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Topological and analytical properties
of Sobolev bundles.

II. Higher dimensional cases

Takeshi Isobe

Abstract

We define various classes of Sobolev bundles and connections and
study their topological and analytical properties. We show that cer-
tain kinds of topologies (which depend on the classes) are well-defined
for such bundles and they are stable with respect to the natural
Sobolev topologies. We also extend the classical Chern-Weil theory
for such classes of bundles and connections. Applications related to
variational problems for the Yang-Mills functional are also given.

1. Introduction

This paper is a sequel to [13] where we have studied an interrelation between
the topological and the analytical properties of Sobolev bundles and Sobolev
connections for the critical case.

Let us first recall the definition of Sobolev bundles as introduced in [13].
Throughout this paper, we assume that M is a compact Riemannian mani-
fold of dimension m and G a compact Lie group with bi-invariant met-
ric. There is a faithful unitary representation of G on R!, i.e., an injection
G — O(R') = O(l) for some | € Z. Thus we may assume without loss of
generality that G is a subgroup of O(l). For any open subset U C M, k € Z
with £ > 1 and 1 < p < oo, the Sobolev space of functions in U of class
WHP denoted W*P(U), is defined as the set of all LP-integrable functions
in U whose partial derivatives (in the sense of distributions) of order up to k
are also LP-integrable in U. W*?(U, G) is then defined as

(1.1) WhP(U,G) = {g € WF(U,RY) : g(z) € G for ae. 2 € U}.
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By the Sobolev embedding theorem, if k and p satisfy kp > m, then
WHEP(U,G) C C°(U,G) and the pointwise multiplication and the inversion
define a continuous multiplication W*?(U, G)x W*P(U, G) > (f,g) — f-g €
WHhP(U,G) and an inversion W*P(U,G) > f — f~! € WP(U,G). With
these, W*?(U,G) becomes a Banach Lie group. This is not the case for
kp < m, but by the Gagliardo-Nirenberg inequality, in [13] we have shown
that it becomes a topological group under the pointwise multiplication and
the inversion even for the case kp < m.

Classical (topological or smooth) principal G-bundles are described by
an open covering {U,} of M and a gluing date {gas}, gap € C*(Uag, G)
(or C*°(Uup, G) when considering smooth bundles) which define an element
in H'(M,C%) (respectively, H'(M,C¥)), where U,3 = U, N Uy and €%
(respectively, C¥) denotes a presheaf defined by CL(U) = C°U,G) (re-
spectively, CX(U) = C*(U, @)) for any open set U C M. Conversely, any
element in H'(M,C%) (or H'(M,C¥)) defines a unique isomorphism class
of principal G-bundles of class C° (respectively, C*°). The Sobolev bundles
of class W¥*? are defined similarly. Namely, it is defined as an element of
H'(M, WEP), where the presheaf W5 is defined by WP (U) = Wk»(U, G)
for any open subset U C M. In other words, it is described as a pair
P = ({Us}aer, {9as}aser), where {U,}aer is an open covering of M and
Gop € WEP(Uyp, G) (o, 8 € I) satisty gar(2) = gap - gp,(x) for ae. = €
Uagy == Uy N Uz N U,. For more details, see [13]. Notice that, by the
Sobolev embedding theorem, Sobolev bundles of class W*® are in fact bun-
dles of class C° when kp > m. Thus for our study the interesting cases
are kp < m and we only treat these cases throughout this paper.

Sobolev bundles naturally arise as limits of smooth bundles. For ex-
ample, if we want to compactify the moduli space of (smooth) Yang-Mills
connections under the natural topology, one needs to add weak limiting bun-
dles and connections on them. These weak limiting objects are, in general,
singular and belong to certain classes of Sobolev bundles and connections.
There are also other places where such bundles and connections arise: For
example, if we want to apply techniques of the calculus of variations for
the Yang-Mills and other related functionals, one needs to work on a suit-
able Sobolev completion of smooth bundles and connections in order to
get suitable compactness properties. For more details and other examples,
see [27], [38], [39], [40], [36] [24] and [13].

In our previous paper [13], we studied an interplay between the topolog-
ical and the analytical properties of Sobolev bundles and connections in the
critical case kp = m. One of our results proved there is the equivalence of
the category of principal G-bundles of class W*? and the category of princi-
pal G-bundles of class C°, i.e., the isomorphism H'(M, W) = H'(M, C%,).
This answers the question raised by Uhlenbeck in her paper [40].
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In this paper, we continue our study and concentrate on our attention to
the higher dimensional cases kp < m. Contrary to the critical and the lower
dimensional cases kp > m, it is possible that one can define various classes of
Sobolev bundles and connections with the same indexes k, p. This is due to
the fact that there are various (inequivalent) classes of Sobolev spaces with
values into G when kp < m. So we first define these classes in §2. In the
higher dimensional case, one can not expect the equivalence of the category
of Sobolev G-bundles to the category of G-bundles of class C°. However, we
shall show that certain kinds of topological invariants are well-defined for
such bundles. These are defined in §3. Its properties, in particular, its sta-
bility with respect to the appropriate Sobolev topologies are also studied
in §3.

On Sobolev bundles, there are also natural classes of Sobolev connec-
tions. These are defined in §2. For these connections, in §4, we extend the
classical Chern-Weil theory and study its compatibility with the topologies
introduced in §3. In §5, we introduce singular Sobolev bundles which also
naturally arise as weak limits of smooth bundles. The results in §3 and §4
are extended for such classes of bundles. As an application of the results
proved in §3 and §5, we consider G-bundles with Neather Yang-Mills con-
nections (see §5 for the definition) which have uniformly bounded Yang-Mills
energies. We shall show that such bundles converge weakly to a certain class
of (singular) Sobolev bundles. We characterize these limits in terms of the
invariants defined in §3 and §5.

In §6, we study variational problems for the Yang-Mills functional. In
that section, we characterize the value of the infimum of the Yang-Mills
functional in terms of the invariants introduced in §3.

Our results are considered as Yang-Mills counterparts of the results ob-
tained by White [41], [42] (see also [10]) for mapping problems in Sobolev
spaces. And we use some of the ideas of [41], [42] and [10] in our proof of
the results.

2. Various classes of Sobolev bundles and Sobolev con-
nections

2.1. Classes of Sobolev bundles

Let £ € N and p > 1 be such that kp < m. As mentioned in the in-
troduction, there are various classes of Sobolev spaces defined on an open
subset U C M with values in GG. One natural definition is given by (1.1).
However, other choices are also possible. These are obtained as comple-
tions of C°(U,G) N W*P(U, G) with respect to natural Sobolev topologies.
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One is obtained as the completion of C*(U, G)NW*P(U, G) (or equivalently
Co(U,G)NWH*P(U, G)) with respect to the strong Sobolev topology (i.e., the
topology defined by the Sobolev norm). We denote this as wkr (U, G):

strong

Whe  (U,G)= the strong closure of C*(U,G) N W*P(U, G) in W*P(U, G).

strong

Another natural space is the sequential weak closure of C*°(U,G)NW*?(U,G)
(or equivalently C°(U,G) N W*?P(U,G)) in W*P(U, ) which we denote
by WP (U, G):

eak

Wkr (U, Q) =

weak

= the sequential weak closure of C*°(U, G) N W"?(U, G) in W*?(U, Q).

For any open set U C M, WE(U,G), Wik (U, G) and WEP (U, G) are
very different when kp < m. (They define the same set when kp > m
due to the approximation theorem of Schoen-Uhlenbeck [26]). In fact, when
Tep) (G) # 0 we always have

Weitons(U. G) & WHI(U, G)

strong

in view of the result of Bethuel [1] and Bethuel-Zheng [2] and we also have

Ws]if(?)ng(U7 G) ; Wv]f/(flk(U7 G)
in general (see [1], [10]). According to the different choices of Sobolev spaces,
we obtain different kinds of (the isomorphism classes of) Sobolev bundles.
They are defined as
HY (M, WgP), HYM, WL o) and H'(M, W, )

strong,G

k,p

k.p
strong.c and WUT, - are presheaves defined by

respectively, where W

Ws&fong,G(U) = Ws]if(?)ng(U7 G) and Wl\fv’epak,G(U) - Wv]f/(flk(U7 G)
respectively, for any open set U C M. To see that these definitions are mean-
ingful, we need to show that W*?(U, G), Wslz’rﬁng(U, G) and WP (U, G) be-
come groups with respect to the pointwise multiplication and the inversion.
This is seen from the Gagliardo-Nirenberg inequality as in [13], see also be-
low. Though the above classes of Sobolev bundles are natural, there are also
other natural choices: Since in applications we frequently encounter classes
of Sobolev bundles as obtained by limits of smooth bundles with respect
to suitable Sobolev topologies, we are in fact interested in some subsets of

HY(M,WiE o) and HY (M, W2, ) defined below:

strong,G
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Definition 2.1 Let k € N and 1 < p < 0.

(1) The class of Sobolev bundles TPZP(M) is defined as the set of pairs
P = ({Us}aer: {9aptaper), where {Uytaer is an open covering of M
and gog € WEP(Uug, G) (o, € I) satisfy gap() - g5,(2) = gary() a.e.
in Ungy, whenever Uyg, # 0.

(2) Ph2 (M) CTgp(M) is defined as: P={({Ua}acr: {9ap}aser) GiPlé’p(M)

strong,G

belongs to Tf;fon%G(M) if and only if there exists a sequence of smooth
principal G-bundles {P,} C P¥ (M) (PX (M) denotes the set of smooth
G-bundles on M) of the form P, = ({Vi}ics, {97 }ijes) such that {Vi}ic,
is a refinement of {Ua}acr, i-e., Vi C Uy for some refinement map
o J = I and ||gp)ei) — 95llwervy,) — 0 (n — o00) for any i,j € J

(3) Tt (M) C PG (M) is defined as: P={{Ua}acr, {gas}a,per) €PG" (M)
belongs to Tféﬁk,G(M) if and only if there exists a sequence { P, } C P (M)
of the form P, = ({Vi}ics, {95 }ijes) such that {Vi}ics is a refinement
of {Uataer, Vi C Upgiy, and ||95(005) = 9ijllzrviyy — 0 (n — o0) and
sup,, Zle IVl ey < 400 for any i,j € J with Vi; # 0, where
Vi=V---V (I-times).

The isomorphism classes of Sobolev bundles are defined as:

Definition 2.2 We say that P = ({Ua}acr, {gaptager) € PEP(M) and Q =
{Vities, {hijYijes) € PEP(M) are W*P-isomorphic to each other if and
only if there exist a refinement {Ws}scr of both of {U,} and {V;} which
still covers M, i.e., Wy C Uy, Ws C Vi) for some refinement maps
o: K —>I1,¢:K—JadJ,Ws, =M, and p;, € WFP(W,,G) (s € K)
such that
Go(s)ett) = Ps - hyypy - prin W

whenever Wy, # ().

This defines an equivalence relation in (Plé’p(M) and the equivalence class
containing P is denoted by [Ply,. The set of W*P-isomorphism classes is
denoted by PEP(M). In other words, PEP(M) = H (M, WEP).

The isomorphism classes of G-bundles in Tf{fong,G(M ) and Tf‘;fakG(M ) are

defined similarly. However, in these cases there are some choices: One can
define P,Q € P¥P (M) (or P,Q € 'J)Iva’fa,k,a(M )) are isomorphic to each

strong,G
other if they are isomorphic as bundles in inp (M) as defined above, i.e., they
define the same class in PP (M), or alternately one can define P and Q are



734 T. ISOBE

isomorphic if they define the same class in H*(M, Wfﬁfong,a) (respectively,

H' (M, Wf‘;fakﬂ)), i.e., in Definition 2.2, we require p, € Wslz’r’;ng(Wp, G) (re-
spectively, p, € WEP (W, G)).

weak

The latter definition seems natural in the sense that if P = ({Ua,}, {gag})
S Thp (M) (OI' P e ?\]f\;fak,G(M)) and Pp S Wsl?r%ng(wpa G) (respec_

strong,G

tively, p, € Whe (W,,G)), then the gauge transformed bundle p*P :=

weak
<{Wp}7 {ppg¢(P)¢(Q)p<;l}> is also in TSGfong,G(M) (respectively, n :])\]f\;fak,G(M))‘
This is seen from the fact (see below) that Wslifz,ng(U, G) and W5 (U, Q)
become group under the pointwise multiplication and the inversion for any

open subset U C M.

On the other hand, the first definition is natural in the sense that the inv-
ariants defined in the next section for bundles in Tf{fong,G(M )orin PEP (M)
are preserved under this equivalence.

Thus when we treat equivalence classes of bundles in Tf{fong,G(M ) (or

in ?\]jvfa,k,G(M )), we shall indicate which equivalence is used.

Before ending this subsection, we sketch the proof of the assertion that
Whe (U,G) and WP (U, Q) are groups under the pointwise multiplication

strong weak
and the inversion. (The proof of the same assertion for W*P(U, G) is given

in [13]).

Proposition 2.1 For any open set U C M, WEP (U.G) and W*? (U, G)

strong weak
are groups under the pointwise multiplication and the inversion.

Sketch of the Proof. Let f g € Wsli’rlz,ng(U, G). There exist {f,},{g.} C
C>(U,G) N W*»(U,G) such that f, — f, g. — ¢ in W*P(U,G). From
the compactness of G, we see that {f,} and {g,} are L*-bounded and
the Gagliardo-Nirenberg inequality [34, I1I-13-3] implies that f,g, — fg
in WkP(U, @), see [13, Appendix] for details. Similarly from the Gagliardo-
Nirenberg inequality as in [13, Appendix], we see that f,'—f~' in W*P(U,G).
Thus fg € Wit (U, G) and f~' € Wil (U, G).

Assume on the other hand f,g € Wvﬁ’p (U,G). Then there exist se-

eak
quences {f.},{g.} C C>*(U,G) N WkP(U, @) such that f, — f in LP(U),
sup,, 25:1 V9 full Loy < 00, gn — g in LP(U) and sup,, 25:1 1V gl Lo ()
< 00. Then from the compactness of G, it is easy to see that f,g, — fg
in LP(U). Moreover, by the Gagliardo-Nirenberg inequality, we see that
sup,, Y1 |V (fugn) |l Lr@) < 00. Thus we have fg € Wi, (U, G). Similarly,

eak
we easily see that f; ! — f~! in LP(U) and sup,, Z?:l IV (f ) ey < o0
also by the Gagliardo-Nirenberg inequality. Therefore f~' € WP (U, G)

weak

and the proof is complete. |
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2.2. Classes of Sobolev connections

We introduce in this subsection classes of Sobolev connections on Sobolev
bundles introduced in the previous subsection.

Recall that a smooth connection on a smooth principal G-bundle P =
({Ua},{9ap}) is defined by a family of smooth g-valued 1-forms {A,}, A, €
C>®(U,,T*U, ® g), satisfying the gluing relation
(2.1) A = 9254905 + JagAadas i Unp
whenever U,z # 0.

For a Sobolev bundle as defined in the previous subsection, one may
also define a connection on it as a family of g-valued 1-forms {A,}aes be-
longing to a suitable class of Sobolev space which also satisfies the gluing
relation (2.1). In general, a connection loses one more derivatives than
the bundle, so one may think that a natural class where A, lives in is the
Sobolev class W*~1?. However, this is not so in general. This is because
for gop € W*P(U,,G) and A, € W 12(U,, T*U, ® g) the right hand side
of (2.1) does not belong to W*~1? in general: As is shown in the appendix
in [13], the Gagliardo-Nirenberg inequality implies g;f}dgaﬂ € Wk=Lp(U,p)
while the 1-form g;ﬁlAagaﬁ does not belong to W*1P(U,3) for the case
kp < m in general. However, if we require some additional regularity for A,,
we obtain a right definition. Since we are primarily interested in the cases
k =1 and k = 2, we only consider these cases. Extensions to the case k > 3
is straightforward.

Definition 2.3 Assume k = 1 or k = 2 and 1 < p < oo. Let P =
HUsYaer, {Gaptaser) € PEP(M). We define the spaces of Sobolev connec-
tions A¥=LP(P) and A'P/2(P) on P as follows:

(1) The case k = 1: A"?(P) = AP(P) is defined as the set of all A =
{Au}aer such that A, € LP(U,, T*U, ® g) for all a € I and (2.1) holds
a.e. in Uyg whenever Uag # (0.

(2) The case k = 2: AYP(P) is defined as the set of all A = {Aq}aer such
that A, € W'?(U,, T*U,®g)NL*?(U,, T*U,®g) for alla € I and (2.1)
holds a.e. in Uyz whenever Uyg # 0.

