤ E∗

ρ (v|Bρ(p)).

Letting ρ→ ∞, we arrive at

EΓ(v) ≤ E(v) ≤ +∞, v ∈ �(V ).

In the same way, we can show that for u ∈ D[E ] and finitely supported func-
tions v on V , E(u, v) = EΓ(u, v). This completes the proof of Theorem 5.3. �
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Remark 5.1 (i) The limit form E of Theorem 5.3 does not in general
coincide with the Dirichlet sum EΓ of the network Γ. See Remark 7.1 (i).

(ii) Given positive numbers a, b and c, we consider a set of locally
finite, connected networks Γ = (V,E, r) such that a ≤ r ≤ b on E and
the degree of any point of V is bounded from above by c. Then the set of
pointed metric spaces (V, p, dr) is compact with respect to the topology of
the Gromov-Hausdorff convergence.

5.2 We begin with

Definition 5.3 Given a compact separable Hausdorff space Y , a sequence
of such spaces Xn, and a sequence of maps fn : Xn → Y , we say that a
sequence of functions un ∈ C(Xn) uniformly converges to a function u ∈
C(Y ) (via fn) if limn→∞ supXn

|u ◦ fn − un| = 0. Let F : C(Y ) → [0,+∞]
and Fn : C(Xn) → [0,+∞] be lower semi-continuous functionals on C(Y )
and C(Xn) respectively. We say that Fn Γ-converges to F if the following
conditions are satisfied: (i) if a sequence of functions un ∈ C(Xn) uniformly
converges to a function u ∈ C(Y ), then we have

F(u) ≤ lim inf
n→∞

Fn(un) (≤ +∞);

(ii) for any u ∈ C(Y ), there exists a sequence of functions un ∈ C(Xn) such
that un uniformly converges to u and

lim sup
n→∞

Fn(un) ≤ F(u) (≤ +∞).

The following is a basic fact on this variational convergence.

Theorem 5.4 Let Y and {Xn} be respectively a compact separable Haus-
dorff space and a sequence of such spaces. Given a sequence of maps fn :
Xn → Y and a sequence of lower semi-continuous functionals Fn : C(Xn) →
[0,+∞], there exists a subsequence, {Xm}, and a lower semi-continuous
functional F : C(Y ) → [0,+∞] such that Fm Γ-converges to F as m→ ∞.

Proof. Using the idea of De Giorgi’s Γ-convergence (cf. e.g., [16]), we
introduce a functional on C(Y ) as follows: Let B = {Oi} be a countable
basis of C(Y ) such that Oi is totally bounded. Given Oi and a positive
integer k, let

Oi,k;n = {v ∈ C(Xn) | sup
Xn

|u ◦ fn − v| < 1/k for some u ∈ Oi},

and
Ei,k;n = inf{Fn(v) | v ∈ Oi,k;n} (≤ +∞).
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Then passing to a subsequence, {Xm}, we may assume that for any Oi and
every k, Ei,k;m tends to an extended number Ei,k ∈ [0,+∞] as m→ ∞, and
thus we are able to obtain a lower semi-continuous functional F : C(Y ) →
[0,+∞] defined by

F(u) = sup{Ei,k | u ∈ Oi, k > 0}, u ∈ C(Y ),

to which Fm Γ-converges as m→ ∞. �

Let Fn : C(Xn) → [0,+∞] and F : C(Y ) → [0,+∞] be as in Theo-
rem 5.4. If Fn is induced from a quadratic form En on a subspace D[En]
of C(Xn), that is, Fn(u) = En(u, u) for u ∈ D[En] and Fn(u) = +∞ for
u ∈ C(Xn)\D[En], then the Γ-limit F : C(Y ) → [0,∞) is also induced from
a quadratic form E on a subspace D[E ] of C(Y ). For the functional induced
from a quadratic form E : D[E ]×D[E ] → R, we do not distinguish between
the functional and the form E . If all En satisfy [H-4] and/or [H-7], then so
does the Γ-limit E .

Now we consider a sequence {(Xn, Rn)} of metric spaces associated to
resistance forms En on sets Xn. We assume that the following conditions are
satisfied:

(i) Each (Xn, Rn) is compact.

(ii) There exist a compact, separable Hausdorff space Y , a sequence of
maps fn : Xn → Y and also a sequence of maps hn : Y → Xn such that
fn ◦ hn uniformly converges to the identity map of Y as n→ ∞.

(iii) The functional En Γ-converges (via fn) to a functional E : C(Y ) →
[0,+∞] as n→ ∞.

(iv) For any sequence of functions un ∈ D[En] such that supn maxXn |un|
< +∞ and supn En(un) < +∞, there exists a subsequence {um} which
uniformly converges to a function u ∈ C(Y ) as m→ ∞.

Our main result is stated in

Theorem 5.5 Under the above conditions, the following assertions hold:
(v) Let

RE(x, y) = sup

{ |u(x) − u(y)|2
E(u)

| u ∈ D[E ], E(u) �= 0

}
, x, y ∈ Y.

Then RE : Y × Y → [0,+∞] induces a continuous pseudo-distance on Y
(admitting +∞ in its values), and one has

0 ≤ RE(x, y) = lim
n→∞

Rn(hn(x), hn(y)) ≤ +∞, x, y ∈ Y.
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(vi) On Y , an equivalence relation ∼b is introduced as follows: x ∼b y if
and only if RE(x, y) < +∞. Then Y is decomposed into a finite number of
the equivalence classes Yα (α = 1, . . . , p); each class Yα is open and closed
in Y . Moreover for each α and large n, the inverse image of Yα by fn,
Xn;α = f−1

n (Yα), is open and closed in Xn and one has

lim
n→∞

sup{|Rn(x, y) − RE(fn(x), fn(y))| | x, y ∈ Xn;α} = 0;

lim
n→∞

sup
y∈Yα

RE(fn(Xn;α), y) = 0.

(vii) Let χα be the characteristic function of the subspace Yα (1 ≤ α ≤ p).
Then χα ∈ D[E ] and E(χα, u) = 0 for all u ∈ D[E ], and if E(u, u) = 0, then
u is a linear combination of the characteristic functions χα (1 ≤ α ≤ p).
Moreover let D[Eα] = {u ∈ D[E ] | supp u ⊂ Yα} and Eα(u, v) = E(u, v) for
u, v ∈ D[Eα]. Then D[E ] =

∑p
α=1 D[Eα] and E(u, v) =

∑p
α=1 Eα(χαu, χαv).

(viii) Another equivalence relation ∼0 on Y is introduced as follows:
x ∼0 y if and only if RE(x, y) = 0. Let Y ∗ = Y/ ∼0 and Y ∗

α = Yα/ ∼0

(α = 1, . . . , p) be respectively the quotient spaces of Y and Yα. Then for
each α, RE provides Y ∗

α a distance Rα which induces the same topology as
the original one, and D[Eα] is included in the pull-back of C(Y ∗

α ) by the
canonical projection ρα of Yα onto Y ∗

α . Thus the form Eα can be assumed to
be defined on C(Y ∗

α ); (Eα, D[Eα]) becomes a resistance form on Y ∗
α and Rα

is the associated resistance metric, that is,

Rα(x∗, y∗) = sup

{ |u(x∗) − u(y∗)|2
Eα(u)

| u ∈ D[Eα], Eα(u) �= 0

}
, x∗, y∗ ∈ Y ∗

α .

Moreover a sequence of the compact metric spaces (Xn;α, Rn) converges to
(Y ∗

α , Rα) as n → ∞ in the Gromov-Hausdorff sense via the approximating
maps ρα ◦ fn : Xn;α → Y ∗

α , and the form E∗
Xn;α

on C(Xn;α) Γ-converges to
Eα as n→ ∞.

Now we mention two consequences of the theorem.

Corollary 5.6 Let {Kn} be a sequence of subspaces of compact geodesic
graphs |Γn| associated to connected, finite networks Γn = (Vn, En, rn), and
suppose that the metric space Kn with the induced geodesic distance drn

converges to a compact metric space (X, dX) in the Gromov-Hausdorff sense
via approximating maps fn : Kn → X. Then the resistance metric R|Γn|
restricted to Kn converges to a continuous pseudo-distance R on X with
respect to the Gromov-Hausdorff distance (via the same approximating maps)



414 A. Kasue

if and only if the resistance form E∗
Kn

Γ-converges to a functional E on C(X)
as n→ ∞. In these cases, one has

0 ≤ R(x, y) ≤ dX(x, y), x, y ∈ X,

and R is given by

R(x, y) = sup

{ |u(x) − u(y)|2
E(u)

| u ∈ D[E ], E(u) �= 0

}
, x, y ∈ X.

Corollary 5.7 Let {(Xn, Rn)} be a sequence of compact metric spaces of
resistance forms En which converges to a compact metric space (Y,RY ) in
the Gromov-Hausdorff sense via approximating maps fn : Xn → Y . Then
the resistance form En Γ-converges, as n → ∞, to a resistance form E
on C(Y ) via the approximating maps fn, and the limit distance RY is the
resistance metric associated to the form E .

In these corollaries, the definition of a resistance metric allows us to apply
Ascoli-Arzelà’s theorem to the sequences and verify that the compactness
condition (iv) holds true.

Proof of Theorem 5.5. The proof will be divided into 4 steps.

Step 1. We first note that for u ∈ D[E ] and a sequence of un ∈ D[En] which
uniformly converges to u as n→ ∞, we have

|u(x) − u(y)|2
E(u)

≥ lim sup
n→∞

|un(hn(x)) − un(hn(y))|2
En(un)

for all x, y ∈ Y , since E(u) ≤ lim infn→∞ En(un).

Now for any u ∈ D[E ], we take a sequence of un ∈ D[En] in such a way
that un uniformly converges to u and En(un) tends to E(u) as n→ ∞. Then
we have

|u(x) − u(y)|2
E(u)

= lim
n→∞

|un(hn(x)) − un(hn(y))|2
En(un)

≤ lim inf
n→∞

REn(hn(x), hn(y))(≤ +∞)

for all x, y ∈ Y . This shows that

(5.1) RE(x, y) ≤ lim inf
n→∞

REn(hn(x), hn(y))(≤ +∞), x, y ∈ Y.
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Given distinct two points x, y ∈ Y , let r = lim supn→∞REn(hn(x), hn(y))
(≤ +∞) and then take a subsequence {m} such that REm(hm(x), hm(y))
tends to r as m → ∞. For xm = hm(x) and ym = hm(y), let vm be a
unique function in D[Em] satisfying vm(xm) = REm(xm, ym)1/2, vm(ym) = 0
and Em(vm) = 1.

Suppose first that r is finite. Then {vm} is uniformly bounded, since
0 ≤ vm ≤ REm(xm, ym)1/2. Therefore by condition (iv), passing to a sub-
sequence if necessarily, we may assume that vm uniformly converges to a
function v ∈ D[E ] as m → ∞. Then v(x) = r1/2, v(y) = 0 and E(v) ≤
lim infm→∞ Em(vm) = 1. In the case where E(v) > 0, we have RE(x, y) ≥
|v(x)− v(y)|2/E(v) ≥ r, and hence it follows from (5.1) that RE(x, y) = r =
limm→∞REm(xm, ym); in addition, v satisfies v(x) = RE(x, y)1/2, v(y) = 0
and E(v) = 1. In the case where E(v) = 0, we can deduce that v(x) = 0,
and as a result, r = 0 and hence limm→∞REm(hn(x), hn(y)) = RE(x, y) = 0.
In fact, suppose contrarily that v(x) �= 0; then for w ∈ D[E ] with E(w) > 0
and w(y) = 0, and for any ε > 0, we would have |v(x)+εw(x)|2/E(v+εw) =
|v(x) + εw(x)|2/ε2E(w) ≤ RE(x, y), and hence letting ε → 0, we would get
RE(x, y) = +∞ and hence r = +∞ by (5.1). This is a contradiction.

