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Contact properties of codimension 2
submanifolds with flat normal bundle

J. J. Nuño-Ballesteros and M. C. Romero-Fuster

Abstract
Given an immersed submanifold Mn ⊂ R

n+2, we characterize the
vanishing of the normal curvature RD at a point p ∈ M in terms of
the behaviour of the asymptotic directions and the curvature locus at
p. We relate the affine properties of codimension 2 submanifolds with
flat normal bundle with the conformal properties of hypersurfaces in
Euclidean space. We also characterize the semiumbilical, hypespher-
ical and conformally flat submanifolds of codimension 2 in terms of
their curvature loci.

1. Introduction

The analysis of the singularities of height and distance-squared functions
has proven to be useful in the study of the extrinsic geometry of subman-
ifolds ([5, 7, 8, 12, 13]). In fact, some well known geometrical concepts,
such as principal and asymptotic configurations, or focal subsets, arise in
a natural way in this context. More precisely, we can view the principal
directions on a hypersurface M of Euclidean space R

n as those lying in
the kernel of the Hessian quadratic form of some distance-squared function
on M . On the other hand, the asymptotic directions on codimension two
submanifolds of R

n can be characterized as kernel directions of the hessian
of height functions (see [8]). The properties related to the singularities of
distance-squared functions, and thus to the contacts with (or approxima-
tions by) hyperspheres is called here the round extrinsic geometry, whereas
those arising from the singularities of height functions, related in turn with
the contacts with (or approximation by) hyperplanes, is the flat extrinsic
geometry. An interesting fact is that stereographic projection transforms
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contacts of hypersurfaces of Sn with hyperplanes in R
n+1 into contacts of

hypersurfaces in R
n with hyperspheres [14], and thus provides a ”bridge”

between the flat geometry of hypersurfaces of Sn and the round geometry
of the hypersurfaces of R

n.
The hypersurfaces of Sn considered as a particular case of codimension

two submanifolds of R
n+1 satisfy the especial property of having a unique

principal configuration. In this sense they form part of a more general class
of submanifolds: Codimension two submanifolds with flat normal bundle,
or equivalently, with vanishing normal curvature. We concentrate here in
this more general class of submanifolds and introduce an alternative to the
stereographic projection showing that the round extrinsic geometry of hyper-
surfaces in R

n is equivalent to the flat extrinsic geometry of the submanifolds
of codimension two with vanishing normal curvature in R

n+1.
Our aim in this paper consists in exploring this relation in order to

obtain new results on submanifolds of codimension 2 with vanishing normal
curvature in Euclidean space from a global viewpoint.

The case of surfaces in 4-space has been extensively studied from different
viewpoints (see for instance [6, 9, 7, 15, 17]). The main tool used in all these
works is the analysis of several concepts arising from the second fundamental
form: curvature ellipses, shape operators associated to normal fields and
their associated principal configurations, asymptotic direction fields, normal
curvature, etc. An interesting fact is the equivalence among the following
properties at a given point of the surface:

a) Vanishing normal curvature.

b) Degeneracy of the curvature ellipse.

c) Critical point of some principal configuration.

d) Singularity of corank 2 for some squared distance function.

e) Existence of two orthogonal asymptotic directions.

In the present paper we start by investigating the generalization of these
equivalences to submanifolds of codimension 2 in Euclidean space. We in-
troduce here the concept of curvature locus at each point as a natural gen-
eralization of the curvature ellipse at a point of a surface immersed in R

n.
We see that this is a convex subset in the normal space of the submani-
fold at the given point. This subset becomes a convex polygon at points at
which the normal curvature of the submanifold vanishes (Corollary 4.4). We
analyze with detail the codimension 2 submanifolds with vanishing normal
curvature. A consequence of well known properties of such submanifolds is
the fact that all their shape operators share an orthogonal basis of principal
directions. We explore here this fact in order to show that they admit an
orthogonal basis of asymptotic directions at each point (Theorem 3.3).



Contact properties of codimension 2 submanifolds 801

The asymptotic directions were introduced in [7] for surfaces immersed
in R

4 and in [8] for the general case of submanifolds of codimension 2 in
Euclidean space. Their definition was given in terms of the contacts of the
submanifolds with the hyperplanes of the ambient space, and thus character-
ized in terms of the singularities of the height functions on the submanifolds.
It was shown in [8] that any n-manifold immersed in R

n+2 admits at most n
asymptotic directions at each one of its points. Moreover, a sufficient con-
dition for the existence of some asymptotic direction at a point is the local
convexity. We show in Section 5 that although the strict local convexity is a
sufficient condition for the existence of the maximal number of asymptotic
directions at a point, it does not imply the vanishing of the normal curvature
at the given point. Nor the vanishing of the normal curvature implies strict
local convexity.

Since the inverse of the stereographic projection from R
n to Sn trans-

forms the principal curvature lines of a hypersurface in R
n into the asymp-

totic lines of its image into Sn (considered as a codimension 2 submanifold
of R

n+1 (see [8]), we have that codimension 2 submanifolds contained in
hyperspheres of R

n+1 have the maximal number (= n − 1) of mutually or-
thogonal asymptotic directions at every point. Our result implies that this
fact extends to the more general class of submanifolds of codimension 2 with
vanishing normal curvature. In fact, we show that the existence of an or-
thonormal basis of asymptotic directions for the tangent space at a point is
equivalent to the vanishing of the normal curvature of the submanifold at the
given point (Theorem 3.3). An important particular case of codimension 2
submanifolds with vanishing normal curvature consists of the semiumbili-
cal submanifolds, that is, submanifolds all whose points are ν-umbilics, for
some normal field ν. We show that for these, the curvature locus becomes
a segment whose direction is orthogonal to ν. We observe that though this
property characterizes the vanishing of the normal curvature for surfaces
immersed in 4-space, this is not the case in higher dimensions.

In Section 6 we use the fact that codimension 2 submanifolds with van-
ishing normal curvature have some parallel normal field in order to show that
the study of the contacts of such submanifolds with hyperplanes (leading to
affinely invariant properties) is equivalent to the study of the contacts of
hypersurfaces with hyperspheres. In other words, there is an equivalence be-
tween affinely invariant properties of n-manifolds with vanishing normal cur-
vature in R

n+2 and the conformally invariant properties of hypersurfaces
in R

n+1.

A special case of semiumbilical submanifolds is given by those contained
in a hypersphere ([1]). We analyze in Section 7 some necessary and suffi-
cient conditions for the hypersphericity of a semiumbilical submanifold of
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codimension 2 in terms of the properties of the curvature locus and the
asymptotic directions. We also analyze the conformal flatness of semiumbil-
ical submanifolds in this context.

