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Abstract

Clifford analysis offers a higher dimensional function theory study-
ing the null solutions of the rotation invariant, vector valued, first or-
der Dirac operator ∂. In the more recent branch Hermitean Clifford
analysis, this rotational invariance has been broken by introducing a
complex structure J on Euclidean space and a corresponding second
Dirac operator ∂J , leading to the system of equations ∂f = 0 = ∂Jf
expressing so-called Hermitean monogenicity. The invariance of this
system is reduced to the unitary group. In this paper we show that
this choice of equations is fully justified. Indeed, constructing the
Howe dual for the action of the unitary group on the space of all
spinor valued polynomials, the generators of the resulting Lie super-
algebra reveal the natural set of equations to be considered in this
context, which exactly coincide with the chosen ones.

1. Introduction

The aim of the paper is to analyse the effect and consequences of adding to
the standard setting of Clifford analysis a new datum, a so–called complex
structure, in this way establishing a closer connection with complex analysis
and Kähler geometry, as opposed to the Riemannian setting for classical
Clifford analysis.

Let us consider a Euclidean space E of dimension m ≥ 3, carrying a
positive definite scalar product B(., .). Concepts and definitions are first in-
troduced in a co–ordinate free way; the computations needed may then be
executed in any orthonormal frame, making it clear that all results obtained
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are independent of the choice of the orthonormal basis. Functions in Clifford
analysis are defined in E and have their values either in the corresponding
Clifford algebra, or in a spinor representation, see [3, 10, 14, 17]. Here we
consider the case of spinor valued functions. As usual, let SO(E) be the
group of orientation preserving automorphisms of E leaving the scalar prod-
uct invariant. The group SO(E) is doubly covered by Spin(E), a subgroup of
the Clifford group, which may be identified with the double cover Spin(m) of
SO(m), when choosing an orthonormal basis {ej}mj=1 in E. Clifford analysis,
in its standard Euclidean setting, studies monogenic functions, i.e. the null
solutions of the SO(E)–invariant Dirac operator ∂. In co–ordinates with re-
spect to the chosen basis {ej}mj=1 this Dirac operator is given by ∂ =

∑
j ej∂j .

In the books [21, 9] and the series of papers [22, 7, 11, 1, 2] so–called
Hermitean Clifford analysis emerged as a refinement of Euclidean Clifford
analysis. Hermitean Clifford analysis is based on the introduction of an ad-
ditional datum, a so–called complex structure, in order to bring the notion
of monogenicity closer to complex analysis. Its function theory is still in
full development, see [6, 23, 8, 4, 5]. A complex structure J on E should
be compatible with the Euclidean structure on E, i.e. J ∈ SO(E), ánd
J2 = −1E , whence it is seen at once that the dimension of E is forced to be
even: m = 2n. The subgroup of SO(E) preserving the complex structure
–i.e. commuting with J– turns out to be isomorphic with U(n) (see [1]).
The complex structure J induces an associated Dirac operator ∂J . Her-
mitean Clifford analysis then focusses on Hermitean monogenic functions,
i.e. simultaneous null solutions of both operators ∂ and ∂J , in this way
breaking down the rotational invariance of the Dirac operator, reducing it
to U(n)–invariance for the considered system.

The central topic dealt with in this paper concerns a justification for
these equations, based on the study of the space of spinor valued polyno-
mials on R2n. Under the action of U(n), this space decomposes into a sum
of irreducible subspaces, which is however not multiplicity free: in fact, the
irreducible pieces all appear with infinite multiplicity. The idea behind the
Howe dual pair is to complement the U(n)–action by a new, hidden, sym-
metry commuting with it, in such a way that the resulting decomposition
becomes multiplicity free. Such problems are well–known in representation
theory for the spaces of scalar valued polynomials under the respective ac-
tions of the groups SO(m) and U(n) (see the review paper [16]), or for
polynomials with values in a Grassman algebra (see [19]). To our knowl-
edge there is no similar treatment available for the case of spinor valued
polynomials, although in [20, p. 205] the case of physical dimension four is
mentioned. The main aim of the paper is to analyze the Howe dual pair
relevant for Hermitean Clifford analysis, i.e. the case of spinor-valued poly-
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nomials with the action of the symmetry group preserving a chosen complex
structure, being a special case of an abstract formulation of Howe dual pairs
in [20]. We describe the corresponding Howe dual pair in detail (see The-
orem 4), including an explicit parametrization of representations appearing
in the theorem on separation of variables. We show that the decomposi-
tions obtained exactly correspond to the so–called Fischer decompositions
for Hermitean monogenic functions (see [12]). As a by–product we deter-
mine the natural space of functions to be considered in the present setting,
which eventually turns out to coincide exactly with the kernel of the pair of
differential operators studied in Hermitean Clifford analysis.

For the reader’s convenience, we start with the formulation of the Howe
dual pair and the theorem of separation of variables for two simpler, classical
cases of scalar–valued polynomials (Theorems 1 and 2), the corresponding
proofs showing the appropriate scheme to be followed, also for the proofs
of more complicated cases. Next we pass to the case of standard Euclidean
Clifford analysis, where the Fischer decomposition for spinor–valued func-
tions is at the very heart of this function theory. We explicitly describe the
appropriate Howe dual pair for this case and we show its relation to the
Fischer decomposition (Theorem 3). Finally, we arrive at the desired case
of Hermitean Clifford analysis. Observe that, in the proof of Theorem 4,
we could have used abstract results from [19] and restricted ourselves to the
computation of the missing explicit parametrization for this case. It is, how-
ever, much simpler (and more convenient from the present point of view)
to present a direct proof of the theorem without referring to the abstract
scheme of [19]. To make the paper self–contained a short section is devoted
to the basics of Clifford algebra.

2. Clifford algebra: the basics

Consider a real vector space E of dimension m, equipped with a symmet-
ric, positive definite, real–bilinear form B(X, Y ), X, Y ∈ E with associated
quadratic form Q(X) = B(X, X). The orthogonal and special orthogo-
nal groups O(E) and SO(E) are defined as usual, as the groups of auto-
morphisms, respectively orientation preserving automorphisms, g ∈ Aut(E)
leaving the bilinear form B invariant:

B(gX, gY ) = B(X, Y ), ∀X, Y ∈ E

Now, let (e1, . . . , em) be a basis of E which we assume to be orthonormal
w.r.t. the bilinear form B, i.e. B(ej, ek) = δjk, j, k = 1, . . . , m. The in-
troduction of this basis leads to the identification O(E) � O(m), through
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representation by (m×m)–matrices g = [gjk], naturally satisfying the condi-
tion ggT = gTg = 1m with 1m the unit matrix of order m, while in the case
of SO(E) � SO(m), the additional condition det(g) = 1 is imposed as well.

Turning to the complexification EC of the vector space E, as well as the
complexification BC of the bilinear form B, let us now consider the Clifford
algebras C�(E,−Q) over E and C�(EC,−QC) over EC, where the Clifford or
geometric product is associative but non–commutative. With respect to the
chosen basis, it is governed the rules

e2
j = −1, j = 1, . . . , m, ejek + ekej = 0, j �= k = 1, . . . , m

In standard Euclidean Clifford analysis, we associate with each vector X ∈ E
with components (X1, . . . , Xm) ∈ Rm the real Clifford vector X =

∑m
j=1Xjej .

Its Fischer dual is the first order Clifford vector valued differential operator
∂ =

∑m
j=1 ej∂Xj

, called the Dirac operator, which may also be obtained in a
co–ordinate free way as a generalized gradient, see e.g. [1, 2]. It is precisely
this Dirac operator which underlies the notion of monogenicity, a notion
which is the higher dimensional counterpart of holomorphy in the complex
plane. A smooth function f , defined on E or on EC and taking values in
either the real Clifford algebra C�(E,−Q) or the complex Clifford algebra
C�(EC,−QC), is called left monogenic if it fulfills the Dirac equation ∂[f ] = 0.

