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Topological and analytical properties
of Sobolev bundles.

II. Higher dimensional cases

Takeshi Isobe

Abstract
We define various classes of Sobolev bundles and connections and

study their topological and analytical properties. We show that cer-
tain kinds of topologies (which depend on the classes) are well-defined
for such bundles and they are stable with respect to the natural
Sobolev topologies. We also extend the classical Chern-Weil theory
for such classes of bundles and connections. Applications related to
variational problems for the Yang-Mills functional are also given.

1. Introduction

This paper is a sequel to [13] where we have studied an interrelation between
the topological and the analytical properties of Sobolev bundles and Sobolev
connections for the critical case.

Let us first recall the definition of Sobolev bundles as introduced in [13].
Throughout this paper, we assume that M is a compact Riemannian mani-
fold of dimension m and G a compact Lie group with bi-invariant met-
ric. There is a faithful unitary representation of G on Rl, i.e., an injection
G → O(Rl) = O(l) for some l ∈ Z. Thus we may assume without loss of
generality that G is a subgroup of O(l). For any open subset U ⊂M , k ∈ Z
with k ≥ 1 and 1 ≤ p ≤ ∞, the Sobolev space of functions in U of class
W k,p, denoted W k,p(U), is defined as the set of all Lp-integrable functions
in U whose partial derivatives (in the sense of distributions) of order up to k
are also Lp-integrable in U . W k,p(U,G) is then defined as

(1.1) W k,p(U,G) = {g ∈W k,p(U,Rl2) : g(x) ∈ G for a.e. x ∈ U}.
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By the Sobolev embedding theorem, if k and p satisfy kp > m, then
W k,p(U,G) ⊂ C0(U,G) and the pointwise multiplication and the inversion
define a continuous multiplication W k,p(U,G)×W k,p(U,G) � (f, g) 	→ f ·g ∈
W k,p(U,G) and an inversion W k,p(U,G) � f 	→ f−1 ∈ W k,p(U,G). With
these, W k,p(U,G) becomes a Banach Lie group. This is not the case for
kp ≤ m, but by the Gagliardo-Nirenberg inequality, in [13] we have shown
that it becomes a topological group under the pointwise multiplication and
the inversion even for the case kp ≤ m.

Classical (topological or smooth) principal G-bundles are described by
an open covering {Uα} of M and a gluing date {gαβ}, gαβ ∈ C0(Uαβ , G)
(or C∞(Uαβ , G) when considering smooth bundles) which define an element
in Ȟ1(M,C0

G) (respectively, Ȟ1(M,C∞
G )), where Uαβ = Uα ∩ Uβ and C0

G

(respectively, C∞
G ) denotes a presheaf defined by C0

G(U) = C0(U,G) (re-
spectively, C∞

G (U) = C∞(U,G)) for any open set U ⊂ M . Conversely, any
element in Ȟ1(M,C0

G) (or Ȟ1(M,C∞
G )) defines a unique isomorphism class

of principal G-bundles of class C0 (respectively, C∞). The Sobolev bundles
of class W k,p are defined similarly. Namely, it is defined as an element of
Ȟ1(M,Wk,p

G ), where the presheaf W
k,p
G is defined by W

k,p
G (U) = W k,p(U,G)

for any open subset U ⊂ M . In other words, it is described as a pair
P = 〈{Uα}α∈I , {gαβ}αβ∈I〉, where {Uα}α∈I is an open covering of M and
gαβ ∈ W k,p(Uαβ , G) (α, β ∈ I) satisfy gαγ(x) = gαβ · gβγ(x) for a.e. x ∈
Uαβγ := Uα ∩ Uβ ∩ Uγ . For more details, see [13]. Notice that, by the
Sobolev embedding theorem, Sobolev bundles of class W k,p are in fact bun-
dles of class C0 when kp > m. Thus for our study the interesting cases
are kp ≤ m and we only treat these cases throughout this paper.

Sobolev bundles naturally arise as limits of smooth bundles. For ex-
ample, if we want to compactify the moduli space of (smooth) Yang-Mills
connections under the natural topology, one needs to add weak limiting bun-
dles and connections on them. These weak limiting objects are, in general,
singular and belong to certain classes of Sobolev bundles and connections.
There are also other places where such bundles and connections arise: For
example, if we want to apply techniques of the calculus of variations for
the Yang-Mills and other related functionals, one needs to work on a suit-
able Sobolev completion of smooth bundles and connections in order to
get suitable compactness properties. For more details and other examples,
see [27], [38], [39], [40], [36] [24] and [13].

In our previous paper [13], we studied an interplay between the topolog-
ical and the analytical properties of Sobolev bundles and connections in the
critical case kp = m. One of our results proved there is the equivalence of
the category of principal G-bundles of class W k,p and the category of princi-
pal G-bundles of class C0, i.e., the isomorphism H1(M,Wk,p

G ) ∼= H1(M,C0
G).

This answers the question raised by Uhlenbeck in her paper [40].
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In this paper, we continue our study and concentrate on our attention to
the higher dimensional cases kp < m. Contrary to the critical and the lower
dimensional cases kp ≥ m, it is possible that one can define various classes of
Sobolev bundles and connections with the same indexes k, p. This is due to
the fact that there are various (inequivalent) classes of Sobolev spaces with
values into G when kp < m. So we first define these classes in §2. In the
higher dimensional case, one can not expect the equivalence of the category
of Sobolev G-bundles to the category of G-bundles of class C0. However, we
shall show that certain kinds of topological invariants are well-defined for
such bundles. These are defined in §3. Its properties, in particular, its sta-
bility with respect to the appropriate Sobolev topologies are also studied
in §3.

On Sobolev bundles, there are also natural classes of Sobolev connec-
tions. These are defined in §2. For these connections, in §4, we extend the
classical Chern-Weil theory and study its compatibility with the topologies
introduced in §3. In §5, we introduce singular Sobolev bundles which also
naturally arise as weak limits of smooth bundles. The results in §3 and §4
are extended for such classes of bundles. As an application of the results
proved in §3 and §5, we consider G-bundles with Neather Yang-Mills con-
nections (see §5 for the definition) which have uniformly bounded Yang-Mills
energies. We shall show that such bundles converge weakly to a certain class
of (singular) Sobolev bundles. We characterize these limits in terms of the
invariants defined in §3 and §5.

In §6, we study variational problems for the Yang-Mills functional. In
that section, we characterize the value of the infimum of the Yang-Mills
functional in terms of the invariants introduced in §3.

Our results are considered as Yang-Mills counterparts of the results ob-
tained by White [41], [42] (see also [10]) for mapping problems in Sobolev
spaces. And we use some of the ideas of [41], [42] and [10] in our proof of
the results.

2. Various classes of Sobolev bundles and Sobolev con-

nections

2.1. Classes of Sobolev bundles

Let k ∈ N and p ≥ 1 be such that kp < m. As mentioned in the in-
troduction, there are various classes of Sobolev spaces defined on an open
subset U ⊂ M with values in G. One natural definition is given by (1.1).
However, other choices are also possible. These are obtained as comple-
tions of C∞(U,G) ∩W k,p(U,G) with respect to natural Sobolev topologies.
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One is obtained as the completion of C∞(U,G)∩W k,p(U,G) (or equivalently
C0(U,G)∩W k,p(U,G)) with respect to the strong Sobolev topology (i.e., the
topology defined by the Sobolev norm). We denote this as W k,p

strong(U,G):

W k,p
strong(U,G)= the strong closure of C∞(U,G) ∩W k,p(U,G) in W k,p(U,G).

Another natural space is the sequential weak closure of C∞(U,G)∩W k,p(U,G)
(or equivalently C0(U,G) ∩ W k,p(U,G)) in W k,p(U,G) which we denote
by W k,p

weak(U,G):

W k,p
weak(U,G) =

= the sequential weak closure of C∞(U,G) ∩W k,p(U,G) in W k,p(U,G).

For any open set U ⊂ M , W k,p(U,G), W k,p
strong(U,G) and W k,p

weak(U,G) are
very different when kp < m. (They define the same set when kp ≥ m
due to the approximation theorem of Schoen-Uhlenbeck [26]). In fact, when
π[kp](G) �= 0 we always have

W k,p
strong(U,G) � W k,p(U,G)

in view of the result of Bethuel [1] and Bethuel-Zheng [2] and we also have

W k,p
strong(U,G) � W k,p

weak(U,G)

in general (see [1], [10]). According to the different choices of Sobolev spaces,
we obtain different kinds of (the isomorphism classes of) Sobolev bundles.
They are defined as

Ȟ1(M,Wk,p
G ), Ȟ1(M,Wk,p

strong,G) and Ȟ1(M,Wk,p
weak,G)

respectively, where W
k,p
strong,G and W

k,p
weak,G are presheaves defined by

W
k,p
strong,G(U) = W k,p

strong(U,G) and W
k,p
weak,G(U) = W k,p

weak(U,G)

respectively, for any open set U ⊂M . To see that these definitions are mean-
ingful, we need to show that W k,p(U,G), W k,p

strong(U,G) and W k,p
weak(U,G) be-

come groups with respect to the pointwise multiplication and the inversion.
This is seen from the Gagliardo-Nirenberg inequality as in [13], see also be-
low. Though the above classes of Sobolev bundles are natural, there are also
other natural choices: Since in applications we frequently encounter classes
of Sobolev bundles as obtained by limits of smooth bundles with respect
to suitable Sobolev topologies, we are in fact interested in some subsets of
Ȟ1(M,Wk,p

strong,G) and Ȟ1(M,Wk,p
weak,G) defined below:
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Definition 2.1 Let k ∈ N and 1 ≤ p ≤ ∞.

(1) The class of Sobolev bundles P
k,p
G (M) is defined as the set of pairs

P = 〈{Uα}α∈I , {gαβ}α,β∈I〉, where {Uα}α∈I is an open covering of M
and gαβ ∈ W k,p(Uαβ, G) (α, β ∈ I) satisfy gαβ(x) · gβγ(x) = gαγ(x) a.e.
in Uαβγ whenever Uαβγ �= ∅.

(2) P
k,p
strong,G(M)⊂P

k,p
G (M) is defined as: P =〈{Uα}α∈I , {gαβ}α,β∈I〉∈P

k,p
G (M)

belongs to P
k,p
strong,G(M) if and only if there exists a sequence of smooth

principal G-bundles {Pn} ⊂ P∞
G (M) (P∞

G (M) denotes the set of smooth
G-bundles on M) of the form Pn = 〈{Vi}i∈J , {gnij}i,j∈J〉 such that {Vi}i∈J
is a refinement of {Uα}α∈I , i.e., Vi ⊂ Uϕ(i) for some refinement map
ϕ : J → I and ‖gϕ(i)ϕ(j) − gnij‖W k,p(Vij) → 0 (n → ∞) for any i, j ∈ J
with Vij �= ∅.

(3) P
k,p
weak,G(M)⊂P

k,p
G (M) is defined as: P =〈{Uα}α∈I , {gαβ}α,β∈I〉∈P

k,p
G (M)

belongs to P
k,p
weak,G(M) if and only if there exists a sequence {Pn}⊂P∞

G (M)
of the form Pn = 〈{Vi}i∈J , {gnij}i,j∈J〉 such that {Vi}i∈J is a refinement
of {Uα}α∈I , Vi ⊂ Uϕ(i), and ‖gϕ(i)ϕ(j) − gnij‖Lp(Vij ) → 0 (n → ∞) and

supn
∑k

l=1 ‖∇lgnij‖Lp(Vij) < +∞ for any i, j ∈ J with Vij �= ∅, where
∇l = ∇ · · ·∇ (l-times).

The isomorphism classes of Sobolev bundles are defined as:

Definition 2.2 We say that P = 〈{Uα}α∈I , {gαβ}α,β∈I〉 ∈ P
k,p
G (M) and Q =

〈{Vi}i∈J , {hij}i,j∈J〉 ∈ P
k,p
G (M) are W k,p-isomorphic to each other if and

only if there exist a refinement {Ws}s∈K of both of {Uα} and {Vi} which
still covers M , i.e., Ws ⊂ Uϕ(s), Ws ⊂ Vψ(s) for some refinement maps
ϕ : K → I, ψ : K → J and

⋃
sWs = M , and ρs ∈ W k,p(Ws, G) (s ∈ K)

such that
gϕ(s)ϕ(t) = ρs · hψ(s)ψ(t) · ρ−1

t in Wst

whenever Wst �= ∅.
This defines an equivalence relation in P

k,p
G (M) and the equivalence class

containing P is denoted by [P ]k,p. The set of W k,p-isomorphism classes is

denoted by P̂
k,p
G (M). In other words, P̂

k,p
G (M) = H1(M,Wk,p

G ).

The isomorphism classes ofG-bundles in P
k,p
strong,G(M) and P

k,p
weak,G(M) are

defined similarly. However, in these cases there are some choices: One can
define P,Q ∈ P

k,p
strong,G(M) (or P,Q ∈ P

k,p
weak,G(M)) are isomorphic to each

other if they are isomorphic as bundles in P
k,p
G (M) as defined above, i.e., they

define the same class in P̂
k,p
G (M), or alternately one can define P and Q are
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isomorphic if they define the same class in H1(M,Wk,p
strong,G) (respectively,

H1(M,Wk,p
weak,G)), i.e., in Definition 2.2, we require ρp ∈ W k,p

strong(Wp, G) (re-

spectively, ρp ∈W k,p
weak(Wp, G)).

The latter definition seems natural in the sense that if P = 〈{Uα}, {gαβ}〉
∈ P

k,p
strong,G(M) (or P ∈ P

k,p
weak,G(M)) and ρp ∈ W k,p

strong(Wp, G) (respec-

tively, ρp ∈ W k,p
weak(Wp, G)), then the gauge transformed bundle ρ∗P :=

〈{Wp}, {ρpgϕ(p)ϕ(q)ρ
−1
q }〉 is also in P

k,p
strong,G(M) (respectively, in P

k,p
weak,G(M)).

This is seen from the fact (see below) that W k,p
strong(U,G) and W k,p

weak(U,G)
become group under the pointwise multiplication and the inversion for any
open subset U ⊂ M .

On the other hand, the first definition is natural in the sense that the inv-
ariants defined in the next section for bundles in P

k,p
strong,G(M) or in P

k,p
weak,G(M)

are preserved under this equivalence.
Thus when we treat equivalence classes of bundles in P

k,p
strong,G(M) (or

in P
k,p
weak,G(M)), we shall indicate which equivalence is used.

Before ending this subsection, we sketch the proof of the assertion that
W k,p

strong(U,G) and W k,p
weak(U,G) are groups under the pointwise multiplication

and the inversion. (The proof of the same assertion for W k,p(U,G) is given
in [13]).

Proposition 2.1 For any open set U ⊂ M , W k,p
strong(U,G) and W k,p

weak(U,G)
are groups under the pointwise multiplication and the inversion.

Sketch of the Proof. Let f, g ∈ W k,p
strong(U,G). There exist {fn}, {gn} ⊂

C∞(U,G) ∩ W k,p(U,G) such that fn → f , gn → g in W k,p(U,G). From
the compactness of G, we see that {fn} and {gn} are L∞-bounded and
the Gagliardo-Nirenberg inequality [34, III-13-3] implies that fngn → fg
in W k,p(U,G), see [13, Appendix] for details. Similarly from the Gagliardo-
Nirenberg inequality as in [13, Appendix], we see that f−1

n →f−1 inW k,p(U,G).
Thus fg ∈W k,p

strong(U,G) and f−1 ∈W k,p
strong(U,G).

Assume on the other hand f, g ∈ W k,p
weak(U,G). Then there exist se-

quences {fn}, {gn} ⊂ C∞(U,G) ∩W k,p(U,G) such that fn → f in Lp(U),
supn
∑k

j=1 ‖∇jfn‖Lp(U) < ∞, gn → g in Lp(U) and supn
∑k

j=1 ‖∇jgn‖Lp(U)

< ∞. Then from the compactness of G, it is easy to see that fngn → fg
in Lp(U). Moreover, by the Gagliardo-Nirenberg inequality, we see that
supn
∑k

j=1 ‖∇j(fngn)‖Lp(U)<∞. Thus we have fg ∈W k,p
weak(U,G). Similarly,

we easily see that f−1
n → f−1 in Lp(U) and supn

∑k
j=1 ‖∇j(f−1

n )‖Lp(U)<∞
also by the Gagliardo-Nirenberg inequality. Therefore f−1 ∈ W k,p

weak(U,G)
and the proof is complete. �
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2.2. Classes of Sobolev connections

We introduce in this subsection classes of Sobolev connections on Sobolev
bundles introduced in the previous subsection.

Recall that a smooth connection on a smooth principal G-bundle P =
〈{Uα}, {gαβ}〉 is defined by a family of smooth g-valued 1-forms {Aα}, Aα ∈
C∞(Uα, T

∗Uα ⊗ g), satisfying the gluing relation

(2.1) Aβ = g−1
αβdgαβ + g−1

αβAαgαβ in Uαβ

whenever Uαβ �= ∅.
For a Sobolev bundle as defined in the previous subsection, one may

also define a connection on it as a family of g-valued 1-forms {Aα}α∈I be-
longing to a suitable class of Sobolev space which also satisfies the gluing
relation (2.1). In general, a connection loses one more derivatives than
the bundle, so one may think that a natural class where Aα lives in is the
Sobolev class W k−1,p. However, this is not so in general. This is because
for gαβ ∈W k,p(Uαβ , G) and Aα ∈W k−1,p(Uα, T

∗Uα ⊗ g) the right hand side
of (2.1) does not belong to W k−1,p in general: As is shown in the appendix
in [13], the Gagliardo-Nirenberg inequality implies g−1

αβdgαβ ∈ W k−1,p(Uαβ)

while the 1-form g−1
αβAαgαβ does not belong to W k−1,p(Uαβ) for the case

kp < m in general. However, if we require some additional regularity for Aα,
we obtain a right definition. Since we are primarily interested in the cases
k = 1 and k = 2, we only consider these cases. Extensions to the case k ≥ 3
is straightforward.

Definition 2.3 Assume k = 1 or k = 2 and 1 ≤ p ≤ ∞. Let P =
〈{Uα}α∈I , {gαβ}α,β∈I〉 ∈ P

k,p
G (M). We define the spaces of Sobolev connec-

tions Ak−1,p(P ) and A1,p/2(P ) on P as follows:

(1) The case k = 1: A0,p(P ) = Ap(P ) is defined as the set of all A =
{Aα}α∈I such that Aα ∈ Lp(Uα, T

∗Uα ⊗ g) for all α ∈ I and (2.1) holds
a.e. in Uαβ whenever Uαβ �= ∅.

(2) The case k = 2: A1,p(P ) is defined as the set of all A = {Aα}α∈I such
that Aα ∈W 1,p(Uα, T

∗Uα⊗g)∩L2p(Uα, T
∗Uα⊗g) for all α ∈ I and (2.1)

holds a.e. in Uαβ whenever Uαβ �= ∅.
(3) The case k = 1: We define A1,p/2(P ) as the set of all A = {Aα}α∈I such

that Aα ∈ Lp(Uα, T
∗Uα ⊗ g), dAα ∈ Lp/2(Uα,

∧2 T ∗Uα ⊗ g) and (2.1)
holds a.e. in Uαβ whenever Uαβ �= ∅.
We must show that the classes Ak,p(P ) (k = 0, 1) and A1,p/2 (k = 1)

are defined properly: For P ∈ P
1,p
G (M) and A = {Aα} ∈ Ap(P ), the right

hand side of (2.1) belongs to Lp(Uαβ) so Ap(P ) is properly defined. For
P ∈ P

2,p
G (M) and A = {Aα} ∈ A1,p(P ), the Gagliardo-Nirenberg inequality
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W 2,p(Uαβ)∩L∞(Uαβ) ⊂W 1,2p(Uαβ) implies that the right hand side of (2.1)
belongs to W 1,p(Uαβ) and A1,p(P ) is defined properly. Lastly, for P ∈
P

1,p
G (M) and A = {Aα} ∈ A1,p/2(P ), the right hand side of (2.1) belongs

to Lp(Uαβ) and its exterior derivative

−g−1
αβdgαβg

−1
αβ ∧ dgαβ − g−1

αβdgαβg
−1
αβ ∧Aαgαβ + g−1

αβdAαgαβ − g−1
αβAα ∧ dgαβ

belongs to Lp/2(Uαβ) by Hölder’s inequality. Thus A1,p/2(P ) is defined prop-
erly.

In applications, more other classes of Sobolev bundles and connections
arise naturally. These are considered in §5.

3. Topological invariants of Sobolev bundles

In this section, we define topological invariants for various classes of Sobolev
bundles defined in §2. In [13], we have shown that there is a natural one to

one correspondence between P̂
k,p
G (P ) with kp = m and P̂∞

G (M) (P̂∞
G (M) is

the set of all isomorphism classes of C∞-principal G-bundles on M). Thus
any W k,p-bundle with kp = m has a well-defined topology, i.e., it is defined
as the corresponding isomorphism class in P̂∞

G (M). As was shown in [13],
this is no longer true for the case kp < m. However, for such cases some kinds
of topological invariants are well-defined. Giving a definition of invariants
and the study of the properties of these are the main purpose of this section.

The invariants are defined for a suitable class of Lipschitz polyhedrons
or CW-complexes K and Lipschitz maps h : K → M . A precise definition
of the class of such K is somewhat involved, so we defer it until in the
appendix. For example, and this is indeed the main example, any Lipschitz
triangulation h : K → M of M satisfies our requirement. Thus the reader
may assume that h : K → M is a Lipschitz triangulation of M throughout
this section.

The idea of the definition of the invariants is as follows: Let P =
〈{Uα}, {gαβ}〉 ∈ P

k,p
G (M) and h : K → M be a Lipschitz map (for K as

above). We want to consider the pulled back bundle h∗P = 〈{h−1(Uα)},
{gαβ ◦ h}〉. This is not meaningful in general since the function gαβ ◦h is not
well-define for gαβ ∈ W k,p(Uαβ, G) and a Lipschitz map h : h−1(Uαβ) → M .
However, replacing h by a generic perturbation of h, it turns out that
it defines a Sobolev bundle on K and has a well-defined topology when
dimK ≤ kp. When the isomorphism class defined for such a generic pertur-
bation depends only on h : K → M and P , we can associate a topological
invariant for P ∈ P

k,p
G (M) and h : K → M as such an isomorphism class.

Since the “range” of the dimension dimK for which the invariants are well-
defined depends on the classes P

k,p
G (M), P

k,p
strong,G(M) and P

k,p
weak,G(M), we

consider each classes separately.
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Before entering into details, we prepare terminologies which will be used
throughout this section. Since M is a manifold, it admits a CW-structure.
Fix one such structure. Let ei be an i-cell of M and φ : Di → M a char-
acteristic map of ei, that is, φ : Di → ei is surjective, φ(∂Di) ⊂ ∂ei and its
restriction to the interior of Di is a homeomorphism onto its image. Here Di

is the unit closed disk in Ri. Let {eiα} be the collection of all cells of M (eiα
denotes one of the i-cells of M). For each cell eiα, φ

i
α : Di

α → eiα denotes
the corresponding characteristic map. (Di

α is a copy of Di). Set K =
⊔
Di
α.

The characteristic maps φiα : Di
α → eiα induce a map h = �φiα : K → M

and a homeomorphism ĥ : K̂ → M , where K̂ = K/ ∼ and for x, y ∈ K we
define x ∼ y if and only if h(x) = h(y). For simplicity, we also call such
h : K → M or ĥ : K̂ → M a CW-structure of M . (M i, h) denotes the
i-skeleton of the CW-structure h : K →M . In this paper, we only consider
Lipschitz CW-structures of M , i.e., h : K → M or ĥ : K̂ → M is Lips-
chitz. CW(M) denotes the set of all Lipschitz CW-structures on M . We
also use a notation {h,K} ∈ CW(M) to denote a CW-structure h : K →M
(or ĥ : K̂ →M).

Next we introduce a genericity notion for CW-structures on M . Assume
without loss of generality that M is realized as a submanifold of Rl for some
large l > m. By the tubular neighborhood theorem, there exists ε > 0 such
that the ε-neighborhood Oε(M) = {ξ ∈ Rl : d(ξ,M) < ε} of M is a smooth
fibration πM : Oε(M) → M , where πM is the nearest point projection. Let
{h,K} ∈ CW(M). Then for any ξ ∈ Bl

ε = {ξ ∈ Rl : |ξ| < ε}, hξ : K → M
defined by hξ(x) = πM(h(x) + ξ) is also a (Lipschitz) CW-structure of M .
We say that a certain statement holds for generic CW-structures if it holds
for all CW-structures of the form hξ : K → M , where {h,K} ∈ CW(M)
and ξ ∈ Bl

ε except for a null set, i.e., there exists a set N = N({h,K}) ⊂ Bl
ε

of measure 0 such that for ξ ∈ Bl
ε \N the statement holds.

Finally we give the following remark: From the Gagliardo-Nirenberg
inequality W k,p(U) ∩ L∞(U) ⊂ W 1,kp(U), one can obtain a result about
Sobolev bundles of the class W k,p from that of the class W 1,kp, so without
loss of generality we restrict our attention to bundles of the class W 1,p.

3.1. Topological invariants for P ∈ P
k,p
G (M)

Let K be a polyhedron satisfying the conditions (A-1), (A-2) in the ap-
pendix, §7.1. Also let h : K → M be a Lipschitz map. For example,
a Lipschitz triangulation h : K → M satisfies these properties. While
h∗P = 〈{h−1(Uα)}, {gαβ ◦ h}〉 does not have a well-defined meaning in gen-
eral, we shall show that h∗ξP = 〈{h−1

ξ (Uαβ)}, {gαβ ◦ hξ}〉 has a well-defined

meaning for a.e. ξ ∈ Bl
ε. This follows from the following:
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Lemma 3.1Let U⊂M be an open set and f ∈Lp(U,Rl) (or f ∈W 1,p(U,Rl)).
Then for a.e. ξ ∈ Bl

ε, f ◦ hξ ∈ Lp(h−1
ξ (U),Rl) (respectively, f ◦ hξ ∈

W 1,p(h−1
ξ (U),Rl)). Moreover, there exists a constant C > 0 independent

of f such that
‖f ◦ hξ‖Lp(h−1

ξ (U)) ≤ C‖f‖Lp(U)

(respectively, ‖f ◦ hξ‖W 1,p(h−1
ξ (U)) ≤ C‖f‖W 1,p(U)) holds for ξ ∈ Bl

ε of positive
measure.