2. Vanishing normal curvature and principal configura-

tions

Let M be a smooth immersed n-dimensional manifold in R
n+k. We consider

in M the Riemannian metric induced by the Euclidean metric of R
n+k.

Given a point p ∈ M , we have a decomposition

R
n+k = TpM ⊕ NpM,

where NpM = TpM
⊥ and the corresponding orthogonal projections � :

R
n+k → TpM and ⊥ : R

n+k → NpM .

We denote by ∇′ the covariant derivative in R
n+k. For vector fields X, Y

tangent along M in a neighbourhood of p, we have the Gauss formula,

∇′
XY = ∇XY + s(X, Y ),

where

1. ∇ is the induced covariant derivative in M given by ∇XY = �(∇′
XY ).

2. s is the second fundamental form, that is, s : TpM × TpM → NpM is
the bilinear symmetric map defined by s(X, Y ) = ⊥(∇′

XY ).

We denote the curvature tensor of ∇ by R : TpM ×TpM ×TpM → TpM ,
which is defined as

R(X, Y )Z = ∇X(∇Y Z) −∇Y (∇XZ) −∇[X,Y ]Z.

Since the curvature of ∇′ in R
n+k is identically zero, we can compute R by

using the Gauss equation:

〈R(X, Y )Z, W 〉 = 〈s(X, W ), s(Y, Z)〉 − 〈s(X, Z), s(Y, W )〉.
Analogously, if now ν is a normal vector field along M in a neighbourhood

of p, we have the Weingarten equation:

∇′
Xν = −Aν(X) + DXν,

where

1. D is the covariant derivative of the normal bundle of M , given by
DXν = ⊥(∇′

Xν).
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2. For each normal vector ν ∈ TpM
⊥, Aν is the shape operator, that

is, it is the self-adjoint linear map Aν : TpM → TpM defined by
Aν(X) = −�(∇′

Xν). It is related to the second fundamental form by

〈Aν(X), Y 〉 = 〈s(X, Y ), ν〉,

for any X, Y ∈ TpM .

Finally, we can also consider the curvature tensor of the normal bundle
connection, RD : TpM × TpM × NpM → NpM , given by

RD(X, Y )ν = DX(DY ν) − DY (DXν) − D[X,Y ]ν.

Since R
n+k has vanishing curvature, the Ricci equation gives

〈ξ, RD(X, Y )ν〉 = 〈X, (Aξ ◦ Aν − Aν ◦ Aξ)Y 〉,

for any X, Y ∈ TpM and ξ, ν ∈ NpM .

Definition 2.1. Let ν ∈ NpM be a normal vector. We consider the self-
adjoint linear map Aν : TpM → TpM . The eigenvalues μ1, . . . , μn of Aν are
called ν-principal curvatures of M at p.

We say that X ∈ TpM is an ν-principal direction if it is an eigenvector
of Aν . It is well known that for any ν ∈ NpM we can choose an orthonormal
frame {X1, . . . , Xn} of TpM made of ν-principal directions, that is, such that

Aν(Xi) = μiXi, i = 1, . . . , n.

A point p ∈ M is said to be ν-umbilic if there is μ ∈ R such that
Aν = μId, or equivalently, if the ν-principal curvatures are equal. We say
that p is umbilic if it is ν-umbilic for any ν ∈ NpM . We say that p is
semiumbilic if it is ν-umbilic for some non-zero ν ∈ NpM .

Remark 2.2. It is well known that for a point p in a submanifold Mn

of R
n+k, the following conditions are equivalent (see [16]):

1. RD(p) = 0.

2. Aν ◦ Aξ = Aξ ◦ Aν , for any ν, ξ ∈ NpM .

3. There is an orthonormal frame {X1, . . . , Xn} of TpM made of ν-principal
directions, for any ν ∈ NpM .
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3. Binormal and asymptotic directions

In this section, we restrict ourselves to the codimension 2 case. That is,
we consider Mn ⊂ R

n+2, an immersed submanifold. In this codimension,
it is very natural to look at the binormal and asymptotic directions, since
we have generically a finite number of such directions. These concepts have
been studied by Mochida, Ruas and the second author in [7] for surfaces
(i.e., n = 2) and in [8] for general n.

Definition 3.1. We say that ν ∈ NpM is a binormal vector if det Aν = 0,
where Aν : TpM → TpM . We say that X ∈ TpM is an asymptotic direction
if there is a non-zero binormal vector ν ∈ NpM such that X ∈ ker Aν .

We remark that in [7, 8] the binormal and asymptotic directions have
been introduced in a different way, in terms of singularities of height func-
tions. Given a non zero normal vector ν ∈ NpM , we denote by hν : M → R

the height function, defined by hν(x) = 〈x, ν〉.
Moreover, we also see that binormal and asymptotic directions are also

related to the generalized eigenvalue problem of the second fundamental
form. Let A, B be two n × n matrices. We say that (p, q) ∈ R

2 \ {0} is a
generalized eigenvalue of (A, B) if det(pA + qB) = 0. Analogously, we say
that x ∈ R

n is an associated generalized eigenvector if (pA + qB)x = 0.
In general, det(pA+ qB) is a homogeneous polynomial of degree n in the

variables p, q. Thus, if det(pA+ qB) is not identically zero, we may have up
to n generalized eigenvalues. Moreover, if dim ker(pA + qB) = r, then we
have that (p, q) is a root of det(pA + qB) of multiplicity r. In such case we
say that the generalized eigenvalue (p, q) has multiplicity r.

We take {ν1, ν2} a frame of NpM and {X1, . . . , Xn} a frame of TpM .
Assume that

Aν1(Xi) =
∑

j

aijXj , Aν2(Xi) =
∑

j

bijXj ,

and let us denote the coefficient matrices by A = (aij) and B = (bij).

Lemma 3.2. Given a normal vector ν = pν1 + qν2 and a tangent vector
X = x1X1 + · · ·+ xnXn, we have the following equivalences:

1. ν is binormal and X is an asymptotic direction.

2. hν has a degenerated (i.e., non Morse) singularity at p and X belongs
to the kernel of the Hessian.

3. (p, q) is a generalized eigenvalue of (A, B) and (x1, . . . , xn) is a gener-
alized eigenvector.
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Proof. The equivalence between (1) and (2) follows from

D2
phν(X, Y ) = 〈Aν(X), Y 〉 = 〈s(X, Y ), ν〉, ∀X, Y ∈ TpM,

where D2
phν : TpM × TpM → R is the second differential of hν . The

equivalence between (1) and (3) follows directly from the definitions, since
Aν = pAν1 + qAν2 . �

Given a surface M2 ⊂ R
4, it was shown in [15] that p is semiumbilic if

and only if there are two asymptotic directions which are orthogonal. We
see that this can be generalized to higher dimensions, although we have to
replace semiumbilicity with the condition that RD(p) = 0 (we refer to next
section for the relationship between these two concepts).