It is well–known that the groups O(E) and SO(E) are doubly covered
by the so–called pin group Pin(E) and spin group Spin(E) of the Clifford
algebra respectively, given by

Pin(E) =
{
s ∈ C�(E,−Q) : ∃k ∈ N, s = ω1 . . . ωk, ωi ∈ Sm−1, i = 1 . . . k

}
and

Spin(E) =
{
s ∈ C�(E,−Q) : ∃k ∈ N, s = ω1 . . . ω2k, ωi ∈ Sm−1, i = 1 . . . 2k

}
where Sm−1 is the unit sphere in E; through co–ordinatization it holds
that Pin(E) � Pin(m) and Spin(E) � Spin(m). Taking g ∈ SO(E), with
corresponding spin element sg ∈ Spin(E) � Spin(m), the action of g on
vectors in E is expressed in Clifford language as

X ′ = g[X] ←→ X ′ = sgXs−1
g

It follows that the Dirac operator is invariant under the special orthogonal
group action, or, equally, under the action of Spin(m), which in Clifford
language has the following explicit form: if s ∈ Spin(m) and H(s) is its so-
called H–representation, given for a Clifford algebra valued function F by

H(s)[F (X)] = sF (s−1Xs)s−1

then one has the commutation relation [∂, H(s)] = 0. A similar observation
applies to Pin(E).
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We now introduce the building blocks of the Hermitean Clifford setting.
We endow the space (E, B) with a so–called complex structure by choosing
an SO(E) element J for which J2 = −1 and creating in this way the Her-
mitean space (E, B, J). Clearly (det J)2 = (−1)m, forcing the dimension m
of E to be even: in the present context we thus put m = 2n.

In the complexified space (EC, BC) the projection operators 1
2
(1 ± iJ)

are considered, creating two subspaces of EC, viz

W± =

{
Z± ∈ EC : Z± =

1

2
(1± iJ)X, X ∈ E

}

which are isotropic with respect to the bilinear form BC and constitute
the direct sum decomposition EC = W+ ⊕ W−. Extending the action of
g ∈ SO(E) to vectors in EC by Z± ∈ W± �→ g[Z±] = 1

2
(g[X]± ig[JX]),

the isotropic subspaces W± of EC are seen to remain invariant if and only if g
commutes with the complex structure J , or in other words, if g belongs to

SOJ(E) =
{
g ∈ SO(E) : gJ = Jg

}
Similarly, one defines OJ(E) ⊂ O(E). Defining a Hermitean inner product
on EC by

(Z, U) = BC

((1

2
(1± iJ)X

)c

,
1

2

(
1± iJ

)
Y

)
for Z = 1

2
(1 ± iJ)X, U = 1

2
(1 ± iJ)Y , X, Y ∈ E, we moreover have that

this inner product is preserved by the group action of SOJ(E) (as well as by
the one of OJ(E)).

Observe that the orthonormal basis (e1, . . . , e2n) of E may always be
chosen in such a way that the complex structure J ∈ SO(E) is represented
by the matrix

J =

[
0 1n

−1n 0

]
For an arbitrary element in SOJ(E), the commutation relation with J is
then reflected in the specific form of the corresponding matrix as follows:

A =

[
B C
−C B

]

with BBT + CCT = E and BCT − CBT = 0. These conditions on the sub-
matrices B and C imply that B±iC both belong to the unitary group U(n).
In other words: the subgroup

SOJ(2n) = {A ∈ SO(2n) : AJ = JA}
is isomorphic with U(n), and so is SOJ(E).
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Note that, by means of the projection operators 1
2
(1 ± iJ), the basis

(e1, . . . , e2n) also gives rise to an alternative basis for EC:

fj =
1

2
(1 + iJ)[ej ] =

1

2
(ej − i en+j), j = 1, . . . , n

f†j = −1

2
(1− iJ)[ej ] = −1

2
(ej + ien+j), j = 1, . . . , n

called the Witt basis; it naturally splits into separate bases (f1, . . . , fn) and
(f†1, . . . , f

†
n) for W+ and W−, respectively. The Witt basis elements satisfy

the Grassmann relations

fjfk + fkfj = 0, f†jf
†
k + f†kf

†
j = 0, j, k = 1, . . . , n

from which also their isotropy follows, and the duality relations

fjf
†
k + f†kfj = δjk, j, k = 1, . . . , n

The †–notation above corresponds to a Hermitean conjugation in C�(EC,
−QC), defined as follows. Take μ ∈ C�(EC,−QC) arbitrarily, with μ = a+ib,
where a, b ∈ C�(E,−Q). Then μ† = a − ib where a and b denote the
traditional Clifford conjugates of a and b in C�(E,−Q).

The components of the vector X are now denoted as (x1, ..., xn, y1, ..., yn),
and the corresponding Clifford vector X may thus be rewritten in terms of
the Witt basis as

X =

n∑
j=1

(xjej + yjen+j) =

n∑
j=1

(zjfj − zc
j f

†
j)

where we have introduced the complex variables zj = xj + iyj and their
complex conjugates zc

j , j = 1, . . . , n. For vectors in the isotropic subspaces
W± of EC a similar identification results into

Z+ =
1

2
(1 + iJ)X ←→ z =

n∑
j=1

zjfj

Z− =
1

2
(1− iJ)X ←→ −z† = −

n∑
j=1

zc
j f

†
j

such that the relation X = Z+ + Z− may be rewritten in Clifford language
as X = z − z†.

In this way, we have also arrived at the definition of the Hermitean Dirac
operators

∂z =

n∑
j=1

f†j∂zj
and ∂z† =

n∑
j=1

fj∂zc
j

= ∂†
z
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which are the Fischer duals of z and z†, and may be seen as refinements of
the Euclidean Dirac operator since

∂ = 2(∂†
z − ∂z).

As a side remark, note that the above operators may also be obtained in
another way, making explicit use of the complex structure J . Indeed, let

X| = J(X) =
n∑

j=1

J(ej)xj + J(en+j)yj =
n∑

j=1

(ejyj − en+jxj)

then there arises a second, associated (or “twisted”) Dirac operator

∂J = J(∂) =

2n∑
α=1

J(eα)∂α =

n∑
j=1

(ej∂yj
− en+j∂xj

)

associated to X|. We then have that

2∂†
z =

1

2
(1 + iJ)[∂] =

1

2
∂ +

i

2
∂J

2∂z = −1

2
(1− iJ)[∂] = −1

2
∂ +

i

2
∂J

Now consider a smooth function F , taking values in the complex Clifford
algebra, then it is called Hermitean monogenic (or h–monogenic for short)
if it is a simultaneous null solution of both Euclidean Dirac operators, i.e. if
it fulfills the system

∂[F ] = 0 = ∂J [F ]

or equivalently, if it is a simultaneous null solution of both Hermitean Dirac
operators, i.e. if it fulfills the system

∂z[F ] = 0 = ∂†
z [F ] .

We recall that the two Hermitean Dirac operators ∂z and ∂†
z may be gene-

rated (as was the case for the Euclidean Dirac operator ∂) as generalized gra-
dients through projection on the appropriate invariant subspaces, see [1, 2],
which moreover guarantees the invariance of the considered system under
the unitary group action of SOJ(2n) � U(n).

For further use, observe that the Hermitean vector variables and Dirac
operators are isotropic on account of the properties of the Witt basis ele-
ments, i.e.

(z)2 = (z†)2 = 0 and (∂z)
2 = (∂†

z)
2 = 0
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whence the Laplacian Δ = −∂2 = −∂2
J allows for the decomposition

Δ = 4(∂z∂
†
z + ∂†

z∂z)

while also
z z† + z†z = |z|2 = |z†|2 = |X|2 = |X||2 .