Proof. By Fubini’s theorem, we have∫
|ξ|<ε

(∫
h−1

ξ (U)

|f ◦ hξ(x)|p dHk(x)

)
dHl(ξ)

=

∫
|ξ|<ε

(∫
K

χU ◦ hξ(x)|f ◦ hξ(x)|p dHk(x)

)
dHl(ξ)

=

∫
K

(∫
|ξ|<ε

χU(πM (h(x) + ξ))|f(πM(h(x) + ξ))|p dHl(ξ)

)
dHk(x)

≤ CHk(K)

∫
U

|f |p dvolM .

From this, by Fubini’s theorem, we have f ◦hξ ∈ Lp(h−1
ξ (U)) for a.e. ξ ∈ Bl

ε.

Moreover, there exists C > 0 (independent of f) such that for ξ ∈ Bl
ε of

positive measure we have

(3.1)

∫
h−1

ξ (U)

|f ◦ hξ|p dHk ≤ C

∫
U

|f |p dvolM .

In case f ∈ W 1,p(U,Rl), applying the same argument as above for df , we
obtain df ◦ hξ ∈ Lp(h−1

ξ (U)) for a.e. ξ ∈ Bl
ε and

(3.2)

∫
h−1

ξ (U)

|df ◦ hξ|p dHk ≤ C

∫
U

|df |p dvolM

for some C > 0 and ξ ∈ Bl
ε of positive measure. Since dhξ is L∞-bounded

and its bound does not depend on ξ ∈ Bl
ε, we have d(f ◦ hξ) ∈ Lp(h−1

ξ (U))

for a.e. ξ ∈ Bl
ε and from (3.2) we obtain

(3.3)

∫
h−1

ξ (U)

|d(f ◦ hξ)|p dHk ≤ C

∫
U

|df |p dvolM

for some another constant C > 0 and ξ ∈ Bl
ε of positive measure. This

completes the proof. �
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From Lemma 3.1, we see that for P = 〈{Uα}, {gαβ}〉 ∈ P
1,p
G (M) and a.e.

ξ∈Bl
ε, h

∗
ξP := 〈{h−1

ξ (Uα)}, {gαβ ◦ hξ}〉∈P
1,p
G (K). By [13, Corollary 3.1] and

its extension to the polyhedron given in the appendix, the C0-isomorphism
class of h∗ξP , denoted by [h∗ξP ]0, is well-defined for a.e. ξ ∈ Bl

ε when

dimK ≤ p. If the class [h∗ξP ]0 is independent of a.e. ξ ∈ Bl
ε, we will

obtain a topological invariant which will depend only on h : K →M and P .
Since the bundle P is not continuous on M , the class [h∗ξP ]0 may change
when it passes through the singularities of P as ξ varies. So in general, we do
not expect that [h∗ξP ]0 is independent of a.e. ξ ∈ Bl

ε. However, if dimK is
slightly small, this is indeed the case.

For 1 ≤ p < 3 or p ≥ 4, define d(p) := [p− 1] (the largest integer strictly
less than or equal to p− 1) and d(p) = 3 if 3 ≤ p < 4. The following is the
main result of this subsection.

Theorem 3.1 Let p ≥ 1 and P = 〈{Uα}, {gαβ}〉 ∈ P
1,p
G (M). Also let K

be a polyhedron satisfying (A-1), (A-2) in the appendix and h : K → M
a Lipschitz map. Assume that dimK ≤ d(p). Then the class [h∗ξP ]0 de-

fined for a.e. ξ ∈ Bl
ε/3 is independent of a.e. ξ ∈ Bl

ε/3. Moreover, the

class [h∗ξP ]0 depends only on the homotopy class of h : K → M and the
W 1,p-isomorphism class of P . In other words, there exists a homomor-
phism h∗ : Ȟ1(M ; W1,p

G ) → Ȟ1(K; C0
G) which depends only on the homotopy

class [h] ∈ [K,M ] and is defined by h∗[P ]1,p = [h∗ξP ]0 for a.e. ξ ∈ Bl
ε/3,

where [P ]1,p is the class of P in P̂
1,p
G (M) = Ȟ1(M ; W1,p

G ).

Remark 3.1 The above result is analogous to the corresponding result of
Sobolev maps as developed by [42], see also [10]. The ([p] − 1)-homotopy
class of a Sobolev map in W 1,p(M,N) (for M,N compact manifolds) is well-
defined and this is in general optimal, i.e., maps in W 1,p(M,N) do not
have a well-defined [p]-homotopy type in general, see [42]. In view of this,
one may think that the above result is also optimal. Indeed, if we slightly
relax the definition of Sobolev bundles, we have the same result as stated in
Theorem 3.1 and the result is optimal for such classes of Sobolev bundles,
see §5. However, we do not know the above result is optimal for P ∈ P

1,p
G (M).

Indeed, some topological invariants associated with P ∈ P
1,p
G (M) are well-

defined beyond the dimension d(p), see §4, so one may suspect that the above
result also holds up to dimK = [p]. The improvement for the case 3 ≤ p < 4
is due to the fact that π2(G) = 0 for any compact Lie group G.

The proof of Theorem 3.1 is decomposed into several steps. We first
show the independence of the isomorphism classes [hξP ]0 for a.e. ξ ∈ Bl

ε/3

when dimK ≤ [p] − 1. Improvement for the case 3 ≤ p < 4 will be given
latter. In the following, the set of all isomorphism classes of C0-principal
G-bundles on K will be denoted by P̂0

G(K).
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Lemma 3.2 Let P = 〈{Uα}, {gαβ}〉 ∈ P
1,p
G (M) and K a polyhedron satisfy-

ing (A-1), (A-2) in the appendix and dimK ≤ [p] − 1. Also let h : K → M

be a Lipschitz map. Then the class [h∗ξP ]0 ∈ P̂0
G(K) is independent of a.e.

ξ ∈ Bl
ε/3.

Proof. Let ξ ∈ Bl
2ε/3. Then h is homotopic to hξ by the homotopy [0, 1] ×

K � (x, t) 	→ πM(h(x) + tξ) ∈ M . For the purpose of our argument, we
use the following another homotopy: Let ϕ ∈ C∞(R) be such that ϕ(t) = 0
for t ≤ 0, ϕ(t) = 1 for 1 ≤ t and 0 ≤ ϕ(t) ≤ 1 for 0 < t < 1. Define
Hξ : R×K →M byHξ(t, x) = πM(h(x)+ϕ(t)ξ). Hξ satisfiesHξ(t, x) = h(x)
for t ≤ 0, Hξ(t, x) = hξ(x) for 1 ≤ t and gives a homotopy between h and hξ.

For ξ ∈ Bl
2ε/3, ζ ∈ Bl

ε/3, define Hξ,ζ : R × K → M by Hξ,ζ(x, y) =

πM(h(x)+ϕ(t)ξ+ζ). For an arbitrary fixed ξ ∈ Bl
2ε/3 and a compact interval

I ⊂ R, by Lemma 3.1 H∗
ξ,ζP = 〈{H−1

ξ,ζ (Uα)}, {gαβ ◦Hξ,ζ}〉 restricted to I×K
is a Sobolev bundle of class W 1,p on I ×K for a.e. ζ ∈ Bl

ε/3. In particular,

this holds for I = [−1, 2] and we denote the corresponding Sobolev bundle
on [−1, 2]×K by the same symbol H∗

ξ,ζP . Notice that when dimK ≤ [p]−1,

the class [H∗
ξ,ζP ]0 ∈ P̂0

G([−1, 2] ×K) is well-defined for a.e. ζ ∈ Bl
ε/3 since

dim([−1, 2] ×K) ≤ p. To see this, one needs to check the conditions (A-1)
and (A-2) in the appendix. Let πK : O(K) → K be as in the appendix.
Then id× πK : R×O(K) → R×K satisfies the conditions (A-1) and (A-2)
for l replaced by l + 1 and m replaced by m + 1, where id is the identity
map id : R → R. Then arguing as in the appendix, we see that there exists
a well-defined associated topological class for H∗

ξ,ζP ∈ P
1,p
G ([−1, 2] ×K) for

a.e. ζ ∈ Bl
ε/3.

Let us recall how the C0-isomorphism class is associated to H∗
ξ,ζP . We

may assume that, passing to a finite refinement if necessary, {Uα} is a finite
cover ofM . Then by the approximation theorem [13] (see also the appendix),
there exists a refinement {Vα} of {H−1

ξ,ζ (Uα)} such that
⋃
α Vα = [−1, 2]×M

and Vα ⊂ H−1
ξ,ζ (Uα) and there exist principal G-bundles Pε = 〈{Vα}, {gεαβ}〉

on [−1, 2] ×K of Lipschitz class such that

(3.4) ‖gαβ ◦Hξ,ζ − gεαβ‖W 1,p(Vαβ) → 0 as ε→ 0.

As proved in [13] (see also the appendix), the C0-isomorphism class of Pε
is uniquely determined by H∗

ξ,ζP for small ε > 0 and this class is denoted by

[H∗
ξ,ζP ]0 ∈ P̂0

G([−1, 2]×K). In the above case, since H−1
ξ,ζ (Uα)∩([−1, 0]×M)

and H−1
ξ,ζ (Uα) ∩ ([1, 2] ×M) are written as products [−1, 0] × h−1

ζ (Uα) and

[1, 2] × h−1
ξ+ζ(Uα) respectively, we may assume that Vα ∩ (Ii ×M) (i = 0, 1)

is also product for some interval I0 ⊂ [−1, 0] and I1 ⊂ [1, 2].
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By Lemma 3.1, for a.e. ζ ∈ Bl
ε/3,H

∗
ξ,ζP |{0}×K = h∗ζP = 〈{V t0

α }, {gαβ◦hζ}〉
and H∗

ξ,ζP |{1}×K = h∗ξ+ζP = 〈{V t1
α }, {gαβ ◦ hξ+ζ}〉 are Sobolev bundles of

class W 1,p, where t0 ∈ I0, t1 ∈ I1 and for t ∈ [−1, 2], V t
α := ({t}×K)∩Vα is

the t-slice of Vα. Since dimK ≤ [p]−1, by the Sobolev embedding W 1,p ⊂ C0

in dimension less than p, these bundles are of class C0.

We claim that for fixed ξ ∈ Bl
2ε/3, h

∗
ζP is C0-isomorphic to h∗ξ+ζP for a.e.

ζ ∈ Bl
ε/3. To prove the claim, we first observe that from (3.4), the Fubini’s

theorem and the Fatou’s lemma, there exists a sequence {εk} converging
to 0, t0 ∈ I0 and t1 ∈ I1 such that

‖gαβ ◦Hξ,ζ(t0, ·) − gεkαβ(t0, ·)‖W 1,p(V
t0
αβ)

→ 0,(3.5)

‖gαβ ◦Hξ,ζ(t1, ·) − gεkαβ(t1, ·)‖W 1,p(V
t1
αβ)

→ 0(3.6)

as k → ∞, where V t
αβ = V t

α ∩ V t
β .

Since Hξ,ζ(t0, ·) = hζ , Hξ,ζ(t1, ·) = hξ+ζ and the Sobolev embedding
W 1,p ⊂ C0 in dimension less than p, we obtain from (3.5) and (3.6)

‖gαβ ◦ hζ − gεkαβ(t0, ·)‖C0(V
t0
αβ)

→ 0,(3.7)

‖gαβ ◦ hξ+ζ − gεkαβ(t1, ·)‖C0(V
t1
αβ)

→ 0(3.8)

as k → ∞.

Since {V t0
α } and {V t1

α } are refinements of the open covers {h−1
ζ (Uα)} and

{h−1
ξ+ζ(Uα)} respectively, from (3.7) and (3.8) we see that the C0-bundles h∗ζP

and h∗ξ+ζP are C0-isomorphic to Pεk |{t0}×K and Pεk|{t1}×K respectively for
large k. Since Pεk is a bundle over [−1, 2] ×K, Pεk|{t0}×K is isomorphic to
P εk|{t1}×K . Thus as principal G-bundles of class C0, h∗ξ+ζP is isomorphic

to h∗ζP . Since this holds for a.e. ζ ∈ Bl
ε/3, the claim is proved.

From this the lemma follows as follows. Let E0 ⊂ Bl
ε/3 be a measure

zero set of ξ on which h∗ξP is not defined. Assume otherwise that [h∗ξP ]0

is not constant for a.e. ξ ∈ Bε/3 \ E0. We first notice that P̂0
G(K) is a

countable set. This is because the set of homotopy classes [K,BG] (BG is
the classifying space for G-bundles or a finite dimensional approximation
of it) is a countable set for compact K. Thus under the assumption, we

may find two different isomorphism classes [P1]0, [P2]0 ∈ P̂0
G(K) such that

[h∗ξP ]0 = [P1]0 for ξ ∈ E1 ⊂ Bl
ε/3 with Hm(E1) > 0 and [h∗ξP ]0 = [P2]0

for ξ ∈ E2 ⊂ Bl
ε/3 with Hm(E2) > 0. Let ξi ∈ Ei (i = 1, 2) be a density

point, i.e.,

lim
r↓0

Hm(Br(ξi) ∩Ei)
Hm(Br(ξi))

= 1.
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Let ξ = ξ1 − ξ2 ∈ Bl
2ε/3. Then from what we have proved above, we obtain

[h∗ξ+ζP ]0 = [h∗ζP ]0 for ζ ∈ Bl
ε/3 \ (Eξ ∪ E0 ∪ (E0 − ξ)), where Eξ ⊂ Bε/3 is

a measure zero set such that [h∗ξ+ζP ]0 = [h∗ζP ]0 for ζ ∈ Bε/3 \ Eξ. Since
ξ+ ξ2 = ξ1 is a density point of E2 + ξ, ξ1 is a density point for both E1 and
(E2 \ (Eξ ∪E0 ∪ (E0 − ξ)) + ξ. From this, we have in particular E1 ∩ ((E2 \
(Eξ ∪E0 ∪ (E0 − ξ))+ ξ) �= ∅. Choose ξ′1 ∈ E1, ξ

′
2 ∈ E2 \ (Eξ ∪E0 ∪ (E0 − ξ))

such that ξ′1 = ξ + ξ′2. Then we have [P1]0 = [h∗ξ′1P ]0 = [h∗ξ′2P ]0 = [P2]0, a

contradiction. This completes the proof. �

Definition 3.1 Let P = 〈{Uα}, {gαβ}〉 ∈ P
1,p
G (M), K a polyhedron satis-

fying (A-1), (A-2) in the appendix, dimK ≤ [p] − 1 and h : K → M a

Lipschitz map. We denote by [P ]h,K ∈ P̂0
G(K) the class [h∗ξP ]0 ∈ P̂0

G(K)

which is independent of a.e. ξ ∈ Bl
ε/3.

We next show that the class [P ]h,K is invariant under W 1,p-bundle iso-
morphisms. That is, we have:

Lemma 3.3 Let P = 〈{Uα}, {gαβ}〉, Q = 〈{Vi}, {hij}〉 ∈ P
1,p
G (M), K a

polyhedron satisfying (A-1), (A-2) in the appendix, dimK ≤ [p] − 1 and
h : K → M a Lipschitz map. Assume P is W 1,p-equivalent to Q. Then we
have [P ]h,K = [Q]h,K.

Proof. By the assumption, there exist a refinement {Ws} of {Uα} and
{Vi}, i.e.,

⋃
sWs = M , Ws ⊂ Vϕ(s) and Ws ⊂ Vψ(s) and ρ = {ρs} such that

ρs ∈W 1,p(Ws, G) and

(3.9) gϕ(s)ϕ(t) = ρshψ(s)ψ(t)ρ
−1
t

on Wst := Ws ∩Wt.
On the other hand, by Lemma 3.1 and the Sobolev embedding we have

h∗ξP, h
∗
ξQ ∈ P0

G(K) and ρs ◦ hξ ∈ C0(h−1
ξ (Ws), G) for a.e. ξ ∈ Bε and

from (3.9) we obtain

(3.10) gϕ(s)ϕ(t) ◦ hξ = (ρs ◦ hξ)(hψ(s)ψ(t) ◦ hξ)(ρt ◦ hξ)−1

on h−1
ξ (Wst).

From (3.10), we conclude that h∗ξP is C0-isomorphic to h∗ξQ for a.e.

ξ ∈ Bl
ε. Then by the definition of the classes [P ]h,K and [Q]h,K given above,

we have [P ]h,K = [Q]h,K . �

The final ingredient to complete the proof of Theorem 3.1 is:

Lemma 3.4 Let P = 〈{Uα}, {gαβ}〉 ∈ P
1,p
G (M), K a polyhedron satisfying

(A-1), (A-2) in the appendix, dimK ≤ [p] − 1 and h, h′ : K → M Lipschitz
maps. Suppose that h is homotopic to h′, then we have [P ]h,K = [P ]h′,K.



Topological and analytical properties of Sobolev bundles II 743

Proof. Let H : R × K be a Lipschitz homotopy between h and h′ such
that H(t, ·) = h for t ≤ 0 and H(t, ·) = h′ for t ≥ 1. For a.e. ξ ∈ Bl

ε,
define Hξ(t, x) = πM (H(t, x) + ξ). Then by Lemma 3.1, for a.e. ξ ∈ Bl

ε

H∗
ξP = 〈{H−1

ξ (Uα)}, {gαβ ◦Hξ}〉 defines a principal G-bundle of class W 1,p

on [−1, 2]×K. Then by the same argument as in the proof of Lemma 3.2, we
see that for a.e. ξ ∈ Bl

ε and some t0 ∈ [−1, 0] and t1 ∈ [1, 2], H∗
ξP |{t0}×K and

H∗
ξP |{t1}×K define principal G-bundles of class W 1,p and they are isomor-

phic as C0-bundles to each other; H∗
ξP |{t0}×K ∼= H∗

ξP |{t1}×K . Since h∗ξP =
H∗
ξP |{t0}×K and (h′ξ)

∗P = H∗
ξP |{t1}×K , we conclude that hξP ∼= (h′ξ)

∗P for

a.e. ξ ∈ Bl
ε. Thus by the definition, we have [P ]h,K = [P ]h′,K . �

For the case 3 ≤ p < 4, the above results can be improved. That is, we
have:

Lemma 3.5 Assume 3 ≤ p < 4. Let P = 〈{Uα}, {gαβ}〉 ∈ P
1,p
G (M) and K

a polyhedron satisfying (A-1), (A-2) in the appendix and dimK ≤ 3. Also
let h : K → M be a Lipschitz map. Then the class [h∗ξP ]0 ∈ P0

G(K) is

independent of a.e. ξ ∈ Blε/3.

Proof: We have already shown the result for the case dimK ≤ [p]− 1 = 2.
Thus we assume dimK = 3. We denote by K2 the 2-skeleton of K. As
we have shown, there exists a well-defined class [h∗ξ]P0 ∈ P0

G(K) for a.e.

ξ ∈ Bl
ε and its restriction to K2, [(hξ|K2)∗P ]0 ∈ P0

G(K2) is independent of
a.e. ξ ∈ Bl

ε/3. We need to show that [h∗ξP ]0 ∈ P0
G(K) is also independent

of a.e. ξ ∈ Bl
ε. Thus the result follows from the following lemma applied to

P1 = h∗ξP and P2 = h∗ηP for two different a.e. ξ, η ∈ Bl
ε. �

Lemma 3.6 Let K be a 3-dimensional polyhedron and P1, P2 → K two
principal G-bundles which satisfy P1|K2

∼= P2|K2. Then P1
∼= P2 over K.

Proof. Since π2(G) = 0 for any compact Lie group G, this is an easy
consequence of the obstruction theory. For completeness, we give a proof.

Let EB → BG be the universal G-bundle, i.e., a G-bundle whose total
space EG is contractible, see [12]. From the bundle classification theory [12],
any principal G-bundle P → K is obtained as a pull back of EG → BG
via a map fP : K → BG, i.e., P ∼= f ∗

PEG. Moreover, this gives a bijective

correspondence between the homotopy classes [K,M ] and P̂0
G(K). Thus

for P1, P2 as above, there exist continuous f1, f2 : K → BG such that
P1

∼= f ∗
1EG and P2

∼= f ∗
2EG. By our assumption, f1 is homotopic to f2 when

restricted to K2, i.e., there exists a homotopy F : [0, 1]×K2 →M such that
F (0, ·) = f1 and F (1, ·) = f2. To prove P1

∼= P2, it suffices to show that F
has a continuous extension F̃ to [0, 1] × K such that F̃ (0, x) = f1(x) and
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F̃ (1, x) = f2(x) for x ∈ K. By the obstruction theory [5], the obstruction to
extending F to such F̃ lies in H i+1([0, 1]×K, [0, 1]×K2 ∪ {0} ×K ∪ {1} ×
K; πi(BG)) ∼= H i(K,K2; πi(BG)) for i ≥ 0. The latter cohomology groups
are all trivial since trivially we have H i(K,K2; πi(BG)) = 0 for i = 1, 2 and
i > 3 and H3(K,K2; π3(BG)) = H3(K,K2; π2(G)) = 0 since π2(G) = 0 for
a compact Lie group G. �

Let P ,K and h be as in Lemma 3.5. As in Definition 3.1, from Lemma 3.5
we denote by [P ]h,K ∈ P̂0

G(K) the class [h∗ξP ]0 ∈ P̂0
G(K) which is independent

of a.e. ξ ∈ Bl
ε/3. As a corollary of Lemma 3.6, we have

Lemma 3.7 Assume 3 ≤ p < 4. Let K be a polyhedron satisfying (A-1)
and (A-2) in the appendix, dimK = 3 and h, h′ : K → M Lipschitz maps.
Assume h is homotopic to h′. Then we have [P ]h,K = [P ]h′,K.

Proof. As we have shown in Lemma 3.4, for a.e. ξ ∈ Bl
ε/3 we have h∗ξP ∼=

h′∗ξP over K2. Thus by Lemma 3.6, we obtain h∗ξP ∼= h′∗ξP over K for such

ξ ∈ Bl
ε. From this, the result follows. �

From Lemma 3.4 and Lemma 3.7, we give the following definition:

Definition 3.2 Assume p ≥ 1. Let P = 〈{Uα}, {gαβ}〉 ∈ P
1,p
G (M), K

a polyhedron satisfying (A-1), (A-2) in the appendix, dimK ≤ d(p) and

h : K → M a Lipschitz map. We denote by [P ][h],K ∈ P̂0
G(K) the class

[h∗ξP ]0 ∈ P̂0
G(K) which is independent of a.e. ξ ∈ Bl

ε/3 and depends only on
the homotopy class of h.

From Definition 3.2, we obtain various invariants of P ∈ P
1,p
G (M) for

varying K and h. Among them [P ][h],Kd(p) for h : Kd(p) → M , where
h : K →M is a CW-structure of M , is special in the sense that they deter-
mine all the other invariants. That is, we have:

Lemma 3.8 Assume p ≥ 1. Let P1, P2 ∈ P
1,p
G (M) and h : K → M a

CW-structure of M , i.e., {h,K} ∈ CW(M). Assume that [P1][h],Kd(p) =
[P1][h],Kd(p). Then for any polyhedron L satisfying (A-1) and (A-2) in the
appendix, dimL ≤ d(p) and any Lipschitz map ϕ : L → M , we have
[P1][ϕ],L = [P2][ϕ],L.

Proof. We first remark that for P = 〈{Uα}, {gαβ}〉 ∈ P
1,p
G (M) and {Vi}

a refinement of {Uα}, i.e.,
⋃
i Vi = M and Vi ⊂ Uψ(i) for some refinement

map ψ, the bundle P ′ = 〈{Vi}, {gψ(i)ψ(j)}〉 ∈ P
1,p
G (M) has the same invariant

[P ][h],K = [P ′][h],K for K and h as in Definition 3.2. To see this, recall that
[P ][h],K and [P ′][h],K are defined as the classes of h∗ξP = 〈{h−1

ξ (Uα)}, {gαβ ◦
hξ}〉 ∈ P0

G(K) and h∗ξP
′ = 〈{h−1

ξ (Vi)}, {gψ(i)ψ(j)◦hξ}〉 ∈ P0
G(K), respectively,
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for a.e. ξ ∈ Bl
ε/3(for p = 3, they are defined as the C0-isomorphism classes

associated to h∗ξP, h
∗
ξP

′ ∈ P
1,3
G (M3). Because {h−1

ξ (Vi)} is a refinement of

{h−1
ξ (Uα)}, they are isomorphic and the claim follows.

By the above observation, passing to a refinement if necessary, we may as-
sume that P1 and P2 are of the form P1 = 〈{Uα}, {g1

αβ}〉, P2 = 〈{Uα}, {g2
αβ}〉.

By definition, [P1][h],Kd(p) and [P2][h],Kd(p) are given as

(3.11) [P1][h],Kd(p) = [h∗ξP1]0, [P2][h],Kd(p) = [h∗ξP2]0 for a.e. ξ ∈ Bl
ε/3.

By the cellular approximation theorem, there exists a cellular map φ :
L → M (the CW-structure of M is given by h : K → M) which we may
assume Lipschitz such that φ is homotopic to ϕ. By definition, we have

(3.12) [P1][φ],L = [φ∗
ξP1]0, [P2][φ],L = [φ∗

ξP2]0 for a.e. ξ ∈ Bl
ε/3.

For ξ ∈ Bl
ε, define ιξ(x) = πM(x+ ξ). Then we have φξ = ιξ ◦ φ and

(3.13) φ∗
ξP1 = φ∗ι∗ξP1, φ∗

ξP2 = φ∗ι∗ξP2 for a.e. ξ ∈ Bl
ε/3.

By assumption and (3.11), we have

(3.14) [h∗ι∗ξP1]0 = [h∗ξP1]0 = [h∗ξP2]0 = [h∗ι∗ξP2]0 for a.e. ξ ∈ Bl
ε/3.