Suppose secondly that r = +∞. Let wm be a unique function in D[Em]
such that wm(xm) = 1, wm(ym) = 0 and Em(wm) = REm(xm, ym)−1. Due
to the maximum principle, we see that 0 ≤ wm ≤ 1, and the assump-
tion implies that Em(wm) tends to 0 as m → ∞. Therefore passing to a
subsequence, we may assume that wm uniformly converges to a function
w ∈ D[E ] such that w(x) = 1, w(y) = 0 and E(w) = 0. This implies that
RE(x, y) = limm→∞REm(hm(x), hm(y)) = +∞. Thus we have shown that
0 ≤ RE(x, y) = limm→∞(hm(x), hm(y)) ≤ +∞.

Now we have two equivalence relations ∼0 and ∼b on Y defined respec-
tively by x ∼0 y ⇔ RE(x, y) = 0 and x ∼b y ⇔ RE(x, y) < +∞. We denote
by Y ∗ and Y ∗∗ respectively the quotient spaces induced from the equiva-
lence relations ∼0 and ∼b. Then we are allowed to assume that D[E ] is a
subalgebra of the space of continuous functions on Y ∗, C(Y ∗), and E is a
functional on C(Y ∗) with values in [0,+∞].

Step 2. In this step, we prove that RE : Y × Y → [0,+∞] is continuous.
We first claim that REn(i)

(hn(i)(xi), hn(i)(y)) goes to zero as i→ ∞ for any
y ∈ Y and a sequence of points xi ∈ Y tending to y, and for every divergent
sequence {n(i)}.

To see this, suppose contrarily that lim supi→∞REn(i)
(hn(i)(xi), hn(i)(y))

= +∞. Then we choose a subsequence, say {n(j)}, in such a way that
REn(j)

(hn(j)(xj), hn(j)(y)) diverges to infinity as j → ∞. Let vn(j) be a
unique function of D[En(j)] such that vn(j)(hn(j)(xj)) = 1, vn(j)(hn(j)(y)) = 0
and En(j)(vn(j)) = REn(j)

(hn(j)(xj), hn(j)(y))
−1. Passing to a subsequence,
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we may assume that vn(j) uniformly converges to a function v ∈ D[E ]
with E(v) = 0. Since limj→∞ |v(fn(j) ◦ hn(j)(xj)) − 1| = limj→∞ |v(fn(j) ◦
hn(j)(xj))− vn(j)(hn(j)(xj))| = 0, limj→∞ fn(j) ◦hn(j)(xj) = y and v is contin-
uous, we get v(y) = 1. On the other hand, since limj→∞ |v(fn(j)◦hn(j)(y))| =
limj→∞ |v(fn(j) ◦ hn(j)(y)) − vn(j)(hn(j)(y))| = 0, we get v(y) = 0. This is a
contradiction. Thus REn(i)

(hn(i)(xi), hn(i)(y)) is bounded as i→ ∞.

Let wn(i) be a unique function of D[En(i)] satisfying wn(i)(hn(i)(xi)) =
REn(i)

(hn(i)(xi), hn(i)(y))
1/2, wn(i)(hn(i)(y)) = 0 and En(i)(wn(i)) = 1. Passing

to a subsequence, we assume that wn(i) uniformly converges to a function
w ∈ D[E ] as i → ∞. Then |wn(i)(hn(i)(xi)) − w(fn(i) ◦ hn(i)(xi))| tends to
zero as i → ∞ and hence we have w(y) = limi→∞w(fn(i) ◦ hn(i)(xi)) =
limi→∞REn(i)

(hn(i)(xi), hn(i)(y))
1/2. On the other hand, we have w(y) =

limi→∞w(fn(i) ◦hn(i)(y)) = 0, since |w(fn(i) ◦hn(i)(y))| = |w(fn(i) ◦hn(i)(y))−
wn(i)(hn(i)(y))| tends to zero as i→ ∞; thus limi→∞REn(i)

(hn(i)(xi), hn(i)(y))
= 0. As a result, we see that RE(x, y) goes to zero as x → y and hence
RE : Y × Y → [0,+∞] is continuous. Note also that each equivalence class
with respect to the relation ∼b is open and closed. Since Y is compact, Y ∗∗

is a finite set, and Y is decomposed into the p equivalence classes Y1, . . . , Yp.
Notice that RE is bounded if Y is connected.

Step 3. In this step, we show that

(i) lim
n→∞

sup
x∈Xn

REn(x, hn ◦ fn(x)) = 0 and

(ii) lim
n→∞

sup
x,y∈Xn;α

|REn(x, y) − RE(fn(x), fn(y))| = 0 for each α = 1, . . . , p.

To prove the first assertion (i), let us consider a sequence of points xn ∈ Xn

and let yn = hn ◦ fn(xn) ∈ Xn. For the proof, we may assume that xn �= yn.
Let vn be a unique function of D[En] satisfying vn(xn) = REn(xn, yn)1/2,
vn(yn) = 0 and En(vn) = 1. In the case where REn(xn, yn) is bounded
as n → ∞, passing to a subsequence, we may assume that vn uniformly
converges to a function v ∈ D[E ] as n → ∞. Then |vn(xn) − v(fn(xn))|,
|vn(yn) − v(fn(yn))| and d(fn(xn), fn(yn)) tend to zero as n → ∞, where
d is a distance on Y that induces the same topology of Y , and hence we
get limn→∞REn(xn, yn) = limn→∞ vn(xn)2 = limn→∞ vn(yn)2 = 0. This
shows the first assertion, since {xn} is arbitrarily chosen. In the case where
REn(xn, yn) diverges to infinity as n → ∞, we consider a sequence of func-
tions wn = vn/REn(xn, yn)1/2. Then passing to a subsequence, we may as-
sume that wn uniformly converges to a function w ∈ D[E ] as n → ∞ and
we can deduce that limn→∞w(fn(xn)) = 1 and limn→∞w(fn(yn)) = 0. But
this contradicts to the continuity of w, since d(fn(xn), fn(yn)) tends to zero
as n→ ∞.
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Step 4. Given a closed subset K of Y and a continuous function u on K, we
set as before Au := {v ∈ D[E ] | v|K = u}, D[E∗

K ] := {u ∈ C(K) |Au �= ∅},
and E∗

K(u) := inf{E(v) | v ∈ Au}. When Au is empty, we understand
E∗

K(u) = +∞, and when Au is not empty, there exist minimizers h in Au.
They are uniquely determined on Yα if K ∩ Yα �= ∅, and they are constants,
not uniquely determined, on Yα otherwise. In what follows, we consider
a finite subset K = {x1, . . . , xN} of Y such that 0 < RE(xi, xj)(≤ +∞)
for any pair of i, j with i �= j, and further K intersects every Yα. For
any u ∈ �(K), we denote by HK;u the unique minimizer of Au. Let Kn =
{hn(x1), . . . , hn(xN )} ⊂ Xn. Since REn(hn(xi), hn(xj)) tends to RE(xi, xj)
as n → ∞, h|K : K → Kn is bijective and the trace E∗

Kn
on Kn Γ-converges

to the trace E∗
K on K as n → ∞. Let χi = χxi

∈ �(K) and χn;i = χhn(xi) ∈
�(Kn) for simplicity. Then we can deduce that E∗

Kn
(χn;i, χn;i) is bounded as

n→ ∞. In fact, letting cn;i,j = −E∗
Kn

(χn;i, χn;j) and recalling (1.5), we have

N∑
i,j=1

cn;i,jREn(hn(xi), hn(xj)) = 2(N − 1),

and hence
0 ≤ cn;i,j ≤ 2(N − 1)REn(hn(xi), hn(xj))

−1

for i �= j. The right side tends to (N − 1)RE(xi, xj)
−1 as n→ ∞, and hence

cn;i,j are bounded uniformly from above by a constant b. Therefore we have

−cn;i,i =
∑
j �=i

cn;i,j ≤ (N − 1)b.

Note that as n → ∞, cn;i,j goes to zero if xi ∈ Yα and xj ∈ Yβ with α �= β.
Moreover we claim that E∗

K(χi, χj) = 0 for such a pair of i, j. In fact, we
take a function φn;i ∈ C(Kn) in such a way that φn;i uniformly (pointwise
in this case) converges to χi and E∗

Kn
(φn;i) tends to E∗

K(χi) as n→ ∞. Then
we see that E∗

Kn
(φn;i, χn;j) goes to E∗

K(χi, χj) as n→ ∞. On the other hand,
we have

E∗
Kn

(φn;i, χn;j) =
∑
k �=j

−cn;jk(φn;i(hn(xj)) − φn;i(hn(xk))

+
∑
k �=j

cn;jk(φn;i(hn(xk)) − φn;i(hn(xj)));

the right side tends to 0 as n→ ∞. Thus the claim is verified.

Now we choose an increasing sequence of finite subsetsKt = {x1, . . . , xNt}
of Y in such a way that ∪tKt is dense in Y ∗ and furthermore for x, y ∈ Kt,
RE(x, y) > 0 if x �= y. Then we can deduce that u ∈ D[E ] ⊂ C(Y ) if and only
if limt→∞ E∗

Kt
(u|Kt) < +∞ and in this case, E(u) = limt→∞ E∗

Kt
(u|Kt) < +∞.
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Moreover as we have shown, it holds that

E∗
Kt

(u|Kt, v|Kt) =
∑

α

E∗
Kt

(χαu|Kt, χαv|Kt)

for all u, v ∈ D[E ]. This proves the assertion (vii). The last (viii) follows
from the others. This completes the proof of Theorem 5.5. �

In the case where a sequence of connected, finite networks (V,En, rn)
with the same set of vertices V is considered, letting fn as in Theorem 5.5
be the identity map of V , we see that the condition (iv) is always satisfied.
Therefore we can apply our theorem to this case. See Example 5.4, and also
Colin de Verdière, Pan and Ycart [14] for related results.

5.3 Now we consider a family of resistance forms E on sets X satisfying
[H-6] endowed with Borel measures μ on X such that μ(X) = 1 and the
resistance metrics RE are bounded from above by a positive constant D2.
Then as shown in subsection 3.2, we have isometric embeddings of the metric
spaces (X,Sμ) into a fixed compact subset B1,2(r(D)) of the Hilbert space �2.
Recall here the fact that the set of closed subspaces of a compact metric space
is indeed compact with respect to the Hausdorff distance (cf. e.g., [9]). We
intend to apply this fact to our family.

Let (Xn, En, μn) be a sequence in the family. Suppose for simplicity that
the measure μn is positive on each Xn, that is supp μn = Xn. Let {λn;i| i =
0, 1, . . .} be the set of eigenvalues in nondecreasing order of the self-adjoint
operator Ln associated to the form En on L2(Xn, μn). We take a complete
orthonormal system Φn of eigenfunctions φn;i of Ln with the i-th eigenvalues
λn;i, and consider the map Jn : Xn → �2 defined by Jn(x) = (e−λn;i/2φn;i)
as in subsection 3.2. Then every image Jn(Xn) of Xn stays in a compact
subset B1,2(r(D)) of �2. Therefore passing to a subsequence, we assume
that Jn(Xn) converges to a compact subspace Z of B1,2(r(D)) with respect
to the Hausdorff distance on the set of closed subsets of B1,2(r(D)). In
other words, there exists a sequence of positive numbers εn tending to zero
as n → ∞ such that for any point x ∈ Xn, we find a point fn(x) ∈ Z
satisfying ‖fn(x) − Jn(x)‖	2 ≤ εn, and also for any point a ∈ Z, we get a
point hn(a) ∈ Xn satisfying ‖a − Jn(hn(a))‖	2 ≤ εn. Using the coordinate
functions γi : �2 → R (i = 1, 2, . . .) of �2, γi((xj)) = xi, these inequalities are
written as follows:

∑∞
i=1(γi(fn(x)) − e−λn;i/2φn;i(x))

2 ≤ ε2
n, for all x ∈ Xn;∑∞

i=1(γi(a) − e−λn;i/2φn;i(hn(a)))2 ≤ ε2
n for all a ∈ Z.

Now using the eigenvalue estimate in (3.6) and passing to a subsequence,
we assume that for each i, λn;i goes to an extended number λi ∈ (0,+∞] as
n→ ∞. We define functions φi on Z by

φi(a) = eλi/2γi(a), a ∈ Z.
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In the case where λN−1 < +∞ but λN = +∞ for some finite N , we have
γi(a) = 0 for all i ≥ N , and we assume that φi = 0 for all i ≥ N for our
convenience. Then the inequalities mentioned above are expressed as

∞∑
i=1

(e−λi/2φi(fn(x)) − e−λn;i/2φn;i(x))
2 ≤ ε2

n, x ∈ Xn

∞∑
i=1

(e−λi/2φi(a) − e−λn;i/2φn;i(hn(a))2 ≤ ε2
n, a ∈ Z.