Theorem 3.3. Let Mn ⊂ R
n+2 be an immersed submanifold and let p ∈ M .

Then RD(p) = 0 if and only if there is an orthonormal frame {X1, . . . , Xn}
of TpM made of asymptotic directions.

Proof. Assume that RD(p) = 0. By Remark 2.2, there is an orthonormal
frame {X1, . . . , Xn} of TpM made of ν-principal directions, for any ν ∈ NpM .
If {ν1, ν2} is an orthonormal frame of NpM , we have

Aν1(Xi) = λiXi, Aν2(Xi) = μiXi,

for i = 1, . . . , n. This gives that

det Apν1+qν2 = (pλ1 + qμ1) . . . (pλn + qμn).

Let i = 1, . . . , n and let (pi, qi) 
= (0, 0) such that piλi + qiμi = 0. Then,
ν = piν1 + qiν2 is a non-zero binormal vector and

Aν(Xi) = piAν1(Xi) + qiAν2(Xi) = (piλi + qiμi)Xi = 0,

so that Xi is an asymptotic direction.

Let us see the converse. Consider an orthonormal frame {X1, . . . , Xn}
of TpM made of asymptotic directions and let {ν1, ν2} be an orthonormal
frame of NpM . We assume that

Aν1(Xi) =
∑

j

aijXj , Aν2(Xi) =
∑

j

bijXj .

For each i = 1, . . . , n, there is (pi, qi) 
= (0, 0) such that ν = piν1 + qiν2

is a non-zero binormal vector and

0 = Aν(Xi) = piAν1(Xi) + qiAν2(Xi) =
∑

j

(piaij + qibij)Xj.

This implies piaij + qibij = 0, for any i, j.
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Let i, j = 1, . . . , n and assume that Xi, Xj are asymptotic directions
associated to different binormal vectors, that is, such that

∣∣∣∣ pi pj

qi qj

∣∣∣∣ 
= 0.

Since we have piaij + qibij = 0 and pjaij + qjbij = 0, we obtain aij = bij = 0.

Otherwise, if Xi, Xj are asymptotic directions associated to the same
binormal vector, we get ∣∣∣∣ pi pj

qi qj

∣∣∣∣ = 0.

If for instance, qi 
= 0, we have pi = λqi and pj = λqj , for some λ ∈ R. Since
piaij + qibij = 0, this gives bij = −λaij . In general, we will have that either
bij = μaij or aij = λbij, for some λ, μ ∈ R.

Therefore, we have showed that the matrices A = (aij) and B = (bij)
have the form:

A =

⎛
⎜⎝

A1 . . . 0
...

. . .
...

0 . . . Am

⎞
⎟⎠ , B =

⎛
⎜⎝

B1 . . . 0
...

. . .
...

0 . . . Bm

⎞
⎟⎠ ,

where Ai, Bi are submatrices of A, B respectively such that Ai = λiCi and
Bi = μiCi, where λi, μi ∈ R, Ci is a matrix and m is the number of distinct
binormal vectors. Hence,

AB =

⎛
⎜⎝

λ1μ1C
2
1 . . . 0

...
. . .

...
0 . . . λmμmC2

m

⎞
⎟⎠ = BA,

which implies that RD(p) = 0 by Remark 2.2. �

Remark 3.4. It follows, from the proof of the above theorem, that if
RD(p) = 0 and {X1, . . . , Xn} is an orthonormal frame of TpM made of
ν-principal directions, for any ν ∈ NpM , then {X1, . . . , Xn} are asymptotic
directions. The converse is not true in general.

Corollary 3.5. Let Mn ⊂ R
n+2 be an immersed submanifold and assume

that RD(p) = 0. Then, there are n binormal directions (counting their mul-
tiplicities) at p.
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4. Curvature locus

We introduce now the concept of curvature locus of an immersed submanifold
Mn ⊂ R

n+2. When n = 2, this is nothing but the curvature ellipse at a point
p ∈ M and it contains all the second order information of the immersion.

Definition 4.1. Given p ∈ M , we denote Sp = {X ∈ TpM, 〈X, X〉 = 1}.
We define the curvature locus, Δp, as the image set of the map η : Sp → NpM
given by η(X) = s(X, X).

Let {ν1, ν2} and {X1, . . . , Xn} be orthonormal frames of NpM and TpM
respectively. Assume that

Aν1(Xi) =
∑

j

aijXj , Aν2(Xi) =
∑

j

bijXj .

Given X ∈ Sp, we set X = x1X1 + · · ·+xnXn with x2
1 + · · ·+x2

n = 1. Then,

η(X) = s(X, X) = 〈Aν1(X), X〉ν1 + 〈Aν2(X), X〉ν2

=

(∑
i,j

aijxixj

)
ν1 +

( ∑
i,j

bijxixj

)
ν2.

Therefore, η is the restriction to the sphere Sp of a homogeneous polynomial
map of degree 2 (i.e., a quadratic map). If n = 2, then Δp is an ellipse in
the normal plane NpM . In general, Δp is a plane projection of an (n − 1)-
dimensional Veronese manifold.

The following lemma is an easy exercise for quadratic maps in the plane.

Lemma 4.2. Let h = (h1, h2) : R
2 → R

2 be a quadratic map. The ellipse
h(S1) degenerates to a segment PQ if and only if P = h(X), Q = h(Y ),
where {X, Y } is an orthonormal frame of R

2 which diagonalizes the two
quadratic forms h1, h2 simultaneously.

Theorem 4.3. Let Mn ⊂ R
n+2 be an immersed submanifold and let p ∈ M .

Then RD(p) = 0 if and only if there are X1, . . . , Xn ∈ Sp such that for
any i 
= j, Xi, Xj generate a 2-plane πij ⊂ TpM and η(Sp ∩ πij) is the

segment η(Xi)η(Xj).

Proof. Assume that RD(p) = 0 and let {X1, . . . , Xn} be an orthonormal
frame of TpM made of ν-principal directions, for any ν ∈ NpM . Let also
{ν1, ν2} be an orthonormal frame of NpM . Since {X1, . . . , Xn} diagonal-
ize simultaneously the two quadratic forms of η, the same is true for its
restriction to the plane πij and the result follows from the above lemma.
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Conversely, assume that there are X1, . . . , Xn ∈ Sp such that for any
i 
= j, Xi, Xj generate a 2-plane πij ⊂ TpM and η(Sp ∩ πij) = PiPj, where
Pi = η(Xi). The above lemma implies that X1, . . . , Xn is an orthonormal
frame of TpM which diagonalizes simultaneously the two quadratic forms
of η. Thus, RD(p) = 0 by Remark 2.2. �

Corollary 4.4. Let Mn ⊂ R
n+2 be an immersed submanifold and p ∈ M a

point such that RD(p) = 0. Let {ν1, ν2} and {X1, . . . , Xn} be orthonormal
frames of NpM and TpM respectively, such that

Aν1(Xi) = λiXi, Aν2(Xi) = μiXi.