Since h : K → M is a homeomorphism and ι∗ξPi ∈ P0
G(Md(p)) for a.e.

ξ ∈ Bl
ε/3 and i = 1, 2 (for p = 3, they are defined as the C0-isomorphism

classes associated to ιξPi ∈ P
1,3
G (M3) (i = 1, 2)), we have from (3.14) that

(3.15) ι∗ξP1
∼= ι∗ξP2 for a.e. ξ ∈ Bl

ε/3.

From (3.12), (3.13) and (3.15), we obtain

(3.16) [P1][ϕ],L = [P1][φ],L = [P2][φ],L = [P2][ϕ],L.

This completes the proof. �

As remarked in Remark 3.1, we do not know whether the result presented
in this subsection is optimal or not, i.e., we do not know whether the result
analogous to Theorem 3.1 holds for h : K → M with dimK = [p]. In the
following subsections §3.2 and §3.3, we show that Theorem 3.1 is improved
for bundles in the classes P

k,p
strong,G(M) and P

k,p
weak,G(M).
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3.2. Topological invariants for P ∈ P
k,p
strong,G(M)

Here we consider bundles in the class P
k,p
strong,G(M). Since P

k,p
strong,G(M) ⊂

P
1,kp
strong,G(M), as in the previous subsection we consider only the case k = 1,

i.e., bundles in the class P
1,p
strong,G(M).

For p ≥ 1, define dstrong(p)=[p]. Let K be a polyhedron satisfying (A-1)
and (A-2) in the appendix with dimK ≤ dstrong(p) and h : K → M a
Lipschitz map. As in the case of bundles in the class P

1,p
G (M), we want to

associate the isomorphism class [P ]h,K ∈ P̂0
G(K) for P ∈ P

1,p
strong,G(M). The

following is the main result in this section:

Theorem 3.2 Let p ≥ 1. Let P = 〈{Uα}, {gαβ}〉 ∈ P
1,p
strong,G(M). Let K

be a polyhedron satisfying (A-1), (A-2) in the appendix and h : K → M a
Lipschitz map. Assume that dimK ≤ dstrong(p). For them there corresponds

a class [P ]h,K ∈ P̂0
G(K). Moreover, this class depends only on the homotopy

class of h : K →M and the W 1,p-isomorphism class of P and coincides with
the C0-isomorphism class associated to h∗ξP ∈ P

1,p
G (K), [h∗ξP ]0 ∈ P̂0

G(K), for

a.e. ξ ∈ Bl
ε/3.

In this theorem, the W 1,p-isomorphism class of P is the class of P which we
consider as a bundle in P

1,p
G (M). The key to the proof of the above theorem

is the following lemma:

Lemma 3.9 Let K, h be as above and {Wp}p∈I an open covering of M .
Then there exists δ > 0 such that the following holds: Let P,Q ∈ P∞

G (M)
be principal G-bundles of class C∞ such that they are trivializable over Wp

for all p ∈ I. Write P = 〈{Wp}, {gpq}〉 and Q = 〈{Wp}, {hpq}〉 and assume
‖gpq − hpq‖W 1,p(Wpq) < δ for all p, q ∈ I with Wpq := Wp ∩Wq �= ∅. Then
h∗P ∼= h∗Q as bundles over K.

Proof. By Lemma 3.1, there exists ξ ∈ Bl
ε such that

(3.17) ‖gpq ◦ hξ − hpq ◦ hξ‖W 1,p(h−1
ξ (Wpq)) ≤ Cδ

for some C > 0 depending only on M ,G, K and h.
By the result proved in [13, §3] and the appendix, §7.1, (3.17) implies

that

(3.18) h∗ξP ∼= h∗ξQ

over K if δ > 0 is small.
Since hξ is homotopic to h by the homotopty (t, x) 	→ htξ, we see that

(3.19) h∗ξP ∼= h∗P, h∗ξQ ∼= h∗Q

over K. By (3.18) and (3.19), we obtain h∗P ∼= h∗Q over K. This completes
the proof. �
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Assume {Pn}⊂ P∞
G (M) is an approximating sequence of P ∈P

1,p
strong,G(M)

as in Definition 2.1 (2). From Lemma 3.9 we see that the isomorphism class
of h∗Pn ∈ P0

G(M) is independent of n for large n. The next lemma shows
that this isomorphism class is also independent of the chosen approximation,
namely, we have:

Lemma 3.10 Let K, h be as in Lemma 3.9. Also let p ≥ 1 and P ∈
P

1,p
strong,G(M). Let Pn = 〈{Vi}, {gnij}〉 ∈ P∞

G (M) and Qn = 〈{Wp}, {hnpq}〉 ∈
P∞
G (M) be approximating sequences of P in the sense of Definition 2.1 (2),

i.e., {Vi} and {Wp} are refinements of M , Vi ⊂ Uϕ(i) and Wp ⊂ Uψ(p), and
‖gϕ(i)ϕ(j) − gnij‖W 1,p(Vij) → 0 and ‖gψ(p)ψ(q) − hnpq‖W 1,p(Wpq) → 0 as n → ∞.
Then for large n, we have h∗Pn ∼= h∗Qn.

Proof. By Lemma 3.1 and the Fatou’s lemma, there exist subsequences of
{gnij} and {hnpq} which we still denote by the same sequences and ξ ∈ Bl

ε/3 of
positive measure such that

(3.20) ‖gϕ(i)ϕ(j) ◦ hξ − gnij ◦ hξ‖W 1,p(h−1
ξ (Vij))

→ 0

and

(3.21) ‖gψ(p)ψ(q) ◦ hξ − hnpq ◦ hξ‖W 1,p(h−1
ξ (Wpq)) → 0

as n→ ∞.
From (3.20), (3.21) and the result in [13, §3] and §7.1, we have

(3.22) [h∗ξP{Vi}]0 = [h∗ξPn{Vi}]0

and

(3.23) [hξP{Wp}]0 = [h∗ξQn{Wp}]0

for large n and a.e. ξ ∈ Bl
ε/3, where

P{Vi} := 〈{Vi}, {gϕ(i)ϕ(j)}〉 and P{Wp} := 〈{Wp}, {gψ(p)ψ(q)}〉
are bundles in the class P

1,p
strong,G(M) and [h∗ξP{Vi}]0, [h∗ξP{Wp}]0 denote the C0-

isomorphism classes associated to the bundles h∗ξP{Vi}, h
∗
ξP{Wp} ∈ P

1,p
G (K),

respectively. h∗ξPn{Vi} and h∗ξQn{Wp} are defined similarly.

Since the C0-isomorphism class associated to a bundle in P
1,p
G (K) does

not change if we pass to a refinement (see [13]), we have [h∗ξP ]0 = [h∗ξP{Vi}]0
and [h∗ξP ]0 = [h∗ξP{Wp}]0 for a.e. ξ ∈ Bl

ε/3. Thus we obtain

(3.24) [h∗ξP{Vi}]0 = [h∗ξP{Wp}]0

for a.e. ξ ∈ Bl
ε/3.
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From (3.22), (3.23) and (3.24), we have

(3.25) [h∗ξPn{Vi}]0 = [h∗ξQn{Wp}]0.

Since [h∗ξPn{Vi}]0 = [h∗ξPn]0 = [h∗Pn]0 and [h∗ξQn{Wp}]0 = [h∗ξQn]0 = [h∗Qn]0,
we finally obtain [h∗Pn]0 = [h∗Qn]0 for large n. �

By Lemma 3.10, the isomorphism class h∗Pn for large n is independent
of the particular approximation of P ∈ P

1,p
strong,G(M) and the following defi-

nition is meaningful.

Definition 3.3 Let P ∈ P
1,p
strong,G(M) and {Pn} an approximating sequence

of P in the sense of Definition 2.1 (2). Also let K be a polyhedron satisfying
(A-1), (A-2) in the appendix, dimK ≤ dstrong(p) and h : K →M a Lipschitz
map. For large n, the isomorphism class [h∗Pn]0 ∈ P0

G(K) is independent of
n and the approximating sequence {Pn} and we denote this class by [P ]sh,K.

To complete the proof of Theorem 3.2, we next show that the class [P ]sh,K
depends only on the W 1,p-isomorphism class of P .

Lemma 3.11 Let h : K → M be as in Definition 3.3. Also let us assume
that P =〈{Uα}α∈I , {gαβ}αβ∈I〉 ∈ P

1,p
strong,G(M) and Q = 〈{Vi}i∈J , {hij}i,j∈J〉 ∈

P
1,p
strong,G(M) are W 1,p-isomorphic to each other as bundles in the class P

1,p
G (M)

(see Definition 2.2). Then we have [P ]sh,K = [Q]sh,K.

Proof. We first observe from the proof of Lemma 3.10 that [P ]sh,K and [Q]sh,K
are defined as the associated C0-isomorphism classes of h∗ξP ∈ P

1,p
G (K) and

h∗ξQ ∈ P
1,p
G (K) respectively, for a.e. ξ ∈ Bl

ε/3.

By the assumption, for a.e. ξ ∈ Bl
ε/3 we have (see Definition 2.2)

(3.26) gϕ(s)ϕ(t) ◦ hξ = (ρs ◦ hξ) · (hψ(s)ψ(t) ◦ hξ) · (ρt ◦ hξ)−1 in h−1
ξ (Wst).

By the result of [13], we already know that the C0-isomorphism class asso-
ciated with a bundle in P

1,p
G (K) depends only on its W 1,p-isomorphism class

(strictly speaking, we have only proved this for K a manifold, but the proof
equally applies for the present case once we have the result in §7.1). Thus
from (3.26), we have [h∗ξP ]0 = [h∗ξQ]0 for a.e. ξ ∈ Bl

ε/3. Therefore by the

remark given at the beginning of the proof, we obtain [P ]sh,K = [Q]sh,K . �

Notice that for P ∈ P
1,p
strong,G(M) and ρ = {ρt} a W 1,p-bundle iso-

morphism (as in Definition 2.2), the gauge transformed bundle ρ∗P :=
〈{Wt}, {ρs · gϕ(s)ϕ(t) · ρt−1}〉 is not a bundle in the class P

1,p
strong,G(M) in gen-

eral. However, by Proposition 2.1 if ρt ∈ W 1,p
strong(Ws, G), then g∗P also
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belongs to P
1,p
strong,G(M). The above lemma says that once we have ρ∗P ∈

P
1,p
strong,G(M) for P ∈ P

1,p
strong,G(M) and ρ = {ρt} a W 1,p-bundle isomorphism,

we have [ρ∗P ]sh,K = [P ]sh,K.

The final ingredient to complete the proof of Theorem 3.2 is

Lemma 3.12 Let K be a polyhedron satisfying (A-1), (A-2) in the appendix,
dimK ≤ dstrong(p) and h1, h2 : K → M two Lipschitz maps such that they
are homotopic to each other. Then we have [P ]sh1,K

= [P ]sh2,K
.

Proof. Let Pn ∈ P∞
G (M) be an approximating sequence of P in the sense

of Definition 2.1 (2). By definition, we have [P ]sh1,K
= [h∗1Pn]0 and [P ]sh2,K

=
[h∗2Pn]0 for large n. Since h1 is homotopic to h2, we have h∗1Pn ∼= h∗2Pn for
all n. Thus we have [P ]sh1,K

= [P ]sh2,K
. This completes the proof. �

Combining Lemma 3.11 and Lemma 3.12, we complete the proof of The-
orem 3.2. �

Definition 3.4 Let P ∈ P
1,p
strong,G(M) and h : K → M a Lipschitz map

with K satisfying (A-1), (A-2) in the appendix and dimK ≤ dstrong(p). Since
the class [P ]sh,K depends only on the homotopy class [h] ∈ [K,M ], we denote
this as [P ]s[h],K.

As we remarked before Lemma 3.12, W 1,p-isomorphism ρ = {ρs} with
ρs ∈ W 1,p

strong(Ws, G) acts on P
1,p
strong,G(M). From this we have the following

corollary (which simply restate Theorem 3.2, but the assertion is somewhat
weaker):

Corollary 3.1 Let h : K → M be a Lipschitz map with K satisfying (A-1)
and (A-2) in the appendix and dimK ≤ dstrong(p). Then there exists a
homomorphism

h∗ : H1(M ; W1,p
strong,G) → H1(K; C0

G)

defined by h∗([P ]s1,p)= [P ]sh,K, where [P ]s1,p∈H1(M ; W1,p
strong,G)= P̂

1,p
strong,G(M)

denotes the isomorphism class of P . Moreover, h∗ depends only on the
homotopy class of h.

3.3. Topological invariants for P ∈ P
k,p
weak,G(M)

Since P
k,p
weak,G(M) ⊂ P

1,kp
weak,G(M) as in the previous sections, we only consider

the case k = 1. The idea for defining invariants for P ∈ P
1,p
weak,G(M) is very

similar to the previous subsection.
For p ≥ 1, define dweak(p) = the largest integer strictly less than p. No-

tice that, by the Sobolev embedding, we have P
1,p
G (K) ⊂ P0

G(M) when
dimK ≤ dweak(p). Our main result is the following:
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Theorem 3.3 Assume p ≥ 1. Let K be a polyhedron satisfying (A-1), (A-2)
in the appendix and h : K → M a Lipschitz map. Assume that dimK ≤
dweak(p). Then for P = 〈{Uα}, {gαβ}〉 ∈ P

1,p
weak,G(M), there corresponds a

class [P ]h,K ∈ P̂0
G(K). Moreover, this class depends only on the homotopy

class of h : K →M and the W 1,p-isomorphism class of P and coincides with
the C0-class of h∗ξP ∈ P

1,p
G (K) ⊂ P0

G(K), [h∗ξP ]0 ∈ P̂0
G(K), for a.e. ξ ∈ Bl

ε/3.

In this theorem, the W 1,p-isomorphism class is taken as that of Theo-
rem 3.2. The key step for the proof of the above theorem is the following:

Lemma 3.13 Let h : K →M be as above, {Uα} an open covering of M and
D > 0 a constant. There exists δ > 0 depending only on h : K → M , {Uα}
and D such that the following holds: Suppose P →M and Q→ M are two
principal G-bundles of class C∞ which are represented as P = 〈{Uα}, {gPαβ}〉
and Q = 〈{Uα}, {gQαβ}〉 such that

‖gPαβ − gQαβ‖Lp(Uαβ) < δ, ‖dgPαβ‖Lp(Uαβ), ‖dgQαβ‖Lp(Uαβ) ≤ D

for any α, β with Uαβ �= ∅. Then there holds h∗P ∼= h∗Q.

Proof. By Lemma 3.1, there exist ξ ∈ Bl
ε of positive measure and C > 0

depending only on h : K →M and G such that

(3.27) ‖gPαβ ◦ hξ − gQ ◦ hξ‖Lp(h−1
ξ (Uαβ)) ≤ Cδ

and

(3.28) ‖d(gPαβ ◦ hξ)‖Lp(h−1
ξ (Uαβ)), ‖d(gQαβ ◦ hξ)‖Lp(h−1

ξ (Uαβ)) ≤ CD.

Notice that, by the Sobolev embedding, h∗ξP = 〈{h−1
ξ (Uαβ)}, {gPαβ ◦hξ}〉 and

h∗ξQ = 〈{h−1
ξ (Uαβ)}, {gQαβ ◦hξ}〉 are bundles of class C0 for a.e. ξ ∈ Bl

ε. Also

by the Sobolev embedding, (3.27) and (3.28), ‖gPαβ ◦hξ−gQαβ ◦hξ‖C0(h−1
ξ (Uαβ))

is small if δ > 0 is small. Thus if we choose δ > 0 small, we have h∗ξP ∼= hξQ
for P → M and Q → M satisfying the assumption of the lemma. Since hξ
is homotopic to h, we also have hξP ∼= h∗P and h∗ξQ ∼= h∗Q. Therefore we
have h∗P ∼= h∗Q. This completes the proof. �

Let P ∈ P
1,p
weak,G(M) and {Pn} ⊂ P∞

G (M) be an approximating sequence
of P in the sense of Definition 2.1 (3). By Lemma 3.13, the isomorphism
class of h∗Pn is independent of n if n is large. As in the case of bundles
in P

1,p
strong,G(M), we want to define the class [h∗Pn]0 for large n as the class

of the “bundle” h∗P for P ∈ P
1,p
weak,G(M). For this, we need to show that

the class [h∗Pn]0 ∈ P̂0
G(M) does not depend on the specific choice of the

approximation.
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Lemma 3.14 Let P = 〈{Uα}, {gαβ}〉 ∈ P
1,p
weak,G(M) and h : K → M a Lip-

schitz map, where K is a polyhedron satisfying (A-1), (A-2) in the appendix
with dimK ≤ dweak(p). Suppose

Pn = 〈{Vi}, {gnij}〉 ∈ P∞
G (M) and Qn = 〈{Wp}, {hnpq}〉 ∈ P∞

G (M)

are two approximating sequences of P in the sense of Definition 2.1 (3).
Then for large n, we have

h∗Pn ∼= h∗Qn.

Proof. By assumption, there exists D > 0 such that

(3.29) ‖gϕ(i)ϕ(j) − gnij‖Lp(Vij) → 0, ‖gψ(p)ψ(q) − hnpq‖Lp(Wpq) → 0

as n→ ∞ and

(3.30) ‖dgnij‖Lp(Vij ) ≤ D, ‖dhnpq‖Lp(Wpq) ≤ D

for all i, j and p, q with Vij �= ∅ and Wpq �= ∅ respectively, where ϕ and ψ
are refinement maps, i.e., Vi ⊂ Uϕ(i) and Wp ⊂ Uψ(p).

By Lemma 3.1, (3.29) and (3.30) imply that there exists ξ ∈ Bl
ε of positive

measure such that

‖gϕ(i)ϕ(j) ◦ hξ − gnij ◦ hξ‖Lp(h−1
ξ (Vij))

→ 0,(3.31)

‖gψ(p)ψ(q) ◦ hξ − hnpq ◦ hξ‖Lp(h−1
ξ (Wpq)) → 0(3.32)

as n→ ∞ and

(3.33) ‖d(gnij ◦ hξ)‖Lp(h−1
ξ (Vij))

≤ CD, ‖d(hnpq ◦ hξ)‖Lp(h−1
ξ (Wpq)) ≤ CD

for all n, where C > 0 is a constant independent of n and ξ.

Since dweak(p) < p, by the Sobolev embedding W 1,p(K) ⊂ C0(K) and
(3.31), (3.32) and (3.33) we have, by the same reasoning as in the proof of
Lemma 3.13,

(3.34) hξ
∗P{Vi} ∼= hξ

∗Pn ∼= h∗Pn

and

(3.35) hξ
∗P{Wp} ∼= hξ

∗Qn
∼= h∗Qn

for large n. Here we notice that hξ
∗P{Uα} = 〈{h−1

ξ (Uα)}, {gαβ ◦hξ}〉 defines a

C0-bundle for a.e. ξ ∈ Bl
ε and since {h−1

ξ (Vi)} and {h−1
ξ (Wp)} are refinements

of {h−1
ξ (Uα)}, we have

(3.36) hξ
∗P{Vi} ∼= hξ

∗P{Uα} ∼= hξ
∗P{Wp}.

From (3.34), (3.35) and (3.36), we obtain h∗Pn ∼= h∗Qn for large n. �
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In view of the above lemma, we give the following:

Definition 3.5 Let P ∈ P
1,p
weak,G(M) and h : K → M a Lipschitz map

with K satisfying (A-1), (A-2) in the appendix and dimK ≤ dweak(p). Let
{Pn} ⊂ P∞

G (M) be an approximating sequence of P in the sense of Defini-

tion 2.1 (3). For large n, the class [h∗Pn]0 ∈ P̂0
G(K) is independent of n and

the approximating sequence {Pn} and we denote this class by [P ]wh,K.

To complete the proof of Theorem 3.3, we next show that the class [P ]wh,K
depends only on the W 1,p-isomorphism class of P . Namely, we show:

Lemma 3.15 Let h : K → M be a Lipschitz map with K satisfying (A-1),
(A-2) in the appendix and dimK ≤ dweak(p). Suppose P = 〈{Uα}, {gαβ}〉 ∈
P

1,p
weak,G(M) and Q = 〈{Vi}, {hij}〉 ∈ P

1,p
weak,G(M) are W 1,p-isomorphic to each

other as bundles in P
1,p
G (M) (see Definition 2.2).Then we have [P ]wh,K=[Q]wh,K.

Proof. The proof of Lemma 3.14 shows that the classes [P ]wh,K and [Q]wh,K are
defined as the C0-isomorphism classes of h∗ξP ∈ P0

G(M) and h∗ξQ ∈ P0
G(M)

respectively, for a.e. ξ ∈ Bl
ε.

Let ρ = {ρs} be as in Definition 2.2. Then for a.e. ξ ∈ Bl
ε, we have

(3.37) gϕ(s)ϕ(t) ◦ hξ = (ρs ◦ hξ) · (hψ(s)ψ(t) ◦ hξ) · (ρt ◦ hξ)−1

in h−1
ξ (Wst).

From (3.37), we obtain h∗ξP ∼= h∗ξQ as C0-bundles for a.e. ξ ∈ Bl
ε. By the

remark at the beginning of the proof, this completes the proof. �

The final ingredient to complete the proof of Theorem 3.3 is:

Lemma 3.16 Let P ∈P
1,p
weak,G(M) and K a polyhedron satisfying (A-1),(A-2)

in the appendix and dimK ≤ dweak(P ). Suppose that two Lipschitz maps
h1, h2 : K→M are homotopic to each other. Then we have [P ]wh1,K

=[P ]wh2,K
.

Proof. Let {Pn} ⊂ P
1,p
weak,G(M) be an approximating sequence of P in

the sense of Definition 2.1 (3). By definition, we have [P ]wh1,K
= [h1

∗Pn]0
and [P ]wh2,K

= [h2
∗Pn]0 for large n. Since h1 is homotopic to h2, we have

h1
∗Pn ∼= h2

∗Pn for all n. Thus we obtain [P ]wh1,K
= [P ]wh2,K

. �
Combining Lemma 3.15 and Lemma 3.16, we complete the proof of The-

orem 3.3. �

Definition 3.6 Let P ∈ P
1,p
weak,G(M) and h : K → M a Lipschitz map

with K satisfying (A-1), (A-2) in the appendix and dimK ≤ dweak(p). Since
the class [P ]wh,K depends only on the homotopy class [h] ∈ [K,M ], we denote
this also as [P ]w[h],K.
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Since the W 1,p-isomorphism ρ = {ρs} with ρs ∈ W 1,p
weak(Ws, G) acts on

P
1,p
weak,G(M) by Proposition 2.1, we have the following corollary:

Corollary 3.2 Let h : K →M be a Lipschitz map with K satisfying (A-1),
(A-2) in the appendix and dimK ≤ dweak(p). Then there exists a homomor-
phism

h∗ : H1(M ; W1,p
weak,G) → H1(K; C0

G)

defined by h∗([P ]1,p) = [P ]wh,K, where [P ]w1,p ∈ H1(M ; W1,p
weak,G) = P̂

1,p
weak,G(M)

denotes the isomorphism class of P . h∗ depends only on the homotopy class
of h.

3.4. The case G = Tk

In this section, we consider the case G=Tk (k ≥ 1) of torus bundles. In this
case, we show that the results proved in the previous subsections are im-
proved. Namely, we have

Theorem 3.4 Assume G = Tk for some k ≥ 1 and P = 〈{Uα}, {gαβ}〉 ∈
P

1,p
G (M). Let K be a polyhedron satisfying (A-1), (A-2) in the appendix with

arbitrary dimension and h : K → M a Lipschitz map. For p ≥ 3, we have
a class [P ]h,K ∈ P̂0

G(M) which depends only on the W 1,p-isomorphism class
of P and the homotopy class of h.

Proof. By Theorem 3.1, P ∈ P
1,p
G (M) defines uniquely a class [P ]h,Kd(p) ∈

P̂0
G(Kd(p)) which depends only on the W 1,p-isomorphism class of P and the

homotopy class of h. By the inclusion Kd(p) ⊂ K, we have [K,BTk] →
[Kd(p), BT k]. Since BTk � BT × · · · × BT � CP∞ × · · · × CP∞ (k-times),
CP∞ = K(Z, 2) and [K,K(Z, 2)] ∼= H2(K; Z), etc., we obtain

(3.38) H2(K; Z) × · · · ×H2(K; Z) → H2(Kd(p); Z) × · · · ×H2(Kd(p); Z).

On the other hand, by the cohomology exact sequence of the pair (K,Kd(p)),
we have

· · ·→H2(K,Kd(p); Z)→H2(K; Z)→H2(Kd(p); Z)→H3(K,Kd(p); Z)→· · · .
Since d(p) ≥ 3 when p ≥ 3, we have by the above sequence H2(K; Z) �
H2(Kd(p); Z). This implies that the homomorphism given by (3.38) is an
isomorphism. In other words, we have an isomorphism Ȟ1(Kd(p); C0

G) ∼=
Ȟ1(K; C0

G). Composing this with the homomorphism h∗ : Ȟ1(M ; W1,p
G ) →

Ȟ1(Kd(p); C0
G), we obtain

(3.39) Ȟ1(M ; W1,p
G )

h∗→ Ȟ1(Kd(p); C0
G)

∼→ Ȟ1(K; C0
G).

Defining the image of [P ] ∈ P̂
1,p
G (M) � Ȟ1(M ; W1,p

G ) under (3.39) by [P ]h,K∈
P0
G(K), we obtain the desired class. This completes the proof. �
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4. Chern-Weil theory for Sobolev connections on Sobo-
lev bundles

This section extends the classical Chern-Weil theory to Sobolev connections
on Sobolev bundles. Since P

k,p
G (M) ⊂ P

1,kp
G (M) for k ≥ 1, we again only

consider principal G-bundles of class W 1,p and A1,p/2-connections.
Let P = 〈{Uα}α∈I , {gαβ}αβ∈I〉 ∈ P

1,p
G (M) and A = {Aα} ∈ A1,p/2(P ).