(3) The case k = 1: We define A1/2(P) as the set of all A = { Ay }aer such
that Ay € LP(Uy, T*U, ® g), dAy € LP2(Uy, N°T*U, ® g) and (2.1)
holds a.e. in Uyz whenever Uyg # 0.

We must show that the classes A*P(P) (k = 0,1) and 2A'"?/2 (k = 1)
are defined properly: For P € inp(M) and A = {A,} € AP(P), the right
hand side of (2.1) belongs to LP(U,g) so AP(P) is properly defined. For
P € P2P(M)and A= {A,} € A'?(P), the Cagliardo-Nirenberg inequality
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W22(U,p) N L>®(U,p) C WH?(U,p) implies that the right hand side of (2.1)
belongs to Wh?(U,s) and AMP(P) is defined properly. Lastly, for P €
PLP(M) and A = {A,} € A'P/2(P), the right hand side of (2.1) belongs
to LP(U,p) and its exterior derivative

~ 003906903 N d9as — 9apd9apTag N Aagas + 9apdAagas — GupAa A dgag

belongs to LP/%(U,s) by Holder’s inequality. Thus A'“*/2(P) is defined prop-
erly.

In applications, more other classes of Sobolev bundles and connections
arise naturally. These are considered in §5.

3. Topological invariants of Sobolev bundles

In this section, we define topological invariants for various classes of Sobolev
bundles defined in §2. In [13], we have shown that there is a natural one to
one correspondence between PEP(P) with kp = m and P (M) (P (M) is
the set of all isomorphism classes of C'*°-principal G-bundles on M). Thus
any W#P-bundle with kp = m has a well-defined topology, i.e., it is defined
as the corresponding isomorphism class in P (M). As was shown in [13],
this is no longer true for the case kp < m. However, for such cases some kinds
of topological invariants are well-defined. Giving a definition of invariants
and the study of the properties of these are the main purpose of this section.

The invariants are defined for a suitable class of Lipschitz polyhedrons
or CW-complexes K and Lipschitz maps h : K — M. A precise definition
of the class of such K is somewhat involved, so we defer it until in the
appendix. For example, and this is indeed the main example, any Lipschitz
triangulation h : K — M of M satisfies our requirement. Thus the reader
may assume that h : K — M is a Lipschitz triangulation of M throughout
this section.

The idea of the definition of the invariants is as follows: Let P =
{Us}, {9ap}) € PEP(M) and h : K — M be a Lipschitz map (for K as
above). We want to consider the pulled back bundle h*P = ({h='(U,)},
{gap © h}). This is not meaningful in general since the function g,goh is not
well-define for g,5 € W*?(U,5, G) and a Lipschitz map h : h=1(U,p) — M.
However, replacing h by a generic perturbation of A, it turns out that
it defines a Sobolev bundle on K and has a well-defined topology when
dim K < kp. When the isomorphism class defined for such a generic pertur-
bation depends only on h : K — M and P, we can associate a topological
invariant for P € PEP(M) and h : K — M as such an isomorphism class.
Since the “range” of the dimension dim K for which the invariants are well-
defined depends on the classes PEP(M), Tf{fong,G(M ) and va’fak’G(M ), we
consider each classes separately.
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Before entering into details, we prepare terminologies which will be used
throughout this section. Since M is a manifold, it admits a CW-structure.
Fix one such structure. Let ¢’ be an i-cell of M and ¢ : D' — M a char-
acteristic map of €', that is, ¢ : D' — e’ is surjective, ¢(9D?) C de and its
restriction to the interior of D? is a homeomorphism onto its image. Here D
is the unit closed disk in R’. Let {e’,} be the collection of all cells of M (€,
denotes one of the i-cells of M). For each cell ¢!, ¢! : D!, — ¢ denotes
the corresponding characteristic map. (D!, is a copy of D). Set K = | | D%.
The characteristic maps ¢, : D, — ¢, induce a map h = U¢!, : K — M
and a homeomorphism h:K — M, where K= K/ ~ and for z,y € K we
define = ~ y if and only if h(x) = h(y). For simplicity, we also call such
h:K — Morh:K — Ma CW-structure of M. (M h) denotes the
1-skeleton of the CW-structure h : K — M. In this paper, we only consider
Lipschitz CW-structures of M, ie., h : K — M or h: K — M is Lips-
chitz. €0(M) denotes the set of all Lipschitz CW-structures on M. We
also use a notation {h, K} € €20(M) to denote a CW-structure h : K — M
(or h: K — M).

Next we introduce a genericity notion for CW-structures on M. Assume
without loss of generality that M is realized as a submanifold of R! for some
large [ > m. By the tubular neighborhood theorem, there exists ¢ > 0 such
that the e-neighborhood O.(M) = {£ € R : d(&, M) < €} of M is a smooth
fibration my; @ O (M) — M, where 7y, is the nearest point projection. Let
{h,K} € €3(M). Then for any £ € B. = {£ e R' : [§] < €}, he : K — M
defined by he(z) = mp(h(x) + &) is also a (Lipschitz) CW-structure of M.
We say that a certain statement holds for generic CW-structures if it holds
for all CW-structures of the form he : K — M, where {h, K} € €20(M)
and ¢ € BL except for a null set, i.e., there exists a set N = N({h, K}) C B!
of measure 0 such that for ¢ € BL\ N the statement holds.

Finally we give the following remark: From the Gagliardo-Nirenberg
inequality W*?(U) N L>*(U) ¢ WY*(U), one can obtain a result about
Sobolev bundles of the class W*? from that of the class W*?, so without
loss of generality we restrict our attention to bundles of the class W2,

3.1. Topological invariants for P € 'Plé’p(M)

Let K be a polyhedron satisfying the conditions (A-1), (A-2) in the ap-
pendix, §7.1. Also let h : K — M be a Lipschitz map. For example,
a Lipschitz triangulation h : K — M satisfies these properties. While
h*P = ({h""(U,)}, {gap © h}) does not have a well-defined meaning in gen-
eral, we shall show that hiP = ({hgl(Uag)}, {gap © he}) has a well-defined

meaning for a.e. £ € BL. This follows from the following:
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Lemma 3.1 Let U C M be an open set and f € LP(URY) (or f e WHP(URY)).
Then for a.e. € € B, fohe € Lp(hgl(U),]Rl) (respectively, f o he €
Wl’p(hgl(U),]Rl)). Moreover, there exists a constant C' > 0 independent
of f such that

If o thLp(hgl(U)) < O flleewy

(respectively, || f o hé”wlap(hgl(U)) < C|fllwrr@y) holds for & € B! of positive
measure.

Proof. By Fubini’s theorem, we have

/§<e (/h_l(U) o he(@)l” dj{k(x)) dH'(€)

¢
- /K( /|§ | xu(mar (h(x) + §))If (mar (h(x) +§))|pd9{l(§)) A" ()
CHMK P dvoly, .
< oK) [ |7 avoly
From this, by Fubini’s theorem, we have fohe € Lp(hé—l(U)) for ae. £ € BL.

Moreover, there exists C' > 0 (independent of f) such that for £ € B! of
positive measure we have

(3.1) / | f o he|P dH" < 0/ | fIP dvoly,.
hZY(U) U

e (

In case f € WHP(U,R), applying the same argument as above for df, we
obtain df o he € LP(hg'(U)) for a.e. £ € BL and

(3.2) / (df o he|? dFH < c/ (df [P dvolay
hgl(U) U

for some C' > 0 and £ € B! of positive measure. Since dhg is L>-bounded
and its bound does not depend on ¢ € B., we have d(f o h¢) € Lp(hgl(U))
for a.e. £ € B! and from (3.2) we obtain

(3.3) / d(f o he)[P dHF < c/ |df [P dvoly,
he'(U) U

for some another constant C' > 0 and ¢ € B! of positive measure. This
completes the proof. [ |
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From Lemma 3.1, we see that for P = ({Uy,}, {gag}) € Pg"(M) and a.c.
§eBL, hiP = ({h:'(Ua)}, {gap © he}) € PP(K). By [13, Corollary 3.1] and
its extension to the polyhedron given in the appendix, the C%-isomorphism
class of hiP, denoted by [hiP]o, is well-defined for a.e. ¢ € BL when
dim K < p. If the class [h{P]y is independent of ae. § € B!, we will
obtain a topological invariant which will depend only on h : K — M and P.
Since the bundle P is not continuous on M, the class [h;P]o may change
when it passes through the singularities of P as £ varies. So in general, we do
not expect that [hfP]o is independent of a.e. £ € B.. However, if dim K is
slightly small, this is indeed the case.

For 1 <p < 3orp>4, define d(p) := [p— 1] (the largest integer strictly
less than or equal to p — 1) and d(p) = 3 if 3 < p < 4. The following is the
main result of this subsection.

Theorem 3.1 Let p > 1 and P = ({U,},{9ap}) € Pg"(M). Also let K
be a polyhedron satisfying (A-1), (A-2) in the appendiz and h : K — M
a Lipschitz map. Assume that dim K < d(p). Then the class [hP]y de-
fined for a.e. & € Bi/g 1s independent of a.e. & € ]B%le/?). Moreover, the
class [hZP]O depends only on the homotopy class of h : K — M and the
WtP_isomorphism class of P. In other words, there exists a homomor-
phism h* : HY(M; WgF) — HY(K; €%) which depends only on the homotopy
class [h] € [K,M] and is defined by h*[Pli, = [h{Ply for a.e. § € ]B%le/?),
where [P]y, is the class of P in PgP(M) = H'(M; W),

Remark 3.1 The above result is analogous to the corresponding result of
Sobolev maps as developed by [42], see also [10]. The ([p] — 1)-homotopy
class of a Sobolev map in WYP(M, N) (for M, N compact manifolds) is well-
defined and this is in general optimal, i.e., maps in W'P(M,N) do not
have a well-defined [p]-homotopy type in general, see [42]. In view of this,
one may think that the above result is also optimal. Indeed, if we slightly
relax the definition of Sobolev bundles, we have the same result as stated in
Theorem 3.1 and the result is optimal for such classes of Sobolev bundles,
see §5. However, we do not know the above result is optimal for P € Tgp(M).
Indeed, some topological invariants associated with P € Tgp(M) are well-
defined beyond the dimension d(p), see §4, so one may suspect that the above
result also holds up to dim K = [p|. The improvement for the case 3 < p < 4
is due to the fact that mo(G) = 0 for any compact Lie group G.

The proof of Theorem 3.1 is decomposed into several steps. We first
show the independence of the isomorphism classes [hePlo for a.e. £ € Bl /3
when dim K < [p] — 1. Improvement for the case 3 < p < 4 will be given

latter. In the following, the set of all isomorphism classes of C'-principal
G-bundles on K will be denoted by PL(K).
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Lemma 3.2 Let P = ({U,},{gas}) € PP (M) and K a polyhedron satisfy-
ing (A-1), (A-2) in the appendiz and dim K < [p] — 1. Also let h: K — M
be a Lipschitz map. Then the class [hiPlo € Pg(K) is independent of a.e.
£ €BL,.

Proof. Let £ € IB%ZQE/?). Then h is homotopic to he by the homotopy [0, 1] x
K 5 (z,t) — mp(h(z) + t€) € M. For the purpose of our argument, we
use the following another homotopy: Let ¢ € C*°(R) be such that ¢(t) =0
for t <0, p(t) =1for 1 <tand 0 < p(t) < 1for 0 <t < 1. Define
He : RxK — M by He(t,x) = mar(h(x)+@(t)€). He satisties He(t, x) = h(z)
for ¢t <0, He(t,2) = he(x) for 1 < ¢ and gives a homotopy between h and he.

For € € 183126/3, ¢ € IB%ZE/3, define Hee : R x K — M by H¢((z,y) =
T (h(z)+¢(t)€+C). For an arbitrary fixed £ € ]]33126/3 and a compact interval
I C R, by Lemma 3.1 Hf P = ({H; } (Us)}, {gap 0 He ¢ }) restricted to I x K
is a Sobolev bundle of class W'? on I x K for a.e. ¢ € ]B%le/g. In particular,
this holds for I = [—1,2] and we denote the corresponding Sobolev bundle
on [—1,2] x K by the same symbol H} .P. Notice that when dim K < [p] -1,
the class [H{ Pl € P%([—1,2] x K) is well-defined for a.e. ¢ € ]B%le/3 since
dim([—1,2] x K) < p. To see this, one needs to check the conditions (A-1)
and (A-2) in the appendix. Let mx : O(K) — K be as in the appendix.
Then id X 7 : R x O(K) — R x K satisfies the conditions (A-1) and (A-2)
for [ replaced by [ + 1 and m replaced by m + 1, where id is the identity
map id : R — R. Then arguing as in the appendix, we see that there exists
a well-defined associated topological class for H{ P € PP ([-1,2] x K) for
a.e. ( € B /3

Let us recall how the C’-isomorphism class is associated to Hi.P. We
may assume that, passing to a finite refinement if necessary, {U,} is a finite
cover of M. Then by the approximation theorem [13] (see also the appendix),
there exists a refinement {V,,} of {Hgé(Ua)} such that (J, Vo, = [-1,2] x M
and V, C H;é(Ua) and there exist principal G-bundles P = ({Va},{955})
on [—1,2] x K of Lipschitz class such that

(3.4) 1905 © He,c — gagllwiog,,) — 0 as € — 0.

As proved in [13] (see also the appendix), the C’-isomorphism class of P.
is uniquely determined by H{ -P for small € > 0 and this class is denoted by
[H{ Plo € P9,([—1,2] x K). In the above case, since Hggl(Ua)ﬂ([—l, 0] x M)
and H /(Uy) N ([1,2] x M) are written as products [—1,0] x h7'(Us) and
[1,2] x hng(Ua) respectively, we may assume that V, N (I; x M) (i = 0,1)
is also product for some interval Iy C [—1,0] and I; C [1,2].
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By Lemma 3.1, for a.e. ( € ]B%le/g, H Plioyxx = h{P = ({V2°}, {gapohc})
and H{ Playxx = hiy P = ({Vi'}, {gap © heic}) are Sobolev bundles of
class WHP where to € Iy, t1 € I and for t € [-1,2], V! := ({t} x K)NV, is
the t-slice of V,,. Since dim K < [p]—1, by the Sobolev embedding W? c C°
in dimension less than p, these bundles are of class C°.

We claim that for fixed £ € IB%ZQE/?), hiP is C'-isomorphic to h¢, P for ae.
(eB s3- To prove the claim, we first observe that from (3.4), the Fubini’s

theorem and the Fatou’s lemma, there exists a sequence {e;} converging
to 0, ty € Iy and t; € I; such that

(35) Hgaﬁ © H&C(t(b ) - g;kﬂ(th ')”Wl,p(vc’i%) - Oa
36) a5 © Hecltr,) = 8501,y — 0

as k — oo, where V5 = VI NV},

Since He¢((to,:) = he, Hee(ti,-) = here and the Sobolev embedding
WP C CY in dimension less than p, we obtain from (3.5) and (3.6)

(3.7) 1905 © e = g2i5(t0, )l o) — O,
(3.8) 1905 © hete = 923t Moy = 0
as k — 00.

Since {V} and {V/1} are refinements of the open covers {hg_l(Ua)} and
{hng(Ua)} respectively, from (3.7) and (3.8) we see that the C°-bundles hfP
and hi, P are C?-isomorphic to P, @<k and P | yxk respectively for
large k. Since P, is a bundle over [—1,2] x K, P, |{1xxk is isomorphic to
P yxk. Thus as principal G-bundles of class C°, h . P is isomorphic
to h¢P. Since this holds for a.e. ¢ € ]B%l6 /3 the claim is proved.

