REV. MAT. IBEROAMERICANA 26 (2010), no. 2, 591-610

End-point estimates and multi-parameter

paraproducts on higher dimensional tori

John T. Workman

Abstract
Analogues of multi-parameter multiplier operators on R? are de-
fined on the torus T¢. It is shown that these operators satisfy the
classical Coifman-Meyer theorem. In addition, L(log L)" end-point
estimates are proved

1. Introduction

This article is, in part, a continuation of [13, 14]. It is also derived from the
author’s dissertation, which can be found in full at [17].
Recall the multi-linear Coifman-Meyer [5] operator

AD(fry o f) @) = [ m)fi(ty) - - fa(ta)e?mistt=+ta) gg,
Rd
for Schwartz functions f; and where m satisfies a standard Marcinkiewicz-
Mihlin-Hérmander type condition [12]. It is well known this operator maps
LPrx - x [P4 — [P for 1/p1+---+1/ps =1/p and 1 < p; < co. The case
when p > 1 was originally shown by Coifman and Meyer. The general case
p > 1/d was settled later in [9, 11].

Led by natural questions in non-linear partial differential equations, ex-
tensions of this operator were considered by Muscalu et. al.: first the so-
called bi-parameter multiplier [13], then multi-parameter multipliers [14].
In this setting, m is allowed to belong to a much wider class of multipli-
ers which behave like the product of standard multipliers. Special cases
of these multiplier operators had been previously considered by Christ and
Journé [4, 10]. In [13, 14], it is shown that these multiplier operators satisfy
the same LP' x --- x [P4 — [P property.
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However, in the single-parameter case of Coifman and Meyer, more is
known. We have “end-point” estimates corresponding to the case when any
or all of the p; are equal to 1. Here, the result is LP* x - - x LPd — [P In
the multi-parameter setting, no such end-point estimates are known.

A natural candidate for such an estimate would involve Llog L spaces,
because of how they arise in interpolation results. Naively, an operator
which maps L' — L and also satisfies some LP result, is often thought
to also satisfy some Llog L to L! property. Indeed, we recall the result of
Stein [16], which states M f is locally integrable if and only if f is locally
in Llog L; alternatively, C. Fefferman [6] showed the maximal double Hilbert
transform maps L log L([0, 1]?) to L>°([0, 1]?).

That Llog L estimates can only be gained in the compact setting is a
rather common obstacle. To avoid this, we instead consider analogues of
multiplier operators defined on the torus T¢. This also allows a departure
from the classical definition of L log L spaces to a more iterative approach
which blends perfectly with our methods. Ultimately, we show that the
s-parameter multiplier operator AY in this setting satisfies the classical
Coifman-Meyer theorem, along with the desired end-point estimate: for
p; = 1 each LPi is replaced by L(log L)*~'.

The organization is as follows. In the next section, characterizations
of L(log L)™ are developed for any probability space, and several impor-
tant results therein are proved. Section 3 details the connections between
L(log L)" spaces and the Hardy-Littlewood maximal operator. Section 4
deals with the notion of adapted families and a particular square function of
Littlewood-Paley type. Section 5 introduces hybrid square-max operators.
In Section 6, bi-parameter multiplier operators are handled, while section 7
is a non-rigorous survey of the proof for multi-parameter multipliers.

A remark on the notation used: we will write A < B whenever A < C'-B
with some universal constant C.

2. Zygmund spaces and L(log L)

Let (X, p) be a probability space. For f : (X, p) — C, denote the decreasing
rearrangement of f by f*.

Definition. For t > 0 and f : (X,p) — C, let f*V(t) = f*(¢) and for
integers n > 2, set fM(t) = %f; fen=0(s) ds.

On a probability space, f* is supported on [0, 1]. It is advantageous to
informally think of each f*™) as being defined only on (0, 1].

We can immediately verify the following properties: (1) f®*™ is nonneg-
ative, decreasing, and identically 0 if and only if f = 0 a.e.[p]; (2) f*™ <
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fErls (3) (af ) = Jalf" (4) |f] < |g| a.e.[p] implies f") < gt
pointwise; (5) | fx| T |f| a.e.[p] implies f,ﬁ*’”) T &™) pointwise.