In particular, for each i, φn;i uniformly converges to φi as n→ ∞.

In view of Theorem 5.4, we can pass to a subsequence so that the func-
tional En on C(Xn, S

μn) Γ-converges to a functional E on C(Z) as n → ∞.
Then we observe that φi ∈ D[E ] and E(φi) ≤ λi, since

(5.2) E(φi) ≤ lim inf
n→∞

En(φn;i) = lim inf
n→∞

λn;i = λi.

Let

RE(a, b) = sup

{ |u(a) − u(b)|2
E(u)

| u ∈ D[E ], E(u) > 0

}
, a, b ∈ Z.

Then 0 < RE(a, b) ≤ D2 for all a, b ∈ Z with a �= b, since we have |u(a) −
u(b)|2 ≤ D2E(u) for all u ∈ D[E ]; the positivity of RE is a consequence of the
separation of points of Z by the family {φi}. The functional E satisfies [H-2’],
namely it is lower semi-continuous with respect to the uniform norm of C(Z),
hence [H-3] follows. Obviously [H-4] and [H-6] hold true.

Since μn(Xn) = 1, by passing to a subsequence, we assume that the image
measure fn∗μn vaguely converges to a Radon measure μ on Z as n → ∞.
Let K be the support of the limit measure μ and consider the trace E∗

K on
K of E . Let I be a nonnegative integer and u a function in D[E∗

K ] such
that

∫
uψidμ = 0 for i = 0, 1, . . . , I − 1, where we put ψi = φi|K and no

conditions are imposed if I = 0. Let HK;u be the unique minimizer in Au,
and then choose a sequence of functions un ∈ D[En] such that as n → ∞,
un uniformly converges to HK;u and En(un) tends to E∗

K(u) = E(HK;u). Let

un;I = un−
∑I−1

i=0 (
∫
unφn;idμn) φn;i, where we understand un;0 = un if I = 0.

Then we have

λn;I

∫
u2

n;I dμn ≤ En(un;I)

= En(un) − 2
I−1∑
i=0

∫
unφn;idμnEn(un, φn;i) +

I−1∑
i=0

λn;i

(∫
unφn;idμn

)2

≤ En(un) + 2

I−1∑
i=0

λ
1/2
n;i

∣∣∣∣
∫
unφn;idμn

∣∣∣∣ En(un)1/2 +

I−1∑
i=0

λn;i

(∫
unφn;idμn

)2

.
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Therefore letting n→ ∞, we get

λI

∫
u2dμ ≤ E∗

K(u).

This shows in particular that u = 0 if u ∈ D[E ] and
∫
uψidμ = 0 for all i.

Moreover applying this to u = ψi and using (5.2), we have

λI = E∗
K(ψI) = E(φI)

= inf

{
E∗

K(u)
∣∣∣ ∫ u2dμ = 1,

∫
uψidμ = 0 (i = 0, 1, . . . , I − 1)

}
;

in addition it is easy to see that E(φi, φj) = δijλi for i, j = 0, 1, 2, . . ..
Now we are given u ∈ D[E∗

K ]. Let v be a function in Au and {vn} a
sequence of functions in D[En] such that vn uniformly converges to v and
En(vn) tends to E(v) as n→ ∞. Since

I−1∑
i=0

λi

(∫
uψidμ

)2

= lim
n→∞

I−1∑
i=0

λn;i

(∫
vnφn;idμn

)2

≤ lim
n→∞

En(vn) = E(v)

for all positive integers I, we get

(5.3)
∞∑
i=0

λi

(∫
uψidμ

)2

≤ E(v).

Let hIJ =
∑J

i=I

∫
uψidμ φi for 0 < I < J < +∞. Then we take a point

y ∈ K so that hIJ(y) = 0 (such a point exists, since
∫
hIJdμ = 0). Then we

have

hIJ(x)2 ≤ D2E(hIJ) = D2

J∑
i=I

λi

(∫
uψidμ

)2

, x ∈ Z.

Since the right side tends to 0 as I → ∞,
∑∞

i=0

∫
uψidμ φi uniformly con-

verges and we put h =
∑∞

i=0

∫
uψidμ φi. Then we obtain

E(h) ≤
∞∑
i=0

λi

(∫
uψidμ

)2

.

This together with (5.3) implies that

E∗
K(u) = E(h) =

∞∑
i=0

λi

(∫
uψidμ

)2

.
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Thus we see that given u ∈ D[E∗
K ], HK;u =

∑∞
i=1

∫
uφidμ φi in C(Z) and

E∗
K(u) = E(HK;u|K) =

∞∑
i=1

λi

(∫
uφidμ

)2

.

In what follows, given u ∈ D[E∗
K ], we write ũ instead of HK;u for short.

To state a result on spectral convergence, we need some definitions. We
define a linear map Tn : D[E∗

K] → L2(Xn, μn) by Tn(u) = f ∗
nũ for u ∈

D[E∗
K ]. A sequence of functions un ∈ L2(Xn, μn) is said to L2 strongly

(resp. L2 weakly) converge to a function u ∈ L2(K,μ) if there exists a
sequence of functions vi in D[E∗

K ] such that limi→∞ ‖vi − u‖L2(K,μ) = 0
and limi→∞ lim supn→∞ ‖Tn(vi) − un‖L2(Xn,μn) = 0 (resp. if, for every v ∈
L2(K,μ) and any sequence of vn ∈ L2(Xn, μn) which L2-strongly converges
to v, limn→∞(un, vn)L2(Xn,μn) = (u, v)L2(K,μ) ) (cf. [33]).

Theorem 5.8 Let {(Xn, En, μn)} be a sequence of triplets {(Xn, En, μn)} as
above such that the effective resistance REn is uniformly bounded from above
by a positive constant D2 and the total mass μn(Xn) is equal to one. Then
there exist a subsequence {(Xm, Em, μm)} and a triplet (Z, E , μ) satisfying
the same conditions as above and the following:

(i) The metric space (Z, Sμ) is compact and the sequence of metric spaces
(Xm, S

μm) converges to it in the Gromov-Hausdorff sense via approximating
Borel maps fm : Xm → Z and hm : Z → Xm.

(ii) The sequence of the forms Em Γ-converges to E and D[E ] ⊂ C(Z, S̃μ).

(iii) The image measure fm∗μm weakly converges to μ.

(iv) It holds that

S̃μ(x, y) ≤ RE(x, y)1/2 ≤ lim inf
m→∞

Rm(hm(x), hm(y))1/2 ≤ D, x, y ∈ Z.

(v) If a sequence of functions un ∈ L2(Xn, μn) L2-strongly converges to
a function u ∈ L2(K,μ) as n→ ∞, then one has

E(u) ≤ lim inf
n→∞

En(un) ≤ +∞.

(vi) Let {un} be a sequence of functions un ∈ D[En] with supn En(un) +
‖un‖2

L2(Xn,μn) < +∞. Then there exist a subsequence {um} that L2-strongly

converges to a function u ∈ D[E ] as n→ ∞.

(vii) Let {un} be a sequence of functions un ∈ L2(Xn, μn) such that
supn ‖un‖L2(Xn,μn) < +∞ and suppose {un} is L2-weakly converges to a
function u ∈ L2(K,μ). Then for any α > 0, wn = Rμn;αun uniformly
converges to w = (Rμ;αu)

∼ and En(wn) tends to E∗
K(w) as n → ∞, where

Rμn;α and Rμ;α are respectively the resolvents of the operators Lμn and Lμ.
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Now we investigate a nonnegative quadratic form E on a set X satisfying
[H-5], [H-2] and [H-6], and endowed with finite Borel measure μ such that∫
ME(x) dμ(x) < +∞. Let K = supp μ and Φ = {φi | i = 1, 2, . . .} a

complete orthonormal system of eigenfunctions φi of the operator Lμ acting
on L2(K,μ) with eigenvalues λi. The Green function gE(x, y) is expressed
on K as

gE(x, y) =
∞∑
i=1

1

λi

φi(x)φi(y), x, y ∈ K.

In particular, we have

∫
gE(x, x) dμ(x) =

∞∑
i=1

1

λi

,

so that

λi ≥ i∫
gE(x, x)dμ(x)

, i = 1, 2, . . . .

Let Sμ(x, y) = (
∑∞

i=1 e
−λi(φi(x)−φi(y))

2)1/2 for x, y ∈ K. Then Sμ provides
a distance on K which is isometrically realized in �2 by an imbedding JΦ :
K → � defined by JΦ(x) = (e−λi/2φi(x)), x ∈ K.

Suppose that supx∈K gE(x, x) ≤ D2 and μ(K) ≤ M for some positive
numbers D and M . Then the image JΦ(K) is included in a compact space
in �2, so that the completion (K̄, Sμ) is compact. Moreover as in Lemma 3.8,
every function u ∈ D[E ] extends to a continuous function ū on K̄ and the
eigenfunction expansion of ū, ū =

∑∞
i=1

∫
uφidμ φ̄i, converges in C(K̄).

Now, repeating the same arguments as above, we can deduce an analogue
of Theorem 5.8.

In the rest of this section, some examples are exhibited.

Example 5.1 Let Γ = (V,E, r) be a connected, finite network and |Γ| the
metric graph associated to Γ. We take a sequence of Radon measures μn on
|Γ| with supp μn = |Γ| and suppose that μn vaguely converges to a measure
μ such that μ =

∑
v∈V π(v)2δv, where π is a positive function on V . Then

the limit of (|Γ|, E|Γ|, μn) as n→ ∞ in the sense of Theorem 5.8 is described
as follows: (Z, E , μ) = (V, EΓ, μ), supp μ = V (and hence E∗

V = EΓ) and the
approximating maps are given by the identity map.

Example 5.2 Let Kn = (Vn, En, rn) be the complete graph of n vertices,
say Vn = {1, 2, . . . , n}, endowed with resistance r = n/2. Then the effective
resistance Rn is equal to 1. Let (E∞, D[E∞]) be a quadratic form on N∪{∞}
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defined by

D[E∞] =
{
u ∈ �(N ∪ {∞})

∣∣∣ ∑
i∈N

|u(i) − u(∞)|2 < +∞
}

;

E∞(u) = 2
∑
i∈N

|u(i) − u(∞)|2, u ∈ D[E ].

We assume that Vn sits in N ∪ {∞} and consider the trace E∗
∞;Vn

of E∞
on Vn. Then the effective resistance of E∗

∞;Vn
is equal to 1 and (Kn, EKn) can

be identified with (Vn, E∗
∞;Vn

). The limit of E∗
∞;Vn

as n → ∞ is given by the
trace E∗

∞;N of E∞ on N, that is

D[E∗
∞;N] =

{
u ∈ �(N)

∣∣∣ ∑
i∈N

|u(i) − c|2 < +∞ for some c ∈ R

}
;

E∗
∞;N(u) = 2

∑
i∈N

|u(i) − u(∞)|2, u ∈ D[E∗
N
],

where u(∞) = limn→∞
∑

i∈Vn
u(i)/n. Let π be a positive function on N such

that
∑

i∈N
π(i)2 < +∞. Then (Vn, E∗

∞;Vn
, μn =

∑
i∈Vn

π(i)2δi) converges to
(N, E∗

∞;N, μ =
∑

i∈N
π(i)2δi) as n → ∞ in the sense of Theorem 5.8; the

approximating maps are given by the inclusion maps.

Example 5.3 Let Gn be a subgraph of the integer lattice Zd generated
by the set of vertices Vn = {(x1, . . . , xd) | |xi| ≤ n, i = 1, . . . , d}. We
consider the case where d ≥ 3 and a sequence of measures μn on Vn defined
by μn(u) =

∑
x∈Vn

u(x)π(x)2 (u ∈ �(Vn)), where π is a positive function
on Zd such that

∑
x∈Zd π(x)2 < +∞. Then we have a compact metric space

(Zd∪{∞}, Ŝ, μ) to which the sequence of Gn with the measure μn converges
in the sense of Theorem 5.8. However the effective resistance of Zd ∪ {∞}
provides it with the discrete topology.