Then Δp is the convex envelope of P1, . . . , Pn, where Pi =η(Xi)=λiν1+μiν2.

Proof. The assertion follows easily from the above computations. Just note
that given X ∈ Sp, we set X = x1X1 + · · · + xnXn with x2

1 + · · · + x2
n = 1.

Then,

η(X) =

( ∑
i

λix
2
i

)
ν1 +

( ∑
i

μix
2
i

)
ν2 =

∑
i

x2
i Pi.

�

P  = ( λ  , μ  )1

ΔpN  Mp

1 1

P  = ( λ  , μ  )2 2 2

P  = ( λ  , μ  )3 3 3

P  = ( λ  , μ  )4 4 4

P  = ( λ  , μ  )5 5 5

Figure 1:

Example 4.5. We see that the converse of the above corollary is not true
in general. Let us consider g : R

5 → R
7 given by

g(x, y, z, t, u) = (x, y, z, t, u, 2x2 − 2z2 + u2,−x2 + 2y2 − z2 + t2 + tu).

A simple computation shows that the curvature locus Δp at p = 0 is the
triangle with vertices (2,-1), (0,2) and (-2,-1), but RD(p) 
= 0. In fact, the
restriction to the (t, u)-plane gives a non degenerate ellipse contained in the
triangle Δp (see Figure 2).
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However, there are some cases where the above construction cannot be
done, for instance, when n = 3, or when Δp is a convex polygon with n
vertices.

Corollary 4.6. Let Mn ⊂ R
n+2 be an immersed submanifold. If Δp is a

convex n-gon, then RD(p) = 0.

Corollary 4.7. Let M3 ⊂ R
5 be an immersed submanifold. Then RD(p) = 0

if and only if Δp is a triangle.

Remark 4.8. Suppose that RD(p) = 0 and let {Xi}n
i=1 be the common

ν-principal directions. Given any normal direction ν at p, the principal
curvatures of Aν are given by κν

i = 〈ν, η(Xi)〉, i = 1, . . . , n. It follows that ν
points in a binormal direction at p if and only if ν = η(Xi)

⊥. Therefore,
we have that the normal vectors {η(Xi)

⊥}n
i=1 define the binormal directions

at p. We observe that we may have η(Xi) = ±η(Xj) with i 
= j, in such
case the binormal η(Xi)

⊥ has multiplicity at least 2.
On the other hand, it follows that the normal vectors orthogonal to the

different segments η(Xi) − η(Xj) have an associated principal curvature of
multiplicity at least 2.

Proposition 4.9. Let Mn ⊂ R
n+2 be an immersed submanifold. Let p ∈ M .

Suppose that RD(p) = 0, then p is either umbilic for at least a normal
direction, or there exist at least 3 and at most 1

2
n(n − 1) normal directions

defining shape operators with some curvature of multitplicity at least 2 at p.

Proof. Since RD(p) = 0 the curvature locus Δp is either a point, a segment
or an r-gon, for some r ≥ 3. If Δp is a point, then η(Xi) = η(Xj), ∀i, j =
1, . . . , n, where {Xi}n

i=1 are the common ν-principal directions at p. In
this case it follows from Remark 4.8 that for any normal direction ν ∈
NpM , κν

i = 〈ν, η(Xi)〉 = 〈ν, η(Xj)〉 = κν
j , ∀i, j = 1, . . . , n. Therefore p is

ν-umbilic for any normal direction ν. In case Δp is a segment, the vectors
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η(Xi)−η(Xj) with i 
= j are pairwise linearly dependent. Then the direction
(η(Xi) − η(Xj))

⊥ defines a normal vector ν, such that κν
i = κν

j , ∀i, j =
1, . . . , n. So p is ν-umbilic (i.e., semiumbilic). Finally, if Δp is an r-gon, for
some r ≥ 3, the orthogonal directions to either the sides or the diagonals of
Δp provide the required normal vectors. Since there are at least 3 and at
most 1

2
n(n − 1) of such directions we get the required result. �

Definition 4.10. A normal vector ν is said to be quasiumbilic at p ∈ M if
one of its associated principal curvatures has multiplicity ≥ n − 1 at p.

Corollary 4.11. Let Mn ⊂ R
n+2, n ≥ 3 be an immersed submanifold. sup-

pose that RD(p) = 0. Then if p is a (non semiumbilic) quasiumbilic point,
Δp is a triangle.

Corollary 4.12. Let M3⊂R
5 be an immersed submanifold. Then RD(p)=0

if and only if either p is umbilic for at least a normal direction, or quasi-
umbilic for 3 different normal directions.

An n-dimensional submanifold M of R
n+2 is said to be quasiumbilical

with respect to a normal field ν if Aν has some eigenvalue with multiplicity
≥ n − 1 at every point. The manifold M is said to be totally quasiumbilical
provided it admits two mutually orthogonal quasiumbilical normal sections.
The notion of totally quasiumbilical will appear later in connection with
conformal flatness.

Proposition 4.13. Let Mn ⊂ R
n+2, n ≥ 3 be a totally quasiumbilical sub-

manifold with RD ≡ 0. Then the curvature locus at any non semiumbilic
point of M is a right-angled triangle.

Proof. If RD ≡ 0 over M we have that Δp is a polygon at every point of M .
Suppose now that M is totally quasiumbilical. Then there exist normal fields
ν1 and ν2 which are quasiumbilical all over M . But this implies that, for each
p ∈ M , there is an (n− 2)-subspace of TpM made of principal directions for
any normal field on M . In other words, it is possible to find n− 2 mutually
orthogonal common principal directions {Xi}n−2

i=1 for all the normal fields
on M such that η(Xi) = η(Xj), ∀i, j = 1, . . . , n − 2. Consequently Δp is
either a point (when p is umbilic), a segment (when p is semiumbilic), or a
triangle. Since the fields ν1 and ν2 must be orthogonal to some side of the
triangle and they are mutually orthogonal, we have that the triangle must
have a right angle. �

Corollary 4.14. Let M3 ⊂ R
5 be an immersed submanifold. Suppose

that M does not have semiumbilic, nor umbilic points. Then M is totally
quasiumbilic and has flat normal bundle if and only if the curvature locus at
each point is a right-angled triangle.
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5. Semiumbilical and strictly locally convex submani-
folds

Given an immersed surface M2 ⊂ R
4, we have the following equivalent

statements for a point p ∈ M (see [15]):

1. p is semiumbilic,

2. the curvature ellipse at p degenerates to a segment,

3. RD(p) = 0.

We will see that the equivalence between (1) and (2) remains true when
n ≥ 3, but they are not equivalent to (3) in general. We will also dis-
cuss about the relationship of these notions with the local convexity of the
submanifold.