We would also like to show (f+g)*™ () < £ () +g*m™(t) for all t > 0
and n > 2; this property does not hold for n = 1. By induction, it suffices
to prove the result for n = 2. However, this is an immediate consequence of
the following technical result of Bennett and Sharpley [3]:

0= [ o= g ()

Definition. For f : (X, p) — C and integers n > 0, define || f||Log £)» by

1
| f1l £og Lyn :/ f(*’"H)(t) dt.
0

Define the Zygmund space L(log L)"(X) as the set of functions f with
£ 1l 210 2y < 00

We note that L(log L)°(X) = L'(X), which is a useful notational short-
cut. Clearly, || - ||Lgogz)» is a norm with the additional properties that

|f| < lg] a.e.[p] implies || f]|Laog y» < [|9llLog 2y and [ fi] T |f] a.e.[p] implies
| fell Lgog y» T 1 £l L(og £y»- Further, this definition of L(log L)™ coincides with
the classical space.

Theorem 2.1. f € L(log L)"(X) if and only if

[ 5@ (1og" 11@))" plde) < oc.

X

The proof is fairly technical but straightforward and is left to the reader.
Using Hardy’s inequality, it is also easy to establish the following.
Theorem 2.2. For any 1 <p < oo andn > 0,

LP(X) € L(log L)"(X) C L(log L)"(X) € L'(X),
with || fllx < [ fllcaog y» < [[fllLgog ymsr S W Fllp-

The principal reason for defining L(log L)™ as we have is the ease in which
we gain interpolation results.

Lemma 2.3. Let T be a sublinear operator which maps L'(X) — LY>(X)
and LP(X) — L2>°(X), for some 1 < p,q < co. Then, forn € N,

1 tm 1
aHe s ;[ e ds e [ e,
0 t

m

where m = (3 —1)(5; —1)~".
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Proof. We show this by induction. The n = 1 case is a technical result
established in [3]. Assume it is true for n — 1. Then,

<Tf>*”<>=1/ TEnD(5) ds

<z / / FER D (0) duds + / —1/q/ Up=1 pen=D) () du ds

= I+1II

By the change of variables r = s™,

11
/ / f(* n—1) du dr = _2 f(*v”)(r) dr
m

On the other hand7 changing the order of integration gives

1/m

1 tm U
7 = —/ ul/p_lf(*’"_l)(u)/ sV ds du
0 0

1 1 t
+ - / /Pt el (y) / s V4 ds du
¢ 0

t Jm

~

1 1 [ 1 1
_ - (%,n—1) w) du + t—l/q/ ul/p—l (*,n—1) w) du
1_l/qt/o Fer ) du g 7 [t e )

1 1/” YA
< - ) (w) du + t 1/‘1/ ul /Pl (g du]
<l e [t en )

Theorem 2.4. Let T be a sublinear operator which maps L'(X) — LV*(X)
and LP(X) — L¥®(X), for some 1 < p,q < 0o. Then, for alln € N, T also
maps L(log L)"(X) — L(log L)"}(X).

Proof. Set m = (% - 1)(% —1)7!. Using Lemma 2.3 and the same change
of variables and Fubini arguments,

1
1T | £1og £yn— —/ (T )™ (t) dt

/ / Fm (s dsdt+/ 1/‘1/ Up=1 ptm) () ds dt
= / / FEm(s dsdu—i—/ Yp=1 fls >(s)/ t=Vadtds
m 0

_ - (*,n+1) d (%,n) ds < n,
m/ FEr () u+1_1/q/0 1 (s) ds S 11l nges
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Corollary 2.5. Let T be a sublinear operator. ]ffor some 1 < p,r < oo

H Z|Tfk H Zlfk and
1
H Z|Tfk H H Z|fk 1/7" :
p
then for alln € N
> / > /
H(Z Tl ~ H(Z A7)
1 - k=1 L(log L)™

Proof. This only requires viewing the above theory through the wider
scope of Banach space-valued functions f : (X, p) — (B, | - ||z) (see [8]). If
instead one defined the decreasing rearrangement f* for Banach space-valued
functions, in the natural way, and repeated the definitions and arguments of
this section, everything would still hold. In particular, the previous theorem
is valid; if T is sublinear operator mapping L5(X) to L3™(X) and L% (X)
to LE>(X), then T : L(log L)%(X) — L(log L) '(X). But, simply by
definition, f*(t) = (|| f|lz)*(t), where (|| f|| 5)* is understood as the decreasing
rearrangement of the map = — || f(z)||. Thus,