Example 5.4 We consider Markov forms on a finite set X and their Γ-
limits. Let M be a family of Markov forms E on �(X) such that the resistive
networks associated to the forms E are connected and there exist functions
u satisfying E(u) = 0 and

∫
X
u2 dμc

X(=
∑

x∈X u(x)
2) = 1; such functions

do not change their signs and here after we take the positive ones, denoted
by πE . Associated to such a form E , we have a Markov form Ê defined by
Ê(u, v) = E(uπE , vπE) for u, v ∈ �(X), that satisfies [H-1] and [H-4].

We are now given a sequence {En} in M and suppose that as n → ∞,
the associated forms Ên Γ-converges to a form Ê defined on a subspace D[Ê ]
of �(X) in the same manner described as in Theorem 4.5. We keep the
notations there. Then D[Ê ] can be identified with the space of functions on
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the quotient space X∗ = X/ ∼0 and the limit form Ê will be also considered
as a form on �(X∗). According to the decomposition of X, X = ∪α=1,...,pXα,

relative to the equivalence relation ∼b, Ê splits into the sum of the forms
Êα on X∗

α(= Xα/ ∼0). Now we assume that the functions πn(= πEn) on X
pointwise converges to a function π on X as n→ ∞, and define a function π̃
on X∗ by π̃(x∗) =

∑
x∈ρ−1(x∗) π(x) for x∗ ∈ X∗. Let ρ : X → X∗ be

the canonical projection and Ê∗
K̃

the trace of Ê on the support K̃ of the

function π̃. For a function v ∈ D[Ê∗
K̃

], we assume that the minimizer HK̃;v

vanishes in the component X∗
α that does not intersect K̃. We define a linear

map S of �(X∗) into �(X) by S(v) = πHK̃;v ◦ ρ for v ∈ �(X∗). Then S is
injective, and a Markov form (E , D[E ]) on X is given by letting E(S(v)) =
Ê∗

K̃
(v) for S(v) and E(u) = +∞ for a function u that does not stay in the

image of S. In what follows, we prove that the Markov forms En on �(X)
Γ-converges to E as n → ∞. To do this, it suffices to verify that if En Γ-
converges to a form E ′, then E ′ = E . Let v be a function on K̃. We take a
sequence of functions un on X in such a way that un converges to HK̃;v ◦ ρ
pointwise on X and Ên(un)(= En(πnun)) tends to Ê(HK̃;v ◦ ρ). Since πnun

converges to S(v) = πHK̃;v ◦ ρ, we get

E ′(S(v)) ≤ lim inf
n→∞

En(πnun) = lim
n→∞

Ên(un) = E(S(v)).

On the other hand, for φ ∈ D[E ′], we have a sequence of functions φn on
X such that φn converges to φ pointwise in X and En(φn) tends to E ′(φ)
as n → ∞. Here we may assume that φn/πn ∈ L2(X, π2

nμ
c) L2-strongly

converges to v ◦ ρ ∈ L2(X, π2μc) for some v ∈ �(K̃). Then we have S(v) = φ
and

Ê∗
K̃

(v) ≤ lim inf
n→∞

Ên(φn/πn) = E ′(φ).

Thus we have shown that E ′ = E .

Now we illustrate a particular example of Γ-convergence of Markov forms
described above. Let (X,E, r) be a finite network and E the associated form
on �(X). Given a sequence of positive functions πn on X, we have a sequence
of Markov forms En on �(X) defined by

En(u, v) = E(u/πn, v/πn), u, v ∈ �(X).

Suppose that πn converges to a nonnegative function π∞ on X. Let μn

(resp. μ∞) be measures on X given by μn(u) =
∑

x∈X u(x)πn(x)2 (resp.
μ∞(u) =

∑
x∈K u(x)π∞(x)2), where K stands for the support of π∞. Then

as n → ∞, the symmetric operator of L2(V, μn) associated to E converges
to that of L2(K,μ∞) associated to the trace Ê∗

K on K in the sense of Theo-
rem 5.8. Moreover the form En Γ-converges to a Markov form (E∞, D[E∞])
on �(X) defined by D[E∞] = {HK;u | u ∈ �(K)} and E∞(HK;u) = E(HK;u).
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6. Convergence of potentials and harmonic functions

In this section, we consider a sequence of compact metric space (Xn, Rn) of
the resistance forms En, and assume that it converges to a compact metric
space (Y,RY ) in the Gromov-Hausdorff sense via approximating maps fn :
Xn → Y as in Corollary 5.7. Let EY be the resistance form on Y associated
to the metric RY .

Let us begin with stating the following

Lemma 6.1 Let {un} and {vn} be sequences of functions un and vn in
D[En] such that as n→ ∞, En(un) and also En(vn) are bounded and further-
more un and vn uniformly converge to continuous functions u and v on Y ,
respectively. Suppose that En(un) tends to EY (u) as n→ ∞. Then one has

EY (u, v) = lim
n→∞

En(un, vn).

See Lemma 3.4 in [26] for the proof of this lemma.

Now we show the following

Lemma 6.2 Suppose that a sequence of functions un ∈ D[En] uniformly
converges to a function u ∈ D[EY ] and En(un) tends to EY (u) as n → ∞.
Then a sequence of the energy measures μ〈un〉 vaguely converges to the energy
measure μ〈u〉 of u in the sense that

lim
n→∞

∫
f ∗

nφ dμ〈un〉 =

∫
φ dμ〈u〉, φ ∈ C(Y ).

Proof. Since D[EY ] is dense in C(Y ), it suffices to prove the lemma for
φ ∈ D[EY ]. Then we take a sequence of functions φn ∈ D[En] in such a way
that φn uniformly converges to φ and En(φn) tends to EY (φ) as n → ∞.
Then in view of Lemma 6.1, we see that

lim
n→∞

∫
φn dμ〈un〉 = lim

n→∞
En(φnun, un) − 1

2
En(φn, u

2
n)

= EY (φu, u) − 1

2
EY (φ, u2) =

∫
φ dμ〈u〉.

Hence we get

lim
n→∞

∫
f ∗

nφ dμ〈un〉 = lim
n→∞

∫
(f ∗

nφ− φn) dμ〈un〉 +

∫
φn dμ〈un〉 =

∫
φ dμ〈u〉.

This completes the proof of Lemma 6.2. �

We say that a sequence of closed subsets Kn of Xn converges to a closed
subset K of Y if fn(Kn) converges to K in Y as n→ ∞.
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Lemma 6.3 Let {Kn} be a sequence of closed subsets of Xn which converges
to a closed subset K of Y as n→ ∞. Then given u ∈ D[EY ;K], there exists
a sequence of functions un ∈ D[En;Kn] such that as n → ∞, un uniformly
converges to u and En(un) tends to EY (u).

Proof. For a positive number a, let Ωn(−a) = {x ∈ Xn | Rn(x,Kn) > a}
and Ω(−a) = {x ∈ Y | RY (x,K) > a}. Given u ∈ D[EY ;K], we may assume
that u is supported in Ω(−a) for some a > 0, because we can approximate u
by functions supported in Y \K. Then we can take a sequence of functions
vn ∈ D[En] which uniformly converges to u in such a way that En(vn) tends
to EY (u) as n → ∞. Let εn = 2 sup{|vn(x)| | x ∈ Xn \ Ωn(−a)}, and put
un = max{v+

n , ε} − max{v−n , ε}. Then un vanishes on Kn and uniformly
converges to u as n → ∞, since εn tends to 0 as n → ∞. Moreover noting
that En(un) ≤ En(vn), we have

EY (u) ≤ lim inf
n→∞

En(un) ≤ lim sup
n→∞

En(vn) = EY (u).

This shows that limn→∞ En(un) = EY (u), and the proof of the lemma is
completed. �

In Lemma 6.3, we assume further that u ∈ D[EY ;K] is nonnegative on a
closed subset L of Y with K ∩ L = ∅; then for a sequence of closed subsets
Ln of Xn which converges to a closed subset L, we can find a sequence of
functions un ∈ D[En;Kn] as above with un ≥ 0 on Ln.

Theorem 6.4 Given a sequence of proper closed subsets Kn of Xn which
converges to a proper closed subset K of Y , the Green function gKn of
D[En;Kn] uniformly converges to the Green function gK of D[EY ;K] as
n→ ∞, that is,

lim
n→∞

sup
x,y∈Xn

|gKn(x, y) − gK(fn(x), fn(y))| = 0.

Moreover let {νn} be a sequence of signed Radon measures νn on Xn with
supn |νn|(Xn) < +∞, and suppose that νn vaguely converges to a signed
Radon measure ν on Y . Then the function Uνn(x) = νn(gKn(x, ∗)) (x ∈ Xn)
uniformly converges to the function Uν(x) = ν(gK(x, ∗)) (x ∈ Y ), and
En(Uνn) tends to EY (Uν) as n→ ∞.

Proof. We assume that the diameter of (Kn, Rn) is bounded from above
by a positive constant b. Let Un = Uνn and U = Uν for simplicity. Then we
have

|Un(x)| ≤ En(Un)1/2b1/2, x ∈ Xn,

and hence
En(Un) = νn(Un) ≤ En(Un)1/2b1/2|νn|(Xn).
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These imply that En(Un) ≤ b|νn|(Xn)2 and |Un| ≤ b|νn|(Xn). Therefore
it follows from the compactness property of the convergence, 5.3 (iv), that
there exists a subsequence {Uk} which uniformly converges to a function
V ∈ D[EY ] as k → ∞. For any u ∈ D[EY ;K], Lemma 6.3 allows us to take
a sequence of functions un ∈ D[En;Kn] which uniformly converges to u in
such a way that En(un) tends to EY (u). Then by Lemma 6.1, we have

EY (V, u)= lim
k→∞

Ek(Uk, uk)= lim
k→∞

νn(uk) = lim
k→∞

νn(uk−f ∗
nu)+νn(f ∗

nu) = ν(u).

This shows that V = U , and hence Un uniformly converges to U and fur-
thermore

EY (U) = ν(U) = lim
n→∞

νn(Un) = lim
n→∞

En(Un).

Let {xn} be a sequence of points xn of Xn which converges to a point x
of Y as n → ∞. Then we apply the above result to the point measures δxn

and δx supported at xn and x respectively, obtaining that gKn(xn, ∗) uni-
formly converges to gK(x, ∗) as n → ∞. Thus we can conclude that gKn

uniformly converges to gK as n → ∞. This completes the proof of Theo-
rem 6.4. �

Corollary 6.5 Let {Ωn} be a sequence of proper, connected open subsets
of Xn which converges to a proper, connected open subset Ω of Y ; let {Ln}
be a sequence of compact subsets of Ωn which converges to a compact subset
L of Ω. Then the sequence of the numbers C(Ωn, Ln) relative to Ωn and Ln

defined in Theorem 2.8 tends to the number C(Ω, L) relative to Ω and L as
n → ∞. Moreover the equilibrium potential of Ln in Ωn, eΩn,Ln, uniformly
converges to that of L in Ω, eΩ,L, in such a way that limn→∞En(eΩn,Ln) =
EY (eΩ,L), that is, the capacity of Ln relative to Ωn converges to that of L
relative to Ω.

Proof. The first assertion is a direct consequence of Theorem 6.4. To prove
the second one, let en = eΩn,Ln and e = eΩ,L, and note that the capacity
CapΩn

(Ln) of Ln in Ωn are uniformly bounded by (2.1). Therefore we can
take a subsequence {ek} such that ek uniformly converges to a function e′ ∈
D[EY ]. Clearly e′ = 1 on L. Moreover for any v ∈ D[EY ;Y \ Ω] with v ≥ 0
on L, it follows that there exists a sequence of functions vn ∈ D[En;Xn \Ωn]
such that vn ≥ 0 on Ln, vn uniformly converges to v, and En(vn) tends to
EY (v) as n → ∞. Since En(en, vn) ≥ 0 for all n, we also have EY (e′, v) ≥ 0.
Thus the characterization of the equilibrium potentials allows us to conclude
that e′ = e, that is, en uniformly converges to e as n→ ∞.