Let Sk(g∗) ⊂ (g∗)⊗k denote the symmetric power, i.e.,

φ ∈ Sk(g∗) if φ : g × · · · × g︸ ︷︷ ︸
k

→ R is symmetric multilinear.

The adjoint action of G on g induces a G-action on Sk(g∗). We denote by
Ik(G) the G-invariant elements of Sk(g∗). That is, φ ∈ Ik(G) if

φ(Ad(g)X1, . . . ,Ad(g)Xk) = φ(X1, . . . , Xk) for g ∈ G and X1, . . . , Xk ∈ g.

For φ ∈ Sk(g∗), x ∈ M and ωi ⊗ Xi ∈
∧even T ∗

xM ⊗ g (i = 1, . . . , k), we
define

φ(ω1 ⊗X1, . . . , ωk ⊗Xk) = φ(X1, . . . , Xk)ω1 ∧ · · · ∧ ωk ∈
∧•

T ∗
xM.

Let φ ∈ Ik(G). We assume in the following p/2 ≥ k. Since FAα ∈
Lp/2(Uα,

∧2 T ∗Uα ⊗ g), we have

Pφ(FAα) := φ(FAα, . . . , FAα) ∈ Lp/2k
(
Uα,
∧2k

T ∗Uα
) ⊂ L1

(
Uα,
∧2k

T ∗Uα
)
.

By the G-invariance of φ, different Pφ(Fα) are glued together to give a global

2k-form in Lp/2k(M,
∧2k T ∗M) which we denote by Pφ(FA).

For smooth P and A, the classical Chern-Weil theory asserts (see [15])
that i) the form Pφ(FA) is closed, ii) the cohomology class of Pφ(FA) is
independent of A. We extend these for P ∈ P

1,p
G (M) and A ∈ A1,p/2(P ).

Before beginning, we first observe that we may assume p < m since
the case p ≥ m has been treated in our previous paper [13]. Then, since
2k+ 1 ≤ p+ 1 < m+ 1, we have 2k+ 1 ≤ m and the form Pφ(FA) is a form
of degree 2k ≤ m− 1 on M .

Under the above assumption, our first lemma asserts that Pφ(FA) is
closed in the sense of distributions:

Lemma 4.1 Let P = 〈{Uα}, {gαβ}〉 ∈ P
1,p
G (M) (p ≥ 2) and A = {Aα} ∈

A1,p/2(P ). Let k ≤ p/2 be a positive integer and φ ∈ Ik(G) an invariant
polynomial. Then we have dPφ(FA) = 0 in D′(M,

∧2k+1 T ∗M
)
, i.e., we have

(4.1)

∫
M

Pφ(FA) ∧ dα = 0

for any β ∈ C∞(M,
∧m−2k−1 T ∗M

)
.
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Proof. Since the assertion dPφ(FA) = 0 in D′(M,
∧2k+1 T ∗M

)
is local, i.e.,

if it is satisfied on any Uα, by the partition of unity, it holds on M . So it
suffices to prove (4.1) for β ∈ C∞(M,

∧m−2k−1 T ∗M
)

with supp(β) ⊂ Uα.

On Uα, we have Pφ(FA) = Pφ(FAα). Since A ∈ A1,p/2(P ), i.e., Aα ∈
Lp(Uα) and dAα ∈ Lp/2(Uα), there exists {Aα,n} ⊂ C∞(Uα, T

∗Uα ⊗ g) such
that Aα,n → Aα in Lp(Uα) and dAα,n → dAα in Lp/2(Uα) as n → ∞. From
these, we have

(4.2) Pφ(FAα,n) → Pφ(FAα)

in Lp/2k(Uα), in particular, in L1(Uα).

By the Bianchi identity, we have dAα,nFAα,n = 0 and dPφ(FAα,n) = 0.
Thus we have by the Stokes theorem

(4.3)

∫
M

Pφ(FAα,n) ∧ dβ = 0

for all β ∈ C∞(M,
∧m−2k−1 T ∗M

)
with supp(β) ⊂ Uα. Letting n → ∞

in (4.3), we have by (4.2) ∫
M

Pφ(FAα) ∧ dα = 0.

This completes the proof. �

Let P = 〈{Uα}, {gαβ}〉 ∈ P
1,p
G (M), A = {Aα} ∈ A1,p/2(P ) and φ ∈ Ik(G)

with p/2 ≥ k be as before. Also let S be an arbitrary closed manifold and
f : S →M a Lipschitz map. We next want to consider the pulled back form
f ∗Pφ(FA). We first remark that even though Pφ(FA) ∈ L1(M,

∧2k T ∗M),

f ∗Pφ(FA) does not belong to L1(S,
∧2k T ∗S) in general. This is because the

composition g◦h of a L1-function g with a Lipschitz map h does not preserve
the L1-property, i.e., g ◦ h �∈ L1 in general. However, we shall show that
f ∗Pφ(FA) belongs to L1 and satisfies d(f ∗Pφ(FA)) = 0 in D′(S,

∧2k+1 T ∗S)
for generic f . That is, we have

Lemma 4.2 Let P = 〈{Uα}, {gαβ}〉 ∈ P
1,p
G (M), A = {Aα} ∈ A1,p/2(P ) and

φ ∈ Ik(G). Also let S be an arbitrary closed manifold of dimension i and
f : S →M a Lipschitz map. Suppose p/2 ≤ k, then for a.e. ξ ∈ Bl

ε we have
f ∗
ξ Pφ(FA) ∈ L1(S,

∧2k T ∗S) and

(4.4) d(f ∗
ξPφ(FA)) = 0 in D′(S,

∧2k+1 T ∗S).
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Proof. Since f : S → M is Lipschitz, there exists a sequence of smooth
maps {fn} ⊂ C∞(S,M) such that fn → f in Lip(S,Rl), i.e.,

sup
x∈S

|fn(x)−f(x)|+ sup
x,y∈S,x 	=y

|(fn(x) − f(x)) − (fn(y) − f(y))|
dS(x, y)

→ 0 as n→∞.

First we consider the case f ∈ C∞(S,M). As in Lemma 4.1, we only need
to prove the assertion locally in S. By choosing ε > 0 small if necessary, we
may assume that for any s ∈ S, there exists an open neighborhood U ⊂ S
of s such that fξ(U) ⊂ Uα for all ξ ∈ Bl

ε and for some α. As in the proof of
Lemma 4.1, there exists {Aα,n} ⊂ C∞(Uα, T

∗Uα⊗g) such that Aα,n → Aα in
Lp(Uα) and dAα,n → dAα in Lp/2(Uα). Then as in the proof of Lemma 4.1,
we have

(4.5)

∫
S

f ∗
ξ Pφ(Aα,n) ∧ dβ = 0

for any β ∈ C∞(S,
∧i−2k−1 T ∗S) with supp(β) ⊂ U and ξ ∈ Bl

ε.

Once we prove f ∗
ξ Pφ(Aα,n) → f ∗

ξ Pφ(Aα) in Lp/2k(U,
∧2k T ∗U) for a.e.

ξ ∈ Bl
ε, the assertion d(f ∗

ξ Pφ(A)) = 0 in D′(S,
∧2k T ∗S) for a.e. ξ ∈ Bl

ε fol-
lows from (4.5) and the partition of unity argument. However, this is a con-
sequence of Lemma 3.1 and the assertion follows in the case f ∈ C∞(S,M).

Next we consider the general case f ∈Lip(S,M). Let {fn}⊂C∞(S,M) be
an approximating sequence of f as in the beginning of the proof. Then (fn)ξ
approximates fξ in Lip(M,S). From what we have proved above we have

(4.6)

∫
S

(fn)
∗
ξPφ(A) ∧ dβ = 0

for any β ∈ C∞(S,
∧i−2k−1 T ∗S) and for a.e. ξ ∈ Bε. Passing to the limit

n→ ∞ in (4.6) we obtain

(4.7)

∫
S

f ∗
ξ Pφ(A) ∧ dβ = 0

for any β ∈ C∞(S,
∧i−2k−1 T ∗S) and a.e. ξ ∈ Bl

ε. This completes the proof.
�

Suppose as before p ≥ 2. Let P = 〈{Uα, {gαβ}〉 ∈ P
1,p
G (M) and A =

{Aα} ∈ A1,p/2. Also suppose k ≤ p/2 and φ ∈ Ik(G). Let σ : �2k →
M be a smooth 2k-simplex, where �2k is the standard 2k-simplex �2k ={∑2k

i=0 λiei :
∑2k

i=0 λi = 1, 0 ≤ λi ≤ 1
} ⊂ R2k+1 and e0 = (1, 0, 0, . . . , 0),

e1 = (0, 1, 0, . . . , 0), . . . , e2k = (0, 0, 0, . . . , 1) ∈ R2k+1.
Let P2k = {(x0, x1, . . . , x2n) ∈ R2k+1 :

∑2k
i=0 xi = 1} ⊂ R2k+1 be a

hyperplane and U(�2k) ⊂ P2k an open neighborhood of �2k in P2k. By the
smoothness of σ, we may assume that σ is extended as a smooth map on
U(�2k) which we also denote by σ.
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In the following, we want to define a 2k-cochain Pφ(A) ∈ C2k(M) =
Hom(C2k(M),R) which is defined on the basis {σ} of 2k-chains C2k(M) by

“Pφ(A)(σ) =

∫
σ

Pφ(A) :=

∫

2k

σ∗Pφ(A)”

The above definition has a problem since the 2k-form σ∗Pφ(A) is not inte-
grable over �2k in general. However, by the Fubini’s theorem as proved in
Lemma 3.1, Pφ(A)(σξ) has a well-defined meaning for a.e. ξ ∈ Bε, where
σξ = ιξ ◦ σ. If the value Pφ(A)(σξ) is independent of a.e. ξ ∈ Bl

ε, we
can define Pφ(A)(σ) as this common value and obtain a cochain Pφ(A) ∈
C2k(M). However, Pφ(A)(σ) does depend on the choice of ξ and the above
attempt does not succeed. For this reason, we do not attempt to de-
fine a cochain Pφ(A) ∈ C2k(M), but define directly a cohomology class
[Pφ(A)] ∈ H2k(M ; R).

Thus let S =
∑p

i=1 niσi ∈ C2k(M) be a smooth cycle, i.e., ni ∈ Z,
σi : �2k → M are smooth simplexes and ∂S = 0. As before we assume that
each σi is smooth and defined on U(�2k). Taking ε > 0 small if necessary,
we may also assume that the ε-neighborhood of �2k in P2k is contained in
U(�2k).

For ξ ∈ Bl
ε, define Sξ =

∑p
i=1 niσi,ξ, where σi,ξ = ιξ ◦ σi. Then Sξ is also

a cycle: ∂Sξ = 0. By the Fubini’s theorem (see Lemma 3.1), σ∗
i,ξPφ(A) is in

L1(�2k) for a.e. ξ ∈ Bl
ε and we define

(4.8) Pφ(A)(Sξ) :=

p∑
i=1

ni

∫

2k

σ∗
i,ξPφ(A).

Then we have:

Lemma 4.3 Let S be a 2k-cycle as above. Then for a.e. ξ0, ξ1 ∈ Bl
ε, we

have Pφ(A)(Sξ0) = Pφ(A)(Sξ1).

To prove the above lemma, we need some preparation. For ξ, ξ0, ξ1 ∈ Bl
ε/2

and a smooth simplex σ : � →M define

iξ0,ξ1 : M × [−1, 2] →M, iξ0,ξ1;ξ : M × [−1, 2] →M,

Hσ:ξ0,ξ1 : �2k × [−1, 2] →M, Hσ:ξ0,ξ1;ξ : �2k × [−1, 2] →M

by

iξ0,ξ1(x, t) = πM (x+ (1 − ϕ(t))ξ0 + ϕ(t)ξ1),

iξ0,ξ1;ξ(x, t) = πM (x+ (1 − ϕ(t))ξ0 + ϕ(t)ξ1 + ξ),

Hσ:ξ0,ξ1(x, t) = iξ0,ξ1(σ(x), t), Hσ:ξ0,ξ1;ξ(x, t) = iξ0,ξ1;ξ(σ(x), t),

where ϕ ∈ C∞(R) is such that ϕ(t) = 0 for t ≤ 0, ϕ(t) = 1 for t ≥ 1 and
0 ≤ ϕ(t) ≤ 1 for 0 < t < 1.
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Before proving Lemma 4.3, we first prove:

Lemma 4.4 For ξ0, ξ1 ∈ Bl
ε/2 and a.e. ξ ∈ Bl

ε/2, we have∫
∂(
2k×[0,1])

H∗
σ:ξ0,ξ1;ξPφ(A) = 0.

Proof. We may assume, as before, that σ is defined on U(�2k). By
Lemma 4.2, we have

d(H∗
σ:ξ0,ξ1;ξ

Pφ(A)) = 0 in D′(U(�2k) × (−1, 2),
2k+1∧

T ∗(U(�2k) × (−1, 2))
)

for a.e. ξ ∈ Bl
ε/2. That is, for any α ∈ C∞

0 (U(�2k) × (−1, 2)), we have

(4.9)

∫
U(
2k)×(−1,2)

H∗
σ:ξ0,ξ1;ξPφ(A) ∧ dα = 0.

We denote by c the barycenter of �2k × [0, 1] and define the radial function
with center at c by |x| = inf{λ : λ > 0, x ∈ c + λ(�2k × [0, 1] − c)}.
For x ∈ �2k × [0, 1] and ε ∈ (0, 1), define a Lipschitz function αε by setting
αε(x) = 1 for |x| ≤ 1 − ε, αε(x) = (1 − |x|)/ε for 1 − ε < |x| ≤ 1. αε is
extended to U(�2k)×(−1, 2) by 0 as a Lipschitz function and we also denote
this extension by the same notation αε. By approximating αε by smooth
functions, we see that the same equation (4.9) holds for α = αε and we
therefore have:

(4.10)
1

ε

∫
1−ε≤|x|≤1

H∗
σ:ξ0,ξ1;ξPφ(A) ∧ d|x| = 0.

Thus by the differentiation theorem of the Lebesgue integral and letting
ε→ 0 in (4.10), we obtain that for a.e. ξ ∈ Bl

ε/2

(4.11)

∫
|x|=1

H∗
σ:ξ0,ξ1;ξ

Pφ(A) = 0.

This completes the proof of the Lemma. �
Proof of Lemma 4.3. By Lemma 4.4, we have for a.e. ξ ∈ Bl

ε/2

0 =

∫
∂(
2k×[0,1])

H∗
σi:ξ0,ξ1;ξ

Pφ(A)

=

∫
∂
2k×[0,1]

H∗
σi:ξ0,ξ1;ξ

Pφ(A) +

∫

2k

(σi)
∗
ξ1+ξPφ(A)

−
∫

2k

(σi)
∗
ξ0+ξPφ(A),(4.12)



Topological and analytical properties of Sobolev bundles II 759

Since Hσi:ξ0,ξ1;ξ = iξ0,ξ1;ξ ◦ (σi × id) (id : [0, 1] → [0, 1] is the identity map)
we obtain∫

∂
2k×[0,1]

H∗
σi:ξ0,ξ1;ξ

Pφ(A) =

∫
∂
2k×[0,1]

(σi × id)∗i∗ξ0,ξ1;ξPφ(A)

=

∫
∂
2k

σ∗
i

(∫ 1

0

dt ∧ ι ∂
∂t

(i∗ξ0,ξ1;ξPφ(A))

)
,(4.13)

where ι ∂
∂t

denotes the contraction by ∂
∂t

.

Since Pφ(A) ∈ L1
(
M,
∧2k T ∗M

)
, there exists ωn ∈ C∞(M,

∧2k T ∗M
)

such that ωn → Pφ(A) in L1
(
M,
∧2k T ∗M

)
. Then by Fubini’s theorem, we

have: ∫
B

l
ε/2

(∫
∂
2k

∫ 1

0

|σ∗
i (ι ∂

∂t
(i∗ξ0,ξ1;ξ(Pφ(A) − ωn)))|

)
dHl(ξ)

≤ C

∫
M

|Pφ(A) − ωn| dvolM → 0 as n→ ∞,(4.14)

where in the above, C > 0 is a constant independent of ξ0, ξ1, ξ and n.

Therefore by (4.14), Fubini’s theorem and Fatou’s lemma, there exists
a subsequence of {ωn} (which we also denote by {ωn}) such that for a.e.
ξ ∈ Bl

ε/2 we obtain

(4.15)

∫
∂
2k

∫ 1

0

|σ∗
i (ι ∂

∂t
(i∗ξ0,ξ1;ξ(Pφ(A) − ωn)))| → 0

as n→ ∞.

Thus we have from (4.12), (4.13) and (4.15):

Pφ(A)(Sξ1+ξ) − Pφ(Sξ0+ξ) =

p∑
i=1

ni

(∫

2k

σ∗
i,ξ1+ξPφ(A) −

∫

2k

σ∗
i,ξ0+ξPφ(A)

)

= −
p∑
i=1

ni

∫
∂
2k×[0,1]

H∗
σi:ξ0,ξ1;ξ

Pφ(A)

= − lim
n→∞

p∑
i=1

ni

∫
∂
2k

σ∗
i

(∫ 1

0

dt ∧ ι ∂
∂t

(i∗ξ0,ξ1;ξωn)
)

(4.16)

for a.e. ξ ∈ Bl
ε/2.

The last term in (4.16) vanishes since ∂S = 0. Thus we have proved

(4.17) Pφ(A)(Sξ0+ξ) = Pφ(Sξ1+ξ) for a.e. ξ ∈ Bl
ε/2.

Since (4.17) holds for any ξ0, ξ1 ∈ Bl
ε/2 and a.e. ξ ∈ Bl

ε/2, by the similar
argument as in the proof of Lemma 3.2, we have proved the assertion of
Lemma 4.3. �
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By Lemma 4.3, we give the following definition:

Definition 4.1 Let φ ∈ Ik(G) and S =
∑

i niσi a 2k-cycle on M . We
define Pφ(A)(S) by

Pφ(A)(S) = Pφ(A)(Sξ)

which is finite and independent of a.e. ξ ∈ Bl
ε/2.

The next lemma shows that Pφ(A) defines an element in the cohomology
group H2k(M ; R) = Hom(H2k(M ; R),R).

Lemma 4.5 Suppose P =〈{Uα}, {gαβ}〉∈P
1,p
G (M) and A={Aα}∈A1,p/2(P )

for some p ≥ 2. Let us also assume that φ ∈ Ik(G) for some k ≤ p/2.
Then for any smooth (2k + 1)-chain S on M , we have Pφ(A)(∂S) = 0.

Proof. It suffices to prove the assertion for smooth simplex σ : �2k+1 →M .
As before, we may assume that σ is defined on U(�2k+1) → M and the
ε-neighborhood of �2k+1 in P2k+1 is contained in U(�2k+1). By Lemma 4.2,
we have d(σ∗

ξPφ(A)) = 0 in D′(U(�2k+1),
∧2k+1 T ∗U(�2k+1)) for a.e. ξ ∈ Bl

ε.

Therefore for any α ∈ C∞
0 (U(�2k+1)), we have for a.e ξ ∈ Bl

ε∫
U(
2k+1)

σ∗
ξPφ(A) ∧ dα = 0.

From this, arguing as in the proof of Lemma 4.4, we obtain

(4.18)

∫
∂
2k+1

σ∗
ξPφ(A) = 0 for a.e. ξ ∈ Bl

ε.

From Definition 4.1 and (4.18), we have Pφ(A)(∂σ) = 0. �
From Lemma 4.5, we give the following definition:

Definition 4.2 Suppose p ≥ 2, P = 〈{Uα}, {gαβ}〉 ∈ P
1,p
G (M), A = {Aα} ∈

A1,p/2(P ) and φ ∈ Ik(G) with k ≤ p/2. By Lemma 4.5, Pφ(A) defines a
cohomology class in H2k(M ; R) = Hom(H2k(M,R),R) which we denote by
[Pφ(A)]: [Pφ(A)]([S]) := Pφ(A)(S).

The following theorem is one of the main results of this section. It asserts
that the analog of the classical Chern-Weil theory holds for P ∈ P

1,p
G (M)

and connections in A1,p/2(P ) up to dimension p/2.

Theorem 4.1 Let us assume that p ≥ 2, P = 〈{Uα}, {gαβ}〉 ∈ P
1,p
G (M) and

φ ∈ Ik(G) for k ≤ p/2. Then the cohomology class [Pφ(A)] ∈ H2k(M ; R)
defined in Definition 4.2 is independent of A ∈ A1,p/2(P ).
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Proof. Let A1 = {A1,α} and A2 = {A2,α} be two connections in A1,p/2(P ).
Denote by pr1 :M×(−1, 2) → M the projection to the first factor. Define the
pull back bundle pr∗1P on M × (−1, 2) by pr∗1P =〈{Uα×(−1, 2)}, {pr∗1gαβ}〉,
where pr∗1gαβ(x, t) = gαβ(x). It is easy to see that pr∗1P is a principal
G-bundle of class W 1,p on M × (−1, 2).

Let ϕ ∈ C∞(R) be such that ϕ(t) = 0 for t ≤ 0, ϕ(t) = 1 for t ≥ 1 and
0 ≤ ϕ(t) ≤ 1 for 0 < t < 1. For each α, we define

Aα(x, t) = ϕ(t)A1,α(x) + (1 − ϕ(t))A2,α(x).

It is also easy to see that A = {Aα} is a A1,p/2-connection on pr∗1P , i.e., it
satisfies

Aβ = (pr∗1gαβ)
−1d(pr∗1gαβ) + ( pr∗1gαβ)

−1Aα(pr∗1gαβ)

in Uαβ × (−1, 2), Aα ∈ Lp(Uα) and dAα ∈ Lp/2(Uα).

What we want to prove is that for any 2k-cycle S on M , there holds
Pφ(A1)(S) = Pφ(A2)(S). As before, we may assume that S is smooth and
can be written as S =

∑p
i=1 niσi for smooth simplexes σi : �2k → M

and ni ∈ Z.
For each simplex σi, define a (2k + 1)-simplex σ̂i on M × (−1, 2) by

σ̂i : �2k × [−1/2, 3/2] → M × (−1, 2), σ̂i(x, t) = (σi(x), t).

Also for ξ ∈ Bl
ε/2 and τ ∈ (−1/2, 1/2), define σ̂i,(ξ,τ) by

σ̂i,(ξ,τ)(x, t) = (σi,ξ(x), t+ τ).

Then as in the proof of Lemma 4.4, we have from Lemma 4.2

0 =

∫
∂(
2k×[−1/2,3/2])

σ̂∗
i,(ξ,τ)Pφ(A)

=

∫
∂
2k×[−1/2,3/2]

σ̂∗
i,(ξ,τ)Pφ(A) +

∫

2k

σ∗
i,ξPφ(A1) −

∫

2k

σ∗
i,ξPφ(A2)(4.19)

for a.e. (ξ, τ).
Thus for a.e. ξ ∈ Bl

ε/2 and a.e. τ ∈ (−1/2, 1/2), we have from Lemma 4.3
that

(4.20) Pφ(A1)(S) − Pφ(A2)(S) = −
p∑
i=1

ni

∫
∂
2k×[−1/2,3/2]

σ̂∗
i,(ξ,τ)Pφ(A).

To complete the proof, we need to show that the right side of (4.20) is 0.
To see this, notice that σ̂i,(ξ,τ) is written as σ̂i,(ξ,τ) = (idM × ιτ ) ◦ (σi,ξ× idR),
where idM and idR are the identity maps of M and R, respectively, and
ιτ (t) = t+ τ .
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Thus defining a 2k-from on M × [−1/2, 3/2] by ω = (idM × ιτ )
∗Pφ(A),

we obtain

(4.21)

∫
∂
2k×[−1/2,3/2]

σ̂∗
i,(ξ,τ)Pφ(A) =

∫
∂
2k×[−1/2,3/2]

(σ1,ξ × idR)∗ω.

Then as in the proof of Lemma 4.3, we have∫
∂
2k×[−1/2,3/2]

(σi,ξ × idR)∗ω =

∫
∂
2k

σ∗
i,ξ

(∫ 3/2

−1/2

dt ∧ ι ∂
∂t
ω

)

=

∫
∂
2k

σ∗
i

(
i∗ξ

(∫ 3/2

−1/2

dt ∧ ι ∂
∂t
ω

))
.(4.22)

Then arguing similarly as in the proof of Lemma 4.3, i.e., approximating

(2k−1)-form
∫ 3/2

−1/2
dt∧ι ∂

∂t
ω on M by smooth ones ωn ∈ C∞(M,

∧2k−1 T ∗M
)

in L1(M), we obtain by applying Fubini’s theorem and Fatou’s lemma that
for a.e. ξ ∈ Bl

ε/2 and for some subsequence of {ωn} (which we still denote

by {ωn}):

(4.23)

∫
∂
2k

σ∗
i

(
i∗ξ

(∫ 3/2

−1/2

dt ∧ ι ∂
∂t
ω

))
= lim

n→∞

∫
∂
2k

σ∗
i i

∗
ξωn.

Therefore for a.e. ξ ∈ Bl
ε/2, the right side of (4.20) becomes

−
p∑
i=1

ni

∫
∂
2k×[−1/2,3/2]

σ̂∗
i,(ξ,τ)Pφ(A) = −

p∑
i=1

ni

∫
∂
2k

σ∗
i

(
i∗ξ

(∫ 3/2

−1/2

dt ∧ ι ∂
∂t
ω

))

= − lim
n→∞

p∑
i=1

ni

∫
∂
2k

σ∗
i i

∗
ξωn = 0.

This completes the proof. �
In view of the above, we give

Definition 4.3 For P ∈ P
1,p
G (M) and φ ∈ Ik(G) (k ≤ p/2), we define a

cohomology class Pφ(P ) ∈ H2k(M ; R) as the class [Pφ(A)] ∈ H2k(M ; R)
which does not depend on A ∈ A1,p/2(P ).