HfHL (log L)% HHfHBHL(logL
Let B = (" and T(f) = (T'f1,T fa,...), so that T : L(X) — Lg™(X)
and L% (X) — L%(X). Thus, T : L(log L)%(X) — L(log L)’y *(X), which is
what was promised. [ |

3. Connections to Hardy-Littlewood

Let us turn our attention to the probability space (T, m). Let M f denote
the standard Hardy-Littlewood maximal operator on T. Of course, M maps
LYT) — L"*°(T) and L?(T) — LP(T) for all 1 < p < oo. So, by the inter-
polation results of the previous section, M : L(log L)"(T) — L(log L)"~*(T).
Further, from Fefferman and Stein [7], we know

(SIS0,
(S5m0 u,,

for all 1 < p,r < oo, and therefore Corollary 2.5 applies. However, much
more can be said.

and
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Theorem 3.1. f*" V() ~ (Mf)*™(t), where the underlying constants
do not depend on f ort.

It clearly suffices, by induction, to prove f*2(t) ~ (M f)*(t). But, this is a
well-known result; see [2, 3].

Corollary 3.2. f € L(log L)"™(T) if and only if M f € L(log L)"(T), and,
in particular, || f||Laog ynrr ~ (| M f||Laog )7 -

4. Adapted families

Definition. A smooth function ¢ : T — C is adapted to an interval I with
constants C,, > 0, m € N, if

distrp(x, 1)\ ™"
p(z)] < Cm(l + %ﬁ)) for all z € T,m € N,

1 distp(z, 1)\ ™
10/ ()] < Omm(l %) for all z € T, m € N.

A family of smooth functions ¢; : T — C, indexed by the dyadic inter-
vals, is called an adapted family if each ¢; is adapted to I with the same
universal constants. We say {¢;}; is a 0-mean adapted family if it is an
adapted family, with the additional property that fT prdm =0 for all I.

For an adapted family ¢;, define ¢; = |I|7"/2¢;, where |I| denotes
Lebesgue measure. Note ||¢r|le < 1 for all 1. Often, ¢; is called an L2-
normalized family. Per our notation, ¢; will always represent an adapted
family, and ¢; will always represent the L?-normalization.

Conceptually, we often think of functions which are adapted to an inter-
val I as being “almost supported” in I. The following theorem, which is a

variation of a result in [14], gives some rigid meaning to this.

Theorem 4.1. Let ¢; : T — C be adapted to a dyadic interval I, with
|I| =27N. Then, we can write

pr=>) 27'%f,
k=1

where each ©% is adapted to I, uniformly in k, with supp(¢%) C 2*I for
1 <k <N and o% =0 otherwise. Further, if p; has integral 0, each ©% can
be chosen to have integral 0.

To clarify the notation above, for an interval I and constant o > 0, ol
is the interval concentric with I so that |al| = «|I].
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Given an adapted family ¢y, its normalization ¢;, and f : T — C, we
will be interested in “averages” of f with respect to the family. Let

1
M1 f(2) = sup (0, (o).

where the supremum is over all dyadic intervals. For a 0-mean adapted
family ¢y, define the Littlewood-Paley (discrete) square function by

(Z SRRt ’)W’

where the sum is over all dyadic intervals.

Using Theorem 4.1, it is easily shown that M'f < Mf, so that M’
satisfies the same properties as M. It is known that S : L' — L% and
LP — [P for 1 < p < oo (see [17] for a new approach). We will need to
establish Fefferman-Stein inequalities for S as well, but the only the special
case r = 2 will be necessary.

Theorem 4.2. For1 < p < oo and any sequence f1, fa, ... of complex-valued
functions on T

1

Only considering the » = 2 allows us to use Rademacher functions and Khin-
chine’s inequality to “linearize.” For the weak-L' inequality, an alternate
characterization called the Kolmogorov condition is helpful (see [8]). For
full details, see [17].

5. Hybrid operators

The definitions of the hybrid operators M.S, SM, and S5, their properties,
and their relevance in our context are borrowed from [13].