It remains to prove that limn→∞ En(en) = EY (e). For this, we choose a
sequence of functions e′n ∈ D[En;Xn \ Ωn] which uniformly converges to e
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and whose energy tends to that of e as n → ∞. By multiplying a suitable
constant to en which is close to 1, we may assume that e′n ≥ 1 on Ln.
Therefore we have

EY (e) ≤ lim inf
n→∞

En(en) ≤ lim inf
n→∞

En(e′n) ≤ lim sup
n→∞

En(e′n) = EY (e).

Thus we see that En(en) tends to EY (e) as n→ ∞. This completes the proof
of Corollary 6.5. �

Letting

eΩn,Ln(x) =

∫
gXn\Ωn(x, y)dνΩn,Ln(y); eΩ,ω(x) =

∫
gY \Ω(x, y)dνΩ,L(y)

in Corollary 6.5, then we see that the measure νΩn,Ln vaguely converges to
the measure νΩ,L as n→ ∞.

Let {Ln} be a sequence of closed subsets of Xn that converges to a closed
subset L as n → ∞. By changing approximations fn : Xn → Y slightly,
we may assume that the restriction of fn to Ln gives approximation of Ln

to L. Via these approximations, the trace E∗
n;Ln

on Ln Γ-converges to the
trace E∗

Y ;L on L.
Moreover we have the following

Theorem 6.6 Let {Ln} be a sequence of compact subsets of Xn that con-
verges to a compact subset L of Y as n→ ∞.

(i) Let {un} be a sequence of functions in D[En] such that un uniformly
converges to a function u ∈ D[EY ] and En(un) tends to EY (u) as n → ∞.
Let Hn be a unique minimizer among functions with the same values as un

on Ln. Then Hn uniformly converges to the minimizer H for u on L in such
a way that the energy measure of Hn vaguely converges to that of H in Y as
n→ ∞.

(ii) Suppose that each En is local. Then for a sequence of continuous
functions un on Xn which uniformly converges to a continuous function u
on Y , the unique solution Hn in Theorem 2.11 for un|Ln uniformly converges
to the unique solution H for u|L and further the energy measure of Hn in
Xn \Ln vaguely converges to that of H in Y \L, that is, for any continuous
function φ supported in Y \ L, one has∫

φ dμ〈H〉 = lim
n→∞

∫
f ∗

nφ dμ〈Hn〉.

Proof. We prove the first assertion. Let Qn = un − Hn ∈ D[En;Ln] and
Q = u − H ∈ D[EY ;L]. Since En(Qn) = En(un) − En(Hn) is bounded,
we can find a subsequence {Qk} and a function Q′ ∈ D[EY ;L] such that Qk

uniformly converges toQ′ as k → ∞. LetH ′ = u−Q′, to whichHk = uk−Qk

uniformly converges.
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For any v ∈ D[EY ;L], by Lemma 6.3, we can take a sequence of functions
vn ∈ D[En;Ln] in such a way that as n → ∞, vn uniformly converges to v
and En(vn) tends to EY (v). Then in view of Lemma 6.1, we get

EY (H ′, v) = lim
k→∞

Ek(Hk, vk) = 0.

This shows that H = H ′, and thus Hn uniformly converges to H . Moreover
we have

EY (u) = EY (H) + EY (Q) ≤ lim inf
n→∞

En(Hn) + lim inf
n→∞

En(Qn)

≤ lim sup
n→∞

En(Hn) + En(Qn) = lim sup
n→∞

En(un) = EY (u).

Thus we can conclude that limn→∞ En(Hn) = EY (H). Now we prove the
second assertion. Given a positive number ε, we take a function vε ∈ D[EY ]
such that supY |u − vε| < ε. Let {vn} be a sequence of functions in D[En]
which uniformly converges to vε and whose energy tends to that of vε. Let
H ′

n (resp. Hε) be a unique minimizer in the set of functions with the same
values as vn (resp. vε) on Ln (resp. L). Then as we have just seen, H ′

n

uniformly converges to Hε and En(H ′
n) tends to EY (Hε) as n → ∞. Note

that
sup
Xn

|H ′
n −Hn| ≤ sup

Ln

|vn − un| ≤ 2 sup
L

|vε − u| < 2ε

for n large enough. Hence we have

sup
Xn

|Hn − f ∗
nH| ≤ sup

Xn

|Hn −H ′
n|+ sup

Xn

|H ′
n − f ∗

nHε|+ sup
Ln

|f ∗
nHε − f ∗

nH| < 4ε

for n sufficiently large. Thus letting ε → 0, we can conclude that Hn uni-
formly converges to H .

It remains to prove that for any function φ ∈ C(Y ) supported in Y \ L,∫
f ∗φ dμ〈Hn〉 tends to

∫
φ dμ〈H〉. To see this, we may assume that φ is of

finite energy. Then we can take a sequence of functions φn ∈ D[En;Ln] such
that each φn is supported in Ωn(−4a)(= {x ∈ Xn | Rn(x,Xn \ Ωn) > 4a})
for some positive constant a, and φn uniformly converges to φ as n → ∞.
Then applying Theorem 2.9, we get∫

|f ∗
nφ− φn| dμ〈Hn〉 ≤ sup

Ω′
n(−3a)

|f ∗
nφ− φn|

∫
Ω′

n(−3a)

dμ〈Hn〉

≤ sup
Ωn(−3a)

|f ∗
nφ− φn| sup

Ωn(−2a)

|Hn|2 CapΩn
(Ωn(−3a)),

and hence we obtain

lim
n→∞

∫
|f ∗

nφ− φn| dμ〈Hn〉 = 0.
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For a positive number ε, let H ′
n and Hε be as above and observe that∣∣∣∣

∫
φn(dμ〈Hn〉 − dμ〈H′

n〉)

∣∣∣∣ ≤
≤ sup |φn|

2

(
1

ε

∫
Ωn(−3a)

dμ〈Hn−H′
n〉 + ε

∫
Ωn(−3a)

dμ〈Hn+H′
n〉

)

≤ sup |φn|
2

(
1

ε

∫
Ω′

n(−a)

dμ〈Hn−H′
n〉 + 2ε

(∫
Ωn(−3a)

dμ〈Hn〉 +

∫
Ωn(−3a)

dμ〈H′
n〉

))

≤ sup |φn|
2

CapΩn
(Ωn(−3a))

(
1

ε
sup
Ωn

|Hn −H ′
n|2 + 2ε sup

Ωn

(|Hn|2 + |H ′
n|2)
)

≤ sup |φn|
2

CapΩn
(Ωn(−3a))

(
1

ε
sup
Ln

|un − u′n|2 + 2ε sup
Ln

(|un|2 + |u′n|2)
)
.

Hence we can deduce that∣∣∣∣
∫
φn(dμ〈Hn〉 − dμ〈Hn〉)

∣∣∣∣ ≤ b CapΩn
(Ωn(−3a)) ε

for all large n and some constant b independent of n and ε. By the same
reason, we have∣∣∣∣

∫
φ (dμ〈H〉 − dμ〈Hε〉)

∣∣∣∣ ≤ b CapΩ(Ω(−3a)) ε.

These estimates imply that for all large n,∣∣∣∣
∫
φndμ〈Hn〉−

∫
φ dμ〈H〉

∣∣∣∣ ≤ 2b CapΩ(Ω(−a))ε +

∣∣∣∣
∫
φn dμ〈H′

n〉−
∫
φ dμ〈Hε〉

∣∣∣∣
≤ (4b CapΩ(Ω(−a)) + 1) ε.

Letting ε→ 0, we can conclude that

lim
n→∞

∫
f ∗

nφ dμ〈Hn〉 = lim
n→∞

∫
φn dμ〈Hn〉 =

∫
φ dμ〈H〉.

This completes the proof of Theorem 6.6. �

Corollary 6.7 Let {(Xn, Rn)} be a sequence of compact metric spaces of
resistance forms En and suppose that it converges to a compact metric space
(Y,RY ) with respect to the Gromov-Hausdorff distance. Suppose that each En

is local. Then one has the following assertions:

(i) Let H be a harmonic function on an open subset Ω of Y . Then there
exists a sequence of open subsets Ωn of Gn which converges to Ω as n→ ∞,
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and a sequence of En-harmonic functions Hn on Ωn such that Hn uniformly
converges to H on each compact subset of Ω and the energy measure of Hn

vaguely converges to that of H in Ω as n→ ∞.

(ii) Let {Ωn} be a sequence of open subsets of Xn which converges to an
open subset Ω of Y . Let {Hn} be a sequence of En-harmonic functions on Ωn

and suppose that Hn(on) is uniformly bounded as n → ∞ for a sequence of
points on ∈ Ωn which converges to a point of Ω. Then there exists a subse-
quence {Hk} and an EY -harmonic function H on Ω such that Hk uniformly
converges to H on each compact subset of Ω and the energy measure of Hk

vaguely converges to that of H in Ω as n→ ∞.

We refer to [27] for related results to those in this section.

7. Resistance forms on infinite networks

Let Γ = (V,E, r) be a connected, infinite network. In this section, we
consider, besides E0

Γ and EΓ, a resistance form (E , D[E ]) on �(V ) such that
D0[E0

Γ] ⊂ D[E ] ⊂ D[EΓ], E(u) ≥ EΓ(u) for all u ∈ D[E ], and E(u, v) =
EΓ(u, v) for all u ∈ D[E ] and v ∈ D0[EΓ] (cf. Theorem 5.3). We call such E
a resistance form on Γ.

7.1 We consider two canonical measures on V , the counting measure μc
V =∑

x∈V δx and the measure μp
V defined by μp

V =
∑

x∈V πV (x)δx, where πV (x) =∑
y∼x r(|xy|)−1. With respect to these measures, we have two spectral gaps

of Γ defined by

λc
0(Γ) = inf

{ EΓ(u)∫
u2dμc

V

| u ∈ �0(V )

}
,

λp
0(Γ) = inf

{ EΓ(u)∫
u2dμp

V

| u ∈ �0(V )

}
.

For a resistance form E under consideration, we can define two nonnegative
numbers λ∗1(E ;μc

V ) and λ∗1(E ;μp
V ) associated to the measures μc

V and μp
V ,

respectively (cf. Definitions 3.1 and 3.2). We compare them in the following

Proposition 7.1 Under the above notations, it holds that λ∗1(E ;μc
V ) ≤ λc

0(Γ)
and λ∗1(E ;μp

V ) ≤ λp
0(Γ). Moreover in the case where λc

0(Γ) > 0, the following
are mutually equivalent:

(i) λ∗1(E ;μc
V ) > 0,

(ii) (E , D[E ]) = (Ê0
Γ,R +D0[EΓ]),

(iii) λ∗1(E ;μc
V ) = λc

0(Γ).
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Similarly in the case where λp
0(Γ) > 0, the following are mutually equivalent:

(i) λ∗1(E ;μp
V ) > 0,

(ii) (E , D[E ]) = (Ê0
Γ,R +D0[EΓ]),

(iii) λ∗1(E ;μp
V ) = λp

0(Γ).

Proof. Let u be a finitely supported function on V . Then EΓ(u) = E∗
Vn

(u|Vn)
for large n, where {Vn} is an exhaustion of V , and hence we have

EΓ(u) ≥ λ1(E∗
Vn

;μc
Vn

)

∫
Vn

(u−Hμc
Vn
u)2dμc

Vn
.

Letting n→ ∞, we obtain

EΓ(u) ≥ λ1(E ;μc
V )

∫
V

u2dμc
V .

This shows that λc
0(Γ) ≥ λ∗1(E ;μc

V ).

We consider the case where λc
0(Γ) > 0. It follows from Theorem 3.5

that (i) implies (ii). Suppose that (ii) holds. Then for any n, we take a
function un on Vn such that Hμc

Vn
un = 0,

∫
Vn
u2

ndμ
c
Vn

= 1 and E∗
Vn

(un) =

λ∗1(E∗
Vn

;μc
Vn

). Let Hn = HVn;un ∈ D[E ] (see Lemma 1.6). Then by the
assumption, Hn − cn ∈ D0[EΓ] for some constant cn. Hence we have

λ∗1(E∗
Vn

;μc
Vn

) = E(Hn) ≥ λc
0(Γ)

∫
V

|Hn − cn|2dμc
V

≥ λc
0(Γ)

∫
Vn

|Hn − cn|2dμc
Vn

≥ λc
0(Γ)

∫
Vn

u2
ndμ

c
Vn

≥ λc
0(Γ).