In the above, we have defined from φ ∈ Ik(G) and P ∈ P
1,p
G (M) the

cohomology class [Pφ(P )] ∈ H2k(M ; R). On the other hand, Pφ(A) for
A ∈ A1,p/2(P ) naturally defines an (m − 2k)-(normal) current which also
defines a homology class in Hm−2k(M ; R). For the smooth case, these classes
are identified through Poincaré duality. We shall show below that this is also
the case for P ∈ P

1,p
G (P ) and φ ∈ Ik(G) when k ≤ p/2.
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As before, let us assume that P ∈ P
1,p
G (M) and φ ∈ Ik(G). For A ∈

A1,p/2(P ), define a (m− 2k)-current Cφ(A) as

(4.24) Cφ(A) : C∞(M,
∧

m−2kT ∗M
) � α 	→

∫
M

α ∧ Pφ(A) ∈ R.

The current Cφ(A) has the following properties:

i) The mass of Cφ(A) is finite:

M(Cφ(A)) := sup
{
Cφ(A)(α) : α ∈ C∞(M,

∧
m−2kT ∗M

)
, |α| ≤ 1

}
≤
∫
M

|Pφ(A)| dvolM < +∞,

since |Pφ(A)| ≤ C|FA|k ∈ L1(M).

ii) Cφ(A) is a cycle:

∂Cφ(A)(α) = Cφ(A)(dα) =

∫
M

dα ∧ Pφ(A) = 0

for any α ∈ C∞(M,
∧m−2k T ∗M) by Lemma 4.1.

Recall that a current T is called normal if the masses of T and ∂T are
finite (see [8]). From i) and ii), Cφ(A) defines an (m − 2k)-normal current,
Cφ(A) ∈ Nm−2k(M). From the sets Zi(M) := {T ∈ Ni(M) : ∂T = 0}
of cycles and boundaries Bi(T ) := {∂T : T ∈ Ni+1(N)}, one obtains the
quotient Zi(M)/Bi(M) which is defined as the i-th homology group of M
with coefficient in R: Hi(M ; R) = Zi(M)/Bi(M). It is known that Hi(M ; R)
is isomorphic to the i-th singular homology group of M , see [8], [9]. From i)
and ii), Cφ(A) defines the homology class in Hm−2k(M ; R) which we denote
by [Cφ(A)].

There is an isomorphism between H i
dR(M ; R) and Hm−i(M ; R) called the

Poincaré duality:

PD : H i
dR(M ; R) � α

∼−→
∫
M

• ∧ α ∈ Hm−i(M ; R).

On the other hand, there is also an isomorphism H i
dR(M ; R) � H i(M ; R)

(H i(M ; R) is the i-th singular cohomology of M with coefficient in R) called
the de Rham isomorphism which is induced by the map

(4.25) Ψ : C∞(M,
∧

iT ∗M
) � α 	→ Ψ(α) ∈ Hom(Ci,R)

defined by

Ψ(α)(σ) =

∫
σ

α :=

∫

i

σ∗α

for smooth simplex σ : �i → M .
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We show that [Pφ(A)] corresponds to [Cφ(A)] under these isomorphisms.
Namely, we have:

Proposition 4.1 Under the above notations, we have

PD ◦ Ψ−1([Pφ(A)]) = [Cφ(A)].

Proof. For [Pφ(A)] ∈ H2k(M ; R), we first seek Ψ−1([Pφ(A)]) ∈ H2k
dR(M).

Let us assume for the moment k < p/2. Recall that [Pφ(A)] is defined
in Definition 4.1. Suppose σ : �2k → M is a smooth 2k-simplex. Since
dPφ(A) = 0 and Pφ(A) ∈ Lp/2k with p/2k > 1, we have the Hodge decompos-
ition Pφ(A) = h(A) + dω(A), where h(A) is harmonic and C∞ and ω(A) ∈
W 1,p/2k(M,

∧2k−1 T ∗M). Thus we have

Pφ(A)(σξ) =

∫

2k

σ∗
ξPφ(A) =

∫

2k

σ∗
ξh(A) +

∫

2k

σ∗
ξ (dω(A))(4.26)

which has a well-defined meaning for a.e. ξ ∈ Bl
ε.

We consider the second term in (4.26). Choose a sequence {ωn} ∈
C∞(M,

∧2k−1 T ∗M) such that ωn → ω(A) in W 1,p/2k(M). Then by Fubini’s
theorem (as in Lemma 3.1) and Fatou’s Lemma, there exists a subsequence
of {ωn} (still denoted by {ωn}) such that

(4.27)

∫

2k

d(σ∗
ξωn) =

∫

2k

σ∗
ξdωn →

∫

2k

σ∗
ξdω(A) as n→ ∞ for a.e. ξ ∈ Bl

ε.

Similarly, we also have

(4.28)

∫

2k

σ∗
ξdωn =

∫
∂
2k

σ∗
ξωn →

∫
∂
2k

σ∗
ξω(A) as n→ ∞ for a.e. ξ ∈ Bε.

From (4.27) and (4.28), we obtain

(4.29)

∫

2k

σ∗
ξdω(A) =

∫
∂
2k

σ∗
ξω(A) for a.e. ξ ∈ Bl

ε.

By (4.26) and (4.29), we have for a.e. ξ ∈ Bl
ε

(4.30) Pφ(A)(σξ) = Ψ(h(A))(σξ) +

∫
∂
2k

σ∗
ξω(A).

Therefore if S =
∑p

i=1 niσi is a cycle, we obtain

Pφ(A)(S) = Pφ(A)(Sξ) (for a.e ξ ∈ Bl
ε, see Definition 4.1)

= Ψ(h(A))(Sξ)

= Ψ(h(A))(S) (since Sξ is homologous to S).(4.31)

Thus we have Ψ([h(A)]) = Pφ(A) in Hom(H2k(M ; R),R) = H2k(M ; R).
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On the other hand, we have

Cφ(A)(α) =

∫
M

α ∧ Pφ(A) =

∫
M

α ∧ h(A) +

∫
M

α ∧ dω(A)

=

∫
M

α ∧ h(A) + (−1)m(2k−1)+1

∫
M

dα ∧ ω(A)

= PD(h(A))(α) + (−1)m(2k−1)+1∂PD(ω(A))(α).(4.32)

In (4.32), PD(ω(A)) is a normal (m−2k+1)-current since M(PD(ω(A))) ≤
‖ω(A)‖L1(M) < ∞ and M(∂PD(ω(A))) ≤ ‖dω(A)‖L1(M) < ∞. From this
we obtain Cφ(A) = PD(h(A)) + (−1)m(2k−1)+1∂PD(ω(A)) and

(4.33) [Cφ(A)] = PD(h(A)).

Combining (4.31) and (4.33), we complete the proof for the case k < p/2.
For the case k = p/2, we need a deep result by Lanzani-Stein [16], see

also [3], [4]. In this case the above argument should be modified since Pφ(A)
is only in L1(M) and the standard Hodge decomposition theorem does not
hold in this case. In this case, we apply the result of Lanzani-Stein [16]
which asserts that for q-form u satisfying du = f ∈ L1 and d∗u = g ∈ L1,
we can conclude u ∈ Lm/m−1(M) provided that i) q �= 1, m− 1 or ii) q = 1
and g ∈ H1 (H1 is the Hardy space) or iii) q = m − 1 and f ∈ H1. In our
case ω(A) (which exists primarily as a current) satisfies dω(A) ∈ L1(A),
d∗ω(A) = 0 and ω(A) is a 2k − 1 = p− 1 < m− 1 form. Thus by the result
of Lanzani-Stein, we conclude ω(A) ∈ Lm/m−1(M). Once this is shown, the
remaining argument is the same by approximating ω(A) by smooth forms ωn
such that ωn → ω(A) in Lm/m−1(M) and dωn → dω(A) in L1(M). This
completes the proof. �

Since the cohomology class [Pφ(A)] is independent of A, we have as a
corollary of Proposition 4.1 the following:

Corollary 4.1 The homology class [Cφ(A)] ∈ Hm−2k(M ; R) is independent
of A ∈ A1,p/2(P ). We denote this class by Cφ(P ). We then have PD ◦
Ψ−1(Pφ(P )) = Cφ(P ).

The cohomology class Pφ(P ) (and therefore Cφ(P )) has some stability
property which will be useful for problems in the calculus of variations. To be
more precise, let us assume that there exist a sequence {Pn} of bundles in the
class P

1,p
G (M) and a sequence of connections {An} such that An ∈ A1,p/2(Pn)

for all n and supn≥1

∫
M
|FAn |p/2 dvolM < +∞. Then we have:

Proposition 4.2 Let φ ∈ Ik(G). Assume that k < p/2. Under the above
assumption, there exists a subsequence {Pnk

} of {Pn} such that Pφ(Pnk
) (and

Cφ(Pnk
)) is independent of k.
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Remark 4.1 In the above proposition, the assertion does not hold for the
case k = p/2. This is because a phenomenon known as bubbling off of
instantons occurs in general. Also one needs to take a subsequence in the
above proposition in general. For example, let P1, P2 ∈ P

1,p
G (M) and Ai ∈

A1,p/2(Pi) (i = 1, 2) be given such that Pφ(P1) �= Pφ(P2). Consider sequences
of bundles {Pn} and connections {An} such that Pn = P1 and An = A1 if n
is odd and Pn = P2 and An = A2 if n is even. Then the assumption of the
proposition is satisfied but we have Pφ(Pn) �= Pφ(Pn+1) for all n.

Proof of Proposition 4.2. By the result of Thom [35], we haveH∗(M ; Q)∼=
Ω∗(M) ⊗ Q, where Ω∗(M) is the oriented bordism ring of M . Thus for any
S ∈ H∗(M ; Z), there exists k ∈ Z such that kS can be represented by a closed
oriented submanifold of M . In particular, there exists a basis of H∗(M ; Q)
(and hence of H∗(M ; R)) consisting of the fundamental classes of closed
oriented submanifolds of M . Thus to prove the proposition, we only need
to show that Pφ(Pnk

)(S) is independent of k for some subsequence {Pnk
},

where S is a fundamental class of a closed oriented submanifold of M .
Assume that S ⊂ M is a closed oriented submanifold with dimS = 2k.

By Fubini’s theorem as in Lemma 3.1, we have:∫
Bl

ε

(∫
S

|FAn|p/2(πM(x+ ξ)) dH2k(x)

)
dHl(ξ)

=

∫
S

(∫
Bl

ε

|FAn |p/2(πM(x+ ξ)) dHl(ξ)

)
dH2k(x)

≤ C

∫
S

(∫
Oε(M)

|FAn|p/2(πM(y)) dHl(y)

)
dH2k(x)

≤ C

∫
M

|FAn|p/2 dvolM .(4.34)

By (4.34), Fubini’s theorem and Fatou’s lemma, for a.e. ξ ∈ Bl
ε, there exists

a subsequence {nk} of {n} such that

sup
k≥1

∫
S

|FAnk
|p/2(πM (x+ ξ)) dH2k(x) < +∞

and therefore

(4.35) sup
k≥1

∫
Sξ

|FAnk
|p/2 dH2k(x) < +∞.

From (4.35) and Uhlenbeck’s weak compactness theorem [38], there exist lo-
cal trivializations of the bundles Pnk

|Sξ
→ Sξ (k = 1, 2, . . .) such that the con-

nections {Ank
} with respect to these local trivializations are A1,p/2(Pnk

|Sξ
)-

bounded. From this bound, as usual, we obtain a W 1,p-bound of the gluing
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cocycles of the bundles Pnk
. Since W 1,p is compactly embedded in C0 in

dimension 2k < p, there exists a further subsequence of {nk} (still denoted
by {nk}) such that the gluing cocycles of Pnk

uniformly converge as k → ∞.
Thus for large k, the isomorphism classes of Pnk

are independent of k. In par-
ticular, Pφ(Pnk

)(Sξ) is independent of large k. Since Sξ is homologous to S,
we have Pφ(Pnk

)(Sξ) = Pφ(Pnk
)(S) and this completes the proof. �

Remark 4.2 It seems something strange that the class Pφ(P ) is well-defined
for φ ∈ Ik(G) up to k = p/2. That is, it defines a well-defined topological
invariant up to dimension p. Our theory of Sobolev bundles is closely related
to the analogous theory of Sobolev mappings developed by White [41], [42].
In the theory of Sobolev mappings, one can only associate well-defined topo-
logical invariants for maps in the class W 1,p up to dimension p − 1. This
difference probably comes from our definition of the class of Sobolev bun-
dles. As we shall see in the next section, if we slightly relax the definition of
Sobolev bundles (i.e., the classes of singular Sobolev bundles which permit
certain dimensional singularities), we arrive at the similar result obtained
for Sobolev mappings. The classes of singular Sobolev bundles are natural
for applications, but our original classes of Sobolev bundles are also natu-
ral from the theoretical point of view. In view of Theorem 4.1, it is likely
that Theorem 3.1 holds for h : K → M with dimK ≤ p. But we have not
succeeded in proving or disproving such a result.

5. Singular Sobolev bundles and connections

In this section, we generalize the results proved in §3 and §4 for Sobolev
bundles with singularities.

5.1. Singular Sobolev bundles

We first define classes of singular Sobolev bundles and isomorphisms between
them. As before, we assume that M is a compact manifold with dimM = m.

Definition 5.1 Let k ∈ N, p ≥ 1 and S ⊂ M a closed subset with H-
dimS = m − s, where H-dimS denotes the Hausdorff dimension of S.
We say that P = 〈{Uα}α∈I , {gαβ}α,β∈I〉 belongs to the class of W k,p-Sobolev
bundles over M with singular set S if the following holds:

i) {Uα}α∈I is an open covering of M \ S,

ii) gαβ ∈ W k,p(Uαβ , G) for all α, β ∈ I with Uαβ �= ∅ and gαβ(x) · gβγ(x) =
gαγ(x) for a.e. x ∈ Uαβγ whenever Uαβγ �= ∅.

We denote such a class of bundles by P
k,p
G (M ;S).
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Definition 5.2 Let P = 〈{Uα}α∈I , {gαβ}α,β∈I〉, Q = 〈{Vj}j∈J , {hjk}j,k∈J〉 ∈
P
k,p
G (M ;S). P and Q are W k,p-isomorphic to each other if and only if there

exists a refinement {Ws}s∈K of both {Uα} and {Vj}, i.e., Ws ⊂ Uϕ(s) and
Ws ⊂ Vψ(s) for some ϕ : K → I and ψ : K → J and

⋃
s∈KWs = M \S, and

a family of functions ρs ∈W k,p(Ws, G) (s ∈ K) such that

gϕ(s)ϕ(t) = ρs · hψ(s)ψ(t) · ρ−1
t

in Wst for s, t ∈ K whenever Wst �= ∅.
As in the ordinary case, the isomorphism class containing P ∈P

k,p
G (M ;S)

is denoted by [P ]k,p. The set of all W k,p-isomorphism classes is denoted by

P̂
k,p
G (M ;S).

Such classes of bundles arise naturally as limits of smooth bundles. For
example, consider a sequence of Yang-Mills connections {An} ∈ A∞(Pn) on
smooth bundles Pn → M such that supn≥1

∫
M
|FAn|2 dvolM < +∞. It was

shown in [21] (see also [36]) that there exist a subsequence of {An} (still
denoted by {An}) and a closed set S ⊂M with H-dimS ≤ m− 4 such that
{An} converges in C∞

loc(M \S) to a connection A∞ on a bundle P∞ →M \S.
More general result is known by the works of [20] and [30], see also §7.
Namely, they proved a similar compactness theorem under the assumption
of the monotonicity of the Yang-Mills energy and some approximability con-
dition. From these, it is also useful for applications to introduce the following
classes of Sobolev bundles with singularities.

Definition 5.3 Let k ∈ N, p ≥ 1 and S ⊂M be a closed subset.

i) P
k,p
strong,G(M ;S) ⊂ P

k,p
G (M ;S) is defined as: P = 〈{Uα}α∈I , {gαβ}α,β∈I〉 ∈

P
k,p
G (M ;S) belongs to P

k,p
strong,G(M ;S) if and only if for any compact set

K ⊂ M \ S, there exists a sequence of smooth principal G-bundles
{Pn} ⊂ P∞

G (M) of the form Pn = 〈{Vi}i∈J , {gnij}i,j∈J〉 such that {Vi ∩
K}i∈J is a refinement of {Uα ∩K}α∈I , Vi ∩K ⊂ Uϕ(i) ∩K (ϕ : J → I
is a refinement map) and ‖gϕ(i)ϕ(j) − gnij‖W k,p(Vij∩K) → 0 (n → ∞) for
i, j ∈ J with Vij �= ∅.

ii) P
k,p
weak,G(M ;S) ⊂ P

k,p
G (M ;S) is defined as: P = 〈{Uα}α∈I , {gαβ}α,β∈I〉 ∈

P
k,p
G (M ;S) belongs to P

k,p
weak,G(M ;S) if and only if for any compact set

K ⊂ M \ S, there exists a sequence {Pn} ⊂ P∞
G (M) of the form Pn =

〈{Vi}i∈J , {gnij}i,j∈J〉 such that {Vi∩K}i∈J is a refinement of {Uα∩K}α∈I ,
Vi ∩ K ⊂ Uϕ(i) ∩ K, and ‖gϕ(i)ϕ(j) − gnij‖Lp(Vij∩K) → 0 (n → ∞) and

supn
∑k

j=1 ‖∇jgnij‖Lp(Vij∩K) < +∞ for i, j ∈ J with Vij �= ∅, where

∇j = ∇ · · ·∇ (j-times).

In the following, we generalize Theorems 3.1, 3.2 and 3.3 for bundles in
the classes P

k,p
G (M ;S), P

k,p
strong,G(M ;S) and P

k,p
weak,G(M ;S), respectively.
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It is straightforward to show that all these results are extendible if we
replace h : K → M by h : K → M \ S. But what we really want to know
is how naturally defined invariants like in Theorem 3.1, Theorem 3.2 and
Theorem 3.3 are preserved under convergence, so it is necessary to see how
we can define invariants like in these theorems for bundles with singularities.
That is to say, for bundles with singularities we need to see whether we can
define homotopy invariant for h : K →M .

Let K be a d-dimensional polyhedron and S ⊂ M a closed set with
H- dimS = m− s for some 0 ≤ s ≤ m. To define a homotopy invariant for
a Sobolev bundle with singular set S and h : K →M , we need to know how
h(K) intersects with S. If h(K) intersects with S for generic h, we can not
define a homotopy invariant for such a pair. The following lemma gives a
condition under which h(K) ∩ S = ∅ holds.

Lemma 5.1 Let K be a d-dimensional polyhedron and h : K →M a piece-
wise smooth map, i.e., its restriction to each cell of K is smooth. Suppose
S ⊂ M is a closed subset with H-dimS = m − s for some 0 ≤ s ≤ m
and has a σ-finite Hm−s-measure, i.e., there exist closed subsets Si ⊂ M
with S =

⋃∞
i=1 Si and Hm−s(Si) < +∞. If d < s, then for H2l-a.e.

(u, v) ∈ Bl
ε × Bl

ε, we have hu,v(K) ∩ S = ∅, where hu,v : K → M is de-
fined by hu,v(x) = ι−1

u ◦ hv(x).

For smooth K and S, the above lemma is a simple consequence of the
transversality theorem. For the general case, the proof is somewhat involved.
The proof is given in the appendix.

Using Lemma 5.1, we can prove extensions of Theorems 3.1, 3.2 and 3.3.
The first is the extension of Theorem 3.1.

Theorem 5.1 Let S ⊂ M be a closed set with H-dimS = m − s for some
0 ≤ s ≤ m and has a σ-finite Hm−s-measure and P ∈ P

k,p
G (M ;S). Sup-

pose K is a d-dimensional polyhedron satisfying (A-1), (A-2) in the ap-
pendix. Under the assumption d ≤ min{s − 2, [kp] − 1}, for any Lipschitz

map h : K → M we can associate the class [P ]h,K ∈ P̂0
G(K) which de-

pends only on the homotopy class of h and the W k,p-isomorphism class of P .
If 3 ≤ kp < 4, the same result holds for d ≤ min{s− 2, 3}.

Proof. By the Gagliardo-Nirenberg inequality as before, we have P ∈
P

1,kp
G (M ;S). The idea of the proof is essentially the same as that of the

proof of Theorem 3.1 once we have Lemma 5.1. We only sketch the argument
here and leave the details to the reader. We first assume that h : K →M
is piecewise smooth. As in Theorem 3.1, the class [h∗P ]0 should be de-
fined as the C0-isomorphism class of h∗u,vP for H2l-a.e. (u, v) ∈ Bl

ε × Bl
ε.
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By the Fubini type Lemma 3.1, Lemma 5.1 and the Sobolev embedding,
for H2l-a.e. (u, v) ∈ Bl

ε × Bl
ε we have h∗u,vP := 〈{h−1

u,v(Uα)}, {gαβ ◦ hu,v}〉 ∈
P

1,kp
G (K) ⊂ P0

G(K). We need to show that their isomorphism classes are
independent of H2l-a.e. (u, v) ∈ Bl

ε/3 × Bl
ε and depends only on the W k,p-

isomorphism class and the homotopy class of h. To prove the independence
of the class [h∗u,vP ]0 for H2l-a.e. (u, v) ∈ Bl

ε/3 × Bl
ε/3, we proceed as in the

proof of Lemma 3.2. In this case, for any fixed (u, v) ∈ Bl
2ε/3 × Bl

2ε/3 and

(u′, v′) ∈ Bl
ε/3 × Bl

ε/3, we define Hu′,v′(x, t) = ι−1
ϕ(t)u+u′ ◦ hϕ(t)v+v′(x), where

the cut-off function ϕ is defined as in the proof of Lemma 3.2. Then by
slightly modifying the argument of the proof of Lemma 5.1, we see that
for H2l-a.e. (u′, v′) ∈ Bl

ε/3 × Bl
ε/3 we have Hu′,v′([−1, 2] × K) ∩ S = ∅ un-

der the assumption d ≤ min{s − 2, [kp] − 1}. Then arguing exactly as in
the proof of Lemma 3.2, we see that for any fixed (u, v) ∈ Bl

2ε/3 × Bl
2ε/3,

h∗u′,v′P is C0-isomorphic to h∗u+u′,v+v′P for H2l-a.e. (u′, v′) ∈ Bl
ε/3 × Bl

ε/3.

From this, as in the proof of Lemma 3.2, we see that [h∗u,vP ]0 is indepen-
dent of H2l-a.e. (u, v) ∈ Bl

ε/3 × Bl
ε/3. As in Definition 3.1, we denote by

[P ]h,K ∈ P̂0
G(K) the class [h∗u,vP ]0 ∈ P̂0

G(K) which is independent of H2l-
a.e. (u, v) ∈ Bl

ε/3 × Bl
ε/3. Once we have Lemma 5.1, arguing exactly as in

the proofs of Lemma 3.3 and Lemma 3.5, we see that [P ]h,K depends only
on the homotopy class (through piecewise smooth homotopy) of h and the
W k,p-isomorphism class of P . To prove the assertion for general Lipschitz
map h : K → M , we approximate h by piecewise smooth hn : K → M
in the Lipschitz norm. Then [P ]hn,K is defined and independent of large
n since the homotopy class of hn is independent of large n. Similarly, the
class [P ]hn,K is also independent of the approximation {hn} of h since for
any other approximation {h′n}, hn and h′n are homotopic to each other if n
is large. We denote this independent class as [P ]h,K. Then its dependence on
the homotopy class of h and the W k,p-isomorphism class of P easily follows
from the definition and the corresponding result for h piecewise smooth.
The last assertion of the theorem also follows as in the proof of Lemma 3.5.

�

Remark 5.1 When S = ∅, the class [P ]h,K defined in Theorem 5.1 coincides
with that of defined in Theorem 3.1. To see this, for (u, v) ∈ Bl

2ε/3 × Bl
2ε/3

and v′ ∈ Bl
ε/3, define H̃(t, x) = ι−1

ϕ(t)u ◦ πM (h(x) + ϕ(t)v) and H̃v′(t, x) =

ι−1
ϕ(t)u ◦ πM (h(x) + ϕ(t)v + v′), where ϕ is a cut-off function as defined in
the proof of Theorem 3.1. Then as in the proof of Theorem 3.1, we see that
there exists t0 ∈ [−1, 0] and t1 ∈ [1, 2] such that H̃∗

v′(P )|t0×K is isomorphic to
H̃∗
v′(P )|t1×K as C0-bundles over K for a.e. v′ ∈ Bl

ε/3. Thus h∗v′P ∼= h∗u,v+v′P
for a.e. v′ ∈ Bl

ε/3. The assertion follows from this.
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We next extend Theorem 3.2 for bundles in P
k,p
strong,G(M ;S).

Theorem 5.2 Let S ⊂ M be a closed set as in Theorem 5.1 and P ∈
P
k,p
strong,G(M ;S). Suppose K is a d-dimensional polyhedron satisfying (A-1)

and (A-2) in the appendix. Under the assumption d ≤ min{dstrong(kp), s−1},
where dstrong(kp) is defined in §3.2, for any Lipschitz map h : K → M , we

can associate a class [P ]sh,K ∈ P̂0
G(K) which depends only on the homotopy

class of h and the W k,p-isomorphism class of P .

Proof. We only give a sketch of the proof. First we assume h : K → M is
piecewise smooth. Since P ∈ P

k,p
strong,G(M ;S), for any compact L ⊂ M \ S,

there exists a sequence of smooth G-bundles {Pn} such that Definition 5.3 i)
is satisfied. By Lemma 5.1, for a.e. (u, v) ∈ Bl

ε×Bl
ε we have hu,v(K)∩S = ∅.