We say a set R C T? is a dyadic rectangle if there exist dyadic intervals I
and J so that R = I x J. Given two (possibly distinct) adapted families ¢;
and v, we will write pr(z,y) = ¢@r(x)ps(y). For vr = ¢ ® @, set

= |R|7?pr = ¢1 @ ¢,.
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For functions f : T? — C, define

MMf(x,y) Sup |<¢R7 >|XR(«T7y)

|R|1/2

If {¢r} is a family such that [, dm = 0 for all J, then define

(n 1)\
usste) = s (S 50w )

Analogously, if [l ¢;dm = 0 for all I, define

sup; ‘J|+/z|(¢R, f>|XJ(y))2 ( ))1/2
X1\x .

SMf(,y) = (Z ( 7

1

Finally, if [ ¢rdm = [, dm =0, set

(¢ 12
s - (55 )

Theorem 5.1. Each of MM, MS, SM, and SS maps LP(T?) — LP(T?)
for all 1 < p < oo, L(log L)""2(T?) — L(log L)*(T?) for all n > 0, and
Llog L(T?) — LY*(T?).

Proof. Let Mg denote the strong maximal operator (that is, where the
supremum is taken over all bi-parameter rectangles). Define the 15 and
2" variables maximal operators M; and M, as follows. For f:T? — C,

let My f(zy,29) = M(f(-,22))(z1) and Msf(z1,22) = M(f(x1,-))(x2). 1t is
clear that My, M satisfy all the LP properties and Fefferman-Stein inequal-

ities that M does. Define M7, M, Sy, Sy similarly.

Using Theorem 4.1 as before, MM f < Mgf. But, Msf < My o Msf, so
that

|MMFll, S|IMyo Mafll, S IMafllp S N llps
MM flLgog yr SIMio Maf|lLgogryn S IMaf |Lgog nyntt S 1 Nl Litog £ynt2
[MMfl100 SIIMyo Mafllieo S IIMaflli S fll210g L0

We abuse notation slightly and write (f, ¢;) to mean [ or(x) f(z,y) d,
a function of the variable y. Thus, (¢g, f) = (¢, (f, ¢1)) makes sense. Also,
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we can consider the two variable function (f, ¢7)x;. In this manner,

<SUPJ u|+/z|<¢R, f>|XJ(?/)>2XI(x)) 1/2

SMf@w)z(}j 7

I
1 ’ o\ 1/2
- (Z <Sgp |J|1/2}<¢J7 <|];|i12>XI(x)>}XJ(?J)> )
I
1/2
I
By the Fefferman-Stein inequalities on M’ (or M),

o\ 1/2
Isarsl, = (S (Hih))
1 p

1
H(Z' fljjf ) I Zisist < 171,
p
and
1/2
o lvesr = (3 25(55200))
L(log L)
H (Z (], o) ? )
1] L(log L) +1
= HslfHL(logL)”“'l S HfHL(logL)"“’
and

sush=[(S (o))
< (=150

On the other hand,

1,00

= [[151flly S M1 |z 10g 2

1

1/2
usste) =sw (S EE0w) )

Supy 17z I\PR> Iz ’ 1/2
§<Z( b1 il (0m, N (@) XJ(y)) |
J

/1]

599
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This is essentially SM with the roles of I and J reversed. The same argu-
ments as above can now be applied.

Finally,
ssfte = (2 Hon 1P o)
[ZZ 7l |];|?/2 )>}2xj(y)} -
(S
so that the same proof works. ]

6. Bi-parameter multipliers

Given a vector ¢ = (t1,...,taq) € R?? denote pl(f) = (t1,13,...,t24-1) and
pg(ﬂ = (ta,t4,...,t2q), which are both vectors in R% For multi-indices of
nonnegative integers o, we set |p1 ()| = oy + az+ - - - + agq_1, and similarly
for |pa(a)|. Conversely, for 1 < j < d, let t; = (ty;_1,ts;) € R?, so that
P (F. . D)),

Definition. Let m : R?? — C be smooth away the origin and uniformly
bounded. We say m is a bi-parameter multiplier if

(B S o (@)1 ) o)

for all vectors a with |a| < 2d(d + 3), where || - || is the Euclidean norm
on RZ.