3. Harmonic analysis for SO(m)

We start with a review of results in the simplest possible case of the space
P(Rm; C) of complex valued polynomials defined in Euclidean space Rm,
considered first as an SO(m)–module. The action of SO(m) on polynomials
in P(Rm; C) is the regular representation:

[g · f ](X) = f(g−1 ·X), g ∈ SO(m), f ∈ P(Rm; C), X ∈ R
m

If we denote by Hk the space of k–homogeneous harmonic polynomials of
degree k, then each of the spaces

r2p Hk, p ∈ N0 := N ∪ {0}, k ∈ N0

is a subspace of P(Rm; C) which is invariant under the SO(m)–action and
moreover irreducible. In addition, they form the constituents of the decom-
position of P(Rm; R) according to the following standard triangular diagram:

H0 r2 H0 r4 H0 · · ·
H1 r2 H1 · · ·

H2 r2 H2 · · ·
H3 · · ·

H4 · · ·
This decomposition, also known in Clifford analysis as the Fischer decom-
position, is summarized as

(3.1) P(Rm; C) =
∞⊕

k=0

∞⊕
p=0

r2p Hk ,

Note that the j–th column (j = 0, 1, 2, . . .) in the above scheme provides the
splitting of the space Pj(R

m; C) of j–homogeneous polynomials. Although
this is a well–known fact in harmonic analysis, we will give an explicit proof
using elementary concepts from representation theory, in order to clarify
the arguments that will be used in the more advanced settings in the next
sections.
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The drawback of decomposition (3.1) is that each SO(m)–irreducible
invariant subspace Hk appears with an infinite multiplicity since all sub-
spaces on the same row in the above scheme, namely r2p Hk, with varying
p ∈ N0 and fixed k ∈ N0, are isomorphic as SO(m)–modules. Yet there is
an additional, hidden symmetry in the space P(Rm; C) which can improve
the situation in the sense that the infinitely many copies of the irreducible
representations Hk for SO(m) will be grouped into one single irreducible
representation for a suitable Lie algebra g. The couple (SO(m), g) is called
a Howe dual pair with respect to a bigger Lie algebra in which so(m), i.e.
the Lie algebra of SO(m), and g are commutant to each other. The notion
of a reductive dual pair of subgroups of a symplectic group was introduced
in the late 1970s by Howe in order to establish a duality relation between
representations of different classical Lie groups (see [18, 16, 15]). In order to
find this Lie algebra g we consider the Weyl algebra W of differential ope-
rators in (∂X1 , . . . , ∂Xm) with polynomial coefficients. Each such operator
acts on P(Rm; C) in a natural way; the space P(Rm; C) is a module overW.
Note that P(Rm; C) itself is contained in W as polynomial differential op-
erators of order zero. The Weyl algebra W bears the natural structure of a
Lie algebra by taking the commutator as the Lie bracket.

It is clear that in the above decomposition (3.1) the operators X := 1
2

r2

and Y := −1
2

Δ play a special role. Note that they correspond to each other
under natural or Fourier duality, also known in Clifford analysis as Fischer
duality. Moreover they both belong to W and are commuting with SO(m)
so that we are prompted to search for the smallest Lie subalgebra of W
generated by X and Y . A direct calculation shows that

[X, Y ] =

[
1

2
r2,−1

2
Δ

]
= E +

m

2

where E denotes the Euler operator. We then put

H := E +
m

2

As now [H, X] = 2X and [H, Y ] = −2Y , we see that {H, X, Y } generates
a three–dimensional Lie subalgebra of W which is isomorphic to the Lie al-
gebra sl(2, R). Concluding, the desired Howe dual pair is

(
SO(m), sl(2, R)

)
.

The action of sl(2, R) results into the following:

X · r2p Hk = r2p+2 Hk

Y · r2p Hk = r2p−2 Hk

H · r2p Hk = r2p Hk
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In the above scheme this corresponds to respectively a shift to the right in
each row, a shift to the left in each row and a local trampling, which already
indicates that this action will force us to consider each row as one entity.

Now we shall illustrate the main ideas of the Howe dual pair technique
in this simplest case, by (re)proving the decomposition (3.1) in an elemen-
tary way using representation theory techniques (see [18]). Here and in the
subsequent sections we will make use of the following classical result for the
Lie algebra sl(2, R) (see e.g. [13]).

Lemma 1. If {H,X,Y} are the generators of the Lie algebra sl(2, R) and
w is an eigenvector of H with eigenvalue λ, which is moreover annihilated
by Y , then for all � ∈ N

Y X�w = � (λ + �− 1) X�−1w

and hence Y �X�w = Cλ,� w with Cλ,� = �! (λ + �− 1)(λ + �− 2) · · ·λ .

As a first step in the proof we introduce some new notions. Let {H(j)
k :j ∈ Jk}

be a basis for the SO(m)–module Hk. The set{
H

(j)
k : k ∈ N0, j ∈ Jk

}
is a set of so–called singular vectors, which means that each of these polyno-
mials is annihilated by Y . Moreover, for all k ∈ N0 and j ∈ Jk, the repeated
action of X generates the following sl(2, R)–module:

V
(j)
k := spanC

{
X�H

(j)
k : � ∈ N0

}
.

Note that the vectors X�H
(j)
k all have different degrees of homogeneity and

thus form a basis for V
(j)
k .

Lemma 2. The sl(2, R)–modules V
(j)
k are all infinite–dimensional and irre-

ducible. The modules V
(i)
k and V

(j)
p are isomorphic if and only if k = p.

Proof. That the modules V
(j)
k are irreducible is a consequence of Lemma 1,

since the H–eigenvalue λ of H
(j)
k equals k + m

2
> 0. Moreover two modules

V
(i)
k and V

(j)
p can only be isomorphic if their generating singular vectors have

the same H–eigenvalue, i.e. when k = p. �
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In the next step of our proof we show that for each k–homogeneous
polynomial Pk(X) there exist unique harmonic polynomials Hk−2�(X) such
that

Pk(X) =

κ∑
�=0

X�Hk−2�(X)

where we have introduced the notation κ = �k
2
�. Indeed, in view of Lemma 1,

there exists a non–trivial constant cκ such that

Y κ(Pk − cκ XκY κPk) = 0 .

Putting

Hk−2κ = cκY
κPk and P

(1)
k = Pk −XκHk−2κ,

it is immediately seen that Hk−2κ is harmonic, that P
(1)
k is in the kernel of Y κ

and that both are uniquely determined. Repeating this argument proves the
statement on Pk(X) and hence also the decomposition (3.1).

In fact each of the spaces of polynomials V
(j)
k is a realization of the

Verma module with lowest weight λk = k + m
2
, which is an irreducible

sl(2, R)–module; we denote this Verma module by Ik. Similarly the space of
k–homogeneous harmonic polynomials Hk is a realization of the irreducible
SO(m)–module with weight (k, 0, . . . , 0), which we denote by Hk. For each
k ∈ N0, the tensor product Ik⊗Hk then is an irreducible sl(2, R)×so(m, R)–
module, realized by the row

⊕∞
p=0 r2p Hk in the triangular diagram. When

regarded as an sl(2, R)–module this tensor product contains as many copies
of Ik as the dimension of Hk, while when regarded as an so(m, R)–module
it contains infinitely many copies of Hk since Ik has infinite dimension. The
traditional decomposition (3.1) may thus be reformulated (see, e.g., [18, 16])
as follows.