Choose any compact L ⊂M \S such that hu,v(K) ⊂ L for (u, v) ∈ Bl
ε×Bl

ε of
positive H2l-measure. For such L, take {Pn} as above. Then by the Fubini-
type Lemma 3.1 and arguing as in §3.2 we see that for H2l-a.e. (u, v) ∈
Bl
ε × Bl

ε satisfying hu,v(K) ⊂ L, the isomorphism class [h∗u,vPn]0 ∈ P̂0
G(K) is

well-defined and independent of a.e. (u, v) ∈ Bl
ε×Bl

ε and the approximation
{Pn} satisfying Definition 5.3 i). Since L ⊂ M \ S satisfying hu,v(K) ⊂ L

is arbitrary, we obtain a well-defined class [P ]sh,K ∈ P̂0
G(K) which is defined

as the class [h∗u,vPn]0 ∈ P̂0
G(K) for a.e (u, v) ∈ Bl

ε × Bl
ε and for large n for

some approximating smooth bundles {Pn} of P satisfying the conditions in
Definition 5.3 i). For general Lipschitz map h : K → M , we approximate h
by piecewise smooth map hn : K →M . Then as in the proof of Theorem 5.1,
the class [P ]shn,K

does not depend on n if n is large and also independent of
a particular choice of the approximation. We denote this common class as
[P ]sh,K. The remaining assertions, namely its dependence on the homotopy

class of h and its invariance under W k,p-isomorphisms are proved similarly
as in Lemma 3.11. This completes the proof. �

As in Remark 5.1, the class [P ]sh,K defined in Theorem 5.2 coincides with
that of Theorem 3.2 if S = ∅.

The next result is an extension of Thm. 3.3 for bundles in P
k,p
weak,G(M ;S).

Theorem 5.3 Let S ⊂ M be a closed set as in Theorem 5.1 and P ∈
P
k,p
weak,G(M ;S). Suppose K is a d-dimensional polyhedron satisfying (A-1),

(A-2) in the appendix. Under the assumption d ≤ min{dweak(kp), s − 1},
where dweak(kp) is defined in §3.3, for any Lipschitz map h : K → M , we

can associate a class [P ]wh,K ∈ P̂0
G(K) which depends only on the homotopy

class of h and the W k,p-isomorphism class of P .

Proof. The idea of the proof is the same as that of Theorem 5.2 and
Theorem 3.3. We leave the details to the reader. �
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As in the previous two results, the class [P ]wh,K defined in Theorem 5.3
coincides with that of Theorem 5.2 if S = ∅.

The following examples show that the results of Theorem 5.1, Theo-
rem 5.2 and Theorem 5.3 are optimal.

Examples. i) Assume P0 → Sm−1 is a non-trivial principal G-bundle of
class C∞. Such a bundle exists if for example G is a simple Lie group
and m = 5. Let π : Bm \ {0} → Sm−1 be a radial projection, i.e., it is
defined by π(x) = x/|x|. Then the bundle P = π∗P0 → Bm is a bundle of
class P

1,p
G (Bm; {0}) for any 1 ≤ p < m. Let h0, h1 : Sm−1 → Bm be two

embeddings of the (m−1)-sphere in Bm such that h0(S
m−1) does not enclose

the origin 0 whereas h1(S
m−1) encloses it. Notice that h0 is homotopic

to h1 in Bm. It is easy to see that [(h0)
∗
u,vP ]0 ∈ P̂0

G(Sm−1) is trivial for all
(u, v) ∈ Bl

ε × Bl
ε if ε > 0 is small. On the other hand, the class [(h1)

∗
u,vP ]0

coincides with [P0] for all (u, v) ∈ Bl
ε × Bl

ε if ε > 0 is small. Therefore
if we take m − 1 ≤ p < m, we see that Theorem 5.1 does not hold for
min{s− 2, [kp] − 1} = m− 2 replaced by m− 1.

ii) In [14], we have characterized the weak Uhlenbeck closure of C∞-
bundles in P

1,m
G (M). This characterization shows that P ∈ P

1,m
G (M) is a

weak Uhlenbeck limit of C∞-bundles Pn ∈ P∞
G (M) with Pn � P0 (P0 ∈

P∞
G (M) is a fixed C∞-bundle over M) if and only if [P ]m−1 = [P0]m−1,

where [P ]m−1 is the (m − 1)-isomorphism class of P defined in [14]. Thus
in particular for any given P0 → Sm, there exists a sequence of C∞-bundles
{Pn} over Sm such that Pn � P0 and {Pn} weakly converges (in the sense
of Uhlenbeck) to the trivial bundle Sm × G → Sm. This in particular
implies that there exists a finite set S such that the trivial bundle belongs
to P

1,p
weak,G(Sm;S) for any m−1 < p < m and G. Considering the case where

P0 → Sm is not isomorphic to the trivial bundle, we see that the conclusion
of Theorem 5.3 is optimal in the sense that min{dweak(kp), s − 1} in that
theorem is not replaced by min{dweak(kp)+1, s}. Also a well-known example
of “bubbling off of instantons” shows that Theorem 5.2 is also optimal.

For applications, the important case is the case s ≥ [p] or s ≥ [p] + 1.
In fact, as was mentioned in the beginning of this subsection, bundles in
the class P

1,4
G (M ;S) where S ⊂ M is closed with dimS ≤ m − 4 appear

naturally as weak limits of sequences of C∞-bundles over M which have
connections with equi-bounded Yang-Mills energies, see [21], [36] and §6.
Moreover, some kinds of such connections and bundles are expected to have
singular sets whose dimensions are smaller than m− 4, see [20], [36], [30].

Bundles in the class P
1,p
G (M ;S) for some closed subset S ⊂ M with

H- dim≤ m−[p]−1 are constructed as follows: We assume that M is triang-
ulated. LetQ→ M [p] be a principal G-bundle of Lipschitz class. It is defined
by an open covering {U [p]

α } of M [p] and a gluing cocycle {g[p]
αβ} of Lipschitz
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class. For each ([p] + 1)-cell eα of M , denote by πα : e[p]+1 \ {cα} → M [p]

the radial projection, where cα is the barycenter of eα, i.e., πα is a de-
formation retract of eα \ {cα} onto ∂eα ⊂ M [p]. From these πα, we ob-
tain a Lipschitz deformation retraction π1 : M [p]+1 \ {cα}α∈I[p]+1

→ M [p],
where I[p]+1 is the index set of the ([p] + 1)-cells of M . Then the bun-

dle π∗
1Q → M [p]+1 \ {cα}α∈I[p]+1

defined by an open covering {π−1
1 (U

[p]
α )}

of M [p]+1 \ {cα}α∈I[p]+1
and a gluing cocycle {π∗

1g
[p]
αβ} is a bundle in the

class P
1,p
G (M [p]+1; {cα}α∈I[p]+1

). Similarly, from deformation retractions π2 :

M [p]+2 \ {cα}α∈I[p]+2
→ M [p]+1, . . . , πm−[p] : M \ {cα}α∈Im → Mm−1, we

obtain a bundle P := π∗
m−[p] · · ·π∗

1Q → M \ S, where S ⊂ M is defined in-

ductively as S1 = {cα}α∈I[p]+1
, Sk = π−1

k (Sk−1)∪{cα}α∈I[p]+k
and S = Sm−[p].

It is easy to see that S ⊂ M is closed with H-dimS = m − [p] − 1 and
P ∈ P

1,p
G (M ;S). This bundle has the following property; its ([p] − 1)-class

defined in Theorem 5.1 is [Q|M [p]−1] ∈ P̂0
G(M [p]−1). Here we consider M itself

as a polyhedron and the ([p]−1)-class of P is, in the notation of Theorem 5.1,
[P ]ι,M [p]−1, where ι : M [p]−1 → M is the inclusion. To see this, for u, v ∈ Bl

ε,

if |u| and |v| are small, we have ιu(M
[p]−1) ∩ S = ∅ and ιv(M

[p]−1) ∩ S = ∅
and ιu and ιv are homotopic to each other as maps from M [p]−1 to M \ S.
Thus we have ι∗uP � ι∗vP as bundles over M [p]−1. In particular, taking v = 0,
we obtain ι∗uP � Q|M [p]−1 for any small u ∈ Bl

ε. Thus the claim follows from
the definition of the class [P ]ι,M [p]−1.

In fact, for bundles in the class P
1,p
G (M ;S) for some closed S ⊂ M with

H-dimS ≤ m − [p] − 1, the converse is also true. In the following, for
simplicity of notation, we denote the class [P ]ι,M [p]−1 simply by [P ]M [p]−1.

Proposition 5.1 As above, we consider M itself as a polyhedron and denote
by ι : M [p]−1 →M the inclusion. We then have the following:

{[P ]M [p]−1 : P ∈ P
1,p
G (M ;S) for some closed S ⊂M

with H-dimS ≤ m− [p] − 1} = {[Q|M [p]−1]0 : Q ∈ P0
G(M [p])}.

Proof. We have already shown the inclusion ⊃. To prove the reverse inclu-
sion, for any closed subset S ⊂ M with H-dimS ≤ m − [p] − 1, take any
P = 〈{Uα}, {gαβ}〉 ∈ P

1,p
G (M ;S). By Lemma 5.1 and Theorem 5.1, we may

assume without loss of generality thatM [p]∩S = ∅. By the Fubini type theo-
rem (see Lemma 3.1), for a.e. u ∈ Bl

ε, we have ι∗uP = 〈{ι−1
u (Uα)}, {gαβ◦ιu}〉 ∈

P
1,p
G (M [p]), here we also denote ι : M [p] → M the inclusion. Since the bundles

in the class P
1,p
G (M [p]) have well-defined C0-isomorphism classes, there exists

Q ∈ P0
G(M [p]) such that [ι∗uP ][p] = [Q]0. On the other hand, by the definition

of [P ]M [p]−1, we easily see that [P ]M [p]−1 = [ι∗uP |M [p]−1]0 ∈ P̂0
G(M [p]) for a.e.

u ∈ Bl
ε choosing ε > 0 small if necessary (see Theorem 5.1 and Remark 5.1).
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Recall that the isomorphism class of Q as above is defined as follows. It is
defined as the C0-isomorphism class of C0 ∩W 1,p-bundles Qε →M [p] which
approximate ι∗uP in the W 1,p-sense, i.e., Qε = 〈{Vi}, {hεij}〉 ∈ P0

G(M [p]) is
such that {Vi} is a refinement of {ι−1

u (Uα)} (Vi ⊂ ι−1
u (Uϕ(i))) and

(5.1) ‖gϕ(i)ϕ(j) ◦ ιu − hεij‖W 1,p(M [p]∩Vij) < ε.

Let ι
[p]−1
[p] : M [p]−1 → M [p] be the inclusion and ι

[p]−1
[p],v : M [p]−1 → M [p] be de-

fined by ι
[p]−1
[p],v (x) = πM [p](x+ v), where πM [p] : O(M [p]) := π−1

M (M
[p]
ε ) →M [p]

is defined in §7 Appendix. As in Lemma 3.1, applying Fubini’s theorem we
have the following: For f ∈ L1(M [p])∫

Bl
ε

(∫
M [p]−1

f ◦ ι[p]−1
[p],v (x) dH[p]−1(x)

)
dHl(v)

≤
∫
M [p]−1

(∫
O(M [p])

f(πM [p](v)) dHl(v)

)
dH[p]−1(x)

≤ C

∫
M [p]

f(x) dH[p](x).(5.2)

Taking a sequence εk ↓ 0 and applying (5.2) to f = χVij
(gϕ(i)ϕ(j) ◦ ιu − hεkij ),

we see from (5.1) that for a.e v ∈ Bl
ε there exists a subsequence of {εk} (still

denoted by {εk}) such that

(5.3) ‖gϕ(i)ϕ(j) ◦ ιu ◦ ι[p]−1
[p],v − hεkij ◦ ι[p]−1

[p],v ‖W 1,p(M [p]−1∩Vij) → 0

as k → ∞. Therefore by the Sobolev embedding theorem W 1,p ⊂ C0 in
dimension [p] − 1, we obtain

(5.4) [ι
[p]−1
[p],v

∗
Q]0 = [ι

[p]−1
[p],v

∗
ι∗uP ]0

for a.e u, v ∈ Bl
ε.

On the other hand, for u, v, u′, v′ ∈ Bl
ε, ιu ◦ ι[p]−1

[p],v : M [p]−1 → M and ιu′ ◦
ι
[p]−1
[p],v′ : M [p]−1 →M are homotopic to each other. In fact, H1 : [0, 1]×M [p] →
M defined by H1(t, x) = πM (x+tu+(1−t)u′) and H2 : [0, 1]×M [p]−1 →M [p]

defined by H2(t, x) = πM [p](x+ tv + (1 − t)v′) give homotopies ιu ∼ ιu′ and

ι
[p]−1
[p],v ∼ ι

[p]−1
[p],v′ , respectively. Thus H(t, x) = H1(t, H2(t, x)) gives a homotopy

ιu ◦ ι[p]−1
[p],v ∼ ιu′ ◦ ι[p]−1

[p],v′ . Applying the argument in the proof of Theorem 3.1

and Theorem 5.1, for a.e. w ∈ Bl
ε, we have H∗

wP |{0}×M [p]−1 � H∗
wP |{1}×M [p]−1

as C0-bundles over M [p]−1. Taking in particular v′ = 0, we obtain

(5.5) [ι
[p]−1
[p],v

∗
ι∗u+wP ]0 = [ι∗u′+wP ]0

for a.e. w ∈ Bl
ε as C0-isomorphism classes of bundles over M [p]−1.



Topological and analytical properties of Sobolev bundles II 775

Similarly by the argument leading to (5.4), for a C0 ∩W 1,p-bundle Q′ →
M [p] satisfying [ι∗u+wP ][p] = [Q′]0 (notice that ι∗u+wP →M [p] is a W 1,p-bundle
for a.e. w ∈ Bl

ε), we have

(5.6) [ι
[p]−1
[p],v

∗
ι∗u+wP ]0 = [ι

[p]−1
[p],v

∗
Q′]0

for a.e. v, w ∈ Bl
ε as C0-isomorphism classes of bundles over M [p]−1.

On the other hand, since ι
[p]−1
[p],v ∼ ι

[p]−1
[p] : M [p]−1 → M [p], we have

[ι
[p]−1
[p],v

∗
Q′]0 = [Q′|M [p]−1]0. Combining this with (5.5) and (5.6), we obtain

[ι∗u′+wP ]0 = [Q′|M [p]−1]0 for a.e. w ∈ Bl
ε as C0-isomorphism classes of bun-

dles over M [p]−1. Since the class [P ]M [p]−1 coincides with [ι∗u′+wP ]0 for a.e.
w ∈ Bl

ε, we finally obtain [P ]M [p]−1 = [Q′|M [p]−1]0. This completes the proof
of the inclusion ⊂. �

5.2. Singular Sobolev connections on singular Sobolev bundles and
the Chern-Weil theory

In this subsection, we extend results proved in §4 for singular Sobolev con-
nections on singular Sobolev bundles.

Assume P = 〈{Uα}α∈I , {gαβ}α,β∈I〉 ∈ P
k,p
G (M ;S) for some closed subset

S ⊂ M with H-dimS = m − s. Since P
k,p
G (M ;S) ⊂ P

1,kp
G (M ;S) by the

Gagliardo-Nirenberg inequality, we may assume throughout this subsection
that k = 1. Also let us assume that A = {Aα}α∈I is a connection of class
A1,p/2 on P , i.e., Aα ∈ Lp(Uα, T

∗Uα ⊗ g), dAα ∈ Lp/2(Uα,
∧2 T ∗Uα ⊗ g) for

any α ∈ I and (2.1) holds for α, β ∈ I with Uαβ �= ∅. For applications in
mind (see §6), we moreover assume that

∫
M
|FA|p/2 dvolM < +∞.

For φ ∈ Ik(G), Pφ(FA) ∈ L1(M,
∧2k T ∗M ⊗ g) is defined as in §4. To

extend the results of §4 for such classes of bundles and connections, we first
need the following:

Lemma 5.2 Let P and A be as above. Let us assume 2k ≤ p − p/s and
Hm−p/(p−2k)(S) < +∞. Then we have dPφ(FA) = 0 in D′(M,

∧2k+1 T ∗M).

Remark 5.2 Under the assumption 2k ≤ p − p/s, we have m − s ≤ m −
p/(p − 2k). Thus the condition Hm−p/(p−2k)(S) < +∞ is automatically
satisfied if Hm−s(S) < +∞ or 2k < p− p/s. Particularly interesting case is
the case s ≥ [p]. In this case 2k ≤ p− p/s is satisfied if 2k ≤ [p] − 1.

Proof of Lemma 5.2. Since Hm−p/(p−2k)(S) =: M < +∞, for any small
δ > 0, there exists open balls {Bri(xi)}Ni=1 with ri < δ, xi ∈ S such that
S ⊂ ⋃Ni=1Bri(xi) and

(5.7)

N∑
i=1

r
m−p/(p−2k)
i ≤M + 1.
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Let φi ∈ C∞(M) be a function such that φi = 0 in Bri(xi), φi = 1 in
M \ B2ri(xi), 0 ≤ φi ≤ 1 in M and |∇φi| ≤ Cr−1

i for some constant
C > 0 depending only on M . Set φδ(x) = min1≤i≤N φi(x). Then φδ sat-
isfies supp(φδ) ⊂ M \ S, φδ = 1 in M \ N2δ(S), where N2δ(S) = {x ∈ M :
d(x, S) ≤ 2δ}.

For any α ∈ C∞(M,
∧m−2k−1 T ∗M), we have

(5.8)

∫
M

Pφ(FA) ∧ dα =

∫
M

Pφ(FA) ∧ d(φδα) +

∫
M

Pφ(FA) ∧ d((1 − φδ)α).

The first term on the right side of (5.8) is 0 by the same reasoning as in
the proof of Lemma 4.1. The second term is estimated as∣∣∣∣
∫
M

Pφ(FA)∧d((1 − φδ)α)

∣∣∣∣
≤ C

∫
M

|FA|k|∇φδ||α| dvolM + C

∫
N2δ(S)

|FA|k|dα| dvolM .(5.9)

Since 2k ≤ p and
∫
M
|FA|p/2 dvolM < +∞, the second term on the right

of (5.9) tends to 0 as δ → 0. As for the first term, we have by the Hölder’s
inequality and (5.7)∫
N2δ(S)

|FA|k|∇φδ||α| dvolM

≤ ‖α‖L∞(M)

(∫
N2δ(S)

|FA|p/2 dvolM

)2k/p(∫
N2δ(S)

|∇φδ|p/(p−2k) dvolM

)1−2k/p

≤ ‖α‖L∞(M)

(∫
N2δ(S)

|FA|p/2 dvolM

)2k/p( N∑
i=1

∫
N2δ(S)

|∇φi|p/(p−2k) dvolM

)1−2k/p

≤ ‖α‖L∞(M)

(∫
N2δ(S)

|FA|p/2 dvolM

)2k/p( N∑
i=1

∫
B2ri

(xi)

|∇φi|p/(p−2k) dvolM

)1− 2
p
k

≤ C‖α‖L∞(M)

(∫
N2δ(S)

|FA|p/2 dvolM

)2k/p( N∑
i=1

r
m−p/(p−2k)
i

)1−2k/p

≤ C(M + 1)1−2k/p‖α‖L∞(M)

(∫
N2δ(S)

|FA|p/2 dvolM

)2k/p

(5.10)

and (5.10) tends to 0 as δ → 0.

Therefore we have
∫
M
Pφ(FA)∧dα=0 for any α ∈ C∞(M,

∧m−k−1 T ∗M).
This completes the proof. �
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Once Lemma 5.2 is proved, analogues of Lemmas 4.2, 4.3, 4.4 and 4.5
hold. Thus Pφ(A) defines a cohomology class in H2k(M ; R) under the as-
sumption of A at the beginning of this section. On the other hand, as in §4,
we can also define a current Cφ(A) by the formula (4.24) for A as above and
φ ∈ Ik(G). Then by Lemma 5.2, as in §4, Cφ(A) defines a homology class in
Hm−2k(M ; R). Arguing exactly as in the proof of Proposition 4.1, we see that
[Pφ(A)] is Poincaré dual to [Cφ(A)], i.e., the conclusion of Proposition 4.1
also holds in this case. To complete the Chern-Weil theory in this setting,
it only remains to show that the cohomology class [Pφ(A)] ∈ H2k(M ; R) is
independent of A ∈ A1,p/2(P ). Here we can not argue as in the proof of
Theorem 4.1 since under our assumption, the curvature of the connection
A = {Aα(x, t)} in the proof of Theorem 4.1 does not belong to Lp/2(M) in
general. To overcome this, we argue as follows.

Let P = 〈{Uα}, {gαβ}〉 ∈ P
1,p
G (M ;S) and A1, A2 ∈ A1,p/2(P ), where

S ⊂M is a closed subset with σ-finite Hm−s-measure. To prove [Pφ(A1)] =
[Pφ(A2)], it suffices to show that for any 2k-dimensional submanifold Σ ⊂M ,
we have 〈[Pφ(A1)], [Σ]〉 = 〈[Pφ(A2)], [Σ]〉, i.e., for a.e. (u, v) ∈ Bl

ε × Bl
ε, we

have

(5.11)

∫
Σu,v

Pφ(A1) =

∫
Σu,v

Pφ(A2),

where Σu,v = ι−1
u ◦ ιv(Σ).

To see (5.11), recall from Lemma 5.1 that for a.e. (u, v) ∈ Bl
ε × Bl

ε,
we have Σu,v ∩ S = ∅ provided 2k < s. Moreover, by the Fubini type
lemma, for a.e. (u, v) ∈ Bl

ε × Bl
ε we see that P |Σu,v → Σu,v is a bundle of

class W 1,p ⊂ C0 (since 2k < p under the assumption of Lemma 5.2) and
A1|Σu,v , A2|Σu,v ∈ A1,p/2(P |Σu,v). Since such bundle P |Σu,v and connections
A1|Σu,v , A2|Σu,v are approximated in W 1,p and A1,p/2 respectively by smooth
ones (see [13]), we see that

∫
Σu,v

Pφ(Ai) (i = 1, 2) is a characteristic number

of the bundle P |Σu,v → Σu,v. In particular it does not depend on a particular
choice of a connection and (5.11) holds.

Summing up the above argument, we obtain

Theorem 5.4 Let P and A be as in the beginning of this section. Assume
2k ≤ p − p/s, 2k < s, S ⊂ M is closed with σ-finite Hm−s-measure and
Hm−p/(p−2k)(S) < +∞. Then for φ ∈ Ik(G), the cohomology class [Pφ(A)] ∈
H2k(M ; R) and the homology class [Cφ(A)] ∈ Hm−2k(M ; R) are independent
of A ∈ A1,p/2(P ). Moreover, we have PD ◦ Ψ−1([Pφ(A)]) = Cφ(A).

Stability result such as Proposition 4.2 also holds in the setting of this
section. Details are left to the reader.
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We end this subsection by giving a simple example which shows that the
result of Theorem 5.4 is optimal in general.

Example. Suppose m > 1 and consider a smooth principal G-bundle P0 →
Sm−1. Denote by Sm−1 ⊂ Sm the equatorial (m−1)-sphere. Let N and S be
north and south poles of Sm respectively and r : Sm\{N, S} → Sm−1 the ra-
dial retraction. We consider the pull back bundle r∗P0 → Sm \{N, S}. Con-
sidered as a bundle over Sm, it defines a bundle in the class P

1,p
G (Sm; {S,N})

for any 1 ≤ p < m. Suppose A0 ∈ A∞(P0) is a smooth connection on P0.
Then A := r∗A0 defines a A1,p/2-connection on r∗P0 (considered as a bun-
dle in the class P

1,p
G (Sm; {N, S})); A ∈ A1,p/2(r∗P0). We take in particu-

lar p = m − 1. We claim that for φ ∈ Ik(G) with 2k = m − 1 (thus it
is necessary that m is odd), Pφ(A) does not define a well-defined class in
H2k(Sm,R). To see this, we first observe that ∗dPφ(A) = ±C0(δN − δS),
where C0 =

∫
Sm−1 Pφ(A0) and δN and δS denote Dirac measures with unit

mass at N and S, respectively. (The sign ± depends on the choice of the
orientation of Sm−1 ⊂ Sm). Thus if an embedded (m − 1)-sphere Σ ⊂ Sm

does not intersect N and S and contractible on Sm \ {N, S}, we have∫
Σ
Pφ(A) = 0. Since Σ is homologous to Sm−1 in Sm, Pφ(A) does not

define a well-defined cohomology class if C0 �= 0. This example shows that
the assumption 2k ≤ p− p/s in Theorem 5.4 is not relaxed in general.

5.3. A compactness of weakly Neather Yang-Mills connections

To illustrate an application of the results proved in §5.1, we prove in this
subsection a compactness property of some kind of connections and bundles.

We first consider a smooth G-bundle P → M and a smooth connec-
tion A0 on it. Assume {φt}|t|<ε is a smooth one parameter family of diffeo-
morphisms on M such that φ0 = idM . Consider the pull back connection
At := φ∗

t (A) on the bundle φ∗
tP → M . We then have the following first

variational formula (see [23], [36]):
(5.12)

d

dt

∣∣∣
t=0
YM(At)=−

∫
M

(
|FA0 |2divX−4

m∑
i,j=1

〈FA0(∇ei
X, ej), FA0(ei, ej)〉

)
dvolM ,

where X is the vector field generated by {φt}, i.e., X = ∂φt

∂t

∣∣
t=0

and ei
(1 ≤ i ≤ m) is an (local) orthonormal frame of TM .

We will call a connection A0 Neather Yang-Mills connection if the right
hand side of (5.12) equals to 0 for any vector field X. Thus A0 is a Neather
Yang-Mills if

(5.13)

∫
M

(|FA0 |2divX − 4
m∑

i,j=1

〈FA0(∇ei
X, ej), FA0(ei, ej)〉) dvolM = 0

holds for any vector filed X.
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For example if A0 is a smooth Yang-Mills connection, it is also a Neather
Yang-Mills. More generally, let P = 〈{Uα}, {gαβ}〉 ∈ P

2,2
G (M) and A =

{Aα} ∈ A1,2(P ) be a Sobolev bundle and a Sobolev connection, respectively.
We say that A is a weakly Neather Yang-Mills connection if A satisfies (5.13)
for any smooth vector fieldX. For such a weakly Neather Yang-Mills connec-
tion A, we have the following monotonicity inequality ([23], [36]): For a ∈M ,
there exists C > 0 such that for 0 < σ < ρ < ρa (ρa is the injectivity radius
of M at a)

ρ4−meCρ
2

∫
Bρ(a)

|FA|2 dvolM−σ4−meCσ
2

∫
Bσ(a)

|FA|2 dvolM

≥ 4

∫
Bρ(a)\Bσ(a)

r4−meCr
2
∣∣∣ι( ∂

∂r

)
FA

∣∣∣2 dvolM .(5.14)

In particular, (5.14) implies that r4−meCr
2 ∫

Br(a)
|FA|2 dvolM is monotonically

non-decreasing with respect to r.