Proposition 5.1. Let Mn ⊂ R
n+2 be an immersed submanifold. If p ∈ M

is semiumbilic, then RD(p) = 0.

Proof. Let ν1 ∈ NpM be a unit normal vector such that p is ν1-umbilic.
This means that Aν1 = λ Id, for some λ ∈ R. Now we complete ν1 to an
orthonormal frame {ν1, ν2} of NpM . Hence,

Aν1 ◦ Aν2 = λAν2 = Aν2 ◦ Aν1 ,

and thus RD(p) = 0 by Remark 2.2. �

Corollary 5.2. Let Mn ⊂ R
n+2 be an immersed submanifold and let p ∈ M .

1. p is semiumbilic if and only if Δp degenerates to a segment. Moreover,
if Lp is the linear subspace spanned by Δp and ν is a normal vector
such that p is ν-umbilic, then ν ⊥ Lp

2. p is umbilic if and only if Δp degenerates to a point.

Proof. By the above proposition and Theorem 4.3, we can assume that
RD(p) = 0. Let {ν1, ν2} and {X1, . . . , Xn} be orthonormal frames of NpM
and TpM respectively, such that

Aν1(Xi) = λiXi, Aν2(Xi) = μiXi.

Moreover, Δp is the convex envelope of P1, . . . , Pn in NpM , where Pi =
(λi, μi).
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By definition, p is semiumbilic if there is a non-zero normal vector ν ∈
NpM such that p is ν-umbilic. This is equivalent to the fact that there exist
a, b, α ∈ R such that a2 + b2 > 0 and

aAν1 + bAν2 = α Id .

But this happens if and only if the following matrix has rank ≤ 2⎛
⎝ λ1 · · · λn

μ1 · · · μn

1 · · · 1

⎞
⎠ ,

which is equivalent to the collinearity of the points P1, . . . , Pn. In fact, if
p is ν-umbilic, P1, . . . , Pn are contained in the line Lp whose equation is
ax + by = α, which is perpendicular to ν.

To see the second part, it follows from the definition that p is umbilic
if and only if λ1 = · · · = λn and μ1 = · · · = μn, which is equivalent to
P1 = · · · = Pn. �

P  = ( λ  , μ  )

Δp
N  Mp

1 1

P  = ( λ  , μ  )2 2 2

P  = ( λ  , μ  )3 3 3

P  = ( λ  , μ  )4 4 4

1

Figure 3:

In the last part of this section, we will see that semiumbilicity is related
to the local convexity of M in R

n+2.

Definition 5.3. We say that M is locally convex at p if there is a hyperplane
π of R

n+2 such that p ∈ π and π supports M in a neighbourhood of p. If π
locally supports M at p, it is obvious that π is tangent to M at p. If it has a
non-degenerate contact (i.e., of Morse type), then we say that M is strictly
locally convex at p. This happens if and only if there is ν ∈ NpM such that
all the ν-principal curvatures are positive (or all of them are negative). In
particular, this gives the following immediate consequence.
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Proposition 5.4. Let Mn ⊂ R
n+2 be an immersed submanifold. If p ∈ M is

semiumbilic and has non-zero ν-principal curvature (where p is ν-umbilic),
then M is strictly locally convex at p.

Proposition 5.5. Let Mn ⊂ R
n+2 be an immersed submanifold. If M is

strictly locally convex at p, then there are n binormal directions at p (count-
ing multiplicity).

Proof. Let {ν1, ν2} and {X1, . . . , Xn} be orthonormal frames of NpM and
TpM respectively, such that all the ν1-principal curvatures are positive and
{X1, . . . , Xn} are ν1-principal directions. This means that

Aν1(Xi) = λiXi, Aν2(Xi) =
∑

j

bijXj,

with λi > 0 and bij = bji. Let Λ, C be the diagonal matrices with diagonal
entries λ1, . . . , λn and 1/

√
λ1, . . . , 1/

√
λn respectively and let us also denote

B = [bij ].

Given a non-zero normal vector ν = pν1 + qν2 ∈ NpM , it is binormal
if and only if

det(Aν) = det(pAν1 + qAν2) = 0.

This is equivalent in coordinates to

0 = det(pΛ + qB) ⇐⇒ 0 = det(C(pΛ + qB)C) = det(pIn + qB),

where In is the identity matrix and B = CBC.

Note that if ν is binormal, then q 
= 0 (otherwise, q = 0 would also imply
p = 0) and −p/q is an eigenvalue of B. Conversely, if t is an eigenvalue of B,
then ν = −tν1 + ν2 is binormal. Moreover, since B is symmetric, it has n
real eigenvalues (counting multiplicity). �

Remark 5.6. We have the following implications:

RD = 0

�����������������

���������������

semiumbilic (non flat)

����������������

��������������

����������������

��������������
∃ n binormals.

strictly locally convex

�����������������

���������������

When n = 2, we have that

semiumbilic ⇐⇒ RD = 0,

strictly locally convex ⇐⇒ ∃ 2 binormals.
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However, when n ≥ 3, these equivalences are not true in general. For in-
stance, let M be the 3-manifold embedded in R

5, which is parametrized by
the map g : R

3 → R
5 defined as

g(x, y, z) = (x, y, z, x2 − z2, y2 − z2).

It is not difficult to see that M is not strictly locally convex at p = 0,
although it has vanishing normal curvature at this point.

Another difference with the case n = 2 occurs with the codimension 2
submanifolds which are a product of two hypersurfaces. If M = C1×C2 ⊂ R

4

is a product of two plane curves, then M is always semiumbilic (and hence
has vanishing normal curvature). This is not true in general when n ≥ 3.

Proposition 5.7. Let Mn ⊂ R
n+1 and P m ⊂ R

m+1 be immersed hypersur-
faces and consider M ×P ⊂ R

n+m+2. Then M ×P always satisfies RD = 0.
However, (m, p) ∈ M × P is semiumbilic if and only if either

1. both m, p are umbilic in M, P respectively, or

2. one of m, p is a flat umbilic in M, P respectively.

Proof. Fix p = (p1, p2) ∈ M × P . Let ν1 be a unit normal vector of M in
R

n+1 at p1 and take {X1, . . . , Xn} an orthonormal frame of Tp1M made of
principal directions with principal curvatures λ1, . . . , λn.