Letting n → ∞, we get λ∗1(E ;μc
V ) ≥ λc

0(Γ), so that the equality holds.
Obviously (iii) implies (i). The same arguments are valid for the case of
λp

0(Γ) and λ∗1(E ;μp
V ). This completes the proof of Proposition 7.1. �

Corollary 7.2 Let Γn = (Vn, En, rn) and Γ = (V,E, r) be as in Theo-
rem 5.3. Then

lim sup
n→∞

λ1(EΓn;μc
Vn

) ≤ λc
0(Γ) and lim sup

n→∞
λ1(EΓn ;μp

Vn
) ≤ λp

0(Γ).

It is known (cf. e.g., [39]) that λp
0(G) ≤ 1 − 2

√
d− 1/d and λc

0(G) ≤
d − 2

√
d− 1 for an infinite graph G = (V,E) with degree bounded by a

positive integer d. Thus we have the following
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Theorem 7.3 (Alon-Boppana, Grigorchuk-Żuk [22]) Let Gn = (Vn, En) be
a sequence of finite graphs such that the degrees of Gn are bounded by a
positive integer d and the cardinality of Vn tends to infinity as n → ∞.
Then one has

lim sup
n→∞

λ1(EGn;μc
Vn

) ≤ d−2
√
d− 1 and lim sup

n→∞
λ1(EGn;μp

Vn
) ≤ 1−2

√
d− 1

d
.

As a consequence of Proposition 7.1, together with Example 1.2, we have
the following

Corollary 7.4 Let {Gn = (Vn, En)} be a sequence of finite graphs such that
the degrees of Gn are bounded by a positive integer d and λ1(EGn;μc

Vn
) is

bounded away from zero by a positive constant. Let T = (VT , ET ) be the ho-
mogeneous tree of degree d. Suppose that a pointed metric space (Vn, dGn, pn)
converges to a pointed metric space (VT , dT , p) as n→ ∞. Then one has

lim
n→∞

sup
x,y∈Bρ(pn)

∣∣∣∣∣RGn(x, y) − 2(d− 1)

d(d− 2)

(
1 −

(
1

d− 1

)dGn (x,y)
)∣∣∣∣∣ = 0

for any ρ > 0.

Let G = (V,E) be a connected, finite graph. The girth of G is by
definition the length of the shortest circuit in G. We consider a family of
connected finite graphs Gn = (Vn, En) as in Corollary 7.4 satisfying fur-
ther the property that the girth of Gn diverges as n → ∞. It is known
(cf. [17] and the references therein) that there exists such a family {Gn}
with limn→∞ λ1(μ

c
Vn

) = d − 2
√
d− 1 for certain d’s. As we have seen, for

such a family, the resistance metric of Gn converges to the minimal one of the
homogeneous tree T of degree d as n→ ∞. Moreover using this family and
modifying it appropriately, we can construct another family {G′

n} converg-
ing to T with respect to the geodesic distances such that the limit resistance
form E on T is different from the minimal one; for example, the dimension
of the space HD[ET ]∩D[E ] is finite and equal to any given positive integer.

7.2 Let E be a resistance form on a connected infinite network Γ = (V,E, r).
We denote by gEz (x, y) and RE , respectively, the Green function and the
effective resistance of E . Set HE = HD[EΓ] ∩D[E ]. For x, y, z ∈ V , let

hEz (x, y) = gEz (x, y) − (g0
Γ(x, y) − g0

Γ(x, z) − g0
Γ(y, z) + g0

Γ(z, z)).

Then hEz (x, y) = hEz (y, x) and the functions hEz (x, y) of y belongs to HE and
satisfies hEz (x, z) = 0, hEz (x, x) = RE(x, z)−R0

Γ(x, y), −R0
Γ(x, z) ≤ hEz (x, y) ≤

RE(x, z) for all y ∈ V , where we put R0
Γ(x, y) = g0

Γ(x, x)−2g0
Γ(x, y)+g0

Γ(z, z).
In fact, hEz (x, y) is the Green function of the form E restricted to HE , that
is, E(hz(x, ∗), h) = h(x) − h(z) for any h ∈ HE .
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Let N = dimHE − 1(≤ +∞). In what follows, we assume that 1 ≤
N ≤ +∞, and fix a point o ∈ V . Let {hi | 1 ≤ i < N + 1} be a complete
orthonormal system of the Hilbert space ({h ∈ HE | h(o) = 0}, E). Then it
holds that

hEz (x, y) =
N∑

i=1

(hi(x) − hi(z))(hi(y) − hi(z)), x, y, z ∈ V ;

hEz (x, x) = RE(x, z) −R0
Γ(x, z) =

N∑
i=1

(hi(x) − hi(z))
2, x, z ∈ V

(cf. Lemma 1.11).
Suppose here that Γ is locally finite. Let R̄E(x) =

∑
y∼xRE(x, y)/r(x, y)

and R̄0
Γ(x) =

∑
y∼xR

0
Γ(x, y)/r(x, y) for x ∈ V (cf. [37], p. 98). Then we

have

R̄E(x) − R̄0
Γ(x) =

N∑
i=1

∑
y∼x

(hi(x) − hi(y))
2

r(x, y)
, x ∈ V.

It follows from the maximum principle that the set {x ∈ V | R̄E(x) −
R̄0

Γ(x) > 0} is empty (resp. an infinite subset) if and only if dimHE = 1
(resp. dimHE > 1). Thus we arrive at the following

Proposition 7.5 Let (E , D[E ]) be a resistance form on a connected, locally
finite, infinite network Γ. Then one has

1

2

∑
x∈V

R̄E(x) − R̄0
Γ(x) ≤ dimHE − 1(≤ +∞),

and in the case where E = EΓ,

1

2

∑
x∈V

R̄Γ(x) − R̄0
Γ(x) = dimHD[EΓ] − 1(≤ +∞).

Let E be a resistance form on Γ. For a bijective map φ : V → V ,
it is easy to see that φ preserves the effective resistance of E , that is,
RE(φ(x), φ(y)) = RE(x, y) for all x, y ∈ V if and only if φ satisfies the
property that E(φ∗u) = E(u) for all u ∈ D[E ]. We remark that such a map
φ must be an automorphism of the network Γ = (V,E, r), since E coincides
with E0

Γ on D0[E0
Γ]. We denote by Aut(Γ, E) the group of all automorphisms

of Γ preserving the effective resistance of E . Then it is evident that R̄E − R̄0
Γ

is constant on an orbit of Aut(Γ, E) on V . This shows the following

Corollary 7.6 Let Γ and (E , D[E ]) be as in Proposition 7.5. Suppose that
there exists an orbit K of Aut(Γ, E) such that R̄E − R̄0

Γ is positive on K and
the cardinality of K is infinite. Then HE is of infinite dimension.
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7.3 In this part, we study the compactification described in 3.2 with
respect to a resistance form E of a connected, infinite network Γ = (V,E, r).
In what follows, we assume that Γ is nonparabolic, that is, there exists the
minimal Green function g0

Γ(x, y).

To begin with, we recall the following

Lemma 7.7 (Green’s formula) Let u be a function in D[EΓ]. Then for any
function g ∈ D0[EΓ], one has

EΓ(u, g) =

∫
V

gLcu dμc
V if g Lcu ∈ L1(V, μc

V ).

Proof. The identity holds if g is finitely supported. For g ∈ D0[EΓ], we can
take a sequence of finitely supported functions gn such that |gn| ≤ |g| and
gn converges to g in D[EΓ]. Since |gnLcu| ≤ |gLcu|, Lebesgue’s convergence
theorem implies that limn→∞

∫
V
gnLcudμc

V =
∫

V
gLcudμc

V . This shows the
lemma. �

Let E be a resistance form on Γ. Associated to the space of bounded
functions in D[E ], we have a compactification of V , which we will call the
Royden compactification R(V, E) of E . The boundary ∂R(V, E) = R(V, E) \
V will be called the Royden boundary of E . The harmonic boundary of E
is defined by Δ(E) = {x ∈ ∂R(V, E) | g(x) = 0, ∀g ∈ D0[EΓ]}. We recall a
basic fact concerning Dirichlet problems on the Royden boundary ∂R(V, E)
( cf. e.g., [37, Chap.VI]): for any continuous function f on ∂R(V, E), there
exists a unique harmonic function Hf on Γ such that for any ξ ∈ Δ(E),
limx∈V →ξ Hf(x) = f(ξ), and supV |Hf | ≤ maxΔ(E) |f |. Given a point a ∈ V ,
letting νa(f) = Hf (a) for f ∈ C(∂R(V, E)), we have a Radon measure νa on
∂R(V, E), called the harmonic measure with respect to the point a. In view
of the Harnack inequality, νa and νb are mutually absolutely continuous for
any pair of points a, b ∈ V , and the harmonic measures are supported on
the harmonic boundary of E .

Let μ be a finite measure supported on V such that∫ ∫
V ×V

RE(x, y)2dμ(x)dμ(y) < +∞.

Condition (3.12) is automatically satisfied in this case.

In what follows, to indicate the dependency on the form E , we denote by

NE;μ, V
N

(E) and LE;μ, respectively, the distance on V introduced in 3.2, the
completion of the metric space (V,NE;μ) and the infinitesimal generator of

the form E in L2(V, μ). Let ∂V
N

(E) = V
N

(E) \ V . We will call V
N

(E) and

∂V
N

(E), respectively, the Kuramochi compactification and the Kuramochi
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boundary of a resistance form E . A function of D[LE;μ] is regarded as a

continuous function on V
N

(E) (see Lemma 3.8 and Theorem 3.10). Given

u ∈ D[LE;μ], we denote by TEu the restriction of u to the boundary ∂V
N

(E).
The identity map of V extends to a continuous map from R(V, E) onto

V
N

(E). We denote by ρ the induced map from ∂R(V, E) onto ∂V
N

(E). Let
ΔN (E) = ρ(Δ(E)) and ωa = ρ∗νa (a ∈ V ). Here and after, we fix a point
o ∈ V and write ω for ωo.

Now we study Neumann problems on ∂V
N

(E), referring to [18] and [34]
where analysis on Green spaces are carried out.

Lemma 7.8 For any u ∈ D[LE;μ] and a ∈ V , one has∫
∂V

N
(E)

(TEu)2dωa ≤ 2g0
Γ(a, a) E(u) + 2u(a)2.

Proof. Put f = TEu ∈ C(∂V
N

E ). We first observe that

Lc(Hf2 − (Hf)
2)(x) =

∑
y∼x

r(|xy|)−1(Hf(x) −Hf(y))
2, x ∈ V,

which implies ∫
V

Lc(Hf2 − (Hf)
2)dμc

V = 2EΓ(Hf).

Since (Hf )2−Hf2 belongs to D0[EΓ], using Lemma 7.7 with g = g0
Γ(a, ∗) and

noting∫
V

g0
Γ(a, x)Lc(Hf2 − (Hf)

2)(x)dμc
V (x) ≤ 2g0

Γ(a, a)EΓ(Hf) < +∞,

we obtain

Hf2(a) −Hf(a)
2 = EΓ(Hf2 − (Hf)

2, g0
Γ(a, ∗))

=

∫
V

g0
Γ(a, x)Lc(Hf2 − (Hf )2)(x)dμc

V (x).

In this way, we get

Hf2(a) ≤ 2g0
Γ(a, a)EΓ(Hf ) +Hf(a)

2, a ∈ V.

Finally we have

Hf(a)
2 ≤ 2u(a)2 + 2(u(a) −Hf (a))2

≤ 2u(a)2 + 2EΓ(u−Hf , g
0
Γ(a, ∗))2

≤ 2u(a)2 + 2EΓ(u−Hf)EΓ(g0
Γ(a, ∗))

= 2u(a)2 + 2g0
Γ(a, a)(E(u) − E(Hf)).

Thus we obtain the required estimate. This completes the proof of
Lemma 7.8. �
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Lemma 7.8 shows that the linear operator TE fromD[LE;μ] into C(∂V
N

(E))

extends uniquely to a bounded operator T̄E from D[E ] into L2(∂V
N

(E), ω)

which sends bounded functions in D[E ] into L∞(∂V
N

(E), ω), and any u ∈
D[E ] = HE +D0[EΓ] can be written as

u(x) =

∫
∂V

N
(E)

T̄Eu dωx + g(x), g ∈ D0[EΓ], x ∈ V.