Given such a multiplier m on R?? and L' functions f,..., f;: T? — C,
we define the associated multiplier operator Ag)( fi,oooy fa): T2 = C as

Ag)(fh o fa)(@ Z m( {)fl t1 (i)e 2mid (Fy++a)

tez2d
Consider the following theorem.

Theorem 6.1. For any bi-parameter multiplier m on R?*?, it follows that
AP IPrx. . x[Pe — [P forl <p; <ooandl/pi+---+1/ps=1/p. If any
or all of the p; are equal to 1, this still holds with LP replaced by L*> and
LPi replaced by Llog L. In particular, AP L log Lx---x Llog L — LY,
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We focus only the bi-linear d = 2 case, but this makes no substantiative
difference in the proof. Note that in this case, the bi-parameter multiplier
condition can be stated

0D m(3, )] S Nl (s1, el =2 (52, t2) 722

for all two-dimensional indices a, # with |«|, |5] < 10.

It is by now a well established fact (see [14, 15, 17]) that the study of
multiplier operators of various sorts can be reduced to the study of finitely
many discrete paraproducts. For f,g : T?> — C, the bi-parameter bi-linear
paraproducts are defined by

Tf.0)(w.9) = 3 (ke D)0k 0) k()
R

for a,b = 1,2, 3, where ¢k, ¢%, and ¢% are each the tensor product of two
normalized adapted families, as in the previous secton. The sum is over all
dyadic rectangles R. Further, if ¢} = ¢} ® ¢/, then [, ¢} dx =0 for i # a
and [ ¢ dx =0 for i # b.

In order to establish Theorem 6.1, we need only prove each paraprod-
uct satisfies the same bounds. First, the following lemma is a well-known
characterization of weak-LP. A proof is given in [1].

Lemma 6.2. Fiz 0 < p < oo and f : T¢ — C. Suppose that for every mea-
surable set |E| > 0 in T¢, we can choose a subset E' C E with |E'| > |E|/2
and |{f, xg)| < A|E=YP. Then, ||fllpoo S A. Conversely, if || fllpoo < A,
then for any measurable set |E| > 0 there ezxists E' C E with |E'| > |E|/2
and [(f, xp)| < AlE['"MP.

Theorem 6.3. T%": LP* x [P2 — [P for 1<p;,py<oo and 1/p,+1/py=1/p.
If py or ps or both are equal to 1, this still holds with LP replaced by LP**>°
and LPi replaced by Llog L.

Proof. We will assume a = 1 and b = 2, as the other cases will follow
similarly.

First, suppose p > 1. Then, necessarily p;,p, > 1 and 1 < p’ < co. Note,
1/pr +1/p2 + 1/p' = 1. Fix h € L' (T) with ||hl|,, < 1. Then,

(TH(f.9),h |_Z|R|1/2 (&r: ) [(0R: 9 {6k, b

[0 1)1 (6% 9)| (05, 1)
/TQZ |R|1/2 |R|1/2 |R|1/2 Xr(z,y) dxdy.
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Concentrating on the integrand,

(DR, ) (D%, 9)| {0k, h)]
Z |]§|1/2 ||]§|1/2>|||]§|1/2> Xr(T,y) =

Or: ) (0% 9| [(9%, 1)
ZZ ! |]§|1/2 | |le/2>| | |]§|1/2> Xr(,y)
¢k 9
Pk P
(Z . |f1;|1/2 S| |}§|1/2>|XR(93 y))]
Applying Holder’s inequality, the last term is bounded by
(DR )] (R, 2
SM(g) (Z(Z |1§|1/2| ﬁuﬁlm(as,y)))
Applying Holder to the inner sum,
(D /)] [0 1) 2\ 2
(Z (Z |;|1/2 | |]§|1/2> XR(fv,y)> ) <
[(Sk (%, 2
(ZQ: fm ><Z fm e ’y)>)
Su | ¢R7 | ¢Ra V2

= MS(f)(fU,y)SS(h)( ,Y).