From this the lemma follows as follows. Let Ey, C IB%ZE /3 be a measure
zero set of § on which hiP is not defined. Assume otherwise that [hfP]o

is not constant for a.e. { € B3 \ Ep. We first notice that PLK) is a
countable set. This is because the set of homotopy classes [K, BG] (BG is
the classifying space for G-bundles or a finite dimensional approximation
of it) is a countable set for compact K. Thus under the assumption, we
may find two different isomorphism classes [P]o, [P2]o € PL(K) such that
[hZP]O = [PI]O for 6 € El C ]Ble/?’ with j_(m(El) > 0 and [th]o = [PQ]O
for £ € By C Bi/g with H™(E;) > 0. Let & € E; (1 = 1,2) be a density
point, i.e.,
H™(B, (&) N E;
KB, (E)N B)

W o BE)
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Let E =& — & € Bée /3" Then from what we have proved above, we obtain
[hz-l-CP]O = [th]o for g € Ble/g \ (Eg U EQ U (EO — 6)), where Eg C Be/g is
a measure zero set such that [hf, . Plo = [h{P]y for ¢ € B \ Eg. Since
E+ & = & is a density point of Fy 4+ &, & is a density point for both E; and
(Ex \ (Ee UE U (Ey—&)) + €. From this, we have in particular £y N ((Esy \
(EeU By U (o — £)) +€) # 0. Choose & € By, & € By \ (B¢ U EyU (Eo—£))
such that £ = £ + &,. Then we have [P]y = [hZQP]O = [hZéP]o = [P]o, a
contradiction. This completes the proof. |

Definition 3.1 Let P = ({U,}, {gas}) € P (M), K a polyhedron satis-
fying (A-1), (A-2) in the appendiz, dim K < [p| —1 and h : K — M a
Lipschitz map. We denote by [Pl x € PL(K) the class [hiPlo € PY(K)
which 1s independent of a.e. & € Bi/g.

We next show that the class [P], x is invariant under W'?-bundle iso-
morphisms. That is, we have:

Lemma 3.3 Let P = ({U,},{903}),Q = ({Vi}, {hi;}) € PP (M), K a
polyhedron satisfying (A-1), (A-2) in the appendiz, dim K < [p| — 1 and
h: K — M a Lipschitz map. Assume P is WP-equivalent to Q. Then we
have [P]h,K = [Q]h,K'

Proof. By the assumption, there exist a refinement {Ws} of {U,} and
{Vit ie, U, Ws = M, W, C Vi) and W C Vi) and p = {p,} such that
ps € WHP(W,, G) and

(3.9) Jo)pt) = sl vr

on Wst = WS N Wt.

On the other hand, by Lemma 3.1 and the Sobolev embedding we have
hiP,hiQ € PL(K) and p, o he € C(hg' (W), G) for ae. & € B, and
from (3.9) we obtain

(3.10) Gos)ett) © he = (ps © he) (hy(sypey © he) (pr 0 he) ™
on hf_l(Ws ).
From (3.10), we conclude that h{P is CP-isomorphic to hi@ for a.e.

¢ € B!. Then by the definition of the classes [P], x and [Q]s x given above,
we have [Pl k = [Q]nx- [ |

The final ingredient to complete the proof of Theorem 3.1 is:

Lemma 3.4 Let P = ({U,},{9a5}) € PE"(M), K a polyhedron satisfying
(A-1), (A-2) in the appendiz, dim K < [p| — 1 and h,h' : K — M Lipschitz
maps. Suppose that h is homotopic to I, then we have [Pl x = [Py k-
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Proof. Let H : R x K be a Lipschitz homotopy between h and A’ such
that H(t,-) = h for t < 0 and H(t,-) = k' for t > 1. For a.e. £ € Bl
define He¢(t,z) = my(H(t,z) + &). Then by Lemma 3.1, for a.e. £ € B!
HiP = <{H§_1(Ua)}, {gap © He}) defines a principal G-bundle of class W
on [—1,2] x K. Then by the same argument as in the proof of Lemma 3.2, we
see that for a.e. £ € B! and some to € [—1,0] and t1 € [1,2], Hf Pl x and
H §P|{t1}x & define principal G-bundles of class W!'? and they are isomor-
phic as C%bundles to each other; H§P|{t0}xK = H§P|{t1}xK. Since th =
H{ Pligyxre and (hg)*P = HP|g,yxx, we conclude that heP = (hg)*P for
a.e. £ € B!. Thus by the definition, we have [P], x = [P K- [ |

For the case 3 < p < 4, the above results can be improved. That is, we
have:

Lemma 3.5 Assume 3 < p < 4. Let P = ({Us},{9as}) € PP(M) and K
a polyhedron satisfying (A-1), (A-2) in the appendiz and dim K < 3. Also
let h : K — M be a Lipschitz map. Then the class [hfPly € PE(K) is
independent of a.e. £ € Ble/3.

Proof: We have already shown the result for the case dim K < [p] — 1 = 2.
Thus we assume dim K = 3. We denote by K? the 2-skeleton of K. As
we have shown, there exists a well-defined class [hf]Py € Pg(K) for a.e.
¢ € B! and its restriction to K2, [(he|g2)*Plo € PL(K?) is independent of
a.e. £ € ]B%le/3. We need to show that [hi Py € Pg(K) is also independent
of a.e. £ € BL. Thus the result follows from the following lemma applied to
Py = h{P and P, = h; P for two different a.e. £, € BL. [ |

Lemma 3.6 Let K be a 3-dimensional polyhedron and Py, P, — K two
principal G-bundles which satisfy Pi|g2 = Psy|g2. Then Py = Py over K.

Proof. Since m(G) = 0 for any compact Lie group G, this is an easy
consequence of the obstruction theory. For completeness, we give a proof.
Let FB — BG be the universal G-bundle, i.e., a G-bundle whose total
space EG is contractible, see [12]. From the bundle classification theory [12],
any principal G-bundle P — K is obtained as a pull back of EG — BG
via a map fp : K — BG, i.e., P = f;EG. Moreover, this gives a bijective
correspondence between the homotopy classes [K, M] and P%(K). Thus
for P;, P, as above, there exist continuous fi, fo : K — BG such that
P, = ffEG and P, = f5EG. By our assumption, f; is homotopic to fo when
restricted to K2, i.e., there exists a homotopy F : [0,1] x K* — M such that
F(0,-) = fi and F(1,-) = fo. To prove P, = Py, it suffices to show that I’
has a continuous extension F to [0,1] x K such that F(0,z) = fi(x) and
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F(1,z) = fy(z) for z € K. By the obstruction theory [5], the obstruction to
extending F to such F lies in H*([0,1] x K, [0,1] x K2 U {0} x K U {1} x
K;m;(BQ)) & H(K, K* m(BG)) for i > 0. The latter cohomology groups
are all trivial since trivially we have H (K, K% m;(BG)) = 0 for i = 1,2 and
i >3 and H3(K, K* m3(BG)) = H3(K, K% m3(G)) = 0 since m3(G) = 0 for
a compact Lie group G. |

Let P, K and h be as in Lemma 3.5. As in Definition 3.1, from Lemma 3.5
we denote by [P]y, x € PL(K) the class [hiPlo € PY,(K) which is independent
of a.e. £ € IB%ZE/S. As a corollary of Lemma 3.6, we have

Lemma 3.7 Assume 3 < p < 4. Let K be a polyhedron satisfying (A-1)
and (A-2) in the appendiz, dim K = 3 and h,h' : K — M Lipschitz maps.
Assume h is homotopic to h'. Then we have [Pl x = [Py k-

Proof. As we have shown in Lemma 3.4, for a.e. £ € ]]3316/3 we have hi P =
h'¢P over K*. Thus by Lemma 3.6, we obtain hiP = h'; P over K for such
¢ € BL. From this, the result follows. [ ]

From Lemma 3.4 and Lemma 3.7, we give the following definition:

Definition 3.2 Assume p > 1. Let P = ({U,}, {gas}) € Pg"(M), K
a polyhedron satisfying (A-1), (A-2) in the appendiz, dim K < d(p) and
h: K — M a Lipschitz map. We denote by [Plyx € PU(K) the class
[hiPlo € PU(K) which is independent of a.e. € € Bi/g and depends only on
the homotopy class of h.

From Definition 3.2, we obtain various invariants of P &€ ‘J’gp (M) for
varying K and h. Among them [P]y, gaw for h : K4®) — M. where
h: K — M is a CW-structure of M, is special in the sense that they deter-
mine all the other invariants. That is, we have:

Lemma 3.8 Assume p > 1. Let P, P, € Tép(M) and h : K — M a
CW-structure of M, i.e., {h, K} € €Q(M). Assume that [Pi]y gaw) =
[P1] ) kaw - Then for any polyhedron L satisfying (A-1) and (A-2) in the
appendiz, dim L < d(p) and any Lipschitz map ¢ : L — M, we have
[P, = [Poig),2-

Proof. We first remark that for P = ({U,}, {gas}) € PgP(M) and {V;}
a refinement of {U,}, i.e., |J;Vi = M and V; C Uy for some refinement
map ¢, the bundle P’ = ({Vi}, {gu@yu() }) € PeP(M) has the same invariant
[Plin,x = [P']jn),x for K and h as in Definition 3.2. To see this, recall that
[Plin,c and [P']) i are defined as the classes of h{P = <{hgl(Ua)}, {gap ©
he}) € PL(K) and hiP' = ({h;'(Vi)} {gupwi) ohe}) € PE(K), respectively,
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for a.e. £ € B /3(for p = 3, they are defined as the C’-isomorphism classes
associated to hiP hiP' € PY(M?). Because {he'(Vi)} is a refinement of
{hgl(Ua)}, they are isomorphic and the claim follows.

By the above observation, passing to a refinement if necessary, we may as-
sume that Py and P, are of the form Py = ({Ua}, {925}), P2 = ({Ua}, {925})-
By definition, [P] (], kit and [P] [h], k() ATE given as

(311) [P]_][hLKd(p) = [thl]o, [Pg][hLKd(p) = [thg]o for a.e. 6 S Ble/g
By the cellular approximation theorem, there exists a cellular map ¢ :

L — M (the CW-structure of M is given by h : K — M) which we may
assume Lipschitz such that ¢ is homotopic to . By definition, we have

(3.12) [Piligi = [0ePlo,  [Paligi = [0iPa)o for ae. € € By,
For ¢ € B, define t¢(x) = my(z + €). Then we have ¢¢ = 1 0 ¢ and
(3.13) GPy = o', Py = ¢"iPy for ae. € € B
By assumption and (3.11), we have
(3.14) [h* i Pl = [hiPyo = [hePalo = [W* 1Py for ae. & € BL .

Since h : K — M is a homeomorphism and (;P; € P%(MUP)) for a.e.
£ eB /3 and 7 = 1,2 (for p = 3, they are defined as the C’-isomorphism
classes associated to 1P, € Pg*(M?) (i = 1,2)), we have from (3.14) that

(3.15) P =P, forae eBl,
From (3.12), (3.13) and (3.15), we obtain

(3.16) [Plig).r = [Pligl.r = [Pelig,2 = [Polig),L-

This completes the proof. |

As remarked in Remark 3.1, we do not know whether the result presented
in this subsection is optimal or not, i.e., we do not know whether the result
analogous to Theorem 3.1 holds for h : K — M with dim K = [p]. In the
following subsections §3.2 and §3.3, we show that Theorem 3.1 is improved
for bundles in the classes P (M) and ?fv’fakg(]\/[ ).

strong,G
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3.2. Topological invariants for P € Tﬁé’;on&G(M)

(M). Since PEP

3 3 kyp
Here we consider bundles in the class P strong.G

strong,G

(M)

1,kp . . . . o
Pairong.c(M), as in the previous subsection we consider only the case k = 1,

i.e., bundles in the class PLP . (M).

strong,G

For p > 1, define dgsyong(p) =[p]. Let K be a polyhedron satisfying (A-1)
and (A-2) in the appendix with dim K < dgyong(p) and h : K — M a
Lipschitz map. As in the case of bundles in the class ‘J’gp (M), we want to
associate the isomorphism class [P] x € PL(K) for P e ?;éfong,G(M ). The
following is the main result in this section:

Theorem 3.2 Let p > 1. Let P = ({Ua},{9a3}) € ?12?07197(;(]\/[). Let K
be a polyhedron satisfying (A-1), (A-2) in the appendiz and h : K — M a
Lipschitz map. Assume that dim K < dgyong(p). For them there corresponds
a class [Pl € PLK). Moreover, this class depends only on the homotopy
class of h : K — M and the WYP-isomorphism class of P and coincides with
the C°-isomorphism class associated to hiP € PP (K), [hiPlo € PL(K), for

a.e. £ € ]B%le/g.

In this theorem, the W'P-isomorphism class of P is the class of P which we
consider as a bundle in inp (M). The key to the proof of the above theorem
is the following lemma:

Lemma 3.9 Let K, h be as above and {W,},e;r an open covering of M.
Then there exists 6 > 0 such that the following holds: Let P,Q € PX (M)
be principal G-bundles of class C* such that they are trivializable over W),
for allp € 1. Write P = ({W,},{gpe}) and Q = {W,},{hy}) and assume
9pq — Mogllwivow,y) < 0 for all p,q € I with Wy, := W, N W, # 0. Then
h*P = h*Q) as bundles over K.

Proof. By Lemma 3.1, there exists £ € B! such that
(3.17) 19pg © he = hipq © hé”wlw(hgl(wpq)) <o

for some C' > 0 depending only on M,G, K and h.
By the result proved in [13, §3] and the appendix, §7.1, (3.17) implies
that

(3.18) heP = hiQ

over K if § > 0 is small.
Since h¢ is homotopic to h by the homotopty (t,x) — hye, we see that

(3.19) heP = K'P, BiQ=hQ

over K. By (3.18) and (3.19), we obtain h*P = h*@Q over K. This completes
the proof. [ |
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Assume { P, } C PZ (M) is an approximating sequence of P € ?;éfong,G(M )
as in Definition 2.1 (2). From Lemma 3.9 we see that the isomorphism class
of h*P, € PL(M) is independent of n for large n. The next lemma shows
that this isomorphism class is also independent of the chosen approximation,

namely, we have:

Lemma 3.10 Let K, h be as in Lemma 3.9. Also let p > 1 and P €

17 n o0 n
tPstfong,G(M)' Let P'fl - <{‘/Z}7{gz]}> S j)G (M) and Qn = <{WP}7{hpq}> S
P (M) be approzimating sequences of P in the sense of Definition 2.1 (2),
i.e., {Vi} and {W,} are refinements of M, V; C U,uy and W, C Uy, and
1900)00) = Gi5llwrreviyy = 0 and llgywiwia) = Mgllwrraw,,y) — 0 as n — oo.
Then for large n, we have h*P, = h*Q),.

Proof. By Lemma 3.1 and the Fatou’s lemma, there exist subsequences of
{gi:} and {h; } which we still denote by the same sequences and & € B! /3 of
positive measure such that

(3.20) 9etre6) © he = 955 © hellwrop 11y = 0
and
(3.21) 19u@ywa) © he = hiyq © hellwrop ot w,g)) = 0
as n — o0.
From (3.20), (3.21) and the result in [13, §3] and §7.1, we have
(3.22) [lie Prviylo = [he Pagviaplo
and
(3.23) [he Paw,3lo = [heQuqw,plo

for large n and a.e. £ € ]B%le/?), where

Py = Vit {9ethon})  and P,y = {Wo}, {9vmw@) })

(M) and [hf Prvylo, [he Paw,ylo denote the C°-
isomorphism classes associated to the bundles hi Py, hiPgw,) € PP (K),
respectively. hiP, v,y and hiQyy,y are defined similarly.

3 ]-7p
are bundles in the class P . o

Since the C%-isomorphism class associated to a bundle in PEP(K) does
not change if we pass to a refinement (see [13]), we have [h{Plo = [h Pviylo
and [hgPlo = [h; Pw,lo for ae. § € BL ;. Thus we obtain

(3.24) [he Prviylo = [he Paw, 3o

for a.e. £ € IB%ZE/3.
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From (3.22), (3.23) and (3.24), we have

Since [thn{vl}]o = [hZPn]O = [h*Pn]o and [hZQn{Wp}]O = [hZQn]O = [h*Qn]o,
we finally obtain [h*P,]o = [h*Q,]o for large n. [ |

By Lemma 3.10, the isomorphism class h* P, for large n is independent
of the particular approximation of P € (Pit’fong’G(M ) and the following defi-
nition is meaningful.

Definition 3.3 Let P € Tigﬁ,’on%G(M) and {P,} an approximating sequence
of P in the sense of Definition 2.1 (2). Also let K be a polyhedron satisfying
(A-1), (A-2) in the appendiz, dim K < dgong(p) and h : K — M a Lipschitz
map. For large n, the isomorphism class [h* P,y € PL(K) is independent of
n and the approzimating sequence {P,} and we denote this class by [PJ}, x.

To complete the proof of Theorem 3.2, we next show that the class [P];, x
depends only on the W'P-isomorphism class of P.