Definition 7.1 We say that a function u ∈ D[E ] has a normal derivative

φ in L2(∂V
N

(E), ω) if
∫ |Lcu|dμc

V is finite and u satisfies

E(u, v) =

∫
V

v Lcu dμc
V +

∫
∂V

N
(E)

(T̄Ev) φ dω

for all bounded functions v in D[E ].

A normal derivative φ of u if it exists is unique in L2(∂V
N
, ω). Moreover

it depends on the choice of a reference point o, but the measure φ dω is
independent.

In terms of Definition 7.1, it holds that a function u ∈ D[E ] belongs to
D[LE;μ] if and only if

∫
V
|Lcu(x)|2μ(x)−1 dμc

V (x) < +∞ and u has a normal

derivative zero in L2(∂V
N

(E), ω); in particular, for a function f on a finite
subset K of V , the minimizer HK;f ∈ D[E ] has a normal derivative zero in

L2(∂V
N

(E), ω).

Now we prove the following

Theorem 7.9 A function φ ∈ L2(∂V
N

(E), ω) is the normal derivative of a
harmonic function in D[E ] if and only if

∫
∂V

N
(E)
φ dω = 0.

Proof. We are given φ ∈ L2(∂V
N

(E), ω). If it is the normal derivative of
h ∈ HE , then

∫
∂V

N
(E)
φ dω =

∫
∂V

N
(E)
φT̄1 dω = E(h, 1) = 0.

Suppose now that
∫

∂V
N

(E)
φ dω = 0. Let Ho = {h ∈ HE | h(o) = 0}. we

define a functional on Ho by assigning
∫

∂V
N

(E)
φT̄Ehdω to h ∈ Ho. Then this

functional is bounded, since∣∣∣∣
∫

∂V
N

(E)

φT̄Eh dω

∣∣∣∣
2

≤
∫

∂V
N

(E)

φ2dω

∫
∂V

N
(E)

(T̄Eh)2dω

≤ 2g0
Γ(o, o)

∫
∂V

N
(E)

φ2 dω E(h),

where we used Lemma 7.8.
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Therefore there exists a unique hφ ∈ Ho such that E(hφ, h) =
∫
φT̄Eh dω

for any h ∈ Ho. Any bounded v ∈ D[E ] is decomposed as v = h + g, where
h ∈ HE and g ∈ D0[EΓ]. Then we have

E(hφ, v) = E(hφ, h) = E(hφ, h− h(o)) =

∫
∂V

N
(E)

φ T̄E(h− h(o)) dω

=

∫
∂V

N
(E)

φ T̄Eh dω =

∫
∂V

N
(E)

φ T̄Ev dω.

This shows that hφ has a normal derivative φ in L2(∂V
N

E , ω). This completes
the proof of Theorem 7.9. �

By Theorem 7.9, we can deduce the following

Theorem 7.10 The space of functions h in HE with normal derivatives in

L2(∂V
N

E , ω) is dense in HE .

Proof. Let NH stand for the space above. Suppose NH is not dense in
HE . Then there exists h ∈ HE such that h �= 0, h(o) = 0, and E(h, h′) = 0
for all h′ ∈ NH . Since

∫
T̄Ehdω = h(o) = 0, applying Theorem 7.9 to T̄Eh,

we have h′ ∈ NH such that T̄Eh is the normal derivative of h′. Therefore
we have 0 = E(h, h′) =

∫
(T̄Eh)2dω, and hence h = 0. This is a contradiction

and thus the proof is completed. �
Now we shall prove the following

Theorem 7.11 Let E be a resistance form on a connected, infinite network
Γ = (V,E, r) that is nonparabolic.

(I) supx,y∈V RE(x, y) is finite if and only if every function in D[E ] is bounded.

Moreover if these are the cases, then ∂R(V, E) = Δ(E) = ∂V
N

(E).

(II) The following conditions are mutually equivalent:

(i) supx,y∈V h
E
x(y, y) is finite.

(ii) Every function in HE is bounded.

(iii) For any u ∈ D[E ], T̄Eu is continuous on ΔN (E).

(iv) A nonnegative function u in D[E ] satisfying Lcu(x) ≤ 0 is bounded.

Moreover under these conditions, the projection ρ restricted to the harmonic
boundary Δ(E) onto ΔN (E) induces a homeomorphism between them.

Proof. The assertion (I) and also the equivalence between the conditions (i)
and (ii) in (II) can be deduced from the same reasons as in Theorem 4.2.
Condition (iv) follows (ii) in (II), since for any h ∈ HE , we have Lch2(x) =
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−2
∑

x∼y(h(x) − h(y)2/r(x, y) ≤ 0. In view of the maximum principle, we
see that (iii) implies (ii). To prove the converse, we consider a subspace AE
of D[E ] which consists of functions extending continuously up to ∂V

N

E . Then
AE is dense in D[E ], because AE contains the domain D[LE;μ] of the Laplace
operator LE;μ on L2(V, μ), where μ is a finite measure on V satisfying (3.7):∫∫

R2
E(x, y)dμ(x)dμ(y) < +∞. Suppose that (ii), or (i) holds. Then there

exists a constant C such that for any h ∈ HE ,

sup
x∈V

|h| ≤ C(E(h)1/2 + |h(o|),

where o is a fixed point of V . Thus we have

sup
ξ∈ΔN (E)

|TEu(ξ)| ≤ C ′(E(u)1/2 + |u(0|)

for some C ′ and all u ∈ AE . This proves (iii), because AE is dense in D[E ].
It remains to prove that (ii) implies (iv). Let u be a nonnegative function

in D[E ] such that Lcu is nonpositive in V . Let {Vn} be an exhaustion of V .
We decompose h on Vn as follows: u = hn + gn, where hn is harmonic on
Vn and gn coincides with u on the boundary of Vn. Then it follows from the
maximum principle that gn is nonpositive. Letting n go to infinity, hn and
gn respectively converges to a function h ∈ HE and g ∈ D0[EΓ] and we can
express u as u = h+ g on V . Since g is nonpositive, 0 ≤ u ≤ h, and by the
assumption, h is bounded, so that u is bounded. This completes the proof
of Theorem 7.11. �

Remark 7.1 (i) Let (F , D[F ]) be a Dirichlet form on a closed linear sub-

space of L2(∂V
N

(E), ω) with F(1) = 0 and define a form (EF , D[EF ]) on V
by

EF(u) = E(u) + F(T̄Eu); D[EF ] = {u ∈ D[E ] | T̄Eu ∈ D[F ]}.
Then EF is a resistance form on Γ. Moreover for a positive number t, we
set EF ;t(u) = E(u) + tF(T̄Eu). Then the limit of the forms as t → +∞ also
gives a resistance form on Γ.

(ii) If we restrict ourselves to a class of connected, infinite graphs G =
(V,E) with bounded degree, the conditions in Proposition 4.1 and The-
orem 7.11 for the resistance forms EG of the graphs are invariant under
quasi-isometries, after the result in [24] mentioned in the introduction.

7.4 Before exhibiting examples of the Kuramochi boundaries of infinite
networks, we make some observations.

Let Γ = (V,E, r) be a connected, infinite network and E a resistance
form on Γ. Given an infinite subset K of V , let W = V \ K and ΓW =
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(W,EW , rW ) be the subnetwork of Γ generated by W . We decompose ΓW

into the connected components {Γi = (Wi, Ei, ri)}i∈I . For any Γi, we denote
by Ki (resp. E ′

i ) the set of vertices of K which are adjacent to some of Wi

(resp. the set of edges which connect Ki to Wi). Then we get connected
subnetworks Γ̃i = (W̃i, Ẽi, r̃i), where W̃i = Wi ∪Ki, Ẽi = Ei ∪ E ′

i and r̃i is
the restriction of r to Ẽi.

Proposition 7.12 Let Γ and Γ̃i = (W̃i, Ẽi, r̃i) (i ∈ I) be as above. Sup-
pose that every Ki is a finite subset. Let E be a resistance form on Γ and
Γ∗

K = (K,E∗, r∗) the connected infinite network associated to the trace E∗
K of

E on K. Then the inclusion map ι of K to V extends to a continuous map ῑ

of the Kuramochi compactification K
N

(E∗
K) of E∗

K into the Kuramochi com-

pactification V
N

(E) of E such that ῑ sends injectively the boundary ∂K
N

(E∗
K)

into the boundary ∂V
N

(E). Moreover suppose that any Γ̃i is a finite sub-
network and the effective resistance RΓ̃i

of Γ̃i is uniformly bounded, that is,

for some positive constant C, RΓ̃i
(x, y) ≤ C for all x, y ∈ W̃i and i. Then

ῑ : K
N

(E∗
K) → V

N
(E) induces a homeomorphism between ∂K

N
(E∗

K) and

∂V
N

(E) which maps ΔN (E∗
K) onto ΔN(E).

Proof. Let gz(x, y) and g∗c (a, b) be respectively the Green functions of Γ
and Γ∗

K . Let φz,x(y) = gz(x, y) for x, z ∈ V and φ∗
c,a(b) = g∗c (a, b) for a, c ∈ K.

Then in view of Lemma 1.9 and (1.2), we see that

(7.1) φc,a(b) = φ∗
c,a(b), b ∈ K.

Moreover we claim that for x ∈ Wi and z ∈ Wj,

(7.2) φz,x|K ∈ Q(K, E∗
K).

In fact, letting H = HK;φz,x|K , we see that H has a normal derivative zero

in L2(∂V
N

E , ω) and satisfies

E∗
K(φz,x|K, v)(= E(H,HK;v)) = 0

for all v ∈ D[E∗
K ] which vanish on Ki ∪Kj , because

E(H,HK;v) =

∫
HK;vLcH dμc

V =
∑

x∈Ki∪Kj

v(x)LcH(x) = 0.

In view of (7.1) and (7.2), we see that ι : K → V extends to a unique contin-

uous map of K(E∗
K) to V

N
(E) which sends injectively ∂K

N
(E∗

K) to ∂V
N

(E).
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Suppose that ῑ(ξ) ∈ ΔN (E). Let u ∈ D0[E∗
K ] and take a sequence of

functions un on K with finite supports in such a way that E∗
K(u − un) =

E(HK;u−HK;un) tends to 0 as n→ ∞. Since all HK;un are finitely supported
in V , we see that HK;u belongs to D0[EΓ]. Hence for any sequence {an} in K
going to ξ, u(an) = HK;u(ι(an)) tends to 0 as n → ∞, because of the
assumption. This shows that ξ ∈ ΔN (E∗

K).
Now we assume that RΓ̃i

(x, y) ≤ C for all x, y ∈ W̃i and i. Let η be a

point of ∂V
N

(E) and {xn} a sequence in V which converges to η. To show
that ῑ is surjective, we may assume that xn belongs to some Wi(n) for all
sufficiently large n. Take a point an in Ki(n). Then for all z, x ∈ V ,

(7.3) |φz,x(xn) − φz,x(an)|2 ≤ CEΓ̃i
(φz,x|W̃i(n)

),

which tends to 0 as n→ ∞ if we fix z and x. As a result we have φz,x(η) =
limn→∞ φz,x(xn) = limn→∞ φz,x(an) for all z, x ∈ V . This implies that an

converges to η as n→ ∞. Thus we have shown that ῑ is surjective.

Finally let us prove that ῑ(ξ) ∈ ΔN(E) if ξ ∈ ΔN(E∗
K). Let {xn} be a

sequence in V going to ῑ(ξ) and u a function in D0[EΓ]. Take a sequence {un}
of functions with finite supports on V in such a way that E(u − un) tends
to 0 as n→ ∞. Since E∗

K(u|K−un|K) ≤ E(u−un), we see that u|K ∈ D0[E∗
K ].

We may assume that xn belongs to some Wi(n) for all sufficiently large n.
By (7.3), we can take a sequence {an} in K in such a way that an ∈ Ki(n)

and an tends to ξ as n → ∞. Then u|K(an)(= u(an)) goes to 0 and hence
so is u(xn), since we have

|u(xn) − u(an)|2 ≤ CEΓ̃i(n)
(u|W̃i(n)

).