Hence,

1/2

(.90 )| < [ M F(a,)SMoe.y)SSh(a,y) da dy
< M8l IS MglpISSAly S 1l N9l

As h in the unit ball of L' is arbitrary, we have [|[T%2(f, ¢)llp < 1£1lpi 119l s-

Now assume 1/2 < p < 1. By interpolation, it is sufficient to show
TV [Pt x [P2 — [P for all 1 < py,ps < 0o. Fix ||f][,, = 1ifp1 > 1 or
| fllz1ogr = 1 if p1 = 1. Similarly for g and p,. Let E C T? with |E| > 0.
By Lemma 6.2, we will be done if we can find £’ C E, |E'| > |E|/2 so that
(T (f.9), xe)| S 1< B2,
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For k€ N?and R =TI x J a dyadic interval, denote 28R = 2k1T x 22 ],
and |k| = ki + ko. Use Theorem 4.1 to write

o= > 27 g

keN2

where each gzﬁ?jzk is the normalization of the tensor product of two (0-mean
adapted families which are uniformally adapted to I, J respectively. Further,

supp( ) C 28R for k small enough, while qﬁj is identically 0 otherwise.
Now

(T"2(f,9), xE) = > _ 2" “"‘”Z| RP/Q (S D% OHOE xr).

ken?

Hence, it suffices to show | 3 [R|~/2(6h, £) (6%, 9) (634, x)| € 217, s long
as the underlying constants are independent of k. .
Let SS* be the double square operator with q%’k. For each k € N2, define

Q_yz = {MSf > 02} U {SMg > C2F1},
O = {Ms(xa ) > 1/100},
~ _{MS( )>2 \k| 1}

and _
o= o
ken2

Observe, C' can be chosen independent of f and g so that || < |E|/2. Set
E'=E-Q=FENQ°. Then, E' C E and |E'| > |E|/2.

Fix k € N2, and set Zy ={MSf=0}U{SMg = O}U{SSEXE/ =0}. Let
D be any finite collection of dyadic rectangles. Consider three subcollections.
Set Dy = {R € D: RN Z; # 0}. For the remaining rectangles, let Dy =

{RED-Dy: RCQ} and Dy ={R€D—D;: RN #0}.

If R € Dy, then there is some (z,y) € RN Z;. Namely, MSf(z,y) =0,
SMg(z,y) =0, or SSF(xp)(z,y) = 0. If it is the first, (¢L, f) = 0. If it is
the second, then (¢%, g) = 0, and if it is the third, (gzﬁ?jz’];, xe') = 0. As this
holds for all R € D;, we have

> (ke DIl 96 o] =0

ReDy
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Now suppose R € D,, namely R C ?2,; For some l;, ¢?§E is identically 0
and (¢?I’%’E, xg) = 0. For all others, QS:;’E is supported in 9FR. Let (x,y) € QER,
and observe

1
28R Joi g

1 1 IR K-
MS(XQE)(x,y) > X, dm > 2—12@/]%)(% dm — 21kl < o~Ik-1

That is, 2k R C SNL; C Q, a set disjoint from E’. Thus, (925?;3’];, Xg) = 0. As this
holds for all R € D5, we have

1 .
> (ke DIGR NI xen] =0
ReDy

Finally, we concentrate on Ds. Define Q—3|E\+1 and H—3|E\+1 by

Qg = {MSf > C2PF1),
3551 =41 € Ds: [INQ_g5,,] > |R]/100}.

Inductively, define for all n > —3|k| + 1,

Q, = {MSf > C27"},
n—1
I, ={ReDs— |J II:[RNQ|> |R|/100}.

j=—3|k|+1

As every R € Dj is not in Dy, that is MSf > 0 on R, it is clear that each
R € D5 will be in one of these collections.

Set Q/—3|E\ = Q_yj for symmetry. Define Q/—3|E\+1 and H/—3|13|+1 by
Q ypy = {SMg > €291,
I g = {RE€Ds: [RNQ 1 | > |R|/100}.