Lemma 3.11 Let h : K — M be as in Definition 3.3. Also let us assume
that P=({Uq}aer, {gaﬂ}aﬂ61> < Tiifong,G(M) and Q = ({Vi}ies, {hz‘j}z‘,jeJ> S
ﬂi;ﬁng’G(M) are WhP-isomorphic to each other as bundles in the class Pg" (M)

(see Definition 2.2). Then we have [Pl; r = [Q]} k-

Proof. We first observe from the proof of Lemma 3.10 that [P]; - and [Q]} x
are defined as the associated C-isomorphism classes of heP € ‘J’gp (K) and
hiQ € PP (K) respectively, for a.e. & € Bi/g.

By the assumption, for a.e. £ € B! /3 We have (see Definition 2.2)

(3.26) goayew) © he = (ps 0 he) - (huyuin 0 he) - (prohe) ™ i he (Way).

By the result of [13], we already know that the C°-isomorphism class asso-
ciated with a bundle in Pg*(K) depends only on its W'*-isomorphism class
(strictly speaking, we have only proved this for K a manifold, but the proof
equally applies for the present case once we have the result in §7.1). Thus
from (3.26), we have [h;Plo = [{Qlo for a.e. & € B! ;. Therefore by the

remark given at the beginning of the proof, we obtain [P} . = [Q]; . W

Notice that for P € PLP (M) and p = {p} a W'P-bundle iso-

strong,G
morphism (as in Definition 2.2), the gauge transformed bundle p*P :=

WY, {ps * Gosyot - pi~'}) is not a bundle in the class PLP (M) in gen-

strong,G

eral. However, by Proposition 2.1 if p, € WP . (W,,G), then g*P also

strong
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belongs to T;t’fong@(]\/[ ). The above lemma says that once we have p*P €
Py

sirong.c (M) for P € PLp (M) and p = {p;} a WP-bundle isomorphism,

strong,G
we have [p*P]fLK = [P]Z,K-

The final ingredient to complete the proof of Theorem 3.2 is

Lemma 3.12 Let K be a polyhedron satisfying (A-1), (A-2) in the appendiz,
dim K < dgong(p) and hy,hy : K — M two Lipschitz maps such that they
are homotopic to each other. Then we have [P]; - = [P]7, i

Proof. Let P, € PX (M) be an approximating sequence of P in the sense
of Definition 2.1 (2). By definition, we have [P]}, , = [h]P,]o and [P]7, ;=
[h3P,)o for large n. Since hy is homotopic to hy, we have hiP, = hiP, for
all n. Thus we have [P]; - = [P];, ;. This completes the proof. [ |

Combining Lemma 3.11 and Lemma 3.12, we complete the proof of The-
orem 3.2. [ ]

Definition 3.4 Let P € Tigfon%G(M) and h : K — M a Lipschitz map
with K satisfying (A-1), (A-2) in the appendiz and dim K < diong(p). Since
the class [Pl}, i depends only on the homotopy class [h] € [K, M], we denote

this as [Pl -

As we remarked before Lemma 3.12, W'P-isomorphism p = {p,} with
ps € Wak o (Wi, G) acts on ?;éfong,G(M ). From this we have the following
corollary (which simply restate Theorem 3.2, but the assertion is somewhat

weaker):

Corollary 3.1 Let h: K — M be a Lipschitz map with K satisfying (A-1)
and (A-2) in the appendiz and dim K < dgpong(p). Then there exists a
homomorphism

h*:Hl(M;Wl’p )HHI(K;G%)

strong,G

deﬁned by h*([P]i,p) - [P]Z,K7 where [P]i,p S HI(M’ Wig:ong,G) :ﬁjiéfong,G(M)
denotes the isomorphism class of P. Moreover, h* depends only on the

homotopy class of h.

3.3. Topological invariants for P € Pyl (M)

Since va’fak’G(M ) C ?bfka(M ) as in the previous sections, we only consider
the case k = 1. The idea for defining invariants for P € ?xak,c(M ) is very
similar to the previous subsection.

For p > 1, define dyear(p) = the largest integer strictly less than p. No-
tice that, by the Sobolev embedding, we have PF(K) c P%L(M) when
dim K < dyeax(p). Our main result is the following:
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Theorem 3.3 Assumep > 1. Let K be a polyhedron satisfying (A-1), (A-2)
in the appendiz and h : K — M a Lipschitz map. Assume that dim K <
dwear(p). Then for P = ({Us},{gas}) € :])i;fak,G(M)? there corresponds a
class [Pl i € ‘jDOG(K) Moreover, this class depends only on the homotopy

class of h : K — M and the W'P-isomorphism class of P and coincides with
the C°-class of hiP € PeP(K) C PL(K), [hiPly € PL(K), for a.e. & € B! 5.

In this theorem, the W'P-isomorphism class is taken as that of Theo-
rem 3.2. The key step for the proof of the above theorem is the following:

Lemma 3.13 Leth : K — M be as above, {U,} an open covering of M and
D >0 a constant. There exists 6 > 0 depending only on h : K — M, {U,}
and D such that the following holds: Suppose P — M and (Q — M are two
principal G-bundles of class C> which are represented as P = ({Ua},{g55})

and Q@ = ({Uy}, {ggﬁ}) such that
955 = 9250l r .y <6, 1dgEsll Loy 14925l Loy < D
for any «, B with Uyz # 0. Then there holds h*P = h*Q).

Proof. By Lemma 3.1, there exist £ € B! of positive measure and C' > 0
depending only on h : K — M and G such that

(3.27) 1905 © he = 9% 0 hell 1o 1 7, < CO
and

Notice that, by the Sobolev embedding, hi P = ({hgl(Uag)}, {9l50he}) and
hiQ = ({hgl(Uag)}, {ggﬂ o he}) are bundles of class C* forQa.e. ¢ e Bl Also
by the Sobolev embedding, (3.27) and (3.28), [lgZ50he — gos 0 he Hco(hg—l(Uaﬁ))
is small if 0 > 0 is small. Thus if we choose § > 0 small, we have hi P = he(Q)
for P — M and () — M satisfying the assumption of the lemma. Since hg¢
is homotopic to h, we also have heP = h*P and hi@) = h*(Q). Therefore we
have h*P = h*(). This completes the proof. |

Let P € T;gak’G(M ) and {P,} C PX (M) be an approximating sequence
of P in the sense of Definition 2.1 (3). By Lemma 3.13, the isomorphism
class of h*P, is independent of n if n is large. As in the case of bundles

in Tiéfong,G(M ), we want to define the class [h*P,]o for large n as the class
of the “bundle” h*P for P € Tiv’fak’G(M ). For this, we need to show that
the class [h*P,)o € P%(M) does not depend on the specific choice of the

approximation.
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Lemma 3.14 Let P = ({U,}, {gap}) € ?qugak,G(M) and h: K — M a Lip-
schitz map, where K is a polyhedron satisfying (A-1), (A-2) in the appendix
with dim K < dyeqr(p). Suppose

By = {Vib Agist) € PG (M) and - Qn = ({Wp}, {hy,}) € PG (M)

are two approximating sequences of P in the sense of Definition 2.1 (3).
Then for large n, we have

h*P, = h*Q,.
Proof. By assumption, there exists D > 0 such that

(3.29) 1906)60) — 9illovisy = 0, N9wmywia) — MogllLrawyg — 0

as n — oo and
(3.30) gl e vy < Dy |ldhpllLeqw,,) < D

for all 7,7 and p,q with V;; # 0 and W, # 0 respectively, where ¢ and
are refinement maps, i.e., V; C U,y and W, C Uy .

By Lemma 3.1, (3.29) and (3.30) imply that there exists £ € B! of positive
measure such that
(331) ||gcp(2)<p(j) O hf — gz (@) thLp(hgl(‘/ij)) — 0,
(3.32) 19y @ywa) © he — th © hf”m(hgl(wm)) — 0

as n — oo and

(3.33) ”d(QZ © hf)”m(hgl(v;j)) < CD, Hd(h;?q © hf)”m(hgl(wpq)) <CD

for all n, where C' > 0 is a constant independent of n and &.

Since dyear(p) < p, by the Sobolev embedding W'?(K) c C°(K) and
(3.31), (3.32) and (3.33) we have, by the same reasoning as in the proof of
Lemma 3.13,

(3.34) he* Py = he™ P, = h*P,
and
(3.35) he* Prw,y = he™ Qn = W Q)

for large n. Here we notice that he* Py = ({hgl(Ua)}, {gapohe}) defines a
C%bundle for a.e. £ € B! and since {hgl(‘/;)} and {hgl(Wp)} are refinements
of {hgl(Ua)}, we have

(3.36) he* Py = he” Py = he' Pay, .
From (3.34), (3.35) and (3.36), we obtain h*P, = h*@Q, for large n. [ |
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In view of the above lemma, we give the following:

Definition 3.5 Let P € tpi;gak,G(M) and h : K — M a Lipschitz map
with K satisfying (A-1), (A-2) in the appendiz and dim K < de(p). Let
{P.} C PE(M) be an approxzimating sequence of P in the sense of Defini-
tion 2.1 (3). For large n, the class [h* P,y € PL(K) is independent of n and
the approzimating sequence { P,} and we denote this class by [Py .

To complete the proof of Theorem 3.3, we next show that the class [P]}/
depends only on the W!P-isomorphism class of P. Namely, we show:

Lemma 3.15 Let h: K — M be a Lipschitz map with K satisfying (A-1),
(A-2) in the appendiz and dim K < dyear(p). Suppose P = ({Us},{9as}) €
quufak,G(M) and Q = ({Vi}, {hi;}) € Ti}fak’G(M) are WP-isomorphic to each
other as bundles in PEF(M) (see Definition 2.2). Then we have [PIy e =1Ql} k-

Proof. The proof of Lemma 3.14 shows that the classes [P]}/ ;- and [Q]}) ;- are
defined as the C%-isomorphism classes of hi P € Pg(M) and hiQ € PL(M)

respectively, for a.e. ¢ € B
Let p = {ps} be as in Definition 2.2. Then for a.e. £ € BL, we have

(3.37) Jo(s)o(t) © he = (ps © he) - (hy(syp) © he) - (pro he) ™"

in hy ' (We).
From (3.37), we obtain 2P = h{Q as C°-bundles for a.e. £ € B.. By the
remark at the beginning of the proof, this completes the proof. [ |

The final ingredient to complete the proof of Theorem 3.3 is:

Lemma 3.16 Let Pe thak’G(M) and K a polyhedron satisfying (A-1),(A-2)
in the appendiz and dim K < dye(P). Suppose that two Lipschitz maps
hi, hy 1 K— M are homotopic to each other. Then we have [Py =[P} 1.

Proof. Let {P,} C ?iv’fa,k,a(M ) be an approximating sequence of P in
the sense of Definition 2.1 (3). By definition, we have [P]} . = [h1"Py]o
and [Py, i = [ha"PyJo for large n. Since h; is homotopic to hy, we have
h1"P, = hy" P, for all n. Thus we obtain [P]} - = [P]}, . [ |

Combining Lemma 3.15 and Lemma 3.16, we complete the proof of The-
orem 3.3. [}

Definition 3.6 Let P € qujgak,G(M) and h : K — M a Lipschitz map
with K satisfying (A-1), (A-2) in the appendiz and dim K < dyeai(p). Since
the class [P]}) i depends only on the homotopy class [h] € [K, M|, we denote
this also as [P]fy) .
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Since the WhP-isomorphism p = {p,} with p, € W7 (W,,G) acts on

weak

?iv’fak,a(M ) by Proposition 2.1, we have the following corollary:

Corollary 3.2 Let h: K — M be a Lipschitz map with K satisfying (A-1),
(A-2) in the appendiz and dim K < dyeu(p). Then there exists a homomor-
phism

W' HY(M; Wi;z:)ak,G) — H'(K;Cg)

defined by h*([P]1,) = [P]KKV where [P]iljp € HI(MS Wi;fak,G) = j)i;fak,G(M)
denotes the isomorphism class of P. h* depends only on the homotopy class

of h.

3.4. The case G = T*

In this section, we consider the case G=T* (k > 1) of torus bundles. In this
case, we show that the results proved in the previous subsections are im-
proved. Namely, we have

Theorem 3.4 Assume G = T* for some k > 1 and P = ({Uu},{gas}) €
Té&p(M). Let K be a polyhedron satisfying (A-1), (A-2) in the appendiz with
arbitrary dimension and h : K — M a Lipschitz map. For p > 3, we have
a class [Pl x € PL(M) which depends only on the W'P-isomorphism class
of P and the homotopy class of h.

Proof. By Theorem 3.1, P € PgP(M) defines uniquely a class [P] hEde) €

PY,(K9®)) which depends only on the W'P-isomorphism class of P and the
homotopy class of h. By the inclusion K%?) C K, we have [K, BT*] —
[K4P) BT*. Since BT ~ BT x - -+ x BT ~ CP® x - -+ x CP® (k-times),
CP> = K(Z,2) and [K, K(Z,2)] = H*(K;Z), etc., we obtain

(3.38) H*K:;Z)x ---x H(K;Z) — H*(KYP):7) x --. x H} KV, 7).

On the other hand, by the cohomology exact sequence of the pair (K, K4P)),
we have

s HY(K, KW, 7) - HY(K;Z)— H} KV, 7) - H}(K, K%, 7) — ... .

Since d(p) > 3 when p > 3, we have by the above sequence H*(K;Z) ~
H?*(K9P);7). This implies that the homomorphism given by (3.38) is an
isomorphism. In other words, we have an isomorphism H L(KXP): @Y =~
H'(K;Cf). Composing this with the homomorphism A* : H'(M; WgF) —
HY(K4P); CY), we obtain

(3.39) HY(M; WEP) 5 BV (K9®); @9) = /Y (K: CY).

Defining the image of [P] € PP (M) ~ H'(M; W) under (3.39) by [Plhx €
P%(K), we obtain the desired class. This completes the proof. |
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4. Chern-Weil theory for Sobolev connections on Sobo-
lev bundles

This section extends the classical Chern-Weil theory to Sobolev connections
on Sobolev bundles. Since PEF(M) c PGP (M) for k > 1, we again only
consider principal G-bundles of class WP and A"?/2-connections.

Let P = ({Un}aer: {gas}aper) € PEM) and A = {A,} € Ao2(P).
Let S*(g*) C (g*)®* denote the symmetric power, i.e.,

pcS*g?) if ¢:gx---xg—R issymmetric multilinear.
k

The adjoint action of G on g induces a G-action on S*(g*). We denote by
I*(G) the G-invariant elements of S*(g*). That is, ¢ € I*(Q) if

¢(Ad(g)X1, . ,Ad(g)Xk) = ¢(X1, .. ,Xk) for g € G and Xl, .. .,Xk €g.

For ¢ € S*(g*), v € M and w; ® X; € A" T'M @¢g (i = 1,...,k), we
define

Plwr ® X1, ..., wr @ Xi) :¢(X1a--'>Xk)W1/\"‘/\WkE/\'T;M-

Let ¢ € I*(G). We assume in the following p/2 > k. Since Fy, €
LPP(U,, N> T*U, ® g), we have

Py(F,) = 0(Fapse. Fay) € DU N T0L) € LY (UL N T0L).

By the G-invariance of ¢, different P,(F,,) are glued together to give a global
2k-form in LP/?*(M, \** T* M) which we denote by Py(Fy).

For smooth P and A, the classical Chern-Weil theory asserts (see [15])
that 1) the form P4(Fy) is closed, ii) the cohomology class of Py(Fy) is
independent of A. We extend these for P € PgP(M) and A € A»/>(P).

Before beginning, we first observe that we may assume p < m since
the case p > m has been treated in our previous paper [13]. Then, since
2k+1<p+1<m+1, we have 2k +1 < m and the form P,(F},) is a form
of degree 2k < m — 1 on M.

Under the above assumption, our first lemma asserts that Py(Fy4) is
closed in the sense of distributions:

Lemma 4.1 Let P = ({U,}, {gus}) € PGP (M) (p > 2) and A = {A,} €
ALWP/2(P). Let k < p/2 be a positive integer and ¢ € I*(G) an invariant
polynomial. Then we have dPy(F4) = 0 in @’(M, /\2“1 T*M), i.e., we have

(A1) /M Py(Fa) Ada = 0

for any B € C=(M, N T*M).
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Proof. Since the assertion dP;(F4) = 0 in @’(M, /\%+1 T*M) is local, i.e.,
if it is satisfied on any U,, by the partition of unity, it holds on M. So it
suffices to prove (4.1) for 5 € C(M, A" T*M) with supp(8) C U,.