Let us consider P ∈ P∞
G (M) and a sequence {An} ⊂ A1,2(P ) of weakly

Neather Yang-Mills connections satisfying a uniform energy bound:

(5.15) sup
n≥1

∫
M

|FAn |2 dvolM <∞.

Moreover, we assume that each An is approximable in the sense that
(see [20]): For any ε > 0, there exists α > 0 such that for all a ∈ M and
ρM > r0 > 0 (ρM is the injectivity radius of M) if

sup
x∈Br0(a),0<r<r0

r4−m
∫
Br(x)

|FAn|2 dvolM < α,

there there exists {Ai} ⊂ C∞(BρM
(a), T ∗BρM

(a)⊗ g) such that Ai → An in
W 1,2(BρM

(a)) ∩ L4(BρM
(a)) and

sup
x∈Br0/2(a),0<r<r0/2

r4−m
∫
Br(x)

|FAi
|2 dvolM < ε for all i.

Notice that smooth connections are obviously approximable in the above
sense. We then have the following:

Proposition 5.2 Let {An} be as above. Then there exist a subsequence of
{An} (still denote by {An}), a closed set S ⊂M such that Hm−4(S) < +∞,
P∞ ∈ P

2,2
weak,G(M ;S) and A∞ ∈ A1,2(P∞) such that for a suitable gauge {An}

weakly converges to A∞ in W 1,2
loc (M \ S). Moreover, for any 3-dimensional

polyhedron K and a Lipschitz map h : K →M , we have [P ]w[h],K = [P∞]w[h],K.
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Before beginning the proof, we need to give some comments about the
statement of the proposition. Firstly, the weak convergence in the above
proposition means that for any compact K ⊂ M \ S, there exists a sub-
sequence of {An} (still denoted by {An}), a family of open sets {Uα} of
M \ S such that K ⊂ ⋃α Uα and P and P∞ are trivialized over each Uα,
i.e., we can write P |K = 〈{Uα ∩ K}, {gαβ}〉 and An = {Aα;n} with Aα;n ∈
W 1,2(Uα, T

∗Uα⊗ g) and P∞|K = 〈{Uα ∩K}, {gαβ}〉 and A∞ = {Aα;∞} with
Aα;∞ ∈W 1,2(Uα, T

∗Uα⊗g) such that Aα;n ⇀ Aα;∞ weakly in W 1,2(Uα∩K).
Under such a condition, it is easily seen that P∞ ∈ P

2,2
weak,G(M ;S) and the

3-class [P∞]w[h],K is defined by Theorem 5.3. We also remark that it can be

shown that the above result extends to the case where P ∈ P
2,2
G (M). For

this, we need to slightly extend the class of bundles P
2,2
weak,G(M ;S) in order

to include the weak limit P∞ and show that for such bundles the 3-class is
well-defined. These are done by the similar argument given in §5.1. But for
simplicity we only consider the case P ∈ P∞

G (M).

Proof of Proposition 5.2. Define

(5.16) S :=
⋂

0<r<ρM

{
x ∈M : lim inf

n→∞
ear

2

r4−m
∫
Br(x)

|FAn|2 dvolM ≥ 24−mα
}
,

where α > 0 is a constant κ(m) of Theorem 1.3 in [20].
By the monotonicity inequality (5.14) it is easily seen that S ⊂ M is

closed and a simple covering argument shows that Hm−4(S) <∞ (see [36]).
Assume x0 �∈ S. Then there exists r0 > 0 such that

(5.17) lim inf
n→∞

ear
2
0r4−m

0

∫
Br0 (x0)

|FAn|2 dvolM < 24−mα.

Thus by the monotonicity inequality, we have for any x ∈ Br0/2(x0) and
0 < r < r0/2

ear
2

r4−m
∫
Br(x)

|FAn|2 dvolM ≤ ear
2
0/4
(r0

2

)4−m ∫
Br0/2(x)

|FAn|2 dvolM

≤ 2m−4ear
2
0r4−m

0

∫
Br0(x0)

|FAn |2 dvolM < α.(5.18)

Since each An is assumed to be approximable, we can apply the Coulomb
gauge theorem of Meyer-Rivière [20, Theorem 1.3]. Thus there exists gn ∈
W 2,2(Br0/2(x0), G) ∩ W 1,4(Br0/2(x0), G) such that Ãn := g∗nAn is in the
Coulomb gauge, i.e.,

d∗Ãn = 0 in Br0/2(x0),(5.19)

ινÃn = 0 on ∂Br0/2(x0),(5.20)
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where ν is the outer normal of ∂Br0/2(x0), and satisfies

(5.21) ‖Ãn‖W 1,2(Br0/2(x0)) + ‖Ãn‖L4(Br0/2(x0)) ≤ C(m)‖FAn‖L2(M).

Suppose K � M \S is a compact subset. There exists {Bri(xi)}pi=1 such that
K ⊂ ⋃pi=1Bri(xi), Bri(xi) ⊂ M \ S for any 1 ≤ i ≤ p and on each Bri(xi)
there exists gi;n ∈ W 2,2(Bri(xi), G) such that Ãi;n := g∗i;nAn satisfies (5.19)
and (5.20) for Br0/2(x0) replaced by Bri(xi). We may assume Bri(xi) ⊂ Uαi

for some index αi. Defining g̃ij;n := g−1
i;ngαiαj

gj;n, we see that Âi;n := g∗i;nAαi;n

satisfies

Âj;n = g∗j;nAαj ;n = g∗j;n(g
∗
αiαj

Aαi;n)

= g∗j;ng
∗
αiαj

(g−1
i;n)∗Âi;n

= (g−1
i;ngαiαj

gj;n)
∗Âi;n.(5.22)

That is, gn := {gi;n} defines a W 2,2 ∩W 1,4-gauge transformation on K and
{g∗nAn} is W 1,2 ∩ L4-bounded over K. Thus there exists a subsequence of
{An} (still denote by {An}) such that {g∗nAn} weakly converges in W 1,2 ∩
L4(K). Then the gluing cocyle {gij;n} also weakly converges in W 2,2 ∩
W 1,4(K). Since K � M \ S is arbitrary, a diagonal sequence argument
shows that there exists a subsequence of {Pn} (still denoted by {Pn}) such
that {Pn} weakly converges to some bundle P∞ in P

k,p
weak,G(M ;S). For this

bundle, we have [P ]w[h],K = [P ]w[h],K. This completes the proof. �

6. Some variational problems

In this section, we consider a variational problem

(6.1) mp(P ;G) := inf
{∫

M

|FA|p dvolM : A ∈ A∞(P )
}

for a smooth principal G-bundle P → M and 1 ≤ p ≤ ∞. Here the norm
of the curvature FA ∈ C∞(M,

∧2 T ∗M ⊗ Aut(P )) is taken with respect to
the Riemannian metric on M and the bi-invariant metric on G. Since the
norm |FA| is gauge invariant, mp(P ;G) depends only on the isomorphism
class of P . It is also known from the work of Uhlenbeck [38] that mp(P ;G)
is attained for any P → M provided p > m/2. It is not true, however,
in general that mp(P ;G) is attained for the case p ≤ m/2. For exam-
ple, if p < m/2, using the conformal dilation of Sm it is easy to see that
mp(P ;G) = 0 for any P → Sm. Thus mp(P ;G) is not attained if P → Sm

is not trivial. For the case p = m/2, some partial results are known. A par-
ticularly interesting case is the case m = 4 and p = 2. In this case m2(P ;G)
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is attained by a special kind of solutions to the Yang-Mills equations, the
(anti-)self-dual connections. This particularly interesting case is studied
in [31], [32], [6] and [7]. The direct variational approach in this case is given
in [27] based on the Uhlenbeck’s result [38]. The case p = m/2 with m ≥ 3
is recently studied in [13] via the direct variational methods.

As we have observed above, mp(P ;G) is not attained in general and the
general existence result is unknown for the case p < m/2. To understand
the problem (6.1) in this case, we need to understand the quantity mp(P ;G)
more deeply. The above observed example indicates that mp(P ;G) is deter-
mined by coarser invariants of P → M than the ordinary isomorphism class
of P . (This is not the case for p ≤ m/2. For example, recall that m2(M ;G)
determines completely the isomorphism class of P →M for m = 4 and G a
simple Lie group). In this section, we first introduce an invariant of P →M
which is coarser than the ordinary isomorphism class of P , but it completely
determines the value mp(P ;G). The introduction of the following invariant
is inspired by the corresponding invariant for mappings between manifolds
introduced by White [41].

Definition 6.1 Assume M is triangulated. Let P → M be a smooth princi-
pal G-bundle. For 1 ≤ k ≤ m, the k-class of P is defined as the isomorphism
class of the restriction P |Mk → Mk, where Mk is the k-skeleton of the tri-
angulation. We denote the k-class of P by [P ]k.

Notice that the k-class does not depend on the particular choice of the
triangulation in the following sense: Suppose P → M and Q → M are
principal G-bundles. If M ′k is the k-skeleton of another triangulation of M
and P |Mk → Mk is isomorphic to Q|Mk → Mk, then P |M ′k → M ′k is also
isomorphic to Q|M ′k → M ′k. To see this, by the cellular approximation
theorem there exists a continuous map ϕ : M → M which is cellular with
respect to these triangulations, i.e., ϕ(M ′k) ⊂ Mk and homotopic to the
identity. By the assumption, we have ϕ∗P |M ′k � ϕ∗Q|M ′k . Since ϕ is homo-
topic to the identity, we also have ϕ∗P � P and ϕ∗Q � Q. Therefore we
obtain P |M ′k � Q|M ′k as asserted.

The following is the first main result of this section.

Theorem 6.1 Let P →M and Q→M be smooth principal G-bundles with
the same [2p]-class, [P ][2p] = [Q][2p]. Then we have mp(P ;G) = mp(Q;G).

The above is the analogue of the result of White [41, Corollary 1] for the
mapping problem. In our case, however, the converse of the above theorem
does not hold in general. For example, suppose P → M is the trivial bundle
and Q → M is a flat bundle, then we have mp(P ;G) = mp(Q;G) = 0 for
any p ≥ 1 but Q|M [2p] →M [2p] is not necessary trivial in general.
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To prove Theorem 6.1, we need some preparations. Following [41]
and [10], we first introduce a function | · |k : M → R≥0 for 1 ≤ k ≤ m − 1.
Let K be an m-dimensional polyhedron and h : K → M a bi-Lipschitz
map which gives the triangulation of M . For each cell e ⊂ K, we denote

by ce ∈ ◦
e the barycenter of e. For x ∈ Kk, we define |x|k = 1. Assume

inductively that |x|k is defined for x ∈ Ki−1 (k + 1 ≤ i ≤ m). We then
define for i-cell e ⊂ K and x ∈ e, |x|k = |x|e|xe + (x − xe)/|x|e|k, where
|x|e := inf{t > 0 : x ∈ xe + t(e − xe)}. Notice that for x ∈ e, we have
xe + (x− xe)/|x|e ∈ ∂e and |xe + (x− xe)/|x|e|k is defined by our inductive
hypothesis. Notice also that if x ∈ ∂e, we then have |x|e = 1 and |x|k defined
above coincides with the one already defined on Ki−1. From these observa-
tions, we inductively define a function | · |k : K → R≥0. Composing with h−1,

we obtain a function onM which is also denoted by |·|k : M
h−1−→ K

|·|k−→ R≥0.

For 1 ≤ k ≤ m − 1 and 0 ≤ ε ≤ 1, define Γkε := {x ∈ K : |x|k = ε}.
Notice that Γk1 = Kk and Γk0 is the dual (m − k − 1)-skeleton of K. For
0 < ε ≤ 1, we define Φk

ε : {x ∈ K : 0 < |x|k ≤ 1} → Γkε as follows: First Φk
1

is defined as Φk
1(x) = x for x ∈ Kk and for (k + 1)-cell e ⊂ K and x ∈ e,

Φk
1(x) = xe + (x − y)/|x|e. This defines Φk

1 on {x ∈ Kk+1 : 0 < |x|k ≤ 1}.
Suppose inductively that Φk

1 is defined on {x ∈ Ki−1 : 0 < |x|k ≤ 1} for
some k+2 ≤ i ≤ m. Then for x ∈ Ki\Ki−1 with 0 < |x|k ≤ 1, there exists a
i-cell e ⊂ K such that x ∈ e. We then define Φk

1(x) = Φk
1(xe+(x−xe)/|x|e).

In this way, we have defined Φk
1 on {x ∈ Ki : 0 < |x|k ≤ 1}. Thus by

induction, Φk
1 is defined on {x ∈ K : 0 < |x|k ≤ 1} such that Φk

1 : {x ∈
K : 0 < |x|k ≤ 1} → Γk1 is a retraction. Next for 0 < ε < 1, we define
Φk
ε : {x ∈ K : 0 < |x|k < 1} → Γkε . For this, we define Φk : {x ∈

K : 0 < |x|k < 1} × (0, 1) → K as Φk(x, ε) = xe + ε(x − xe)/|x|e for
x ∈ e and ε ∈ (0, 1), where e is a (k + 1)-cell of K. This defines Φk on
{x ∈ Kk+1 : 0 < |x|k < 1} × (0, 1). Suppose inductively that Φk is defined
on {x ∈ Ki−1 : 0 < |x|k < 1} × (0, 1) for some k + 2 ≤ i ≤ m. We then
define for i-cell e ⊂ K, Φk(x, ε) = xe + λ(Φk(xe + (x − xe)/|x|k, ε/λ) − xe),
where λ = λ(x, ε) = 1 − (1 − ε)(1 − |x|e)/(1 − |x|k). This defines Φk on
{x ∈ Ki : 0 < |x|k ≤ 1} and by induction, Φk is defined on {x ∈ K : 0 <
|x|k < 1} × (0, 1). We then set Φk

ε (x) = Φk(x, ε). This defines a retraction
Φk
ε : {x ∈ K : 0 < |x|k < 1} → Γkε .

From Φk, we define Ψk
δ,ε : K → K for 0 < δ < ε ≤ 1 as follows:

Ψk
δ,ε(x) =

⎧⎪⎪⎨
⎪⎪⎩

x if ε ≤ |x|k ≤ 1
Φk(x, ε) if δ ≤ |x|k ≤ ε
Φk(x, δ−1ε|x|k) if 0 < |x|k ≤ δ
x if |x|k = 0.

We also denote the compositions M
h−1−→ K

Ψk
δ,ε−→ K

h−→M by Ψk
δ,ε.
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| · |k and Ψk
δ,ε have the following properties (see [41], [10]):

Hm({x ∈M : |x|k ≤ ε})≤ Cεk+1, Hm−1({x ∈M : |x|k = ε}) ≤ Cεk,(6.2)

C−1 ≤ |d|x|k| ≤ C,(6.3)

|dΨk
δ,ε(x)| ≤ Cε|x|−1

k for δ ≤ |x|k ≤ ε,(6.4)

|dΨk
δ,ε(x)| ≤ Cεδ−1 for |x|k ≤ δ,(6.5)

Jac(Φk(·, δ)|Γk
ε
) ≤ C

(δ
ε

)k
.(6.6)

We are now ready to prove Theorem 6.1.

Proof of Theorem 6.1. Suppose [P ][2p] = [Q][2p]. In the following, we
set k = [2p], Mk

ε := {x ∈ M : |x|k ≥ ε} and | · | = | · |k for simplicity of
notation. Then Mk

ε is a deformation retract of Mk. (Ψk
ε,t for ε ≤ t ≤ 1 gives

a deformation retraction). Thus in particular Mk and Mk
ε/2 have the same

homotopy type and we have from our assumption that P |Mk
ε/2

� Q|Mk
ε/2

.

Let ϕε/2 : Q|Mk
ε/2

∼−→ P |Mk
ε/2

be a bundle isomorphism. We may assume that

ϕε/2 is smooth over the interior of Mk
ε/2. Let AP ∈ A∞(P ) and AQ ∈ A∞(Q)

be arbitrary connections. Choose a cut off function ρε ∈ C∞(M) such
that ρε(x) = 1 for |x| ≤ ε and ρε = 0 for |x| ≥ 3ε/2. Since the space of
connections on Q|Mk

ε/2
is an affine space modeled on C∞(Mk

ε/2,Ad(Q)), there

exists αε/2 ∈ C∞(Mk
ε/2,Ad(Q)) such that

(6.7) ϕ∗
ε/2(AP ) = AQ + pr∗Qαε/2,

where prQ : Q→M is the bundle projection.

Define AQ,ε := AQ+pr∗Q(ρεαε/2). This defines a connection on Q. We de-
fine the bundle Q#εP → M by gluing Q|Mk

ε/2
→ Mk

ε/2 and P |{|x|≤ε} →
{|x| ≤ ε} over {ε/2 ≤ |x| ≤ ε} via the bundle isomorphism ϕε/2. Notice that

ϕε/2 : Q|Mk
ε/2

→ P |Mk
ε/2

and the identity isomorphism P |{|x|≤ε} ∼−→
id

P |{|x|≤ε}
are glued together over {ε/2 ≤ |x| ≤ ε} to give a bundle isomorphism
Q#εP

∼−→ P over M . Two connections AQ,ε and AP are also glued together
over {ε/2 ≤ |x| ≤ ε} via ϕε/2 to give a connection AQ#εP on Q#εP . Thus we
have AQ#εP = AQ,ε over Mk

ε/2 and AQ#εP = AP over {|x| ≤ ε} with respect
to suitable trivializations.

We consider the bundle Pδ,ε := Ψk
δ,3ε/2

∗
(Q#εP ) → M . Since Ψk

δ,3ε/2 is
homotopic to the identity, we have Pδ,ε � P . We also notice that for any
1 < q <∞, Pδ,ε is a bundle of class W 1,q and a connection defined by Aδ,ε :=
Ψk
δ,3ε/2

∗
(AQ#εP ) is a A1,q-connection on Pδ,ε, i.e., Aδ,ε ∈ L2q and dAδ,ε ∈ Lq.
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We now estimate the energy
∫
M
|FAδ,ε

|p dvolM . We write∫
M

|FAδ,ε
|p dvolM =

∫
|x|≥3ε/2

|FAδ,ε
|p dvolM +

∫
|x|≤3ε/2

|FAδ,ε
|p dvolM = I1 + I2.

Here

(6.8) I1 =

∫
|x|≥3ε/2

|FAQ
|p dvolM

and

I2 =

∫
δ≤|x|≤3ε/2

|FAδ,ε
|p dvolM +

∫
|x|≤δ

|FAδ,ε
|p dvolM = I2,1 + I2,2.(6.9)

We have the following estimate:

I2,1 ≤ Cε2p
∫
δ≤|x|≤3ε/2

|x|−2p|FAQ
(Ψk

δ,3ε/2(x))|p dvolM

≤ C‖FAQ
‖pL∞(M)ε

2p

∫
δ≤|x|≤3ε/2

|x|−2p dx

≤ C‖FAQ
‖pL∞(M)ε

2p

∫ 3ε/2

δ

r−2pHm−1({|x| = r}) dr

≤ C‖FAQ
‖pL∞(M)ε

2p

∫ 3ε/2

δ

r−2p+[2p] dr

≤ C‖FAQ
‖pL∞(M) ·

ε[2p]+1

1 − 2p+ [2p]
,(6.10)

where we have used (6.4) in the first line, co-area formula in the third line
and (6.2) in the fourth line.

I2,2 is estimated as:

I2,2 ≤ Cε2pδ−2p

∫
|x|≤δ

|FAQ#εP
|p dvolM

≤ Cε2pδ−2p‖FAQ#εP
‖pL∞(M)H

m({|x| ≤ δ})
≤ Cε2pδ[2p]+1−2p‖FAQ#εP

‖pL∞(M),(6.11)

where in the first line we have used (6.5) while in the second line we have
used (6.2).

From (6.8), (6.9), (6.10) and (6.11) we obtain∫
M

|FAδ,ε
|p dvolM ≤

∫
|x|≥3ε/2

|FAQ
|p dvolM + C‖FAQ

‖pL∞(M) ·
ε[2p]+1

1 − 2p+ [2p]

+ Cε2pδ[2p]+1−2p‖FAQ#εP
‖pL∞(M).(6.12)

Here we notice that ‖FAQ#εP
‖L∞(M) depends on ε but does not depend on δ.
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For any η > 0, we first choose AQ ∈ A(Q) such that

(6.13)

∫
M

|FAQ
|p dvolM < mp(Q;G) +

η

4
.

We next choose ε > 0 such that

(6.14)

∫
|x|≤3ε/2

|FAQ
|p dvolM <

η

4
, C‖FAQ

‖pL∞(M)

ε[2p]+1

1 − 2p+ [2p]
< η/4.

For such a choice of ε > 0, we choose δ > 0 such that

(6.15) C‖FAQ#εP
‖pL∞(M)ε

2pδ1−2p+[2p] <
η

4
.

For such ε and δ, we have from (6.12)

(6.16)

∫
M

|FAδ,ε
|p dvolM < mp(Q;G) + η.

To conclude mp(P ;G) ≤ m(Q;G) from (6.16), we need to approximate Pδ,ε
and Aδ,ε by smooth ones. But this follows from an approximation theorem
proved in [13, Theorem 2.1]: We have proved in [13, Theorem 2.1] that
any Sobolev bundle P = 〈{Uα}, {gαβ}〉 of class W 1,q ∩ C0 and any A1,q(P )-
connection A = {Aα} on it can be approximated by smooth ones in the
following sense: Passing to a refinement if necessary (we use the same {Uα}
for simplicity of notation), there exist C∞-bundles Pn = 〈{Uα}, {gnαβ}〉 and
C∞-connections An = {Aα;n} such that ‖gnαβ − gαβ‖W 1,q(Uαβ) → 0 and∑

α

‖Aα;n − Aα‖L2q(Uα) + ‖dAα;n − dAα‖Lq(Uα) → 0

as n → ∞. Therefore from (6.16), we conclude that mp(P ;G) ≤ mp(Q;G)
since η > 0 is arbitrary. Reversing the roles of P and Q, we also have
mp(Q;G) ≤ mp(P ;G). We thus obtain mp(P ;G) = mp(Q;G). This com-
pletes the proof. �

As a corollary we have

Corollary 6.1 Suppose P → M is a principal G-bundle such that its re-
striction to M [2p], P |M [2p] → M [2p], is isomorphic to a flat bundle over M [2p].
Then we have mp(P ;G) = 0.

Proof. Under the assumption, we need to show that there exists a flat
bundle Q → M such that [P ][2p] = [Q][2p]. Since P |M [2p] is flat, there exists

a representation ρ : π1(M
[2p]) → G such that P = M̃ [2p] ×ρ G, where M̃ [2p]
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is the universal covering of M [2p] and π1(M) = π1(M
[2p]) acts on M̃ [2p]

as deck transformations. Since π1(M) = π1(M
[2p]), ρ naturally defines a

representation ρ′ : π1(M) → G and Q := M̃ ×ρ′ G is a flat bundle over M
such that its restriction to M [2p] is P |M [2p]; Q|M [2p] � P |M [2p]. In particular,
[P ][2p] = [Q][2p] and the assertion follows from Theorem 6.1. �

Thus in particular, if P |M [2p] is flat but P itself is not, mp(P ;G) is never
attained.

Example. The condition of Corollary 6.1 is satisfied if P |M [2p] is the trivial
flat bundle. This is the case if there exists 0 ≤ j ≤ [2p] such that πi(M) = 0
for 0 ≤ i ≤ j and πi(G) = 0 for j ≤ i ≤ [2p]− 1. In fact, by the obstruction
theory, the bundle P |M [2p] → M [2p] has a global section and it is trivial in
such a case.

We conjecture that the converse of Corollary 6.1 is also true, i.e., if
mp(P ;G) = 0, then P |M [2p] is flat. At present, only partial results are
proved, see the remark after Proposition 6.1 and Proposition 6.2 below.

As a special case G = Tk, we have

Proposition 6.1 Assume G = Tk (k ≥ 1) and p > 1. Let P → M be a
principal G-bundle. Then mp(P ;G) is always attained in the sense that there
exist 0 < α < 1, a principal G-bundle Q of class C∞ and a C1,α-connection
A on Q such that Q � P and mp(P ;G) =

∫
M
|FA|p dvolM .

Proof. Let {An} ⊂ A∞(P ) be a minimizing sequence of mp(P ;G), i.e.,
YMp(An) → mp(P ;G) as n→ ∞. Let {Uα} be an open covering of M such
that Uα ∼= Bm and Uαβ ∼= Bm whenever Uαβ �= ∅ (i.e., a “good” cover).
We fix trivializations of P over each Uα and with respect to these, we write
An = {Aα;n}, where Aα;n ∈ C∞(Uα, T

∗Uα ⊗ iRk) (iRk is the Lie algebra
of Tk). We choose gα;n = exp(fα;n) ∈ C∞(Uα,Tk) (fα;n ∈ C∞(Uα, iRk))
such that

(6.17) d∗(dfα;n + Aα;n) = 0 in Uα

and

(6.18) ιν(dfα;n + Aα;n) = 0 on ∂Uα,

where ν is the outward normal vector of ∂Uα in M . fα;n is uniquely deter-
mined up to constants. The gauge transformed connection

A′
α;n :=g−1

α;ndgα;n + Aα;n

satisfies

(6.19) d∗A′
α;n = 0 in Uα, ινA

′
α;n = 0 on ∂Uα.
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We may assume at the beginning that the trivializations of P are chosen such
that An satisfies (6.19). By the elliptic estimate, we have from (6.19) that

(6.20) ‖Aα;n‖W 1,p(Uα) ≤ C‖dAα;n‖Lp(Uα) = C‖FAn‖Lp(Uα),

where C > 0 is a constant independent of n.