Theorem 1. Under the joint action of sl(2, R)× SO(m), the space of com-
plex valued polynomials P(Rm; C) is isomorphic with the multiplicity free
irreducible direct sum

(3.2)

∞⊕
k=0

Ik ⊗Hk

where Ik denotes the Verma module with lowest weight k+ m
2
, and Hk denotes

the irreducible SO(m)–module with weight (k, 0, . . . , 0).
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4. Harmonic analysis for U(n)

We shall now apply the same methods to the same space P(R2n; C) of com-
plex valued polynomials defined in Euclidean space R2n, but this time con-
sidered as a U(n)–module. This is again an explicit formulation of a special
case of the abstract scheme formulated in [18, 19]. As in the previous sec-
tion, the final aim is to obtain a multiplicity free irreducible direct sum
decomposition of the form

(4.1) P(R2n; C) �
⊕
a,b

Ia,b ⊗Ha,b

where each Ia,b ⊗ Ha,b is a u(n) × g̃–module, (U(n), g̃) being a Howe dual
pair still to be determined. The action of U(n) is given by

[u · f ](X) = f(u−1 ·X), u ∈ U(n), f ∈ P(R2n; C), X ∈ R
2n

where the group U(n) is seen as isomorphic with the subgroup SOJ(2n)
consisting of all SO(2n) elements commuting with the so–called complex
structure J ∈ SO(2n), as introduced in Section 2. In view of the fact that
each complex valued polynomial in the variables (x1, . . . , xn, y1, . . . , yn) may
also be written as a polynomial in the variables (z1, . . . , zn, zc

1, . . . , z
c
n), i.e.

f(X) = f(x1, . . . , xn, y1, . . . , yn) = f̃(z1, . . . , zn, zc
1, . . . , z

c
n) ,

the question to be answered, namely which polynomials in P(R2n; C) are
invariant under the action of SOJ(2n), may thus be reformulated as which

polynomials f̃(z1, ..., zn, zc
1, ..., z

c
n) are invariant under the action of U(n). As

is well–known the space I of U(n)–invariant polynomials in P(R2n; End(C))
is the space with basis (

1, r2, r4, . . . , r2p, . . .
)

where the generator r2 can be written as:

r2 =

n∑
j=1

x2
j + y2

j =

n∑
j=1

zjz
c
j =

n∑
j=1

|zj |2 .

With the generator r2 there corresponds the Laplace operator

Δ =

n∑
j=1

∂2
xjxj

+ ∂2
yjyj

= 4

n∑
j=1

∂zj
∂zc

j
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so we are lead to consider the space HC of harmonic polynomials in the com-
plex variables (z1, . . . , zn, zc

1, . . . , z
c
n). The subspace HC

k of complex valued
k–homogeneous harmonic polynomials may be decomposed as

HC

k =

k⊕
a=0

Ha,k−a

where Ha,b stands for the space of the complex valued harmonic polyno-
mials which are a–homogeneous in the variables zj and at the same time
b–homogeneous in the variables zc

j , i.e.

Ha,b(λz1, . . . , λzn, μzc
1, . . . , μzc

n) = λa μb Ha,b(z1, . . . , zn, zc
1, . . . , z

c
n) .

This leads to the direct sum decomposition

(4.2) P(R2n; C) =

∞⊕
p=0

∞⊕
k=0

k⊕
a=0

r2p Ha,k−a

where the constituents

r2p Ha,k−a, p ∈ N0, k ∈ N0, a = 0, . . . , k

are irreducible invariant subspaces under the action of U(n). The corre-
sponding pyramidal diagram is depicted in the figure below. Note that the
decomposition of the complex valued polynomials of a fixed degree k of
homogeneity is obtained by considering in this scheme vertical planes per-
pendicular to the first bisector in the (a, b)–plane, yielding triangles if k is
even, and trapezia if k is odd.

The smallest Lie subalgebra of the Weyl algebra WC of complex poly-
nomial differential operators, generated by the polynomial r2 and its dual
operator Δ is again sl(2, R) since

[X, Y ] =

[
1

2
r2,−1

2
Δ

]
= E + n = H

However there is an additional natural invariant differential operator coming
into play. Indeed, it is easily seen that E decomposes as E = Ez + Ezc , with

Ez =
n∑

j=1

zj∂zj
and Ezc =

n∑
j=1

zc
j∂zc

j

being the Euler operators in the complex variables and in their conjugates,
respectively. Obviously the latter operators are invariant, and so is their
difference Ezc − Ez . Moreover as

[r2, Ez] = [r2, Ezc ] = −r2 and [Δ, Ez ] = [Δ, Ezc ] = Δ
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the operator Ezc − Ez commutes with both X and Y and trivially with
H = Ez + Ezc + n, and so do all operators of the form Ezc − Ez + c, where
we choose the constant c = n in accordance with standard notations to be
encountered in Section 6.
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Figure 1: Fischer decomposition of harmonic polynomials w.r.t. U(n)

So it turns out that our Lie subalgebra is reductive, i.e. the direct sum
of the three–dimensional Lie algebra generated by {H, X, Y }, which is iso-
morphic with sl(2, R), and the one–dimensional abelian Lie algebra sl(1, R)
generated by {Ezc − Ez + n}, which is isomorphic with R. In fact the
Howe dual pair for complex harmonic polynomials here is (U(n), gl(2, R)),
with gl(2, R) the real general linear algebra in two dimensions. Irreducible
gl(2, R)–modules will be represented by their weight vector λ = (λ1, λ2),
which can be seen as the vector containing the eigenvalues for the Cartan
subalgebra h ⊂ gl(2, R). Let us then investigate the action of gl(2, R):

• the action of r2 joins r2p Ha,k−a with r2(p+1) Ha,k−a, and corresponds
in the above scheme with a translation over the vector (1, 1, 1) in the
(a, b, p)–space
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• the action of Δ joins r2p Ha,k−a with r2(p−1) Ha,k−a, and corresponds
with the inverse translation over the vector (−1,−1,−1)

• the respective actions of Ez and Ezc keep the spaces r2p Ha,k−a unal-
tered

Again, we may already predict from these observations that all subspaces
along the same space diagonal will have to be considered as one entity as
a consequence of the action of gl(2, R), and in view of a multiplicity free
decomposition.

So let us decompose the U(n)–module P(R2n; C) under the combined

action of the dual pair gl(2, R) × u(n). Choosing a basis {H (j)
a,b : j ∈ Ja,b}

for each irreducible U(n)–module Ha,b, with a, b ∈ N0 fixed, we again get a
set of singular vectors, labeled by three parameters a, b and j. The repeated
action of X then generates the module V

(j)
a,b defined by

V
(j)
a,b := spanC

{
X� H

(j)
a,b : � ∈ N0

}
.

Each of the spaces of polynomials V
(j)
a,b is a realization of the Verma module

with lowest weight λ = a+b+n, which is an irreducible sl(2, R)–module; as in
the previous section we denote this Verma module by Ia+b and we put Ia,b =
Cb−a+n⊗Ia+b, where Cb−a+n is a representation of sl(1, R), which is identified
with R. For completeness let us mention that such a representation Cα

of sl(1, R) is given by

ρα : R→ End(C) � C, x �→ αx

and that here α = b − a + n is exactly the eigenvalue of the generator
Ezc − Ez + n of sl(1, R) acting on homogeneous polynomials. Similarly the
space of (a, b)–homogeneous harmonic polynomials Ha,b is a realization of
the irreducible U(n)–module with weight (b, 0, . . . , 0,−a), which we denote
by Ha,b. For all (a, b), the tensor product Ia,b ⊗ Ha,b then is an irreducible
gl(2, R)×u(n)–module, realized by the space diagonal

⊕∞
p=0 r2p Ha,b in the

pyramidal diagram. When regarded as a gl(2, R)–module it contains as many
copies of Ia,b as the dimension of Ha,b, while when regarded as a u(n)–module
it contains infinitely many copies of Ha,b since I(a,b) has infinite dimension.
The obtained decomposition may thus be reformulated as follows.

Theorem 2. Under the joint action of gl(2, R)×U(n), the space P(R2n; C)
is isomorphic with the multiplicity free irreducible direct sum decomposition

(4.3)
∞⊕

a,b=0

Ia,b ⊗Ha,b

where Ia,b = Cb−a+n⊗Ia+b, Ia+b is the Verma module with lowest weight a+b
+n and Ha,b denotes the irreducible U(n)-module with weight (b, 0, . . . , 0,−a).
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5. Euclidean Clifford analysis

We will now show that a similar scheme applies to classical Clifford analy-
sis. To this end we consider the space P(Rm; S) of polynomials defined in
Euclidean space Rm and taking values in an irreducible representation S of
the Clifford algebra Cm ≡ C�(EC,−QC). Such a representation S is usually
called a spinor space and realized inside the Clifford algebra Cm using a
suitable primitive idempotent (see Section 6). The final aim is to obtain a
multiplicity free irreducible direct sum decomposition of the form

(5.1) P(Rm; S) �
⊕

k

Ik ⊗Mk

where each Ik ⊗Mk is a Pin(m)× g̃–module, (Pin(m), g̃) being a Howe dual
pair still to be determined.