Analogously, we consider ν2 a unit normal vector of P in R
m+1 at p2 and

{Y1, . . . , Ym} an orthonormal frame of Tp2P made of principal directions with
principal curvatures μ1, . . . , μm.

We identify

Np(M × P ) ≡ Np1M ⊕ Np2P and Tp(M × P ) ≡ Tp1M ⊕ Tp2P.

Then {ν1, ν2} and {X1, . . . , Xn, Y1, . . . , Ym} are orthonormal frames of
Np(M × P ) and Tp(M × P ) respectively, which verify

Aν1(Xi) = λiXi, Aν1(Yj) = 0, Aν2(Xi) = 0, Aν2(Yj) = μjYj.

This shows that RD(p) = 0 by Remark 2.2.
To see the second part, we use Corollary 5.2. In fact, p is semiumbilic

if and only if P1, . . . , Pn, Q1, . . . , Qm are collinear, where Pi = (λi, 0) and
Qj = (0, μj). But this can only happen in one the following cases:

1. P1 = · · · = Pn and Q1 = · · · = Qm,

2. P1 = · · · = Pn = 0, or

3. Q1 = · · · = Qm = 0. �
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6. Parallel normal vector fields and parallel submani-
folds

In this section we consider an immersed submanifold M which locally admits
a non-degenerate parallel normal vector field ν. This kind of submanifold
have been introduced in [11] where it is shown that the contact of M with
hyperplanes is the same as the contact of the parallel hyperspherical sub-
manifold Mν with the translated hyperplane. In the codimension 2 case,
the existence of a parallel normal vector field is equivalent to the flatness of
the normal bundle and the non-degeneracy of such a vector field is related
to the non flatness in some sense of the tangent bundle.

Definition 6.1. We say that a normal vector field ν is parallel if DXν = 0
for any X ∈ TpM and any p ∈ M .

The proof of the following lemma can be found in [12] in a more general
version for a codimension k submanifold Mn ⊂ R

n+k.

Lemma 6.2. Let Mn ⊂ R
n+2 be an immersed submanifold. The following

conditions are equivalent:

1. RD = 0 in M .

2. There is a locally defined non-zero parallel normal vector field ν.

3. There are locally defined parallel normal vector fields ν1, ν2 which pro-
vide an orthonormal frame of NpM at any point p ∈ M .

We note that if a normal vector field is parallel, then it has constant
length. Moreover, if Mn ⊂ R

n+2 and ν is parallel then ν⊥ is also parallel.

Definition 6.3. We say that a normal vector ν ∈ NpM is non-degenerate
if det Aν 
= 0, that is, if ν is not binormal. We say that a normal vector field
is non-degenerate if it is non-degenerate at any point p ∈ M .

Let Mn ⊂ R
n+2 be an immersed submanifold and assume that RD = 0

at p ∈ M . We take {ν1, ν2} and {X1, . . . , Xn} orthonormal frames of NpM
and TpM respectively such that

Aν1(Xi) = λiXi, Aν2(Xi) = μiXi.

We denote by Pi the vertices of the curvature locus, that is, Pi = η(Xi) =
λiν1 + μiν2, for each i = 1, . . . , n. For any normal vector ν = aν1 + bν2 ∈
NpM , we have that

det Aν = (aλ1 + bμ1) . . . (aλn + bμn).

Hence, there is a non-degenerate normal vector if and only if Pi 
= 0, for all
i = 1, . . . , n. This fact together with lemma 6.2 gives the following result.
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Corollary 6.4. There is a non-degenerate parallel normal vector field de-
fined locally in a neighbourhood of each point p ∈ M if and only if RD = 0
and Pi 
= 0, for all i = 1, . . . , n.

In general it is imposible to detect intrinsically the vanishing of a ver-
tex Pi as the following example shows.

Example 6.5. Consider the product M = Γ×Q with Γ ⊂ R
2 a plane curve

with non-vanishing geodesic curvature κ and Q ⊂ R
n a hypersurface with

non-vanishing principal curvatures k1, . . . , kn−1. If L ⊂ R
2 is a straight line

and f : Γ → L is a map which preserves arclength, then F = f × Id : M →
M ′ is an isometry from M to the cylinder M ′ = L × Q.

The normal bundle of M has an orthonormal frame {ν1, ν2} where ν1 is
the normal of Γ in R

2 and ν2 is the normal of Q in R
n. The coordinates of

the vertices of the curvature locus of M are (κ, 0) and (0, k1), . . . , (0, kn−1).
Hence M has a non-degenerate parallel normal vector field defined locally
(take for instance ν = ν1 + ν2).

For the cylinder M ′ we have a similar normal frame {ν1, ν2} but then the
vertices are (0, 0) and (0, k1), . . . , (0, kn−1). At any point of M ′ (isometric
with M) one has only degenerate normals.

We consider now the curvature operator of a Riemannian manifold M ,
which is the endomorphism Φ : TpM ∧ TpM → TpM ∧ TpM . We recall that
given X, Y ∈ TpM , then Φ(X ∧ Y ) is the unique bivector such that

〈Φ(X ∧ Y ), Z ∧ W 〉 = 〈R(X, Y )Z, W 〉,
for all Z, W ∈ TpM and where R : TpM × TpM × TpM → TpM is the cur-
vature tensor of M . We shall call the determinant K = det Φ the Gaussian
curvature of M at p.

In the case that Mn ⊂ R
n+2 is an immersed submanifold with RD = 0

at p ∈ M , we take again {ν1, ν2} and {X1, . . . , Xn} orthonormal frames of
NpM and TpM respectively such that

Aν1(Xi) = λiXi, Aν2(Xi) = μiXi,

and we denote by Pi = η(Xi) i = 1, . . . , n the vertices of the curvature locus.

Lemma 6.6. With the above notation, the eigenvectors of the curvature
operator Φ are the simple elements Xi ∧ Xj, i < j, with corresponding
eigenvalues −〈Pi, Pj〉. In particular,

K = det Φ = (−1)
n(n−1)

2

∏
i<j

〈Pi, Pj〉.
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Proof. This is an easy consequence of Gauss Equation:

〈R(Xi, Xj)Z, W 〉 =〈λiXi, W 〉〈λjXj, Z〉 − 〈λiXi, Z〉〈λjXj, W 〉
+ 〈μiXi, W 〉〈μjXj, Z〉 − 〈μiXi, Z〉〈μjXj , W 〉

= − (λiλj + μiμj)〈Xi ∧ Xj, Z ∧ W 〉,
and so Φ(Xi ∧ Xj) = −〈Pi, Pj〉Xi ∧ Xj . �

As a consequence, if K 
= 0 then 〈Pi, Pj〉 
= 0 for all i < j and hence,
Pi 
= 0 for all i. This gives the following corollary.