Let {gαβ;n} be the gluing cocycle of P with respect to the trivialization as
described above. Since {An} is W 1,p-bounded (see (6.20)) and g−1

αβ;ndgαβ;n =
Aβ;n−Aα;n, it follows that {gαβ;n} is W 2,p-bounded. We may assume (after
passing to a subsequence if necessary) {Aα;n} weakly converges to some
Aα ∈W 1,p(Uα;T

∗Uα ⊗ iRk) in W 1,p(Uα).

Since Uαβ is contractible, there exists a lift ϕαβ;n ∈ C∞(Uαβ , iRk) of gαβ;n,
i.e., gαβ;n = exp(ϕαβ;n). We write

ϕαβ;n = ϕ◦
αβ;n + ϕαβ;n,

where ϕαβ;n =
∫
Uαβ

ϕαβ;n/H
m(Uαβ) ∈ iRk is the mean value of ϕαβ;n over

Uαβ . Define

cαβ;n := ϕαβ;n + 2πik, where k = −[ϕαβ;n/2πi] ∈ Zk.

(For a = (a1, . . . , ak) ∈ Rk, we write [a] = ([a1], . . . , [ak]) ∈ Zk). Then each
component of cαβ;n/i is in [0, 2π) and gαβ;n = exp(ϕ◦

αβ;n + cαβ;n). Since Aα;n

is in Coulomb gauge, we have

(6.21) Δϕαβ;n = 0 in Uαβ ,

∫
Uαβ

ϕ◦
αβ;n = 0.

Moreover, since {gαβ;n} isW 2,p-bounded, dϕ◦
αβ;n and ∇dϕ◦

αβ;n are bounded in
Lp(Uαβ) and thus ϕ◦

αβ;n is bounded in W 2,p(Uαβ) by the Poincaré inequality.
Therefore from (6.21) and the boundedness of {cαβ;n}, there exists a subse-
quence (which we still denote by the same sequence) and ϕαβ∈C∞(Uαβ , iRk)
such that

ϕ◦
αβ;n + cαβ;n → ϕαβ in C∞

loc(Uαβ).

Define gαβ := exp(ϕαβ). Then

gαβ;n → gαβ in C∞
loc(Uαβ)

and a G-bundle defined by P∞ := 〈{Uα}, {gαβ}〉 is isomorphic to P . By the
lower semi-continuity of the integral

∫
M
|FAn|p dvolM , we have∫

M

|FA|p dvolM ≤ mp(P ;G).

Therefore mp(P ;G) is attained.

Since the limit connection A∞ := {Aα} is in Coulomb gauge, the regu-
larity of the limit connection A∞ follows from [37] and [11]. This completes
the proof. �
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Thus in particular, if mp(P ; Tk) = 0, P is flat. For general G, we only
have the following partial converse of Corollary 6.1:

Proposition 6.2 Suppose that mp(P ;G) = 0 for a compact Lie group G
and a smooth principal G-bundle P → M . Then we have:

(1) If M is ([2p] − 1)-connected (i.e., πi(M) = 0 for 1 ≤ i ≤ [2p]− 1), then
[P ][2p] = 0.

(2) For any φ ∈ Ik(G) with 2k ≤ [2p], we have Pφ(P ) = 0 in H2k(M ; R).

Proof. Let h : K→M be a Lipschitz triangulation ofM and ϕ : S [2p]→K [2p]

any Lipschitz map. We claim that for a.e. v ∈ Bl
ε, we have mp((hv ◦

ϕ)∗P ;G) = 0. To see this, choose {An} ⊂ A∞(P ) such that mp(P ;G) =
limn→∞

∫
M
|FAn|p dvolM = 0. By Fubini’s theorem, we have

∫
Bl

ε

(∫
S[2p]

|F(hv◦ϕ)∗An |p dvolS[2p]

)
dHl(v)

≤ Cϕ

∫
S[2p]

(∫
Bl

ε

|FAn(πM(h(ϕ(x)) + v))|p dHl(v)

)
dvolS[2p]

≤ Cϕ

∫
M

|FAn |p dvolM .(6.22)

By (6.22) and Fatou’s lemma, we have lim inf
n→∞

∫
S[2p] |F(hv◦ϕ)∗An|p dvolS[2p] = 0

for a.e. v ∈ Bl
ε. From this, we have mp((hv ◦ ϕ)∗P ;G) = 0 for a.e v ∈ Bl

ε.
From [13, Corollary 5.1], we deduce that (hv ◦ϕ)∗P → S [2p] is isomorphic to
the trivial bundle.

We now consider the case (1). Since M is ([2p] − 1)-connected, there
exists a CW-complex L such that L is homotopy equivalent to M and
L[2p]−1 = ∗. Thus in particular, L[2p] =

∨
σ S

[2p]
σ (S

[2p]
σ is a copy of S [2p]).

Let cP : M → BG be the classifying map of P , i.e., P � c∗P (EG), where
EG → BG is the universal G-bundle. By the claim proved in the previous
paragraph, cP ◦ hv ◦ ϕ is homotopically trivial for a homotopy equivalence
ϕ : L[2p] =

∨
σ S

[2p]
σ

∼−→ K [2p]. Thus cP ◦ hv : K [2p] → BG is also homotopi-
cally trivial and h∗vP |K [2p] is isomorphic to the trivial bundle. Therefore we
have [P ][2p] = 0. This completes the proof of (1).

To prove (2), as the proof of the above claim, for any 2k-dimensional sub-
manifold S ⊂M , we have P |S is flat (see [13, Lemma 5.1]) and 〈Pφ(P ), [S]〉=
〈[Pφ(A)], [S]〉 for any A ∈ A∞(P |S). Since P |S → S has a flat connection,
we thus have 〈Pφ(P ), [S]〉 = 0. Since H∗(M ; Q) ∼= Ω∗(M) ⊗ Q, this implies
Pφ(P ) = 0. This completes the proof of (2). �
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7. Appendix

In this appendix, we prove two results: An approximation theorem of Sobolev
bundles defined over polyhedron and the intersection lemma, Lemma 5.1.

7.1. An approximation theorem of Sobolev bundles over polyhe-
dron

We extend the approximation theorem and other properties of Sobolev bun-
dles proved in [13, §3] for bundles over polyhedron. We only indicate needed
modifications and please refer to [13, §3] for details.

We assume throughout this subsection that K is an m-dimensional finite
regular polyhedron (we do not distinguish between a simplicial complex
and the polyhedron defined from it). It is known that polyhedron is ENR,
see [5, Appendix E]. Thus we may assume that K ⊂ O ⊂ Rl for some open
set O ⊂ Rl and K is a retract of O. We further assume that there exists a
Lipschitz retraction πK : O → K such that

(A-1) there exists C1 > 0 such that C−1
1 ≤ Hl−m(π−1

K (y)) ≤ C1 for all y ∈ K,

(A-2) there exists C2 > 0 such that C−1
2 ≤ Jac(πK)(x) ≤ C2 for a.e. x,

where Jac(πK) is the m-dimensional jacobian of πK .

The precise meaning of (A-2) is as follows: For each m-simplex Δ of K,
consider πK,Δ := πK |π−1

K (Δ) : π−1
K (Δ) → Δ. (A-2) means that for each

such Δ, the m-dimensional jacobian, defined by Jac(πK,Δ) = (det(dπK,Δ ◦
(dπK,Δ)t))1/2, satisfies C−1

2 ≤ Jac(πK,Δ)(x) ≤ C2 for a.e. x ∈ Δ.

(A-1) and (A-2) are satisfied for K the m-skeleton of a triangulated
smooth manifold. To see this, we assume dimM = m+ m1, K = Mm and
M ⊂ Rl for l = m+m1 +m2. For 0 < ε < 1, set Kε = {x ∈M : |x|m ≥ ε},
where | · |m is as defined in §6. Then Φ(·, 1) : Kε → K as defined in §6 gives
a Lipschitz retraction of Kε onto K. Let πM : O(M) → M be a (smooth)
retraction, where O(M) ⊂ Rl is a tubular neighborhood of M in Rl. Define
O = π−1

M (Kε) and consider

πK : O
πM−→ Kε

Φ(·,1)−→ K.

Then πK is a Lipschitz neighborhood retract. For each m-simplex Δ, πK on
π−1
K (Δ) is bi-Lipschitz equivalent to the composition

x = (xm, xm1 , xm2) 	→ (xm, xm1) 	→ xm,

where xm ∈ Rm, xm1 ∈ Rm1 and xm2 ∈ Rm2 . From this it is easy to see
that (A-1) and (A-2) are satisfied.
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We show by a slight modification of the argument in [13, §3] that the
results obtained in [13, §3] (in particular Corollary 3.1) continue to hold
for Sobolev bundles over finite regular polyhedron under assumptions (A-1)
and (A-2).

Sobolev spaces on regular polyhedron are defined for example in [41].
The definition of Sobolev bundles over regular polyhedrons is the same as
that of Sobolev bundles over smooth manifolds. The proof of the approxi-
mation theorem, i.e., the proof of the assertion that any Sobolev bundle of
class W 1,m is approximated by bundles of the class C0 ∩W 1,m (in the sense
as presented in [13, §3]) is the same as that of the smooth base manifold
case, see [13, §3]. We need a slight modification of the argument for the
proof of the stability assertion [13, Proposition 3.1]. The only needed mod-
ification is in the proof of [13, Lemma 3.1]. In that proof (see in particular
the construction (3.22) in [13]) we have used collar neighborhood theorem
for smooth submanifolds of M which does not hold for the present case.
Once the construction of (3.22) in [13] is modified, the other arguments go
through for the present case.

We now give a modification of the argument. Fix an arbitrary η > 0
such that d(∂O, K) ≥ 2η. Let K ′ be a subdivision of K such that for
any m-simplex �m of K ′ there holds diam(�m) < η. The set of all the
m-simplexes of K ′ is denoted by {�α}α∈A. Thus we have |K| = |K ′| =⋃
α∈A�α. Taking η > 0 small if necessary, we may assume that for the set

Õ := {x ∈ O : d(x,K) < η}, the restriction of πK to Õ, denoted also by
πK : Õ → K satisfies conditions (A-1) and (A-2) above. For ξ ∈ Rl with
|ξ| < η and an m-simplex �α, set �̃α,ξ = �̃α + ξ and �α,ξ := πK(�̃α,ξ),
where �̃α = π−1

K (�α). For U ⊂ K an open subset and f ∈ L1(U), we first
remark that the following inequality holds:

(7.1)

∫
|ξ|<η

(∫
∂
α,ξ∩U

f(x) dHm−1(x)

)
dHl(ξ) ≤ C

∫
U

f(x) dHm(x).

To prove (7.1), we first have∫
|ξ|<η

(∫
π−1

K (∂
α,ξ∩U)

f ◦ πK(x) dHl−1(x)

)
dH(ξ)

≥ C−1
2

∫
|ξ|<η

(∫
π−1

K (∂
α,ξ∩U)

f ◦ πK(x)Jac(πK)(x) dHl−1(x)

)
dHl(ξ)(7.2)

≥ C−1
2

∫
|ξ|<η

(∫
∂
α,ξ∩U

f(y)Hl−m(π−1
K (y)) dHm−1(y)

)
dHl(ξ)(7.3)

≥ C−1
2 C−1

1

∫
|ξ|<η

(∫
∂
α,ξ∩U

f(y) dHm−1(y)

)
dHl(ξ),(7.4)
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where we have used (A-2) to derive (7.2), (7.3) is obtained by applying the
co-area formula [29] and (7.4) is by (A-1).

On the other hand, we have∫
|ξ|<η

(∫
π−1

K (∂
α,ξ∩U)

f ◦ πK(x) dHl−1(x)

)
dHl(ξ)

=

∫
|ξ|<η

(∫
∂
̃α,ξ∩Ũ

f ◦ πK(x) dHl−1(x)

)
dHl(ξ) (Ũ := π−1

K (U))

=

∫
|ξ|<η

(∫
∂
̃α∩(Ũ−ξ)

f ◦ πK(x+ ξ) dHl−1(x)

)
dHl(ξ)

=

∫
∂
̃α

(∫
Ũ∩Bl

η(x)

f ◦ πK(z) dHl(z)

)
dHl−1(x)

≤
∫
∂
̃α

(∫
Ũ

f ◦ πK(z) dHl(z)

)
dHl−1(x)

≤ CA

∫
Ũ

f ◦ πK(z) dHl(z)(7.5)

≤ CAC2

∫
Ũ

f ◦ πK(z)Jac(πK)(z) dHl(z)(7.6)

≤ CAC2

∫
U

f(y)Hl−m(π−1
K (y)) dHm(y)(7.7)

≤ CAC2C1

∫
U

f(x) dHm(x),(7.8)

where CA in (7.5) is defined by CA = supα∈A Hl−1(∂�̃α), (7.6) is derived
by (A-2), (7.7) is obtained by applying the co-area formula and (7.8) is
by (A-1).

Combining (7.4) and (7.8), we obtain (7.1) with C = CAC
2
1C

2
2 .

We apply (7.1) for

U =
( ⋃
α≤k

V k
α

)
∩ Vk+1

and
f = |ρεk+1 − 1| or f = |g1,ε

αβ − h0,ε
αβ |,

where V k
α , Vk+1, ρ

ε
k+1, g

1,ε
αβ and h0,ε

αβ are as defined in the proof of Lemma 3.1
in [13]. Then by Fubini’s theorem, there exist a sequence of positive num-
bers {εk} converging to 0 and ξ ∈ Rl with |ξ| < η such that

‖ραk+1 − 1‖W 1,m(∪α∂
α,ξ∩U) → 0 and(7.9)

‖h1,εk
αβ − g0,εk

αβ ‖W 1,m(∪α∂
α,ξ∩U) → 0(7.10)

as k → ∞.
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We then define

V k+1 := U ∩
⋃
α∈A

{�α,ξ : �α,ξ ∩U �= ∅, �α,ξ ∩ ∂
( ⋃
α≤k

V k
α ∩ Vk+1

)∩Vk+1 = ∅}.

Since ∂V k+1 ∩ U ⊂ ⋃α ∂�α,ξ ∩ U , we have from (7.9) and (7.10) that

(7.11) ‖ραk+1 − 1‖W 1,m(∂V k+1∩(∪αV k
α ∩Vk+1)) → 0

and

(7.12) ‖h1,εk
αβ − g0,εk

αβ ‖W 1,m(∂V k+1∩(∪αV k
α ∩Vk+1)) → 0

as k → ∞.

From here, the remaining argument is the same as in the smooth base
manifold case. Namely, from (7.11) and the Sobolev embedding theorem,
we can write

(7.13) ρεk+1 = exp(Xε
k+1)

on ∂V k+1 ∩⋃α≤k V k
α ∩ Vk+1, where exp : g → G is the exponential map,

(7.14) ‖Xε
k+1‖L∞ → 0

and

(7.15) ‖Xε
k+1‖W 1,m → 0

as k → ∞ (L∞ and W 1,m-norms are taken on ∂V k+1 ∩⋃α≤k V k
α ∩ Vk+1).

Since

∂V k+1 ∩ Vk+1 ⊂
⋃
α

∂�α,ξ ∩ Vk+1

and
⋃
α ∂�α,ξ is a Lipschitz deformation retract of

⋃
α(�α,ξ \{cα}) (cα is the

barycenter of �α,ξ), X
ε
k+1 can be extended to a neighborhood of ∂V k+1∩Vk+1

in Vk+1 as a W 1,m-function which we denote as X̃ε
k+1. Let φ be a Lipschitz

function such that its support is contained in that neighborhood and φ = 1
on another smaller neighborhood of ∂V k+1 ∩ Vk+1 in Vk+1. Define ρ̃εk+1 such

that ρ̃εk+1 = ρεk+1 in V k+1 and ρ̃εk+1 = exp(φX̃ε
k+1) in Vk+1 \ V k+1. For this

choice of ρ̃εk+1, the argument of [13] goes through and this completes the
proof. �
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7.2. Proof of the intersection lemma

We prove Lemma 5.1 in §5.

Proof of Lemma 5.1. We first assume that S ⊂ M is closed with
Hm−s(S) < +∞ and h : K → M is smooth, i.e., its restriction to each d-
cell �d is smooth in the sense that h|
d has a smooth extension to an open
neighborhood of �d in the d-plane containing �d. Define F : Bε×K×M →
M × M by F (v, x, y) = (hv(x), y), where hv(x) = πM(h(x) + v). For
�d a d-cell of K, define F
d = F |Bl

ε×
d×M . It is easy to see that F
d

intersects transversally to the diagonal Δ ⊂ M × M . In fact, we have
dF
d(v, x, y)(V, 0, Y ) = (dπM(h(x) + v)(V ), Y ) for (v, x, y) ∈ Bl

ε ×�d ×M ,
V ∈ TvBl

ε = Rl and Y ∈ TyM and this is onto as a map from TvBl
ε × TyM

to T(hv(x),y)(M ×M). Thus by the standard transversality theorem, we see
that F−1


d (Δ) ⊂ Bl
ε × �d × M is a (l + d)-dimensional submanifold and

Hl+d(F−1

d (Δ)) < +∞. Since F−1(Δ) =

⋃

d F

−1

d (Δ), we also have

(7.16) Hl+d(F−1(Δ)) < +∞.

We next consider the set B := Bl
ε ×K × S. For u ∈ Bl

ε, define Bu = Bl
ε ×

K × Su, where Su = πM(S + u). We consider the intersection F−1(Δ)∩Bu.
We claim that dim(F−1(Δ) ∩ Bu) ≤ l + d − s for a.e. u ∈ Bl

ε. To prove
this claim, we consider the map F̃ : Bl

ε ×K × O(M) → M ×M defined by
F̃ (v, x, y) = (hv(x), πM(y)), where we set O(M) = Oε/2(M). We also define

F̂ : Bl
ε × K × O(M) × S → M ×M by F̂ (v, x, y, z) = (hv(x), πM(y)) and

P1,2,3 : Bl
ε×K×O(M)×S → Bl

ε×K ×O(M) by P1,2,3(v, x, y, z) = (v, x, y).
As in the case of F , F̃ transversally intersects with Δ and we have

(7.17) H2l+d−m(F̃−1(Δ)) < +∞
and hence we also have

(7.18) H2l+d−s(F̂−1(Δ)) < +∞
since F̂−1(Δ)= F̃−1(Δ)×S and F̃−1(Δ) is a piecewise smooth manifold (i.e., a
finite union of manifolds of the form F̃−1


d (Δ)), so the result of [8, 2.10.45] is ap-
plicable and we have

H2l+d−s(F̂−1(Δ)) ≤ C H2l+d−m(F̃−1(Δ))Hm−s(S) < +∞.

For the set Vu := {(v, x, y, z) ∈ Bl
ε × K × O(M) × O(M) : y − z = u}

defined for u ∈ Bl
ε, we have

F̂−1(Δ) ∩ Vu = {(v, x, z + u, z) ∈ F̃−1(Δ) × S}
= F̂−1(Δ) ∩ p−1(u)(7.19)

where p : Bl
ε ×K × O(M) × O(M) → Bl

ε is defined by p(v, x, y, z) = y − z.
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By the co-area formula (see [19, Theorem 7.7]), we have∫
Bl

ε

Hl+d−s(F̂−1(Δ) ∩ p−1(u)) dHl(u) ≤ CH2l+d−s(F̂−1(Δ)) < +∞.

Therefore for a.e. u ∈ Bl
ε, we obtain

(7.20) Hl+d−s(F̂−1(Δ) ∩ p−1(u)) < +∞.

Notice here that F̂−1(Δ) ∩ p−1(u) is given as

F̂−1(Δ) ∩ p−1(u) =(7.21)

= {(v, x, z + u, z) ∈ Bl
ε ×K × O(M) × S : hv(x) = ιu(z)}.

We consider the image of this set under the projection

P1,2,4 : Bl
ε ×K × O(M) × S � (v, x, y, z) 	→ (v, x, z) ∈ Bl

ε ×K × S.

We denote this by Au := P1,2,4(F̂
−1(Δ)∩p−1(u)). From (7.21), Au is given by

(7.22) Au = {(v, x, z) ∈ Bl
ε ×K × S : hv(x) = ιu(z)}

and since this is a Lipschitz image of F̂−1(Δ)∩p−1(u) which satisfies (7.20),
we have Hl+d−s(Au) < +∞ for a.e. u ∈ Bl

ε. Thus, in particular, we have H-
dimAu ≤ l+d−s. Since the mapAu � (v, x, z) 	→ (v, x, ιu(z)) ∈ F−1(Δ)∩Bu

is bi-Lipschitz, we also have H-dim(F−1(Δ)∩Bu) ≤ l+d−s for a.e. u ∈ Bl
ε.

Thus the claim is proved.

We return to the proof of the lemma. Consider a.e u ∈ Bl
ε such that

dim(F−1(Δ)∩Bu) ≤ l+d−s. Let P1 : F−1(Δ)∩Bu → Bl
ε be the projection

to the first factor. Then we have

P−1
1 (v) = {(x, hv(x)) ∈ K ×M : ι−1

u ◦ hv(x) ∈ S}.
Thus to complete the proof of the lemma for the case Hm−s(S) < +∞, we
need to show that for a.e. v ∈ Bl

ε, we have P−1
1 (v) = ∅. To prove this, we

again use the co-area formula of [19, Theorem 7.7] and obtain∫
Bl

ε

H0(F−1(Δ) ∩ Bu ∩ P−1
1 (v)) dHl(v) ≤ CHl(F−1(Δ) ∩ Bu) = 0

since l + d − s < l under our assumption. Therefore for a.e. v ∈ Bl
ε,

P−1
1 (v) = ∅. This completes the proof for the case Hm−s(S) < +∞. The

proof of the general case follows from this special case by the standard
argument. We omit the details. �
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calculus of variations. I, II. Ergebnisse der Mathematik und ihrer Grenzge-
biete 37, 38. Springer-Verlag, Berlin, 1998.

[10] Hang, F. and Lin, F.H.: Topology of Sobolev mappings. II. Acta
Math. 191 (2003), 55–107.

[11] Hamburger, C.: Regularity of differential forms minimizing degenerate
elliptic functionals. J. Reine Angew. Math. 431 (1992), 7–64.

[12] Husemoller, D.: Fibre Bundles, third edition. Graduate Texts in Math-
ematics 20. Springer-Verlag, New York, 1994.

[13] Isobe, T.: Topological and analytical properties of Sobolev bundles. I: The
critical case. Ann. Global Anal. Geom. 35 (2009), 277–337.

[14] Isobe, T.: A regularity result for a class of degenerate Yang-Mills connec-
tions in critical dimensions. Forum Math. 20 (2008), 1109–1139.

[15] Kobayashi, S. and Nomizu, K.: Foundations of differential geometry.
Vol. I, II. Interscience Publishers John Wiley & Sons, New York-London-
Sydney 1963, 1969.

[16] Lanzani, L. and Stein, E. M.: A note on div and curl inequalities. Math.
Res. Lett. 12 (2005), 57–61.

[17] Lions, P. L.: The concentration compactness principle in the calculus of
variations. The limit case. I. Rev. Mat. Iberoamericana 1 (1985), no. 1,
145–201.



Topological and analytical properties of Sobolev bundles II 797

[18] Lions, P. L.: The concentration compactness principle in the calculus of
variations. The limit case. II. Rev. Mat. Iberoamericana 1 (1985), no. 2,
45–121.

[19] Mattila, P.: Geometry of sets and measures in Euclidean spaces. Frac-
tals and rectifiability. Cambridge Studies in Advanced Mathematics 44.
Cambridge University Press, Cambridge, 1995.

[20] Meyer, Y. and Rivière, T.: A partial regularity result for a class of sta-
tionary Yang-Mills fields in high dimension. Rev. Mat. Iberoamericana 19
(2003), no. 1, 195–219.

[21] Nakajima, H.: Compactness of the moduli space of Yang-Mills connec-
tions in higher dimensions. J. Math. Soc. Japan 40 (1988), 383–392.

[22] Parker, T.H. and Wolfson, J.G.: Pseudo-holomorphic maps and bub-
ble trees. J. Geom. Anal. 3 (1993), 63–98.

[23] Price, P.: A monotonicity formula for Yang-Mills fields. Manuscripta
Math. 43 (1983), 131–166.

[24] Rivière, T.: Interpolation spaces and energy quantization for Yang-Mills
fields. Comm. Anal. Geom. 10 (2002), 683–708.

[25] Sacks, P. and Uhlenbeck, K.: The existence of minimal immersions of
2-spheres. Ann. of Math. (2) 113 (1981), 1–24.

[26] Schoen, R. and Uhlenbeck, K.: Boundary regularity and the Dirichlet
problem for harmonic maps. J. Differential Geom. 18 (1983), 253–268.

[27] Sedlacek, S.: A direct method for minimizing the Yang-Mills functional
over 4-manifolds. Comm. Math. Phys. 86 (1982), 515–527.

[28] Shevchishin, V.: Limit holonomy and extension properties of Sobolev and
Yang-Mills bundles. J. Geom. Anal. 12 (2002), 493–528.

[29] Simon, L.: Lectures on geometric measure theory. Proceedings of the Cen-
tre for Mathematical Analysis, Australian National University 3. Australian
National Univ., Centre for Mathematical Analysis, Canberra, 1983.

[30] Tao, T. and Tian, G.: A singularity removal theorem for Yang-Mills
fields in higher dimensions. J. Amer. Math. Soc. 17 (2004), no. 3, 557–593.

[31] Taubes, C.H.: Self-dual Yang-Mills connections on non-self-dual 4-
manifolds. J. Differential Geom. 17 (1982), 139–170.

[32] Taubes, C.H.: Self-dual connections on 4-manifolds with indefinite inter-
section matrix. J. Differential Geom. 19 (1984), 517–560.

[33] Taubes, C. H.: Path-connected Yang-Mills moduli spaces. J. Differential
Geom. 19 (1984), 337–392.

[34] Taylor, M.E.: Partial differential equations. I–III. Applied Mathematical
Sciences 115–117. Springer-Verlag, New York, 1996, 1996, 1997.

[35] Thom, R.: Quelques propriétés globales des variétés différentiables. Com-
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