First we consider the action of Pin(m) on P(Rm; S) given by

[s ·f ](X)=ρ(s)[f(s−1Xs)] = sf(s−1Xs), f ∈ P(Rm; S), s∈ Pin(m), X∈ R
m

where ρ(s) denotes the representation of s ∈ Pin(m) in S. We shall also
need the action of Pin(m) on the space P(Rm; End(S)). The space End(S)
is isomorphic (as a vector space) with the Clifford algebra Cm when m is
even, or with its even part when m is odd. Let s �→ ŝ denote the main
involution on the Clifford algebra; it has eigenvalues ±1, the corresponding
eigenspaces being the even and odd part of the Clifford algebra. The action
of Pin(m) on P(Rm; End(S)) is then given by

[s · f ](X) = s f(s−1Xs)] ŝ−1, f ∈ P(Rm; End(S)), s ∈ Pin(m), X ∈ R
m

As is well–known we find the space I of Pin(m)–invariant polynomials in
P(Rm; End(S)) to be the space with basis (1, X, X2, X3, . . . , Xp, . . .) which
may be written as

spanC(1, X2, X4, . . .)⊕ spanC(X, X3, X5, . . .)

and becomes a unital superalgebra or Z2–graded algebra, reflecting the nat-
ural grading of the Clifford algebra given by its decomposition into the even
subalgebra and the odd subspace. There is a natural action of elements in I
on S valued polynomials given by the natural action of elements in End(S)
on S.

The Pin(m)–invariant differential operator corresponding, under the nat-
ural duality, with the generator X of the above graded algebra, is the Dirac
operator ∂. Its polynomial null solutions are called spherical monogenics;
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we denote by Mk the space of k–homogeneous spherical monogenics with
values in the spinor space S. Then each of the spaces

XpMk, p ∈ N0, k ∈ N0

is an invariant subspace of P(Rm; S) under the action of Pin(m), which is
moreover irreducible, leading to the desired decomposition of P(Rm; S) into

(5.2) P(Rm; S) =
∞⊕

k=0

∞⊕
p=0

Xp Mk

or more explicitly according to the standard triangular diagram

M0 XM0 X2M0 X3M0 · · ·
M1 XM1 X2M1 · · ·

M2 XM2 · · ·
M3 · · ·

In this diagram each column provides the splitting of the subspace of ho-
mogeneous spinor valued polynomials. The easiest way to prove this de-
composition, is to show that the tensor product Hk ⊗ S of two irreducible
Pin(m)–modules decomposes as

Hk ⊗ S =Mk ⊕XMk−1 .

Alternatively, one could use the language of singular vectors and isomor-
phisms between weight spaces. Again this splitting into irreducible Pin(m)–
modules is not multiplicity free, since all subspaces situated on the same row
in the triangular diagram (XpMk with k fixed) are isomorphic as Pin(m)–
modules. As before it will be possible to join these isomorphic pieces into one
single irreducible module for the second partner in the Howe dual pair. There
is however an important change, since the Howe dual partner of Pin(m) will
have the structure of a Lie superalgebra.

Definition 1. A Lie superalgebra g (over R or C) is a Z2–graded vector
space, direct sum of two vector spaces

g = g0 ⊕ g1

equipped with a graded bracket [[·, ·]], satisfying

• the Z2–grading:

[[ai, aj]] ∈ g
i+j (mod 2)

, ai ∈ gi, aj ∈ gj
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• the graded antisymmetry:

[[ai, aj]] = −(−1)ij [[aj, ai]], ai ∈ gi, aj ∈ gj

• the generalized Jacobi identity

(−1)ik[[ai, [[aj, ak]]]] + (−1)ji[[aj , [[ak, ai]]]] + (−1)kj[[ak, [[ai, aj ]]]] = 0,

ai ∈ gi, aj ∈ gj , ak ∈ gk

Note that g0 is itself a Lie algebra, called the even or bosonic part of g,
while g1, called the odd or fermionic part of g, is not. An associative super-
algebra A = A0 ⊕ A1 (over R or C) acquires the structure of a Lie super-
algebra by taking for the graded bracket the so–called Lie superbracket or
supercommutator, which is defined as:

[[ai, aj]] = aiaj − (−1)ijajai, ai ∈ Ai, aj ∈ Aj, i, j = 0, 1

which in most of the cases is nothing but the usual commutator, except for
the case where both i = 1 and j = 1, when it is the anticommutator.

We will now search for the Howe dual partner of Pin(m) in the Lie
superalgebra

WS :=W ⊗ End(S)

where, as above, W stands for the Weyl algebra of polynomial differential
operators. This superalgebra WS inherits its Z2–grading from the natural
Z2–grading of the Clifford algebra Cm with respect to the even and odd parts,
via the natural map Cm �→ End(S) given by the spinor representation. Its
Lie superalgebra structure then is acquired via the above mentioned graded
commutator, here given explicitly by

[[λ, μ]] = λμ− (−1)jkμλ, λ ∈ C
(j)
m , μ ∈ C

(k)
m , j, k = 0, 1

where C
(0)
m stands for the even subalgebra of Cm and C

(1)
m for the odd sub-

space.
The dual partner of Pin(m) will thus arise as a Lie superalgebra generated

by X and ∂, inside the Lie superalgebra WS. As both generators are odd,
we need to compute their graded brackets as their anti–commutators:

• {X, X} = −2r2

• {∂, ∂} = −2Δ

• {∂, X} = −2(E + m
2
)
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Hence the even part of the Lie superalgebra should contain at least r2, Δ
and E + m

2
. As their graded brackets, i.e. their commutators are given by

• [r2, Δ] = −4(E + m
2
)

• [E + n, r2] = 2r2

• [E + n, Δ] = −2Δ

the even part {r2, Δ, E+n} closes under the graded bracket to a Lie algebra
which is isomorphic with sl(2, R). Finally we compute the graded brackets
(commutators) of the even with the odd elements:

• [X, r2] = 0

• [X, Δ] = −2∂

• [X, E + n] = −X

and

• [∂, r2] = 2X

• [∂, Δ] = 0

• [∂, E + n] = ∂

Introducing the standard notations for Lie superalgebras given by

H =
1

2
(E + n), E+ =

1

2
r2, E− = −1

2
Δ

and

F+ =
1

2
√

2
iX, F− =

1

2
√

2
i∂

we may identify the Howe dual partner

spanC

(
1

2
(E + n),

1

2
r2,−1

2
Δ

) ⊕
span

C

(
1

2
√

2
iX,

1

2
√

2
i∂

)

of Pin(m) with the well–known Lie superalgebra osp(1|2), with bosonic gen-
erators E+, E−, H and fermionic generators F+, F−, the non–vanishing
commutation relations of which in the Cartan–Weyl basis read

[H, E±] = ±E± [E+, E−] = 2H

[H, F±] = ±1
2
F± {F+, F−} = 1

2
H

[E±, F∓] = −F± {F±, F±} = ±1
2
E±
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The Howe dual pair thus being the couple (Pin(m), osp(1|2)), one can
have a look at the action of the Lie superalgebra osp(1|2) on the irreducible
invariant subspaces XpMk of P(Rm; S). First of all, introducing an explicit

basis {M (j)
k : j ∈ Jk} for the irreducible Pin(m)–module Mk, it is easily

seen that for all k ∈ N0 and j ∈ Jk, both

V
(j)
k :=

{
X2�M

(j)
k : � ∈ N0

}
and W

(j)
k :=

{
X2�+1M

(j)
k : � ∈ N0

}
define irreducible lowest weight Verma modules for the restriction of osp(1|2)
to its even part sl(2, R). On the other hand, the action of the odd part

of the dual partner consists of mapping the weight spaces V
(j)
k and W

(j)
k

(isomorphically) into each other as stated in the following lemma.