On U,, we have Py(F4) = Py(Fa,). Since A € A'P/2(P), ie., A, €
LP(U,) and dA, € LP/*(U,), there exists {Aun} C C*(U,,T*U, ® g) such
that A,, — A, in LP(U,) and dA,, — dA, in LP/*(U,) as n — oco. From
these, we have

(4.2) Py(Fa,..) — Py(Fa,)

in LP/?%(U,), in particular, in L'(U,).

By the Bianchi identity, we have da,,Fa,, = 0 and dPy(Fy,,) = 0.
Thus we have by the Stokes theorem

(4.3) /M Py(Fa, ) AdB =0

for all 8 € C>(M, /\m_zk_lT*M) with supp(f) C U,. Letting n — oo
in (4.3), we have by (4.2)

/ Py(Fy,) Ada = 0.
M

This completes the proof. |

Let P = ({U.},{gas}) € PP (M), A= {A,} € A?/2(P) and ¢ € I*(G)
with p/2 > k be as before. Also let S be an arbitrary closed manifold and
f S — M a Lipschitz map. We next want to consider the pulled back form
f*Py(F4). We first remark that even though Py(Fy) € L'(M, N* T*M),
f*P4(F4) does not belong to L'(S, \** T*S) in general. This is because the
composition goh of a L!-function ¢ with a Lipschitz map h does not preserve
the L'-property, i.e., go h ¢ L' in general. However, we shall show that
f*Py(F4) belongs to L' and satisfies d(f*Ps(F4)) = 0 in D'(S, A**' T*5)
for generic f. That is, we have

Lemma 4.2 Let P = ({U,}, {gas}) € PP (M), A = {A,} € A*/2(P) and
¢ € I*(G). Also let S be an arbitrary closed manifold of dimension i and
f:S — M a Lipschitz map. Suppose p/2 < k, then for a.e. £ € B! we have
fEPs(Fa) € LY(S, A\* T*S) and

(4.4) d(fiPy(Fa)) =0  in D' (S, \*"T*3).
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Proof. Since f : S — M is Lipschitz, there exists a sequence of smooth
maps {f,} C C°°(S, M) such that f, — f in Lip(S,RY), i.e.,

() — f(x) — (fuly) —
o )] s 120 = F@) = (1u(0) = 1))

— 0 as n—oo.
€S z,yE€S,x#y ds (.T, y)

First we consider the case f € C*°(S, M). Asin Lemma 4.1, we only need
to prove the assertion locally in .S. By choosing € > 0 small if necessary, we
may assume that for any s € S, there exists an open neighborhood U C S
of s such that f¢(U) C U, for all £ € B! and for some a. As in the proof of
Lemma 4.1, there exists {A,,} C C*(U,, T*U,®g) such that A,, — A, in
LP(U,) and dA,, — dA, in LP/2(U,). Then as in the proof of Lemma 4.1,
we have

(4.5) /ngPd,(Aa,n) ANdB =0

for any 8 € C(S, N1 T*S) with supp(6) C U and ¢ € BL.

Once we prove ffPy(Aan) — f¢Ps(Aa) in LP/?(U,\N*TU) for ae.
¢ € B!, the assertion d(f¢Py(A)) = 0 in D'(S, A*T*S) for ae. € € B fol-
lows from (4.5) and the partition of unity argument. However, this is a con-
sequence of Lemma 3.1 and the assertion follows in the case f € C*(S, M).

Next we consider the general case f € Lip(S, M). Let {f,} CC>(S, M) be
an approximating sequence of f as in the beginning of the proof. Then (f,)¢
approximates fe in Lip(M, S). From what we have proved above we have

(4.6) [P s <o

for any 8 € C=(S, A" 7' T*S) and for a.e. £ € B.. Passing to the limit
n — oo in (4.6) we obtain

(A7) /S f2P(A) A dB =0

for any § € C(S, N 7' T*S) and a.e. £ € BL. This completes the proof.
|

Suppose as before p > 2. Let P = ({Uy, {gap}) € PG’ (M) and A =
{A,} € AP/ Also suppose k < p/2 and ¢ € I*(G). Let o : Ny, —
M be a smooth 2k-simplex, where Ay, is the standard 2k-simplex Ay, =
[ N - 2 N =1, 0< )\ < 1} € R¥* and ¢y = (1,0,0,...,0),
er = (0,1,0,...,0),...,eq = (0,0,0,...,1) € R*FL,

Let Py, = {(x,21,...,72,) € RH*FL . Z?ﬁoxi = 1} C R**l be a
hyperplane and U(Ay;) C Pa an open neighborhood of Ay in Psy. By the
smoothness of o, we may assume that o is extended as a smooth map on

U(Asx) which we also denote by o.
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In the following, we want to define a 2k-cochain Py(A) € C*(M) =
Hom(Cy (M), R) which is defined on the basis {o} of 2k-chains Cyr (M) by

) = [Py = [ o nay

The above definition has a problem since the 2k-form o*P,(A) is not inte-
grable over Ay in general. However, by the Fubini’s theorem as proved in
Lemma 3.1, P,(A)(o¢) has a well-defined meaning for a.e. £ € B, where
o¢ = ¢ 0o o. If the value Ps(A)(o¢) is independent of a.e. £ € B., we
can define Py(A)(o) as this common value and obtain a cochain Py(A) €
C?(M). However, Pys(A)(c) does depend on the choice of ¢ and the above
attempt does not succeed. For this reason, we do not attempt to de-
fine a cochain Py(A) € C?*(M), but define directly a cohomology class
[Pa(A)] € H*(MR).

Thus let S = > njo; € Cy(M) be a smooth cycle, ie., n; € Z,
0; : Nop, — M are smooth simplexes and 9S = 0. As before we assume that
each o; is smooth and defined on U(Ay). Taking € > 0 small if necessary,
we may also assume that the e-neighborhood of Ay, in Py is contained in
U(Aog).

For ¢ € B, define S¢ = Y7 | n;0;¢, where 0;¢ = 1 0 0;. Then S is also
a cycle: 9S¢ = 0. By the Fubini’s theorem (see Lemma 3.1), o7 . Py(A) is in
LY(Ag) for ae. € € B! and we define

(4.8) Py(A)(Se) == Zn /A o7 Py(A)

Then we have:

Lemma 4.3 Let S be a 2k-cycle as above. Then for a.e. &,& € B, we
have Py(A)(Se,) = Po(A)(Se,).

To prove the above lemma, we need some preparation. For £, &y, &; € B! /o
and a smooth simplex o : A — M define

Z'§0751 M % [—1,2] — M, 2'50,51;5 M % [—1,2] — M,
Hdléo,él : Agk X [—1,2] — M, HU:&)’&;& : Agk X [—1,2] — M

by
Zfo & (I, t) = (I + (1 C,O(t))&) + QO(t)§1),
Zfo flf(‘r7t) = ( + (1 ‘P(t))§0+90(t)§1+§)7
050 61( >t) Zfo fl(o—(x)’t) Hﬂiémfl;f('x’t) = ifo,fl;é(a(x)’t)a

where ¢ € C*°(R) is such that ¢(t) = 0 for t < 0, p(t) =1 for ¢t > 1 and
0<et)<lfor0<t<l.



758 T. ISOBE

Before proving Lemma 4.3, we first prove:

Lemma 4.4 For &, & € ]B%le/2 and a.e. £ € ]B%le/2, we have

(L2 x[0,1])

Proof. We may assume, as before, that o is defined on U(Ay). By
Lemma 4.2, we have

2k+1

d(H}g e6Ps(A)) =0 in D' (U(Ag) x (—1,2), /\ T*(U(Ax) x (—1,2)))

for a.e. £ € IB%ZE/Q. That is, for any o € C§°(U(Agx) X (—1,2)), we have

U(Lag)x(—1,2)

We denote by ¢ the barycenter of Ay, x [0, 1] and define the radial function
with center at ¢ by |z| = inf{\ : A > 0, = € ¢+ A(Dg x [0,1] — ¢)}.
For € Ay, x [0,1] and € € (0,1), define a Lipschitz function a. by setting
ac(x) =1for |z <1—¢€ alz) = (1—|z|)/efor 1 —e < |z] < 1. a.is
extended to U(Aq) x (—1,2) by 0 as a Lipschitz function and we also denote
this extension by the same notation a.. By approximating o, by smooth
functions, we see that the same equation (4.9) holds for & = «, and we
therefore have:

1 *
(4.10) _/ e, e Po(A) A dla] = 0.
1—e<|z|<1

€

Thus by the differentiation theorem of the Lebesgue integral and letting
¢ — 0 in (4.10), we obtain that for a.e. £ € B, ,

(4.11) /||— * e Po(A) = 0.

This completes the proof of the Lemma. |

Proof of Lemma 4.3. By Lemma 4.4, we have for a.e. £ € IB%E/2

0= / H:iifoél;fp‘z’(A)
(Ao, x[0,1])

:/ H51:50,51;5P¢(A)+/ (Ui)§1+sp¢(A)
O o x[0,1] A

(4.12) - / (015 ve ol A),

Aoy
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Since Hy,.¢e1:6 = leper:¢ © (07 x id) (id : [0,1] — [0, 1] is the identity map)
we obtain

| el = [ (ox )i P
8A2k><[0,1] BAQkX[O,l}

1
(4.13) - / ot ( / dt A Laat(zgompm))),
[oJAVYA 0

where ¢ 2 denotes the contraction by %.
Since Py(A) € L'(M, \N* T*M), there exists w, € C®(M, \* T*M)
such that w, — Py(A) in L'(M, A T*M). Then by Fubini’s theorem, we

have:
L ([ [ 1970 G ePot) = ) a5t e

(4.14) < C’/ | Py(A) — wy|dvolyy — 0 as n — 0o,
M

/2

where in the above, C' > 0 is a constant independent of &y, &1, & and n.

Therefore by (4.14), Fubini’s theorem and Fatou’s lemma, there exists
a subsequence of {w,} (which we also denote by {w,}) such that for a.e.
¢ e ]B%le /2 We obtain

(4.15) | [ 1o e Paa) e = 0

as n — 0.
Thus we have from (4.12), (4.13) and (4.15):

P¢<A><S&+g>—P¢<S@+g>:Zni( | otaerita- [ a:@wm))

p
- _an/ H:iifoyfufp‘z’(A)

i=1 0N, x[0,1]

p 1
(4.16) = — nll_)IIOlOan/ o} (/o dt A L%(iszl;f“’n))

for a.e. £ € IB%ZE/Q.
The last term in (4.16) vanishes since 0S = 0. Thus we have proved

(4.17) Py(A)(Seore) = Py(Seite) for ace. € € B .

Since (4.17) holds for any &, &, € ]B%le/2 and a.e. £ € ]B%le/z, by the similar
argument as in the proof of Lemma 3.2, we have proved the assertion of
Lemma 4.3. |
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By Lemma 4.3, we give the following definition:

Definition 4.1 Let ¢ € I¥(G) and S = >, njo; a 2k-cycle on M. We
define Py(A)(S) by
Fy(A)(S) = Py(A)(Se)

which is finite and independent of a.e. £ € ]B%le/Q.

The next lemma shows that P;(A) defines an element in the cohomology
group H?*(M;R) = Hom(Ho(M;R),R).

Lemma 4.5 Suppose P={({U,}, {gas}) €EP (M) and A={A,} cA'»/*(P)
for some p > 2. Let us also assume that ¢ € I*(G) for some k < p/2.
Then for any smooth (2k + 1)-chain S on M, we have Py(A)(0S) = 0.

Proof. It suffices to prove the assertion for smooth simplex o : Aoy 1 — M.
As before, we may assume that o is defined on U(Agry1) — M and the

e-neighborhood of Aggiy in Poyyq is contained in U(Agg11). By Lemma 4.2,
we have d(of Py(A)) = 0 in D' (U(Aap11), AT TU(Agpsy)) for ae. € € BL.
Therefore for any o € C5°(U(Aak11)), we have for a.e £ € B!

/ 0 Py(A) Nda = 0.
W(Azk41)

From this, arguing as in the proof of Lemma 4.4, we obtain

(4.18) / 0:Py(A) =0 for a.e. £ € BL.
0oy

From Definition 4.1 and (4.18), we have P,(A)(do) = 0. [ |

From Lemma 4.5, we give the following definition:

Definition 4.2 Suppose p > 2, P = ({Us}, {gag}) € PeP(M), A= {A,} €
ALP2(P) and ¢ € I*(G) with k < p/2. By Lemma 4.5, Ps(A) defines a
cohomology class in H**(M;R) = Hom(Ho(M,R),R) which we denote by
[Po(A)]: [Po(A)]([S]) == Ps(A)(S).

The following theorem is one of the main results of this section. It asserts
that the analog of the classical Chern-Weil theory holds for P & ‘J’gp (M)
and connections in A*/2(P) up to dimension p/2.

Theorem 4.1 Let us assume thatp > 2, P = ({U,}, {gap}) € PE"(M) and
¢ € I*(G) for k < p/2. Then the cohomology class [Py(A)] € H*(M;R)
defined in Definition 4.2 is independent of A € AP/2(P).



TOPOLOGICAL AND ANALYTICAL PROPERTIES OF SOBOLEV BUNDLES II 761

Proof. Let A} = {A;,} and Ay = {4,,} be two connections in A*/2(P).
Denote by pry: Mx(—1,2) — M the projection to the first factor. Define the
pull back bundle pri P on M x (—1,2) by priP={{U,x(—1,2)}, {prigas}).
where prigas(z,t) = gap(z). It is easy to see that pr{P is a principal
G-bundle of class W' on M x (—1,2).

Let ¢ € C*(R) be such that ¢(t) =0 for t <0, ¢(t) =1 for t > 1 and
0 <p(t)<1for0<t<1. Foreach o, we define

Aa(z,1) = @(t) Ara(2) + (1 = 9(t)) Az a(2).

It is also easy to see that A = {A,} is a A"P/2-connection on priP, i.e., it
satisfies

Ap = (Prigap) d(Prigas) + ( Prigas) " Aa(Prigas)
in Uyg x (—1,2), A, € LP(U,) and dA,, € LP*(U,).

What we want to prove is that for any 2k-cycle S on M, there holds
P,(A1)(S) = Ps(A3)(S). As before, we may assume that S is smooth and
can be written as S = Y 7 n;o; for smooth simplexes o; : Ay — M
and n; € Z.

For each simplex o;, define a (2k + 1)-simplex 6; on M x (—1,2) by

Gi: Do X [—1/2,3/2] = M x (—1,2), 0di(x,t) = (0;(x),1).
Also for § € BL ) and 7 € (~1/2,1/2), define &; (¢ ) by

Oi(¢,7) (x,t) = (0i¢(2), t + 7).

Then as in the proof of Lemma 4.4, we have from Lemma 4.2

o[ i ienPold)
O(Laix[—1/2,3/2])

(419) :/ 6‘:(677)P¢(A) + / U;§P¢(A1) — / U;§P¢(A2)
0oy x[~1/2,3/2] Doy Aoy

for a.e. (&, 7).
Thus for a.e. £ € B! jpand a.e. 7 € (—1/2,1/2), we have from Lemma 4.3
that

(420) P¢(Al)(S) P¢> A2 an/ 7,( T)P¢(A)
0ok x[—1/2,3/2]

To complete the proof, we need to show that the right side of (4.20) is 0.

To see this, notice that ¢; ¢ -y is written as 6; ¢ ) = (idy X ¢-) 0 (07¢ X idR),

where idy; and idg are the identity maps of M and R, respectively, and

L(t)=t+T.
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Thus defining a 2k-from on M x [—1/2,3/2] by w = (ida X t7)*Py(A),
we obtain

(4.21) / 57 ey Pol4) = / (o1 x id)w.
Dok x[—1/2,3/2] Dok x[—1/2,3/2]

Then as in the proof of Lemma 4.3, we have

3/2
/ (0i¢ xidg)*'w = / O (/ dt A Lg@u)
ok x[—1/2,3/2] YN ~1/2 ot
3/2
(4.22) = / Jf(zz(/ dt/\Law)).
LY. —1/2 ot

Then arguing smularly as in the proof of Lemma 4.3, i.e., approximating
(2k—1)-form f 172 dtAL 2w on M by smooth ones w, € C* (M, A M)

in Ll(M ), we obtain by applying Fubini’s theorem and Fatou’s lemma that
for a.e. £ € B! /o and for some subsequence of {w;,} (which we still denote

by {Wn}):

3/2
(4.23) / o} (ZZ (/ dt A ng>) = lim 07 lgWn.
ot n—oo
ANy, —1/2 0l

Therefore for a.e. £ € B! /o» the right side of (4.20) becomes

P P 3/2
— n; = — dt N tLeow
; /aAQkx[—1/2,3/2} W Z /BA% ( </—1/2 ot ))
= — lim n/ oliiw, = 0.
7 ) é n
Jim 223 .