This completes the proof of Proposition 7.12. �

Let G = (V,E) be a connected, locally finite, infinite graph. For a
positive integer n, we denote by Bn = (Vn, En) the graph with the set of
vertices {x, z1, . . . , zn, y} and the set of edges {|xzi|, |ziy|, i = 1, . . . , n}. By
assigning a positive integer ν(e) to each edge e ∈ E and replacing each edge
e = |xy| ∈ E with the graph Bν(e), we obtain a connected, locally finite,
infinite graph Gν = (Vν , Eν), where V is assumed to be a subset of Vν . We
remark that two metric spaces (V, dG) and (Vν , dGν) are quasi isometric in the
sense of Gromov. A weight function rν on E is defined by rν(e) = 2ν(e)−1

for e ∈ E. Then we get a network Γ = (V,E, rν) so that the identity map
of V extends to a continuous map of ∂R(G) onto ∂R(V, EΓ). Moreover the
inclusion map of V into Vν extends to a homeomorphism between ∂R(V, EΓ)
and ∂R(Gν) which induces also a homeomorphism between the Kuramochi

boundaries ∂V
N

(G) and ∂Vν
N

(Gν). For instance, we assume that a given
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graph G = (V,E) is hyperbolic in the sense of Gromov and 0 < e(G) <
2δ0(G) (cf. Proposition 4.6). Then we choose a function ν : E → Z+ such
that C−1 exp(ηn) ≤ ν(e) ≤ C exp(ηn) if e ∈ E(n) (n = 1, 2, . . .), where C is
a constant greater than 1 and η is a positive number less than 2δ0(G)−e(G).

Then it turns out that ∂R(Gν) = ∂Vν
N

(Gν) is homeomorphic to the Gromov
boundary of G. Note that the degree of Gν is unbounded.

Example 7.1 We are given a connected, locally finite, infinite graph
G = (V,E). First we take a family of locally finite, infinite graphs indexed
by the set of the vertices V of G, {Gα = (Vα, Eα) | α ∈ V }, in such a way that
the effective resistance of Gα is uniformly bounded by a positive constant C,
and each Gα admits no nonconstant harmonic functions of bounded Dirichlet
sum. This implies that the Royden compactification of Gα for any α ∈ V
consists of Vα and a single point pα. Secondly we choose a sequence {pα;n} of
vertices in Vα tending to pα for each α ∈ V , and then for any edge (α, β) ∈ E,

we connect Vα with Vβ by a family of paths (Cαβ, Eαβ) = {(C(n)
αβ , E

(n)
αβ ) | n =

1, 2, . . .} joining {pα;n} to {pβ;n}, that is,

C
(n)
αβ = {pα;n = x

(n)
αβ;0, x

(n)
αβ;1, . . . , x

(n)
αβ;r(n) = pβ;n};

E
(n)
αβ = {(x(n)

αβ;i, x
(n)
αβ;i+1) | i = 0, . . . , r(n) − 1},

and the length r(n) of the path C
(n)
αβ is assumed to satisfy

(7.4)
∞∑

n=1

1

r(n)
= 1.

Let Ṽ = (∪α∈V Vα) ∪ (∪(α,β)∈ECαβ

)
and Ẽ = (∪α∈VEα) ∪ (∪(α,β)∈EEαβ

)
.

Then we get a connected, locally finite, infinite graph G̃ = (Ṽ , Ẽ), the
end compactification of which is the one-point compactification, that is, the
metric graph |G̃| is connected at infinity. Note that the degree of G̃ is
bounded if those of G and Gα for all α are bounded by a positive integer.

In what follows, we illustrate the Kuramochi boundary of G̃.

For a function f on Ṽ , we say that f is linear on C
(n)
αβ if

f(x
(n)
αβ;i) =

f(pβ;n) − f(pα;n)

r(n)
i+ f(pα;n), i = 0, 1, . . . , r(n),

and denote by Π the space of functions on Ṽ which are linear on all C
(n)
αβ . If

a function f belongs to Π, then we have

EG̃(f) =
∑
α∈V

EGα(f|Vα) +
1

2

∑
α,β∈V,α∼β

∑
n=1,2,...

1

r(n)
(f(pα;n) − f(pβ;n))2.
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To a function u on V , we can assign a function fu of Π such that fu = u(α)
on Vα for all α ∈ V . Then it holds that

(7.5) EG(u) = EG̃(fu).

Moreover we see that Lcfu(x) = Lcu(α)/r(n) if x = pα;n, and Lcfu(x) = 0
otherwise. It is possible to choose finite measures μ on V and μ̃ on Ṽ
satisfying (3.7) in such a way that μ̃(pα;n) = μ(α)/r(n) for all pα;n. Then it
is evident that fu ∈ D[Lμ̃] if u ∈ D[Lμ].

Now we are given f ∈ D[EG̃]. The restriction of f to Vα, fα, be-
longs to D[EGα] and hence fα(x) tends to a constant, denoted by uf(α),
as x ∈ Vα → pα. Note that

|fα(x) − fα(y)|2 ≤ CEGα(fα)

for all x, y ∈ Vα, so that we have

(7.6) |fα(x) − uf(α)|2 ≤ CEGα(fα)

for all x ∈ Vα. Moreover in view of (7.4) and (7.6), we see that

(7.7) EG(uf) ≤ 3(C + 1)EG̃(f).

Indeed, we have

EG(uf) =
1

2

∑
α,β∈V,α∼β

(uf(α) − uf(β))2

≤ 3

2

∑
α,β∈V,α∼β

∑
n=1,2,...

1

r(n)

(
(uf(α) − f(pα;n))2 + (f(pα;n) − f(pβ;n))2

+(f(pβ;n) − uf(β))2
)

≤ 3C
∑
α∈V

EGα(fα) +
3

2

∑
α,β∈V,α∼β

∑
n=1,2,...

(f(pα;n) − f(pβ;n))2

r(n)

≤ 3(C + 1)EG̃(f).

Here we claim that f ∈ D0[EG̃] if and only if uf = 0. Indeed, for f ∈ D0[EG̃],
we take a sequence of functions fn finitely supported on Ṽ in such a way that
limn→∞ EG̃(f − fn) = 0 and limn→∞ fn(x) = f(x) for each x ∈ Ṽ . Then in
view of (7.6), we see that for all α ∈ V , uf(α) = limn→∞ uf−fn(α) = 0. Now
suppose that uf = 0. Let f = h + g, where h ∈ HD[EG̃] and g ∈ D0[EG̃].
Then uh = uf = 0, so that h(x) tends to zero as x ∈ Ṽ → ∞. Thus the
maximum principle implies that h = 0. In this way, we have seen that the
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correspondence f → uf gives rise to a linear isomorphism between HD[EG̃]
and D[EG]. In other words, for a function u ∈ D[EG], let fu = Hu + gu,
where Hu ∈ HD[EG̃] and gu ∈ D0[EG̃]. Then assigning Hu to u, we have a
linear isomorphism between D[EG] and HD[EG̃]. A quadratic form on D[EG]
is defined by

Ẽ(u, v) = E(Hu, Hv), u, v ∈ D[EG].

Then we have

(7.8)
1

3(C + 1)
EG(u) ≤ Ẽ(u) ≤ EG(u), u ∈ D[EG].

The first inequality follows from (7.7) and the second one holds true, because
EG̃(Hu) ≤ EG̃(fu) = EG(u) by (7.5). From (7.8), we see that the effective
resistance RẼ of the resistance form Ẽ on V is estimated as follows:

RG(α, β) ≤ RẼ(α, β) ≤ 3(C + 1)(1 +RG(α, β)), α, β ∈ V.

In addition, we can observe that

RG(α, β) ≤ RG̃(x, y) ≤ 9(C + 1)(1 +RG(α, β)), x ∈ Vα, β ∈ Vβ.

The first inequality is a consequence from (7.5) and the second one can be
verified as follows: for any x ∈ Vα and y ∈ Vβ, and for any f ∈ D[EG̃],
letting f ′ be the function of Π that is equal to f on ∪α∈V Vα, we get

|f(x) − f(y)|2 = |f ′(x) − f ′(y)|2
= 3(|f ′(x) − uf ′(α)|2 + |uf ′(α) − uf ′(β)|2 + |uf ′(β) − f ′(y)|2)
= 3(CEGα(fα) +RG(α, β)EG(uf) + CEGβ

(fβ))

≤ 3(2C + 3RG(α, β)(C + 1))EG̃(f ′)

≤ 9(C + 1)(1 +RG(α, β))EG̃(f).

Now for u ∈ D[EG], we consider a function on V defined by

Θu(α) =
∞∑

n=1

Hu(pα;n)

r(n)
, α ∈ V.

Then Θu belongs to D[EG]. In fact, we have

(Θu(α) − Θu(β))2 =

( ∞∑
n=1

Hu(pα;n) −Hu(pβ;n)

r(n)

)2

≤
∞∑

n=1

(Hu(pα;n) −Hu(pβ;n))2

r(n)
= ECαβ

(Hu|Cαβ
),
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and hence

EG(Θu) =
1

2

∑
α∼β

(Θu(α) − Θu(β))2 ≤ 1

2

∑
α∼β

ECαβ
(Hu|Cαβ

) ≤ EG̃(Hu) = Ẽ(u).

Obviously Θ1 = 1 and we can deduce that

Ẽ(u, v) = EG(u,Θv), u, v ∈ D[EG],

since we have

Ẽ(u, v) = EG̃(Hu, Hv) = EG̃(fu, Hv)

=
1

2

∑
α∼β

(u(α) − u(β))(Θv(α)− Θv(β)) = EG(u,Θv).

Let
Θα = Θχα, α ∈ V.

Then we have Ẽ(χα, χβ) = −1
2
(LcΘα(β) + LcΘβ(α)). Letting

C̃(α, β) =
1

2
(LcΘα(β) + LcΘβ(α)),

we can express the form Ẽ as follows:

Ẽ(u, v) =
1

2

∑
α,β∈V

C̃(α, β)(u(α)− u(β))(v(α) − v(β)).

Let ω be the harmonic measure (relative to a fixed point o of Ṽ ) on the har-
monic part of the Kuramochi boundary of G̃, ΔN(G̃), which includes the set
of vertices V of G as an open dense subset. Then ω(V ) =

∑
α∈V Hχα(o) = 1,

so that ω(ΔN(G̃) \ V ) = 0. Finally we observe that for u ∈ D[Ẽ ], Hu has a
normal derivative φ dω in L2(ΔN (G̃)) if and only if u ∈ D[Lω], and if these
are the cases, then φ dω = Lω(Θu) dω = Lc(Θu) dμc and it holds that

EG̃(f,Hu) =
∑
α∈V

uf(α)Lc(Θu)(α), f ∈ BD[EG̃].

Remark 7.2 In the case where the effective resistance of the form EG is
bounded from above by a positive constant, G̃ satisfies the conditions in
Theorem 7.11 (II), the Kuramochi boundary of G̃ is homeomorphic to the
Royden compactification of the metric graph |G| associated to G, R(|G|),
that is the union of |G| and the Royden boundary of G, and furthermore the
part of regular points Δ(G̃) is homeomorphic to the Royden compactification
of G.
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l’Institut Fourier, no. 109, 1988.

[6] Bérard, P., Besson, G. and Gallot, S.: Embedding Riemannian man-
ifolds by their heat kernels. Geom. Funct. Anal. 4 (1994), 373–398.

[7] Bourdon, M. and Pajot, H.: Cohomologie �p et produits amalgamés.
Geom. Dedicata 107 (2004), 85–98.

[8] Bourdon, M., Martin, F. and Valette, A.: Vanishing and non-
vanishing for the first Lp-cohomology of groups. Comment. Math. Helv.
80 (2005), 377–389.

[9] Burago, D., Burago, Y. and Ivanov, S.: A Course in Metric Geome-
try. Graduate Studies in Mathematics 33. American Mathematical Society,
Providence, RI, 2001.

[10] Cartier, P.: Fonctions harmonique sur un arbre. In Symposia Mathemat-
ica, vol. ix (Convegno di Calcolo delle Probabilità, INDAM, Rome, 1971),
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