Lemma 3. For all k ∈ N0 and j ∈ Jk fixed, the operators F+ = 1
2
√

2
iX and

F− = 1
2
√

2
i∂ act as isomorphisms between consecutive weight spaces along

the following diagram:

M
(j)
k ↔ X2M

(j)
k ↔ · · · ↔ X2�M

(j)
k ↔ · · ·

� ↗↙ � ↗↙ ↗↙ � ↗↙
XM

(j)
k ↔ X3M

(j)
k ↔ · · · ↔ X2�+1M

(j)
k ↔ · · ·

The vertical and diagonal arrows correspond to the action of the opera-
tors F+ and F−, whereas the horizontal arrows represent the isomorphisms
E+ = 1

2
r2 and E− = −1

2
Δ acting between the sl(2, R)–modules.

Proof. The structure of the sl(2, R)–modules in the rows is already well–
known. To show that the action of F− = 1

2
√

2
i∂ is nontrivial, it suffices to

remark that the one of (F−)2 = 1
8
Δ is. �

For completeness let us mention that, in order to prove the decomposition
announced at the beginning of this section, we can use the same scheme as
before based on the action of the sl(2, R) generators. The only difference
is that, after the action of a suitable power of F− = 1

2
√

2
i∂ on a chosen

polynomial, we get a harmonic polynomial, which may then be decomposed
into a sum of a monogenic polynomial and a monogenic polynomial mul-
tiplied on the left by X. In fact, the spaces of polynomials V

(j)
k and W

(j)
k

are realizations of the Verma modules with lowest weights λk = k + m
2

and
λk = k+1+ m

2
respectively, which are irreducible sl(2, R)–modules. Their di-

rect sum V
(j)
k ⊕W

(j)
k then is a realization of an irreducible osp(1|2)–module

which we denote by Ĩk. Similarly the space of S valued k–homogeneous
monogenic polynomialsMk is a realization of an irreducible Pin(m)–module

which we denote by Mk. For each k ∈ N0 the tensor product Ĩk ⊗Mk then
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is an irreducible osp(1|2)× Pin(m)–module, which is a realized by the row⊕∞
p=0 r2p Mk in the triangular diagram. When regarded as a osp(1|2)–

module this tensor product contains as many copies of Ĩk as the dimension
of Mk, while when regarded as a Pin(m)–module it contains infinitely many

copies of Mk since Ĩk has infinite dimension. The Fischer decomposition (5.2)
may thus be reformulated as follows.

Theorem 3. Under the joint action of osp(1|2)×Pin(m), the space P(Rm; S)
is isomorphic to the multiplicity free irreducible direct sum

∞⊕
k=0

Ĩk ⊗Mk ,

where Ĩk is the irreducible osp(1|2)–module defined above and Mk denotes the
irreducible Pin(m)–module isomorphic to the space of S valued, k–homoge-
neous monogenic polynomials.

6. Hermitean Clifford analysis

In this section we will make a similar study of the space P(R2n; S) of S

valued polynomials on R2n (even dimension). Here we will explicitly realize
the spinor space S in C2n as S = C2n I � Cn I, where I is the traditional
self–adjoint primitive idempotent given by

(6.1) I = I1 . . . In

with Ij = fjf
†
j = 1

2
(1 − iejen+j), j = 1, . . . , n. As fjI = 0, j = 1, . . . , n,

we also have that S ∼= CΛ†
nI, where CΛ†

n denotes the Grassmann algebra
generated by {f†1, . . . , f†n}. The spinor space S further decomposes as

(6.2) S =

n⊕
k=1

S
(k) =

n⊕
k=1

(CΛ†
n)

(k)I

into the so–called homogeneous parts S
(k) = (CΛ†

n)(k)I, k = 1, . . . , n, which
provide models for fundamental U(n)-representations (see also [1]).

We want to obtain a decomposition of P(R2n; S) into irreducible sub-
spaces under the action of the Lie group PinJ(2n), which is the subgroup
of Pin(2n) consisting of those elements which are commuting with sJ =

s1s2 . . . sn, where sj =
√

2
2

(1− ej en+j), j = 1, . . . , n. The element sJ itself
belongs to Spin(2n) and corresponds to the complex structure J ∈ SO(2n)
under the double covering of SO(2n) by Spin(2n), see Section 2. In view of
this aim, let us briefly summarize the procedure as it has been used in the
foregoing cases.
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The approach used in Sections 3 and 4 is based on the scheme described
in [16, Section 8]. Suppose that there is an action of a group G on a vector
space E. The main problem under consideration is to properly understand
the decomposition of a suitable space of functions on E under the induced
action of the chosen symmetry group G. First observe that it is sufficient to
consider the corresponding space of polynomials, which do form an algebraic
part of the full function space. Hence we are studying the space P(E) of all
polynomials on E. In the previous sections we have seen that the resulting
decomposition of P(E) will not be multiplicity free; instead, the multiplici-
ties of the subspaces are usually infinite. In [16] it is explained that in order
to obtain a multiplicity free decomposition, we need to consider the Weyl
algebra PD(E) of all differential operators on E with polynomial coefficients
and its subalgebra PD(E)G of those operators which are invariant under the
induced action of G, and we have to find a suitable set of generators of this
subalgebra PD(E)G. Moreover, we want to find this set of generators in
such a way that they form a basis of a Lie subalgebra g̃ of PD(E)G. The Lie
algebra g̃ then forms the dual partner of G, needed in order to ensure a mul-
tiplicity free decomposition of the space P(E). The procedure we have used
to find the hidden (or dual) symmetry g̃ then starts with an understanding
of the structure of the space I of invariants of the space P(E) under the
action of G. The space I of such invariants clearly is a unital algebra of
which we determine the generators pα, α ∈ A, A being a suitable index set.
Their duals with respect to the Fischer inner product, are differential oper-
ators Dα (α ∈ A) with constant coefficients which are invariant with respect
to the action of G. Next we find the Lie subalgebra in PD(E) generated
by (pα, Dα), α ∈ A. This is then the candidate for g̃. The common ker-
nel H of the set Dα, α ∈ A may be regarded as an analogue of the space of
harmonic functions and we expect that the full space of polynomials P(E)
will be isomorphic to the tensor product of I and H. This kind of splitting
of function spaces is usually called “separation of variables”. Moreover, as
a g̃ × G-module, we expect P(E) to be isomorphic to a multiplicity free
decomposition of the form

P(E) �
⊕
κ∈K

Iκ ⊗Hκ

where K is an appropriate subset of the set Ĝ of isomorphism classes of irre-
ducible G–modules, Hκ denoting the corresponding representations, and Iκ

denoting the Howe dual partner for Hκ. The Howe duality map Hκ �→ Iκ is
expected to be one to one. We then prove all needed facts directly, without
any reference to [19] or [16].
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As shown in Section 5, we may extend the described scheme to a more
general setting involving, in addition, a super vector space V = V0 + V1

with an action of G. We then consider the (super) vector space P(E, V )
of all polynomials on E with values in V and its decomposition under
the natural action of G. To extend the former procedure to this more
general situation, the Weyl algebra PD(E) is replaced here by the (su-
per)algebra PD(E)⊗ End(V ) of all differential operators on E with coeffi-
cients in End(V ). The same procedure as before is used to find the Howe
dual partner g̃, however resulting this time into is a sub-superalgebra of the
Lie superalgebra PD(E) ⊗ End(V ). Going through a similar procedure as
in the scalar valued case, we expect that the space P(E, V ) again has a
multiplicity free decomposition of the form

P(E, V ) �
⊕
κ∈K

Iκ ⊗Hκ

where again, K is an appropriate subset of the set Ĝ and Iκ are now irre-
ducible representations of the Lie superalgebra g̃. Hence the fundamental
change in this more general situation is that the Howe dual partner g̃ is a
Lie superalgebra now.

The whole setting leads to the identification of a set of constant coef-
ficient differential operators Dα on P(E, V ), which form a canonical set of
PDE’s induced by the choice of the symmetry studied and thus are natural
candidates for further function theoretic research. In this section we shall
now realize this programme in the case of spinor valued polynomials and the
action of the Lie group PinJ(2n) defined above; we will show that in this
case the set of natural PDE’s exactly coincides with the defining equations
for Hermitean Clifford analysis.