This completes the proof. |

In view of the above, we give

Definition 4.3 For P € PP(M) and ¢ € I*(G) (k < p/2), we define a
cohomology class Py(P) € H?**(M;R) as the class [Py(A)] € H*(M;R)
which does not depend on A € AYP/2(P).

In the above, we have defined from ¢ € I*(G) and P € Pg"(M) the
cohomology class [Ps(P)] € H?*(M;R). On the other hand, P,(A) for
A € A'P/2(P) naturally defines an (m — 2k)-(normal) current which also
defines a homology class in H,, o, (M;R). For the smooth case, these classes
are identified through Poincaré duality. We shall show below that this is also
the case for P € PgP(P) and ¢ € I*(G) when k < p/2.
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As before, let us assume that P € Pg’(M) and ¢ € I*(G). For A €
ALP/2(P), define a (m — 2k)-current Cy(A) as

(4.24) Co(A): C°(M, \"*T*M) 5 a / a A Py(A) € R.

The current Cy(A) has the following properties:
i) The mass of C4(A) is finite:

M(Cy(A)) = sup {C¢(A)(a) ca € O (M, N\ T M), |af < 1}
< /M|P¢(A)|dvolM < too,
since |Py(A)| < C|Fal*F € LY(M).
i) C(A) is a cycle:

9C,(A) (@) = Cy(A)(da) = / da A Py(A) = 0

M
for any o € C°(M, \™ ** T*M) by Lemma 4.1.

Recall that a current T is called normal if the masses of 7" and 07" are
finite (see [8]). From i) and ii), Cy(A) defines an (m — 2k)-normal current,
Cy(A) € Nyop(M). From the sets Z;(M) := {T € N;(M) : 9T = 0}
of cycles and boundaries B;(T) := {07 : T € N;11(N)}, one obtains the
quotient Z;(M)/B;(M) which is defined as the i-th homology group of M
with coefficient in R: H;(M;R) = Z;(M)/B;(M). It is known that H;(M;R)
is isomorphic to the i-th singular homology group of M, see [8], [9]. From i)
and ii), C4(A) defines the homology class in H,,_o;(M;R) which we denote
by [Cy(A)].

There is an isomorphism between H'p(M;R) and H,,_;(M;R) called the
Poincaré duality:

PD: Hip(M:R) 3 a;/ e Ao € H,_i(M;R).
M

On the other hand, there is also an isomorphism H’n(M;R) ~ H'(M;R)
(H'(M;R) is the i-th singular cohomology of M with coefficient in R) called
the de Rham isomorphism which is induced by the map

(4.25) U (M, \'T*M) > a — ¥(a) € Hom(C;, R)

defined by
\I/(a)(a):/a::/ fope’
o N;

for smooth simplex o : A; — M.
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We show that [P,(A)] corresponds to [Cy(A)] under these isomorphisms.
Namely, we have:

Proposition 4.1 Under the above notations, we have
PD oW ([Py(A)]) = [Co(A)].

Proof. For [Ps(A)] € H?**(M;R), we first seek W ([P,(A)]) € H2%(M).
Let us assume for the moment & < p/2. Recall that [Ps(A)] is defined
in Definition 4.1. Suppose o : Ag, — M is a smooth 2k-simplex. Since
dPy(A) = 0 and P,(A) € LP/?* with p/2k > 1, we have the Hodge decompos-
ition Py(A) = h(A) + dw(A), where h(A) is harmonic and C*° and w(A) €
We/2k (A, A7 T M). Thus we have

@26) P = [ oiPua) = |

Aoy

oih(A) + / o5 (dw(A))

JAVSS

which has a well-defined meaning for a.e. £ € B.

We consider the second term in (4.26). Choose a sequence {w,} €
C(M, N** "' T*M) such that w, — w(A) in W2/2(M). Then by Fubini’s
theorem (as in Lemma 3.1) and Fatou’s Lemma, there exists a subsequence
of {w,} (still denoted by {w,}) such that

(4.27) /A d(ofwn) = /A ofdw, — [ ofdw(A) asn — oo for ae. £ € Bl
2k

2% Doy,
Similarly, we also have
(4.28) / oidw, = / OWn — o;w(A) asn — oo for ae. £ € B..
Agk aAQk aAQk
From (4.27) and (4.28), we obtain

(4.29) /A% oidw(A) = /BA% ofw(A)  forae. &ecBL
By (4.26) and (4.29), we have for a.e. £ € B!
(4.30) P A)(o0) = V) o) + [ ow()
0Ny

Therefore if S =>"_ n;o; is a cycle, we obtain

Py(A)(S) = Py(A)(Se) (for a.e & € B, see Definition 4.1)
= W(n(A))(Se)
(4.31) = W(h(A))(S) (since Sg¢ is homologous to S).

Thus we have W([h(A)]) = Py(A) in Hom(Hay(M;R),R) = H2*(M;R).



TOPOLOGICAL AND ANALYTICAL PROPERTIES OF SOBOLEV BUNDLES II 765

On the other hand, we have

c¢(A)(a)=/MaAp¢(A):/MaAh(A)+/ o A dw(A)

= / a A h(A) + (—1)mE-DH / da A w(A)
(4.32) = PD(h(A))(a) + (—=1)"E=DHIPD(w(A))(a).

In (4.32), PD(w(A)) is a normal (m—2k+1)-current since M (PD(w(A))) <
|w(A)||Lr )y < 0o and M(OPD(w(A))) < ||dw(A)|[z1ary < co. From this
we obtain Cy(A) = PD(h(A)) + (=1)"=V+H9PD(w(A)) and

(4.33) [Co(A)] = PD(h(A)).

Combining (4.31) and (4.33), we complete the proof for the case k < p/2.
For the case k = p/2, we need a deep result by Lanzani-Stein [16], see
also [3], [4]. In this case the above argument should be modified since P;(A)
is only in L'(M) and the standard Hodge decomposition theorem does not
hold in this case. In this case, we apply the result of Lanzani-Stein [16]
which asserts that for ¢-form wu satisfying du = f € L' and d*u = g € L*,
we can conclude u € L™/™ (M) provided that i) ¢ # 1,m — 1 or ii) ¢ = 1
and g € H' (H" is the Hardy space) or iii) ¢ = m — 1 and f € H'. In our
case w(A) (which exists primarily as a current) satisfies dw(A) € L'(A),
d*w(A) =0and w(A)isa2k —1=p—1<m—1 form. Thus by the result
of Lanzani-Stein, we conclude w(A) € L™/™=1(M). Once this is shown, the
remaining argument is the same by approximating w(A) by smooth forms w,
such that w, — w(A4) in L™™ (M) and dw, — dw(A) in L*(M). This
completes the proof. [ |

Since the cohomology class [P4(A)] is independent of A, we have as a
corollary of Proposition 4.1 the following:

Corollary 4.1 The homology class [Cy(A)] € Hyp—ox(M;R) is independent
of A € AYW/2(P). We denote this class by Cy(P). We then have PD o
U= (By(P)) = Cyl(P).

The cohomology class P,(P) (and therefore Cy(P)) has some stability
property which will be useful for problems in the calculus of variations. To be
more precise, let us assume that there exist a sequence { P, } of bundles in the
class PgP(M) and a sequence of connections {4, } such that A, € A*/%(P,)
for all n and sup,,~; [, [Fa,|”/*dvoly < +oo. Then we have:

Proposition 4.2 Let ¢ € I*(G). Assume that k < p/2. Under the above
assumption, there exists a subsequence { P, } of {P,} such that Py(P,,) (and
Cy(Py,)) ts independent of k.
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Remark 4.1 In the above proposition, the assertion does not hold for the
case k = p/2. This is because a phenomenon known as bubbling off of
instantons occurs in general. Also one needs to take a subsequence in the
above proposition in general. For example, let Py, Py, € Tgp(]\/[) and A; €
ALPI2(P)) (i = 1,2) be given such that Py(Py) # Ps(P,). Consider sequences
of bundles { P, } and connections {A,} such that P, = P, and A, = Ay ifn
1s odd and P, = P, and A, = Ay if n is even. Then the assumption of the
proposition is satisfied but we have Py(P,) # Py(Pny1) for all n.

Proof of Proposition 4.2. By the result of Thom [35], we have H,(M; Q)=
0.(M) @ Q, where Q,(M) is the oriented bordism ring of M. Thus for any
S € H.(M;Z), there exists k € Z such that kS can be represented by a closed
oriented submanifold of M. In particular, there exists a basis of H,(M;Q)
(and hence of H.(M;R)) consisting of the fundamental classes of closed
oriented submanifolds of M. Thus to prove the proposition, we only need
to show that P,(P,,)(S) is independent of k for some subsequence {F,, },
where S is a fundamental class of a closed oriented submanifold of M.

Assume that S C M is a closed oriented submanifold with dim .S = 2k.
By Fubini’s theorem as in Lemma 3.1, we have:

/ | ([ 1t + ) a5 Jase e
- /( [ 1L+ ) dor ©) a0
e /([ o [P ) () ) 454 2)

(4.34) <C / | Fa, |P/? dvoly,.
M

By (4.34), Fubini’s theorem and Fatou’s lemma, for a.e. £ € B., there exists
a subsequence {n;} of {n} such that

sup/ |FAnk|p/2(7rM(m + €)) dH* (z) < +o0
k>1Js
and therefore

4.35 su Fu |P2AdH?*(2) < +00.
(4.35) [ 1E, 1)

From (4.35) and Uhlenbeck’s weak compactness theorem [38], there exist lo-
cal trivializations of the bundles P, |s, — S¢ (k= 1,2,...) such that the con-
nections {A,,} with respect to these local trivializations are A*?/%(P,, |s,)-
bounded. From this bound, as usual, we obtain a W!?-bound of the gluing
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cocycles of the bundles P, . Since W'? is compactly embedded in C° in
dimension 2k < p, there exists a further subsequence of {n;} (still denoted
by {nx}) such that the gluing cocycles of P,, uniformly converge as k — oo.
Thus for large k, the isomorphism classes of P, are independent of k. In par-
ticular, Py(P,,)(S¢) is independent of large k. Since S is homologous to S,
we have Py(P,,)(S¢) = Py(P,,)(S) and this completes the proof. [ ]

Remark 4.2 It seems something strange that the class Py(P) is well-defined
for ¢ € I*(G) up to k = p/2. That is, it defines a well-defined topological
wmvariant up to dimension p. Our theory of Sobolev bundles is closely related
to the analogous theory of Sobolev mappings developed by White [41], [42].
In the theory of Sobolev mappings, one can only associate well-defined topo-
logical invariants for maps in the class WP up to dimension p — 1. This
difference probably comes from our definition of the class of Sobolev bun-
dles. As we shall see in the next section, if we slightly relax the definition of
Sobolev bundles (i.e., the classes of singular Sobolev bundles which permit
certain dimensional singularities), we arrive at the similar result obtained
for Sobolev mappings. The classes of singular Sobolev bundles are natural
for applications, but our original classes of Sobolev bundles are also natu-
ral from the theoretical point of view. In view of Theorem 4.1, it is likely
that Theorem 3.1 holds for h : K — M with dim K < p. But we have not
succeeded in proving or disproving such a result.

5. Singular Sobolev bundles and connections

In this section, we generalize the results proved in §3 and §4 for Sobolev
bundles with singularities.

5.1. Singular Sobolev bundles

We first define classes of singular Sobolev bundles and isomorphisms between
them. As before, we assume that M is a compact manifold with dim M = m.

Definition 5.1 Let k € N, p > 1 and S C M a closed subset with J-
dimS = m — s, where H-dim S denotes the Hausdorff dimension of S.
We say that P = ({U,}aer, {9ap}aper) belongs to the class of W*P-Sobolev
bundles over M with singular set S if the following holds:

1) {Uas}aer is an open covering of M\ S,
i) gap € WHP(Uyg, G) for all o, 8 € T with Uys # 0 and gag(z) - gp,(x) =
Gory(x) for a.e. x € Uygy whenever Uygy # 0.
We denote such a class of bundles by ?Z’p(]\/[; S).
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Definition 5.2 Let P = ({Ua}aer, {9optaser), @ = ({Vitier, {hjrtires) €
?g’p(]\/[; S). P and Q are W*P-isomorphic to each other if and only if there
exists a refinement {Wihser of both {Us} and {V;}, i.e., Wy C Uy and
W, C Vi) for some o : K — I and ¢ : K — J and J,eg We = M\ S, and
a family of functions ps € WHP(W,, G) (s € K ) such that

Te(s)et) = Ps - husyun - P
in Wy for s,t € K whenever Wy, # (.

As in the ordinary case, the isomorphism class containing P G?g’p(l\/[; S)
is denoted by [Plip. The set of all W*P-isomorphism classes is denoted by
PEP(M; S).

Such classes of bundles arise naturally as limits of smooth bundles. For
example, consider a sequence of Yang-Mills connections {4,} € A*(F,) on
smooth bundles P, — M such that sup,, [, |Fa,|* dvoly < +o00. It was
shown in [21] (see also [36]) that there exist a subsequence of {A,} (still
denoted by {4,}) and a closed set S C M with H-dim S < m — 4 such that
{A,} converges in C22(M\ S) to a connection Ay on a bundle P, — M\ S.
More general result is known by the works of [20] and [30], see also §7.
Namely, they proved a similar compactness theorem under the assumption
of the monotonicity of the Yang-Mills energy and some approximability con-
dition. From these, it is also useful for applications to introduce the following
classes of Sobolev bundles with singularities.

Definition 5.3 Let k€ N, p>1 and S C M be a closed subset.
i) PEP (M S) C PEP(M;S) is defined as: P = ({Us}Yaer, {90s}aper) €

strong,G

Tgp(M; S) belongs to Tiifong,G(MQ S) if and only if for any compact set

K C M\ S, there exists a sequence of smooth principal G-bundles

{P.} C PF(M) of the form P, = ({Vi}ics,{9is}ijes) such that {ViN

K}icy is a refinement of {Us N K}aer, ViN K CU,NK (p:d — 1

is a refinement map) and ||g,@)o) — 9ijllwrrvi,nx) — 0 (n — 00) for

Z,jEJ’LUZth‘/U#@

ii) Pol . o(M;S) C PeP(M; S) is defined as: P = ({Us}aer, {gaptaser) €

PEP(M; S) belongs to Tﬁ;fak’G(M; S) if and only if for any compact set

K C M\ S, there exists a sequence {P,} C PF (M) of the form P, =

({Vi}ies; 1955 }ijes) such that {ViNK }icy is a refinement of {UsNK }aer,

Vin K C Upe) N K, and ||goyet) = 9i5llvvynky — 0 (0 — 00) and

sup,, Z?Zl ||ng%||L1’(VijﬂK) < +oo fori,j € J with Vi # 0, where
VI =V.--V (j-times).

In the following, we generalize Theorems 3.1, 3.2 and 3.3 for bundles in

the classes PEP(M; S), PhP . (M;S) and va’fak’G(M ;.S), respectively.

strong,G
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It is straightforward to show that all these results are extendible if we
replace h : K — M by h: K — M\ S. But what we really want to know
is how naturally defined invariants like in Theorem 3.1, Theorem 3.2 and
Theorem 3.3 are preserved under convergence, so it is necessary to see how
we can define invariants like in these theorems for bundles with singularities.
That is to say, for bundles with singularities we need to see whether we can
define homotopy invariant for h : K — M.

Let K be a d-dimensional polyhedron and S C M a closed set with
H-dim S = m — s for some 0 < s < m. To define a homotopy invariant for
a Sobolev bundle with singular set S and h : K — M, we need to know how
h(K) intersects with S. If h(K) intersects with S for generic h, we can not
define a homotopy invariant for such a pair. The following lemma gives a
condition under which h(K) NS = () holds.

Lemma 5.1 Let K be a d-dimensional polyhedron and h : K — M a piece-
wise smooth map, i.e., its restriction to each cell of K is smooth. Suppose
S C M s a closed subset with H-dimS = m — s for some 0 < s < m
and has a o-finite H™ *-measure, i.e., there exist closed subsets S; C M
with S = U2, Si and H™*(S;) < +oo. Ifd < s, then for H*-a.e.
(u,v) € B. x B!, we have h,(K) NS =0, where h,, : K — M s de-
fined by hy,(x) = 1, o hy(x).