Corollary 6.7. Let Mn ⊂ R
n+2 be an immersed submanifold. If RD = 0

and K 
= 0 in M , then there is a non-degenerate parallel normal vector field
defined locally in a neighbourhood of each point p ∈ M .

Remark 6.8. Let Mn ⊂ R
n+1 be a hypersurface with principal curvatures

λ1, . . . , λn. We can consider Mn ⊂ R
n+1 ⊂ R

n+2 in such a way that it is
an immersed submanifold with vanishing normal curvature. We put μi = 0
and the above lemma gives that

K = (−1)
n(n−1)

2

∏
i<j

(λiλj) = (−1)
n(n−1)

2 (λ1 . . . λn)2.

We recall that the product λ1 . . . λn is the classical Gaussian curvature of
the hypersurface.

The above corollary can be improved. In fact, we find conditions much
weaker than invertibility of Φ which also give the non-vanishing of the ver-
tices Pi.

Lemma 6.9. With the notation of lemma 6.6, the kernel of the curvature
operator contains a product X ∧ TpM if and only if at least one of the Pi is
orthogonal to all other vertices Pj.

Proof. If Pi0 is orthogonal to Pj , j 
= i0, then Xi0 ∧ TpM is an (n − 1)-
dimensional subspace of ker Φ. Assume conversely that ker Φ contains a
product X ∧ TpM , and write X = ci1Xi1 + · · · + cisXis for some indices
i1 < · · · < is and non-zero coefficients ci1 , . . . , cis. Then, for every j we
have:

0 = Φ(X ∧ Xj) = −
∑
ih �=j

cih〈Pih , Pj〉Xih ∧ Xj .

Letting j run from 1 to n and using the linear independence of the products
Xih ∧Xj , we conclude that each Pih is orthogonal to all other vertices Pj. �

The condition X ∧ TpM ⊂ ker Φ implies that all 2-planes containing X
have zero sectional curvature. It also implies that Ric(X, Y ) = 0, for all
Y ∈ TpM , where Ric is the Ricci bilinear form.
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Corollary 6.10. Let Mn ⊂ R
n+2 be an immersed submanifold with RD = 0.

If the Ricci bilinear form of M at p is non-degenerate, or if every direction in
TpM is contained in some 2-plane with non-zero sectional curvature, then
there is a non-degenerate parallel normal vector field defined locally in a
neighbourhood of p.

We have also the following condition, which is weaker than K 
=0 for n≥ 3.

Corollary 6.11. Let Mn ⊂ R
n+2 be an immersed submanifold with RD = 0.

If dim ker Φ ≤ n − 2 at p ∈ M , then there is a non-degenerate parallel
normal vector field defined locally in a neighbourhood of p.

Definition 6.12. Given a unit normal vector field ν ∈ X(M)⊥, we can
consider the Gauss map Gν : M → Sn+1. For each point p ∈ M , G(p) is the
unit normal vector νp translated to the origin of R

n+2.

Lemma 6.13. Let Mn ⊂ R
n+2 be an immersed submanifold and let ν ∈

X(M)⊥ be a unit normal vector field. We denote by DpGν : TpM → TνpS
n+1

the differential of Gν at p ∈ M .

1. ν is parallel if and only if DpGν(TpM) ⊂ TpM , for each p ∈ M .

2. ν is parallel and non-degenerate if and only if DpGν(TpM) = TpM ,
for each p ∈ M .

Proof. Given X ∈ TpM , we use Weingarten Equation:

DpGν(X) = ∇′
Xν = −Aν(X) + DXν.

Hence, DpGν(X) ∈ TpM if and only if DXν = 0. This proves the first part.

For the second part, if ν is parallel, then DpGν(X) = −Aν(X), for any
X ∈ TpM . Therefore, DpGν(TpM) = TpM if and only if Aν(TpM) = TpM
if and only if det Aν 
= 0. �

Definition 6.14. Let ν ∈ X(M)⊥ be a non-degenerate parallel unit normal
vector field. By the above lemma, the Gauss map Gν : M → Sn+1 is an
immersion. We will denote its image by Mν = Gν(M) and call it parallel
submanifold to M with respect to ν. It follows that Mν is an immersed
submanifold in the sphere Sn+1 which verifies:

TνpM
ν = TpM, NνpM

ν = NpM,

for any p ∈ M .
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Lemma 6.15. Let Mn ⊂ R
n+2 be an immersed submanifold and let ν ∈

X(M)⊥ be a non-degenerate parallel unit normal vector field. We denote by
Aν

ξ the shape operator of the parallel submanifold Mν . Then,

Aν
ξ = −Aξ ◦ A−1

νp
,

for any ξ ∈ NpM and any p ∈ M .

Proof. We denote by sν(X, Y ) the second fundamental form of Mν . We
compare it with the second fundamental form s(X, Y ) of M . Let X, Y be
tangent vectors in TpM = TpM

ν . Recall that

sν(X, Y ) = (∇′
X Ỹ )⊥, s(X, Y ) = (∇′

XY )⊥,

where Ỹ , Y are local extensions of Y in Mν , M respectively in a neighbour-
hood of νp, p respectively.

We can write

Ỹ =
n+2∑
i=1

fi
∂

∂xi

,

where fi are functions locally defined in a neighbourhood of νp in Mν and
x1, . . . , xn+2 denote the coordinates of R

n+2. Then,

Y =

n+2∑
i=1

(fi ◦ Gν)
∂

∂xi
,

defines a local extension of Y in M . By using these extensions, we get

s(X, Y ) = (∇′
XY )⊥

=

( n+2∑
i=1

X(fi ◦ Gν)
∂

∂xi

)⊥

=

( n+2∑
i=1

DpGν(X)(fi)
∂

∂xi

)⊥

= (∇′
DpGν(X)Ỹ )⊥

= sν(DpGν(X), Y )

= −sν(Aν(X), Y ).

This shows that s(X, Y ) = −sν(Aν(X), Y ) or equivalently, that

sν(X, Y ) = −sν(A−1
ν (X), Y ),

for any X, Y ∈ TpM .
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Finally, given ξ ∈ NpM ,

〈Aν
ξ (X), Y 〉 = 〈sν(X, Y ), ξ〉 = −〈sν(A−1

ν (X), Y ), ξ〉 = −〈Aξ(A
−1
ν (X)), Y 〉,

hence Aν
ξ = −Aξ ◦ A−1

νp
. �

We finish this section with the following theorem which has been proved
by the first author in [11] in the case n = 2. An interesting consequence of it
was the extension of the Carathéodory and Loewner conjectures for totally
semiumbilic surfaces in R

4 with non-zero Gaussian curvature.