The action of PinJ(2n) on P(R2n; S) is given by

s · f̃(z, z†) = sf̃(s−1zs, s−1z†s), f̃ ∈ P(R2n; S), s ∈ PinJ(2n)

whereas its action on P(R2n; End(S)) = P(R2n; C2n) is given by

s · f̃(z, z†) = sf̃(s−1zs, s−1z†s)ŝ−1

Here, we have used the isotropic Hermitean vector variables z and z† (see
Section 2). The key point is that both z and z† are PinJ (2n)–invariant
elements in P(R2n; End(S)). In fact it may be proved by invariance theory
(see e.g. [15]) that the space I of all PinJ(2n)–invariant polynomials is
spanned by all possible words in the letters z and z†:

I = spanC

(
1, z, z†, z z†, z†z, z z†z, z†z z†, z z†z z†, z†z z†z, · · · )
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or
I = spanC

(
w

(i)
l (z, z†) : l = 0, 1, 2, . . . , i = 1, 2

)
where w

(1)
0 = w

(2)
0 = 1 and

w
(1)
2r (z, z†) = (zz†)r = |z|2r−2z z† w

(1)
2r+1(z, z†) = |z|2rz

w
(2)
2r (z, z†) = (z†z)r = |z|2r−2z†z w

(2)
2r+1(z, z†) = |z|2rz† .

The space I of all PinJ (2n)–invariant polynomials becomes a unital graded
superalgebra, its grading being inherited from the Z2–grading on the Clifford
algebra.

As a first step towards the decomposition aimed at we remark that the
space of polynomials P(R2n; S) may be split according to the degrees of
homogeneity in the variables z and z† and the homogeneous parts of spinor
space:

P(R2n; S) =

n⊕
k=0

∞⊕
a,b=0

Pa,b,k(R
2n; S)

Under the natural duality the generators z and z† of the superalge-
bra I correspond to differential operators which are precisely the Hermitean
Dirac operators ∂z and ∂†

z . So we have to consider the spaces Ma,b,k of

h–monogenic (a, b)–homogeneous S(k) valued polynomials in the variables
(z1, . . . , zn, zc

1, . . . , z
c
n), denoted as (z, z†). Note that the spaces Ma,0,0 and

M0,b,0 are trivial for a �= 0, respectively b �= 0, and do not need to be
taken into account in what follows. Also note that the spacesMa,b,k provide
models for irreducible sl(n, C)–modules described by a specific Young dia-
gram (see [12]). We now claim that the space of spinor valued polynomials
decomposes as follows.

Proposition 1. The space P(R2n; S) of spinor valued polynomials may be
split according to the action of PinJ(2n) as

(6.3) P(R2n; S) =

∞⊕
a,b=0

n⊕
k=0

(
Ma,b,k ⊕

∞⊕
p=1

⊕
i=1,2

w(i)
p (z, z†) Ma,b,k

)

The proof will be deferred to the end of this section.

It is clear that the constituents of the decomposition (6.3) are invari-
ant w.r.t. the action of PinJ (2n). Now the construction of a Howe dual
partner g for PinJ(2n) is essential in order to obtain a decomposition into
irreducible invariant subspaces which is multiplicity free. Again this will
be a Lie superalgebra, realized within the superalgebra WS. Seeing the
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set {z, z†; ∂z, ∂
†
z} ⊂ WS as the odd part g1 of the Lie superalgebra searched

for, we will first determine their anti–commutators in order to obtain the
even part g0, and then verify whether the algebra g0 ⊕ g1 closes under the
Lie superbracket. Defining the spin–Euler operator β =

∑n
j=1 f†jfj, which

acts as a multiplication operator on the spinor space S and as the constant k
on the spaces S

(k) of homogeneous spinors, the following relations are easily
verified:

{z, ∂z} = Ez + β {z, ∂†
z} = 0

{z†, ∂†
z} = Ezc + n− β {z†, ∂z} = 0

{z, z†} = r2 {∂z, ∂
†
z} = 1

4
Δ

This means that the even subalgebra g0 is isomorphic to the Lie algebra
gl(2, R) = sl(2, R)⊕ sl(1), since

gl(2, R) � spanR(H, E+, E−)⊕R(2Z)

where we have introduced the standard notations (H, E±, Z) for the gener-
ators of gl(2, R):

H = 1
2
(Ez + Ezc + n) E+ = 1

2
r2

Z = 1
2
(n− 2β + Ezc − Ez) E− = −1

2
Δ

Next, introducing the standard notations (F±, F
±
) for the generators of the

odd part g1:

F+ =
√

2
2

z F
+

=
√

2
2

z†

F− =
√

2∂†
z F

−
= −√2∂z

it is clear that in this case the Howe dual pair is given by (PinJ(2n), sl(1|2)).
The latter is the Lie superalgebra for which the commutation relations in
the Cartan–Weyl basis read:

[H, E±] = ±E± [H, F±] = ±1
2

F± [H, F
±
] = ±1

2
F

±

[Z, E±] = 0 [Z, F±] = 1
2

F± [Z, F
±
] = −1

2
F

±

[E±, F±] = 0 [E±, F∓] = −F± [E±, F
∓
] = F

±

[E±, F
±
] = 0 [E+, E−] = 2H [Z, H ] = 0

{F±, F±} = 0 {F±
, F

±} = 0 {F±, F
±} = E±

{F±, F∓} = 0 {F±
, F

∓} = 0 {F±, F
∓} = Z ∓H

We now introduce a set of singular vectors giving rise to a family of infinite–
dimensional sl(1|2)–modules. To that end let {M (j)

a,b,k : j ∈ Ja,b,k} be a basis
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forMa,b,k, where (a, b) and k are being kept fixed, and consider the infinite–
dimensional space

V
(j)
a,b,k = spanC{w(i)

� (z, z†)M (j)
a,b,k : � ∈ N0, i = 1, 2}

generated by the singular vector M
(j)
a,b,k. In order to reveal the structure

of this sl(1|2)–module, we will first focus our attention on its behaviour as
a module for the even subalgebra gl(2, R). Just as in the Euclidean case

(see Section 5), we find that V
(j)
a,b,k splits into a direct sum of irreducible

gl(2, R)–modules. Indeed, the space V
(j)
a,b,k has the following structure:

V
(j)
a,b,k = V

(j)+
a,b,k ⊕V

(j)−
a,b,k =

(
M(j)

a,b,k ⊕U
(j)(1)
a,b,k ⊕ U

(j)(2)
a,b,k

)
⊕

(
W

(j)(1)
a,b,k ⊕W

(j)(2)
a,b,k

)

where we have put

U
(j)(i)
a,b,k = spanC

{
w

(i)
2r M

(j)
a,b,k : r ∈ N

}
, i = 1, 2

W
(j)(i)
a,b,k = spanC

{
w

(i)
2r−1 M

(j)
a,b,k : r ∈ N

}
, i = 1, 2

Lemma 4. For all a, b ∈ N0, 0 ≤ k ≤ n and j ∈ Ja,b,k, the spaces W
(j)(1)
a,b,k

and W
(j)(2)
a,b,k are infinite–dimensional irreducible gl(2, R)–modules, which are

isomorphic to

Ia+k,b−k = Cn−2k+b−a ⊗ Ia+b .

On the other hand, it is immediately clear that the even subspace contains
the irreducible gl(2, R)–submodule given by

Ũ
(j)(1)
a,b,k = spanC

{|z|2�M
(j)
a,b,k : � ∈ N0

}
obtained by adding the words of even length. This means that there ought
to exist a second summand such that

V
(j)+
a,b,k = Ũ

(j)(1)
a,b,k ⊕ Ũ

(j)(2)
a,b,k

the right hand side containing gl(2, R)–irreducible summands. As the Lie
algebra gl(2, R) contains the Laplacian as a negative root vector, it is natural

to look for a generator of Ũ
(j)(2)
a,b,k in kerΔ. Taking into account the h–monoge-

nicity of M
(j)
a,b;k, it is easily verified (see also [12]) that

(6.4)
(
(a + k)z z† − (b + n− k)z†z

)
M

(j)
a,b,k ∈ ker Δ .