For smooth K and S, the above lemma is a simple consequence of the
transversality theorem. For the general case, the proof is somewhat involved.
The proof is given in the appendix.

Using Lemma 5.1, we can prove extensions of Theorems 3.1, 3.2 and 3.3.
The first is the extension of Theorem 3.1.

Theorem 5.1 Let S C M be a closed set with H-dim S = m — s for some
0 < s < m and has a o-finite H™ *-measure and P € Tgp(]\/[; S). Sup-
pose K is a d-dimensional polyhedron satisfying (A-1), (A-2) in the ap-
pendiz. Under the assumption d < min{s — 2, [kp] — 1}, for any Lipschitz
map h : K — M we can associate the class [Plpx € PL(K) which de-

pends only on the homotopy class of h and the W"*P-isomorphism class of P.
If 3 < kp < 4, the same result holds for d < min{s — 2, 3}.

Proof. By the Gagliardo-Nirenberg inequality as before, we have P €&
fPélkp (M:;S). The idea of the proof is essentially the same as that of the
proof of Theorem 3.1 once we have Lemma 5.1. We only sketch the argument
here and leave the details to the reader. We first assume that h: K — M
is piecewise smooth. As in Theorem 3.1, the class [h*P]y should be de-
fined as the C’-isomorphism class of h} P for H*-a.e. (u,v) € Bl x BL.
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By the Fubini type Lemma 3.1, Lemma 5.1 and the Sobolev embedding,
for H*-a.e. (u,v) € BL x BL we have h% P := ({h;}(Ua)},{gas © hus}) €
PG (K) ¢ PL(K). We need to show that their isomorphism classes are
independent of H%-a.e. (u,v) € IB%ZE/3 x B! and depends only on the WW*?-
isomorphism class and the homotopy class of h. To prove the independence
of the class [k}, Py for H*-a.e. (u,v) € B4 x BL 4, we proceed as in the
proof of Lemma 3.2. In this case, for any fixed (u,v) € ]B%lze/3 X ]B%lze/3 and

(u',0") € IB%ZE/S X IB%ZE/S, we define Hy (2, t) = L;(lt)u_'_u, 0 Ny(tyot (), wWhere
the cut-off function ¢ is defined as in the proof of Lemma 3.2. Then by
slightly modifying the argument of the proof of Lemma 5.1, we see that
for 3(*-a.e. (u',0') € B3 x B,y we have Hy o ([-1,2] x K) N S = un-
der the assumption d < min{s — 2, [kp] — 1}. Then arguing exactly as in
the proof of Lemma 3.2, we see that for any fixed (u,v) € IB%ZQE/3 X IB%ZQE/?),

hiy P is CP-isomorphic to hy . P for H¥-ae (u,0) € By x Bl .
From this, as in the proof of Lemma 3.2, we see that [h;  Plo is indepen-

dent of H*-ae. (u,v) € B3 x Bl ;. As in Definition 3.1, we denote by

[Plux € PL(K) the class [k, Pl € P%(K) which is independent of -
a.e. (u,v) € Bi/g X Bi/g. Once we have Lemma 5.1, arguing exactly as in
the proofs of Lemma 3.3 and Lemma 3.5, we see that [P], x depends only
on the homotopy class (through piecewise smooth homotopy) of h and the
WkP_isomorphism class of P. To prove the assertion for general Lipschitz
map h : K — M, we approximate h by piecewise smooth h, : K — M
in the Lipschitz norm. Then [P],, x is defined and independent of large
n since the homotopy class of h,, is independent of large n. Similarly, the
class [P]n, x is also independent of the approximation {h,} of h since for
any other approximation {h,}, h, and h] are homotopic to each other if n
is large. We denote this independent class as [P]; k. Then its dependence on
the homotopy class of A and the W*P-isomorphism class of P easily follows
from the definition and the corresponding result for A piecewise smooth.

The last assertion of the theorem also follows as in the proof of Lemma 3.5.
[ |

Remark 5.1 When S = 0, the class [Pl i defined in Theorem 5.1 coincides
with that of defined in Theorem 3.1. To see this, for (u,v) € IB%ZQE/3 X ]]33126/3

and v' € IB%ZE/3, define H(t,z) = L;(lt)u o mar(h(z) + @(t)v) and Hy(t,x) =

L;(lt)u o ma(h(x) + @(t)v + '), where ¢ is a cut-off function as defined in
the proof of Theorem 3.1. Then as in the proof of Theorem 3.1, we see that
there exists to € [—1,0] and t; € [1,2] such that H(P)|y,xx is isomorphic to
H%(P) sy xx as CO-bundles over K for a.e. v' € Bi/s' Thus h!,P = h* . P

u,v+v’

for a.e. v € ]B%le/3. The assertion follows from this.
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We next extend Theorem 3.2 for bundles in ?fgfongG(M ;S).

Theorem 5.2 Let S C M be a closed set as in Theorem 5.1 and P €
Tﬁgfong@(]\/[; S). Suppose K is a d-dimensional polyhedron satisfying (A-1)
and (A-2) in the appendiz. Under the assumption d < min{dgyong(kp), s—1},
where dsirong(kp) is defined in §3.2, for any Lipschitz map h : K — M, we
can associate a class [P}, ; € PL(K) which depends only on the homotopy

class of h and the W*P-isomorphism class of P.

Proof. We only give a sketch of the proof. First we assume h : K — M is
piecewise smooth. Since P € ?fgfong,G(M ;.9), for any compact L C M \ S,
there exists a sequence of smooth G-bundles { P,} such that Definition 5.3 i)
is satisfied. By Lemma 5.1, for a.e. (u,v) € B! x B! we have h,,,(K)NS = 0.
Choose any compact L C M\ S such that h, ,(K) C L for (u,v) € B! xB! of
positive H?-measure. For such L, take {P,} as above. Then by the Fubini-
type Lemma 3.1 and arguing as in §3.2 we see that for H*-a.e. (u,v) €
B! x B! satisfying h,.,(K) C L, the isomorphism class [, P,y € PL(K) is
well-defined and independent of a.e. (u,v) € B! x B. and the approximation
{P,} satisfying Definition 5.3 i). Since L C M \ S satistying h, ,(K) C L
is arbitrary, we obtain a well-defined class [P} € PY(K) which is defined

as the class [hi ,Polo € PL(K) for a.e (u,v) € BL x B! and for large n for
some approximating smooth bundles {P,} of P satisfying the conditions in
Definition 5.3 i). For general Lipschitz map h : K — M, we approximate h
by piecewise smooth map h,, : K — M. Then as in the proof of Theorem 5.1,
the class [P]; j does not depend on n if n is large and also independent of
a particular choice of the approximation. We denote this common class as
[P]; k- The remaining assertions, namely its dependence on the homotopy
class of h and its invariance under W*P-isomorphisms are proved similarly
as in Lemma 3.11. This completes the proof. |

As in Remark 5.1, the class [P]; ;- defined in Theorem 5.2 coincides with
that of Theorem 3.2 if S = {).

The next result is an extension of Thm. 3.3 for bundles in ?\]f\;fak,G(M :9).

Theorem 5.3 Let S C M be a closed set as in Theorem 5.1 and P €
?I;’SMG(M; S). Suppose K is a d-dimensional polyhedron satisfying (A-1),
(A-2) in the appendiz. Under the assumption d < min{dyeu(kp),s — 1},
where dyear(kp) is defined in §3.3, for any Lipschitz map h : K — M, we
can associate a class [P} € PU(K) which depends only on the homotopy
class of h and the W*P-isomorphism class of P.

Proof. The idea of the proof is the same as that of Theorem 5.2 and
Theorem 3.3. We leave the details to the reader. [ |
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As in the previous two results, the class [P]} ;- defined in Theorem 5.3
coincides with that of Theorem 5.2 if S = 0.

The following examples show that the results of Theorem 5.1, Theo-
rem 5.2 and Theorem 5.3 are optimal.

Examples. i) Assume Py — S™ ! is a non-trivial principal G-bundle of
class C'°°. Such a bundle exists if for example G is a simple Lie group
and m = 5. Let 7 : B™\ {0} — S™ ! be a radial projection, i.e., it is
defined by m(z) = 2/|z|. Then the bundle P = 7*FP, — B™ is a bundle of
class PP(B™;{0}) for any 1 < p < m. Let ho,hy : S™ ' — B™ be two
embeddings of the (m—1)-sphere in B™ such that ho(S™ ') does not enclose
the origin 0 whereas hy(S™ 1) encloses it. Notice that hg is homotopic
to hy in B™. It is easy to see that [(ho); ,Plo € PY.(S™ 1) is trivial for all
(u,v) € Bl x B. if € > 0 is small. On the other hand, the class [(h1) ,Plo
coincides with [P)] for all (u,v) € B! x B! if ¢ > 0 is small. Therefore
if we take m —1 < p < m, we see that Theorem 5.1 does not hold for
min{s — 2, [kp| — 1} = m — 2 replaced by m — 1.

ii) In [14], we have characterized the weak Uhlenbeck closure of C>°-
bundles in P5™(M). This characterization shows that P € P5™(M) is a
weak Uhlenbeck limit of C*°-bundles P, € P¥ (M) with P, ~ P, (P €
P (M) is a fixed C*-bundle over M) if and only if [Pl,,—1 = [Fo]m-1,
where [P],,—1 is the (m — 1)-isomorphism class of P defined in [14]. Thus
in particular for any given Py, — S™, there exists a sequence of C*°-bundles
{P,} over S™ such that P, ~ Py and {P,} weakly converges (in the sense
of Uhlenbeck) to the trivial bundle S™ x G — S™. This in particular
implies that there exists a finite set S such that the trivial bundle belongs
to ?i;fak,G(Sm; S) for any m—1 < p < m and G. Considering the case where
Py — S™ is not isomorphic to the trivial bundle, we see that the conclusion
of Theorem 5.3 is optimal in the sense that min{dye.x(kp), s — 1} in that
theorem is not replaced by min{dyeax (kp)+1, s}. Also a well-known example
of “bubbling off of instantons” shows that Theorem 5.2 is also optimal.

For applications, the important case is the case s > [p| or s > [p] + 1.
In fact, as was mentioned in the beginning of this subsection, bundles in
the class 9’84(M; S) where S C M is closed with dimS < m — 4 appear
naturally as weak limits of sequences of C'°°-bundles over M which have
connections with equi-bounded Yang-Mills energies, see [21], [36] and §6.
Moreover, some kinds of such connections and bundles are expected to have
singular sets whose dimensions are smaller than m — 4, see [20], [36], [30].

Bundles in the class P¥(M;S) for some closed subset S C M with
H-dim < m—[p] —1 are constructed as follows: We assume that M is triang-
ulated. Let Q — MP! be a principal G-bundle of Lipschitz class. It is defined
by an open covering {ULp ]} of M and a gluing cocycle {g%} of Lipschitz
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class. For each ([p] + 1)-cell e, of M, denote by m, : e\ {c,} — M
the radial projection, where ¢, is the barycenter of e,, i.e., 7w, is a de-
formation retract of e, \ {c,} onto de, € M. From these 7,, we ob-
tain a Lipschitz deformation retraction m : MPF1\ {c ) Iy — M [p],
where Ij;41 is the index set of the ([p] + 1)-cells of M. Then the bun-

dle 71Q — MIPHLN\ {ca}taer,,,, defined by an open covering {Wfl(ULp})}
of MIPPIF1\ {Catacr,,, and a gluing cocycle {Wi*ggg} is a bundle in the
class PeP(MPHY {cy}oc I, ). Similarly, from deformation retractions s :
M2\ {cataer,, — ML e c M\ {cataer, — M™L we
obtain a bundle P :=m; - m7Q — M\ S, where S C M is defined in-
ductively as S} = {ca}aef[pm, Sp = m (Sp_1) U {ca}ael[ka and S = S,
It is easy to see that S C M is closed with H-dimS = m — [p] — 1 and
P € P5P(M;S). This bundle has the following property; its ([p] — 1)-class
defined in Theorem 5.1 is [Q|y1-1] € PL(MPI=1). Here we consider M itself
as a polyhedron and the ([p] —1)-class of P is, in the notation of Theorem 5.1,
[P), psiw—1, where ¢ : MPI=1 — M is the inclusion. To see this, for u,v € B,
if |u| and |v| are small, we have ¢,(MPI=1) N S = 0 and ¢,(MP=1) N S = ()
and ¢, and ¢, are homotopic to each other as maps from MPI=! to M \ S.
Thus we have ¢; P ~ 1y P as bundles over M [P)=1, In particular, taking v = 0,
we obtain ¢} P =~ Q|- for any small v € BL. Thus the claim follows from
the definition of the class [P], y1-1.

In fact, for bundles in the class Pg”(M; S) for some closed S C M with
H-dim S < m — [p] — 1, the converse is also true. In the following, for
simplicity of notation, we denote the class [P], /-1 simply by [P] -1

Proposition 5.1 As above, we consider M itself as a polyhedron and denote
by v MPI=Y — M the inclusion. We then have the following:

{[P)asin—1 = P € PEP(M; S) for some closed S € M
with H-dim § < m — [p] = 1} = {[Qlyw-1]o - Q € P(M™)}.

Proof. We have already shown the inclusion D. To prove the reverse inclu-
sion, for any closed subset S C M with H-dim S < m — [p] — 1, take any
P = ({U.},{9as}) € Pg’(M; S). By Lemma 5.1 and Theorem 5.1, we may
assume without loss of generality that MP!NS = ). By the Fubini type theo-
rem (see Lemma 3.1), for a.e. u € B!, we have . P = ({1;'(Ua)}, {gapotu}) €
PP (M), here we also denote ¢ : MP! — M the inclusion. Since the bundles
in the class Pi? (M) have well-defined C%-isomorphism classes, there exists
Q € PL(M™) such that [ P],) = [QJo. On the other hand, by the definition
of [P]ymi-1, we easily see that [P]ym-1 = [15P]ym-1]o € PL(MP)) for ae.
u € B! choosing € > 0 small if necessary (see Theorem 5.1 and Remark 5.1).
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Recall that the isomorphism class of () as above is defined as follows. It is
defined as the C°-isomorphism class of CO N WhP-bundles Q. — MP! which
approximate ¢} P in the W'P-sense, i.e., Q. = ({V} {hs;}) € PL(MP) is
such that {V} is a refinement of {.; (U, )} (Vi C 1 (Upsy)) and

(5.1) 19 ()o() © tu — h%wa(M[vmn <e

Let Lﬂ_l - MWPI=1 — APl be the inclusion and L } c MW= ML he de-

fined by Lﬂ Y(x) = mym (z +v), where - O(MP) = W_I(M[p]) — M)
is defined in §7 Appendix. As in Lemma 3.1, applying Fubini’s theorem we
have the following: For f € L'(MP))

= /J\/I[P]l (/Q)(M[p])f(ﬂM ) (v)) dH' (v )) dHP(z)

(5.2) <C f(x) dHP(z).

Mp]
Taking a sequence ¢; | 0 and applying (5.2) to f = xv;, (9e(i)e() © tu — hif);
we see from (5.1) that for a.e v € B! there exists a subsequence of {¢;} (still
denoted by {ex}) such that

(5:3)  Ngewen) 0 w0ty = hif oty lwrsuin-tavy) = 0

as k — oo. Therefore by the Sobolev embeddmg theorem W'? c C° in
dimension [p] — 1, we obtain

—1* —1* *
(5.4) o Qlo = [ e Plo

for a.e u,v € B..

On the other hand, for u,v,u’,v" € B!, v ﬂ_l s MWPI=Y 5 M oand 1y 0

g vfl MPI=1 — M are homotopic to each other. In fact, H; : [0,1] x M) —

M defined by Hy(t,z) = mp(z+tut(1—t)u') and Hy : [0, 1] x MPI=1 — 1)
defined by H2 (t,z) = mppm (x + tv + (1 — t)v') give homotopies ¢, ~ ¢, and

L[[ﬁ} b [[ﬁ} ; respectively Thus H(t,z) = H(t, Ha(t, x)) gives a homotopy
Ly © L[[ﬁ Lty o L Applymg the argument in the proof of Theorem 3.1

and Theorem 5.1, for a.e. w € B!, we have H} Pl pri-1 ~ Hi Pyt
as CY-bundles over M1~ Taking in particular v = 0, we obtain

(5.5) o Plo = [t 4, Plo

for a.e. w € BL as C%-isomorphism classes of bundles over MPPI=1,
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Similarly by the argument leading to (5.4), for a C*NW*-bundle Q' —
MW satisfying 1%, Pl = [@Q']o (notice that ¢, , P — MPis a WhP-bundle
for a.e. w € BL), we have
(5.6) [t i Plo = [0 @0

[plv Tutw [p],v

for a.e. v,w € B. as C%isomorphism classes of bundles over MPI=!,

On the other hand, since Lg_vl ~ L[ﬁ_l . MWPEY o ML we have

W2 Q = [@'as-1]o. Combining this with (5.5) and (5.6), we obtain
L5 wPlo = [Q|pwi-1]o for a.e. w € Bl as CP-isomorphism classes of bun-
dles over MPI=1. Since the class [P]yp-1 coincides with 17, Ply for a.e.
w € BL, we finally obtain [P];p-1 = [Q'|stw1-1]o- This completes the proof

of the inclusion C. [ |

5.2. Singular Sobolev connections on singular Sobolev bundles and
the Chern-Weil theory

In this subsection, we extend results proved in §4 for singular Sobolev con-
nections on singular Sobolev bundles.