Theorem 6.16. Let Mn ⊂ R
n+2 be an immersed submanifold and let

ν ∈ X(M)⊥ be a non-degenerate parallel unit normal vector field. Then the
binormal and asymptotic directions of M at p coincide with the binormal
and asymptotic directions of Mν at νp.

Proof. Let p ∈ M and let {X1, . . . , Xn} be an orthonormal frame of TpM
made of ξ-principal directions, for any ξ ∈ NpM . We also take {ν1, ν2} an
orthonormal frame of NpM such that ν1 = νp. Then,

Aν1(Xi) = λiXi, Aν2(Xi) = μiXi,

with λi 
= 0. We know that {X1, . . . , Xn} are the asymptotic directions of
M and the corresponding binormal vectors are given by

ξi =
μi

λi

ν1 − ν2, i = 1, . . . , n.

In the parallel submanifold Mν at νp we consider the same frames {X1, ..., Xn}
and {ν1, ν2}. By the above lemma, we obtain

Aν
ν1

(Xi) = −Aν1 ◦ A−1
ν1

(Xi) = −Xi,

Aν
ν2

(Xi) = −Aν2 ◦ A−1
ν1

(Xi) = −μi

λi
Xi.

Therefore, we get that the asymptotic directions of Mν are again {X1, ..., Xn}
with binormal vectors {ξ1, . . . , ξn}. �

We denote by π : Sn+1 \ {q} → R
n+1 the stereographical projection with

respect to some point q ∈ Sn+1. This is a diffeomorphism which is also a
conformal map. Assume that Mn ⊂ R

n+2 is an immersed submanifold and
let ν ∈ X(M)⊥ be a non-degenerate parallel unit normal vector field. We can
consider the immersion π ◦Gν : M → R

n+1 and we denote its image by M̃ν ,
which is an immersed hypersurface in R

n+1. Moreover, given p ∈ M and
X ∈ TpM we also denote p̃ = π(νp) ∈ M̃ν and X̃ = Dp(π ◦Gν)(X) ∈ Tp̃M̃

ν .
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Corollary 6.17. Let Mn ⊂ R
n+2 be an immersed submanifold and let ν ∈

X(M)⊥ be a non-degenerate parallel unit normal vector field. Then X ∈
TpM is an asymptotic direction of M at p if and only X̃ is a principal
direction of M̃ν at p̃.

Proof. This is a consequence of Theorem 6.16 and the fact that the stereo-
graphical projection is a conformal map and hence it transforms asymptotic
directions of a submanifold N ⊂ Sn+1 into principal directions of its image
π(N) ⊂ R

n+1 (see [8] for details). �

7. Semiumbilicity, hypersphericity and conformal flat-

ness

Given an n-manifold M lying in a hypersphere of R
n+2, the radius vector is

an umbilic normal field over M , so M is semiumbilical and hence has van-
ishing normal curvature. On the other hand, submanifolds with vanishing
normal curvature, or even semiumbilical submanifolds, do not need to lie in
a hypersphere in general. The connection between semiumbilicity and hy-
persphericity for surfaces in 4-space was investigated in [15], where necessary
and sufficient conditions for semiumbilical surfaces to be hyperspherical in
terms of the binormals and the curvature ellipses were obtained. We shall
use here some results due to Chen and Yano ([1], [2], [3]) and Chen and Ves-
traelen ([4]), together with our previous results, in order to characterize the
hypersphericity and the conformal flatness in terms of the curvature locus
at each point.

We first observe that Chen and Yano [1] proved that an n-manifold M
immersed in R

n+2 is hyperspherical if and only if M is ν-umbilic for some
parallel normal field ν. Therefore we can assert:

Corollary 7.1. Let M be an n-manifold M immersed in R
n+2, n ≥ 2 with

isolated umbilic points. Then M is hyperspherical if and only if the curvature
locus at every point of M is a segment defining a parallel field off the umbilic
set of M .

Proof. We have seen that the curvature locus is a segment at a point p ∈ M
if and only if p is ν-umbilic for some field ν. Moreover, ν(p) is orthogonal
to the direction defined by the segment in the normal plane of M at p. The
assertion follows now easily over the open and dense submanifold determined
by the complement of the umbilic points from Chen and Yano’s result and
is extended to the whole M by continuity. �
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Remark 7.2. In the case of a submanifold M with vanishing normal cur-
vature, if {Xi}n

i=1 represents the orthonormal basis of common principal
directions on M , then the condition above is equivalent to asking that the
normal fields η(Xi)−η(Xj) be pairwise linearly dependent, for all i 
= j, and
that the unit normal vector field ν orthogonal to η(Xi) − η(Xj) is parallel.
Moreover, all points {η(Xi)}n

i=1 lie in a parallel field of affine lines defined
by 〈ν, ·〉 = constant in the normal bundle.

We recall now some facts concerning the relations between quasiumbilic-
ity and conformal flatness. Chen and Yano [2] proved that any totally qua-
siumbilical n-manifold with n ≥ 4 is conformally flat. On the other hand,
Chen and Verstraelen [4] proved that any n-manifold M which is confor-
mally flat and has flat normal connection in R

n+p is totally quasiumbilical,
provided n > 4 and p < n − 2. Therefore we can state:

If M is an n-manifold with vanishing normal curvature in R
n+2, n > 4,

then

M is conformally flat ⇐⇒ M is totally quasiumbilical.

Moreover, Chen and Yano [3] proved that if M is v-umbilic for some
non parallel normal field v, then M is totally quasiumbilical. Here, saying
that v is non parallel means that for each p ∈ M , there is a tangent vector
X ∈ TpM such that DXv 
= 0. It then follows that totally semiumbilic
n-manifolds immersed in R

n+2, n > 4, whose curvature segments determine
non parallel normal fields, are conformally flat. Consequently, we can state:

Corollary 7.3. Let M be an n-manifold immersed in R
n+2, n > 4 and

suppose that the curvature locus degenerates to a segment at every point
of M . Consider a unit normal field v determined by the curvature segment
(locally defined) at each point. If v is non parallel, then M is conformally
flat.

Summarizing, we have:

Corollary 7.4. Let M be a semiumbilical n-manifold immersed in R
n+2,

n > 4 with a finite subset of umbilic points {p1, . . . , pk}. Let {Xi}n
i=1

be the orthonormal basis of common principal directions on M . Denote
νij = η(Xi)− η(Xj), i 
= j. The vectors {νij}n

i,j=1, i 
= j do not vanish simul-
taneously at each p /∈ {p1, . . . , pk} and define a unit normal direction ν over
M − {p1, . . . , pk}. Then we have:

a) If ν is a parallel field, then M is hyperspherical.

b) If ν is a non parallel field, then M is conformally flat.
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