Inductively, define for all n > —3|E| +1,
O = {SMg > C27"),

n—1
H;:{Repg— U H;;|Rm9;|>|R|/1oo}.

j=—3|k|+1

Again, all R € D3 must be in one of these collections.
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Choose an integer N big enough so that € = {SSF(xz) > 2V} has
very small measure. In particular, we take IV big enough so that |RNQ” | <
|R|/100 for all R € D3, which is possible since Dj is a finite collection. Define

O i1 = {555 (xm) > 2871,
My ={R€eDs: |[RNQLy,,| > |R]/100},

and

O = {SSF(xm) > 27"},

n—1
W= {rReD,~ |J m:IRNQY > [R]/100},
j=—N+1

Again, all R € D3 must be in one of these collections.
Consider R € Ds, so that RN Q7 # (). Then, there is some (x,y) €

RN Q2 which implies RN Q_g‘,;||/|R| < MS(XQ_B‘E‘)(x,y) < 1/100. Write
Hn1,n2,n3 = Hn1 N H;IQ N HZJ SO,

1 -
> a6k DGR )3 x|

ReDs

- Y | Y ek DIl e

n1,no>—3k|,nz>—N ~ BElny ng.ng

[ bk, 1] (6%, )] 1635, xw)|
- Z Z |}§|1/2 |RR|1/2 ﬁq|1/2E |R|}‘

n1,n2>—3\E\,n3>—N - Rellng ng,ng

Suppose R € I, pyns. 1 1y > —3|k| +1, then R € II,,,, which in particular
says R & IL,,_1. So, |[RN Q1| < |R|/100. If ny = —3|k| + 1, then we still
have [RNQ x| < |R[/100, as R € Ds. Similarly, If ny > —3k + 1, then
R € 1T/, , which in particular says R ¢ II So, [RN Y, 1| < [R]/100.

ng’ no—1°

If ny = —3|k| 4 1, then we still have |R N Q gl = RN Q_g| < |RI/100,
as R € D3. Finally, if ng > =N + 1, then R ¢ I, _, and |[RNQ; _ | <

n

|R|/100. If ng = —N +1, then |[RNQ” | < |R|/100 by the choice of N. So,
IRNQS N nQe_ | > 2LIR[. Let Qnypgng = U{R: R € Il gy}
Then,

) ) ] 97
|R N in—l N Q;zz—l N Q:’;g—l N in,n27n3| > W|R|
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for all R € 11, n,ny. Further,

Z |<¢Raf>||< R>g>|<¢1%7>XE’>

|
|R|1/2 |R|1/2 |R|1/2 |R|

Rellng ng,ng

3 (PR /) (DR, )| (DR XE)]

~ |R[V2|R[Y2|R|Y?
REHnl,nQ,n3
X |R N Q;l_l N Q;;_l N sz—l N in,n27n3|
:/ Xr(T,Y)
214“925271“9;{;71”9"17"27"3
3,k
_ [(Dks )] (DR 9] [(D Xe)l o
[B[i2 (R RE T
Rennl,nQ,ng
<

MSf(x,y)SMg(z,y)SS*(xer) (@, y) dz dy

/c /c Ic
ny 7109712 7lan3flanl s12,M3

S CP27™M27278 Qg s -
Note,
|Qn1,n27n3| < |U{R ‘Re Hn1}| < |{MS(XQn1) > 1/100}|
S| = {MSf>C27m S o7hanm,
Repeating the argument,

|y mains| S [, | = {SMg > €272} S C77227™, and

|Qn1,n2,n3| S |QZ3| = |{Ssk(XE’) > 2—n3}| S gans

for any o > 1. Thus, |Qn, ngms| S C7PrP220p1mig0pan2gbsons for any g, +
92 +03 = 1, 0 S 01,92,03 S 1. HGIICG,

1 -
Y el @ DGR DI o)

ReDs
5 Z 2(91P1—1)n12(92p2—1)n22(93a—1)n3

nl,n2>—3|l;\, n3>0

+ Z 2(91p1—1)n1 2(92p2—1)n2 2(93a—1)n3

nl,n2>—3\E\, —N<n3<0

=: A+ B.
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For the first term, take 6, =1/(2p,), 62=1/(2ps), O5=1—1/(2p), and a=1.
For the second term, take 0; = 1/(3p;), 02 = 1/(3p2), 03 =1—1/(3p) > 0,
and a = 2/65 to see

—n1/20—n2/26—n3/2 3|k|o1/2 3|K|+1
A— Z 2n1/2n2/2n3/1’§2||2/?§2\\+7
nl,n2>—3\l;\, n3>0
B — Z 2—2n1/32—2n2/32n3 < Z 2—2n1/32—2n2/32n3 ,S 24|E|
n1,ne>—3|k|, —N<n3<0 n1,ne>—3k|,n3<0