The Howe dual pair in Hermitean Clifford analysis 475

This singular vector thus gives rise to the infinite–dimensional gl(2, R)–
module

Ũ
(j)(2)
a,b,k = spanC

{|z|2l
(
(a + k)z z† − (b + n− k)z†z

)
M

(j)
a,b,k : l = 0, 1, 2, . . .

}
Note that the constants appearing in (6.4) may be expressed in terms of the
scalar operators {z, ∂z} and {z†, ∂†

z} as well:

(
z z†{z, ∂z} − z†z{z†, ∂†

z}
)
M

(j)
a,b,k ∈ ker(Δ) .

This leads to the following result.

Lemma 5. For all a, b ∈ N0, 0 ≤ k ≤ n and j ∈ Ja,b,k, the spaces Ũ
(j)(1)
a,b,k

and Ũ
(j)(2)
a,b,k are infinite–dimensional irreducible gl(2, R)–modules, which are

isomorphic to

Ia+k,b−k = Cn−2k+b−a ⊗ Ia+b+n and Ia+k+1,b−k+1 = Cn−2k+b−a ⊗ Ia+b+n+2,

respectively.

Summarizing we have decomposed each module V
(j)
a,b,k into a direct sum

of four isomorphic irreducible gl(2, R)–submodules:

(6.5) V
(j)
a,b,k =

(
Ũ

(j)(1)
a,b,k ⊕ Ũ

(j)(2)
a,b,k

)
⊕

(
W

(j)(1)
a,b,k ⊕W

(j)(2)
a,b;k

)
.

Note however that the explicit definition for the second summand depends
on the constants a, b and k, as opposed to the other summands.

Proposition 2. For all (a, b, k) fixed and j ∈ Ja,b,k, the module V
(j)
a,b,k is an

infinite–dimensional irreducible sl(1|2)–module.

Proof . It is sufficient to realize that an arbitrary element of V
(j)
a,b,k may

always be written as a sum containing powers of |z|2 with any of the following
four singular vectors:

(6.6)

M
(j)
a,b,k → ker(∂z) ∩ ker(∂†

z) ⊂ ker(Δ)

zM
(j)
a,b,k → ker(∂†

z) \ ker(∂z) ⊂ ker(Δ)

z†M (j)
a,b,k → ker(∂z) \ ker(∂†

z) ⊂ ker(Δ)(
c1zz† − c2z

†z
)
M

(j)
a,b,k → ker(Δ) \ (

ker(∂z) ∪ ker(∂†
z)

)
where we have put c1 = a + k and c2 = b + n − k. Let � be the biggest
exponent of |z|2 amongst these terms, and consider the action of Δ�. In view
of Lemma 4 and Lemma 5, this will produce a non–trivial linear combination
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of the singular vectors. Depending on which of these singular vectors will
survive, the action of ∂z∂

†
z or ∂z or ∂†

z or none at all, will yield a non–trivial

multiple of M
(j)
a,b,k. The only non–trivial case follows from the fact that

(6.7) ∂z∂
†
z

(
c1 zz† − c2 z†z

)
M

(j)
a,b,k = −c1c2(1 + c1 + c2)M

(j)
a,b,k .

Repeated action of z and z† then generates the whole module, and together
with the obvious invariance this proves the statement. �

Finally, we have come to the proof of Proposition 1.

Proof of Proposition 1. Let Pa,b,k(z, z†) be an arbitrary S(k) valued (a, b)–
homogeneous polynomial. From the Fischer decomposition for scalar val-
ued polynomials in Section 4, the existence of unique harmonic polynomials
Ha−l,b−l,k such that

Pa,b,k(z, z†) =

min(a,b)∑
l=0

r2l Ha−l,b−l,k

follows. We now claim that there exist unique h–monogenic polynomials
such that

Ha−l,b−l,k = Ma−l,b−l,k +

{
zMa−l−1,b−l,k+1

z†Ma−l,b−l−1,k−1

}
+(c1zz

†− c2z
†z)Ma−l−1,b−l−1,k

with c1 = a− l−1+k and c2 = b− l−1+n−k. Once the existence of these
h–monogenic polynomials is shown, the proposition follows by an induction
argument. So the proof is now reduced to projecting onto weight spaces for
irreducible sl(1|2)–modules. In view of the characterization of the singular
vectors (see (6.6)), it is clear that one starts with the last summand. Putting

Ma−l−1,b−l−1,k = − 1

c1c2(1 + c1 + c2)
∂z∂

†
zHa−l,b−l,k

it is clear that this is indeed an h–monogenic polynomial. We are thus left
with the projection

π(Ha−l,b−l,k) :=

(
1 +

c1zz† − c2z
†z

c1c2(1 + c1 + c2)
∂z∂

†
z

)
Ha−l,b−l,k .

If we then put

Ma−l−1,b−l,k+1 =
1

c1

∂z π(Ha−l,b−l,k)

Ma−l,b−l−1,k−1 =
1

c2

∂†
z π(Ha−l,b−l,k)
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it is readily verified that these polynomials are indeed h–monogenic. Finally,
the last piece is thus given by

Ma−l,b−l,k =

(
1− 1

c1
z∂z − 1

c2
z†∂†

z

)
π(Ha−l,b−l,k)

the h–monogenicity of which is easily verified. �
This result can be reformulated as follows.

Theorem 4. Under the joint action of sl(1|2)×PinJ(2n), the space P(R2n; S)
is isomorphic to the multiplicity free irreducible direct sum

∞⊕
a,b=0

n⊕
k=0

Ia,b,k ⊗Ma,b,k

where Ia,b,k denotes the sl(1|2) irreducible module isomorphic to V
(j)
a,b,k and

where Ma,b,k denotes the irreducible PinJ (2n)–module isomorphic to the space
Ma,b,k of S(k) valued (a, b)–homogeneous h–monogenic polynomials.
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[17] Gürlebeck, K. and Sprössig, W.: Quaternionic and Clifford calculus
for physicists and engineers. J. Wiley & Sons, Chichester, 1997.

[18] Howe, R.: Transcending classical invariant theory. J. Amer. Math. Soc. 2
(1989), no. 3, 535–552.

[19] Howe, R.: Remarks on classical invariant theory. Trans. Amer. Math. Soc.
313 (1989), no. 2, 539–570.

[20] Howe, R.: Dual pairs in physics: harmonic oscillators, photons, electrons,
and singletons. In Applications of groups theory in physics and mahtemat-
ical physics (Chicago, 1982), 179–207. Lectures in Appl. Math. 21. Amer.
Math. Soc., Providence, RI, 1985.



The Howe dual pair in Hermitean Clifford analysis 479

[21] Rocha-Chavez, R., Shapiro, M. and Sommen, F.: Integral theorems
for functions and differential forms in Cm. Chapman & Hall/CRC Research
Notes in Mathematics 428. Chapman&Hall / CRC, Boca Raton, FL, 2002.

[22] Sabadini, I. and Sommen, F.: Hermitian Clifford analysis and resolu-
tions. Math. Methods Appl. Sci. 25 (2002), no. 16-18, 1395–1413.

[23] Sommen, F. and Peña Peña, D.: A Martinelli-Bochner formula for the
Hermitian Dirac equation. Math. Methods Appl. Sci. 30 (2007), no. 9,
1049–1055.

Recibido: 5 de febrero de 2008

Fred Brackx
Clifford Research Group

Faculty of Engineering, Ghent University
Galglaan 2, B-9000 Gent, Belgium

fb@cage.ugent.be

Hennie De Schepper
Clifford Research Group

Faculty of Engineering, Ghent University
Galglaan 2, B-9000 Gent, Belgium

hds@cage.ugent.be

David Eelbode
Department of Mathematics and Informatics

Antwerp University
Middelheimlaan 1, B-2020 Antwerpen, Belgium

david.eelbode@ua.ac.be

Vladimir Souček
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