Note, there is no dependence on the number N, which depends on D, or C,
which depends on F.
Combining the estimates for Dy, Dy, and D3, we see

S {6k AI6% 9) (65, xm)] S 247,

1/2
fen 111V

where the constant has no dependence on the collection D. Hence, as D is
arbitrary, we have

1 )
) > RE (&1 )R 9) (05" xEr)
R

1 L -
< 3 gl O DG IO x| £ 27,
R

which completes the proof. |

It should now be clear that proving the above for (a,b) # (1,2) follows
by permuting the roles of MM, MS, SM, and SS. For instance, if (a,b) =
(1,1), then we consider MM f, SSg, and SS*yp.

7. Multi-parameter multipliers

Finally, we would like to consider multipliers, and their corresponding op-
erators, which are multi-parameter. That is, m acts as if the product of s
standard multipliers.

For a vector £ € R* and 1 < j < s, let pj(f) = (tj,tj4s, - tjts(a—1))
€ R Conversely, for 1 < j < d, let t; = (ts(j—1)+1,---»tjs) € R? so that
F= (i 1)

Let m : R** — C be smooth away from the origin and uniformly bounded.
We say m is an s-parameter multiplier if

0°m(B)] S T llos (B~
j=1

for all indices |a| < sd(d + 3), where || - || is the Euclidean norm on R
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Given such a multiplier m on R*? and L' functions fi,..., fq: T® — C,
we define the associated multiplier operator Aﬁ,i)( fi,o, fa) : T* — C as
A(s (fh”.’ Z m E)fl tl ) 2miZ- (1 4+ +td)
tezsd

The familiar LP estimates of still hold with minor modifications.

Theorem 7.1. For any s-parameter multiplier m on R*¢, it follows that
A IP X x IPe — LP forl < p; <ooandl/pi+---+1/ps=1/p. If any
or all of the p; are equal to 1, this still holds with LP replaced by LP*° and LPi

replaced by L(log L)*~*. In particular, A L(log L)*'x---xL(log L)*"! —
Ll/d,oo )

In view of these results, we now have a good perception of the heuristics.
Away from p; = 1, each of these operators act the same. However, it is
these endpoint cases which are the most interesting. Each time we go up a
parameter, we “gain a log” at the endpoint.

Just as in the bi-parameter case, we can reduce to paraproducts. We say
Q C T° is a dyadic rectangle if ) = I; x --- x I for dyadic intervals I;.
Let g : T° — C be the s-fold tensor product of adapted families. The
appropriate (bi-linear) paraproducts in this setting are

1
T (f,9)(F) =) g (% 1)(06:9)95(@)
Q

where the sum is over all dyadic rectangles (). Each a; ranges over 1,2, 3.
If ¢ = @7, @ -~ @ ¢y, then [ ¢} dr = 0 whenever i # a;.

To complete the proof on s-parameter multiplier operators, it suffices to
show the associated paraproducts satisfy the same bounds. The same stop-
ping time argument works equally well in all dimensions, given the correct
s-fold hybrid operators. Therefore, we will understand the paraproducts if
we can show each s-fold hybrid operator maps LP — LP for 1 < p < oo and
L(log L)*~! — L1,

For illustrative purposes, we show this for one specific operator when
s =3. For f: T3 — C define

Sl (ZZ( e 000) W)

Using the same notational conveniences as before,

(] o1 © o 2\ /2
SSMf = (ZZM ( TANEIALE lf/}xhxh) ) -
I I
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So,
f7¢11®¢12> 2\ 1/2
I55M 1l = (ZZM'( T ) )
[(f, o1, @ ¢1,)|? 1/2
ZZ L[] X
p
B (f.¢n) H\1/2 [(f, on) 2 1/2
B (252(|1 72 X )) (Z 1] )

= 150 fllp S W f1lps

p

AN

p

and

s - (S E (i) )
<[ (s (i)

The recipe for arbitrary s-fold hybrid operators should now be clear.
Each such operator is pointwise smaller than one of the form S.S...SMM...M.
In this case, the M...M M part is bounded by M;o M, 0---0M,. Repeated
iterations of Fefferman-Stein eliminate these M, while the remaining SS...5
part can be dealt with as usual.

1,00

S S1fllziosr S 11l Log L2
1
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