Assume P = ({Us}taer. {9aptaper) € ?Z’p(]\/[; S) for some closed subset
S ¢ M with H-dimS = m — s. Since PLP(M;S) € Pg™(M;S) by the
Gagliardo-Nirenberg inequality, we may assume throughout this subsection
that £ = 1. Also let us assume that A = {A,}aer is a connection of class
ALL/2 on P, ie., Ay € LP(Uy, T*Uy ® g), dAy € LP2(Uy, N* T*U, @ g) for
any o € [ and (2.1) holds for o, 3 € I with U,z # 0. For applications in
mind (see §6), we moreover assume that [, |F4[P/? dvoly < +oc.

For ¢ € I*(G), Py(F4) € LM, N* T*M ® g) is defined as in §4. To
extend the results of §4 for such classes of bundles and connections, we first
need the following:

Lemma 5.2 Let P and A be as above. Let us assume 2k < p — p/s and
FHm=P/P=2K)(S) < +00. Then we have dPy(Fy) = 0 in D'(M, N* T T*M).

Remark 5.2 Under the assumption 2k < p — p/s, we have m —s < m —
p/(p — 2k). Thus the condition H™P/P=2K)(S) < +oo is automatically
satisfied if H™5(S) < 400 or 2k < p—p/s. Particularly interesting case is
the case s > [p]. In this case 2k < p — p/s is satisfied if 2k < [p] — 1.

Proof of Lemma 5.2. Since H™?/(P~2)(8) =: M < 400, for any small
§ > 0, there exists open balls {B,,(x;)}Y, with r; < §, z; € S such that
S cUX, B, (z;) and

N
(5.7) PR VS

i=1
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Let ¢; € C°(M) be a function such that ¢; = 0 in B, (x;), ¢; = 1 in
M \ By, (7;), 0 < ¢ < 1in M and |V¢;| < Cr;' for some constant
C' > 0 depending only on M. Set ¢s(x) = minj<;<y ¢;(z). Then ¢5 sat-
isfies supp(¢s) C M\ S, ¢s = 1 in M \ Nos(S), where Nos(S) = {z € M :
d(z,S) <25},

For any a € C®(M, N" """ T* M), we have

(5.8) /M Py(Fa) Ada — /M Py(Fa) A d(dsa) + / Py(Fa) Ad((1 = é5)a).

M

The first term on the right side of (5.8) is 0 by the same reasoning as in
the proof of Lemma 4.1. The second term is estimated as

[ PtEonat = gsje)

(5.9) < O/ |FA|k|V¢5||a|dvolM+C/ | Fa|¥|der| dvolyy.
M N5 (S)

Since 2k < p and [, [FalP/?dvoly, < 400, the second term on the right
of (5.9) tends to 0 as 6 — 0. As for the first term, we have by the Holder’s
inequality and (5.7)

/ |FaF [V sl dvoly
Nas(S)

2k /p 1-2k/p
S ||Oé||Loo(M) (/ |FA|p/2 dVOlM) (/ |V¢5|p/(”_2k) dVOlM)
Nos(S) Nas(S)

2k/p , N 1-2k/p
< [le]| Lo (ar) (/ |Fy [P/ dvolM) (Z/ |V |/ P=2F) dVOlM)
Nas(9S) i=1 7 Nas(S)
2k/p , N 1—§k
< [le]| Lo (ar) (/ |Fy [P/ dvolM) (Z/ |V |/ P=2F) dVOlM)
N25(S) i=1 B2r1~($i)
2%/p , N 1—2k/p
m— —2k
< Clallman( [ FapRavol) (o)
Nas(S) i=1

(5.10)

< 0+ 1) oo [
N:

2k/p
|FA|p/2 dVOlM)
25(9)

and (5.10) tends to 0 as § — 0.

Therefore we have [, Py(Fa)Ada=0 for any o € C*°(M, A" T,
This completes the proof. |
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Once Lemma 5.2 is proved, analogues of Lemmas 4.2, 4.3, 4.4 and 4.5
hold. Thus Py(A) defines a cohomology class in H?*(M;R) under the as-
sumption of A at the beginning of this section. On the other hand, as in §4,
we can also define a current C4(A) by the formula (4.24) for A as above and
¢ € I*(G). Then by Lemma 5.2, as in §4, Cy4(A) defines a homology class in
H,—op(M;R). Arguing exactly as in the proof of Proposition 4.1, we see that
[P,(A)] is Poincaré dual to [Cy(A)], i.e., the conclusion of Proposition 4.1
also holds in this case. To complete the Chern-Weil theory in this setting,
it only remains to show that the cohomology class [Py(A)] € H*(M;R) is
independent of A € A'"?/2(P). Here we can not argue as in the proof of
Theorem 4.1 since under our assumption, the curvature of the connection
A = {A,(z,t)} in the proof of Theorem 4.1 does not belong to LP/2(M) in
general. To overcome this, we argue as follows.

Let P = ({U.},{gas}) € PG"(M;S) and A;, Ay € AY/2(P), where
S C M is a closed subset with o-finite H"™*-measure. To prove [Py(A;)] =
[P,(A2)], it suffices to show that for any 2k-dimensional submanifold ¥ C M,
we have ([Py(A1)], [X]) = ([Ps(A2)], [X]), i.e., for a.e. (u,v) € BL x B., we
have

(5.11) / R = / Rl

where ¥, = ¢, 1 01,(2).

To see (5.11), recall from Lemma 5.1 that for a.e. (u,v) € B! x B,
we have ¥,, NS = 0 provided 2k < s. Moreover, by the Fubini type
lemma, for a.e. (u,v) € BL x B. we see that Ply,, — X, is a bundle of
class WP C CY (since 2k < p under the assumption of Lemma 5.2) and
Ails, .. Asls,, € AVP/2(Plg, ). Since such bundle P|s, , and connections
Ails, ., Asls, , are approximated in W? and A'?/2 respectively by smooth
ones (see [13]), we see that [, Py(A;) (i = 1,2) is a characteristic number
of the bundle P |Eu,v — Yy In particular it does not depend on a particular
choice of a connection and (5.11) holds.

Summing up the above argument, we obtain

Theorem 5.4 Let P and A be as in the beginning of this section. Assume
2k < p—p/s, 2k < s, S C M is closed with o-finite H™ *-measure and
Hm=P/P=2K)(S) < +o00. Then for ¢ € I*(G), the cohomology class [Ps(A)] €
H?*(M;R) and the homology class [Cy(A)] € Hyp—ox(M;R) are independent
of A € ALP/2(P). Moreover, we have PD o WL([P4(A)]) = Cyx(A).

Stability result such as Proposition 4.2 also holds in the setting of this
section. Details are left to the reader.
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We end this subsection by giving a simple example which shows that the
result of Theorem 5.4 is optimal in general.

Example. Suppose m > 1 and consider a smooth principal G-bundle Py, —
S™=1. Denote by S™~1 C S™ the equatorial (m—1)-sphere. Let N and S be
north and south poles of S™ respectively and r : S™\{N, S} — S™~! the ra-
dial retraction. We consider the pull back bundle P, — S™\{N,S}. Con-
sidered as a bundle over 5™, it defines a bundle in the class Pg*(S™; {S, N})
for any 1 < p < m. Suppose Ay € A>®(F) is a smooth connection on Fj.
Then A := r*Ay defines a A"P/2-connection on 7* Py (considered as a bun-
dle in the class PP (S™; {N,S})); A € AP/2(r*F,). We take in particu-
lar p = m — 1. We claim that for ¢ € I*(G) with 2k = m — 1 (thus it
is necessary that m is odd), Ps(A) does not define a well-defined class in
H?*(S™ R). To see this, we first observe that *dP,(A) = +Cy(dy — ds),
where Cy = |, gm—1 Py(Ap) and dy and dg denote Dirac measures with unit
mass at N and S, respectively. (The sign + depends on the choice of the
orientation of S™1 C S™). Thus if an embedded (m — 1)-sphere ¥ C S™
does not intersect N and S and contractible on S™ \ {N,S}, we have
Js Ps(A) = 0. Since ¥ is homologous to S™ ' in S™, Py(A) does not
define a well-defined cohomology class if Cy # 0. This example shows that
the assumption 2k < p — p/s in Theorem 5.4 is not relaxed in general.

5.3. A compactness of weakly Neather Yang-Mills connections

To illustrate an application of the results proved in §5.1, we prove in this
subsection a compactness property of some kind of connections and bundles.
We first consider a smooth G-bundle P — M and a smooth connec-
tion Ay on it. Assume {¢;}jj<c is a smooth one parameter family of diffeo-
morphisms on M such that ¢g = id,;. Consider the pull back connection
At := ¢¥(A) on the bundle ¢;P — M. We then have the following first
variational formula (see [23], [36]):
(5.12)
C1 ya(an=- /M (1FauldivX 23" (Fag(Ve. X)), Faglerse7))) dvol,
ij=1
where X is the vector field generated by {¢;}, ie., X = % o and ¢;
(1 <i<m)is an (local) orthonormal frame of TM.
We will call a connection Ay Neather Yang-Mills connection if the right
hand side of (5.12) equals to 0 for any vector field X. Thus Ay is a Neather
Yang-Mills if

(5.13) / (FapPdivX — 43" (Fay(Ve, X, €5), Fagles,e5)) dvolay = 0
M

ij=1
holds for any vector filed X.
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For example if Aj is a smooth Yang-Mills connection, it is also a Neather
Yang-Mills. More generally, let P = ({U,},{gas}) € P5*(M) and A =
{A,} € AY2(P) be a Sobolev bundle and a Sobolev connection, respectively.
We say that A is a weakly Neather Yang-Mills connection if A satisfies (5.13)
for any smooth vector field X. For such a weakly Neather Yang-Mills connec-
tion A, we have the following monotonicity inequality (23], [36]): Fora € M,
there exists C' > 0 such that for 0 < o < p < p, (p, is the injectivity radius
of M at a)

ptmelr / | Fy|? dvoly—o* e / | Fa]? dvolyy
By(a) B (a)

2
(5.14) > 4/ pi=meCr? L<£>FA) dvol,y.
Bp(a)\Bo (a)

or
In particular, (5.14) implies that 4" [ B.(a) | 4] dvoly, is monotonically
non-decreasing with respect to r.

Let us consider P € P¥ (M) and a sequence {A,} C AY2(P) of weakly
Neather Yang-Mills connections satisfying a uniform energy bound:

(5.15) sup/ |Fa, |> dvoly, < oo.
M

n>1

Moreover, we assume that each A, is approrimable in the sense that
(see [20]): For any e > 0, there exists a > 0 such that for all « € M and
pm > 1o > 0 (par is the injectivity radius of M) if

sup r4_m/ |Fa,|? dvoly < a,
B, (z)

r€Br(a),0<r<ro

there there exists {A;} C C*(B,,,(a),T*B,,,(a) ® g) such that 4; — A, in
W2(B,,, (@) 0 (B, (a)) and

sup 7"4_’”/ |Fa,|* dvoly, < € for all 4.
mEBTO/Q(a),0<7‘<r0/2 By (x)

Notice that smooth connections are obviously approximable in the above
sense. We then have the following:

Proposition 5.2 Let {A,} be as above. Then there exist a subsequence of
{A,} (still denote by {A,}), a closed set S C M such that H™*(S) < +oo,
P, € Tiﬁak’G(M; S) and Ay, € AY?(Py) such that for a suitable gauge { A, }
weakly converges to Ay, in WZIO’CQ(M \ §). Moreover, for any 3-dimensional
polyhedron K and a Lipschitz map h : K — M, we have [P]%}K = [POO]F}JL},K'
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Before beginning the proof, we need to give some comments about the
statement of the proposition. Firstly, the weak convergence in the above
proposition means that for any compact K C M \ S, there exists a sub-
sequence of {A,} (still denoted by {A,}), a family of open sets {U,} of
M\ S such that K C |J,U, and P and P, are trivialized over each U,,
i.e., we can write Plx = ({Uy N K},{gap}) and A, = {A,.n} with A,., €
WU, T*U, @ g) and Py|x = ({Ua N K}, {gas}) and A = {An.o} with
Apoo € WH(U,, T*U, ®g) such that A,., = As.co weakly in WH(U,NK).
Under such a condition, it is easily seen that P, € (va’sak’G(M ;S) and the
3-class [Pu]fy ¢ is defined by Theorem 5.3. We also remark that it can be

shown that the above result extends to the case where P € P%*(M). For
this, we need to slightly extend the class of bundles va’zak’G(M ;.S) in order
to include the weak limit P, and show that for such bundles the 3-class is
well-defined. These are done by the similar argument given in §5.1. But for
simplicity we only consider the case P € PF(M).

Proof of Proposition 5.2. Define

n—oo

(5.16) S := ﬂ {x eM: liminfear2r4_m/ |Fa, [2dvoly, > 24—ma}’
Br(x)

0<r<pnr

where a > 0 is a constant x(m) of Theorem 1.3 in [20].
By the monotonicity inequality (5.14) it is easily seen that S C M is
closed and a simple covering argument shows that H™™*(S) < oo (see [36]).
Assume zy ¢ S. Then there exists rq > 0 such that

(5.17) lim inf e‘"gré_m/ |Fy, |* dvoly, < 24 ™.
By (z0)

n—oo

Thus by the monotonicity inequality, we have for any = € B, /2(zo) and
O0<r< T0/2

4—m
e“r2r4_m/ |Fy, |* dvoly < e‘"g/4<%0> / |Fy, |* dvolyy
Br(x) BTo/Q(I)

(5.18) < 2’”_46“’"37“3_"‘/ |F4, > dvolys < o

By (o)
Since each A, is assumed to be approximable, we can apply the Coulomb
gauge theorem of Meyer-Riviere [20, Theorem 1.3]. Thus there exists g, €
W22(B,,/2(w0), G) N WY4(B,, 2(0), G) such that A, := g*A, is in the
Coulomb gauge, i.e.,

(519) d*An =0 in BTO/Q(‘rO)v
(5.20) LA, =0 on 9B, s(x0),
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where v is the outer normal of 05,,/2(x¢), and satisfies

(521) ||14n||W12 B, 2(x0)) +||A ||L4 B, /2(x0)) <O( )||FAn||L2(M)

Suppose K € M\ S is a compact subset. There exists { B, (x;) }}_; such that
K c \W_, B, (2;), By,(x;) C M\ S for any 1 < i < p and on each B,,(z;)
there exists g;., € W?*(B,,(z;), G) such that A, = GinAn satisfies (5.19)
and (5.20) for B, 2(wo) replaced by BTZ (x;). We may assume B,., (xz) C Uy,
for some index ;. Defining gij.n := g;., gaz% Jj:n, We see that A, n = GinAaim
satisfies

A

_ * *
iin = GinAasin = Gim gala]Aaz,n)

= 9j, ngalaj (9 n)

That is, g, := {gi.n} defines a W22 N W% gauge transformation on K and
{g:A,} is WhH2 N Li-bounded over K. Thus there exists a subsequence of
{A,} (still denote by {A,}) such that {g*A,} weakly converges in W2 N
L*(K). Then the gluing cocyle {gi;.n} also weakly converges in W% N
WH(K). Since K € M \ S is arbitrary, a diagonal sequence argument
shows that there exists a subsequence of {P,} (still denoted by {P,}) such
that {P,} weakly converges to some bundle P, in iPweak o(M; S). For this
bundle, we have [P]f}, ;- = [P]f}, ;. This completes the proof. [ |

:]>>/-\

6. Some variational problems

In this section, we consider a variational problem
(6.1) my(P; G) = inf{/ [FalP dvoly - A € A%(P)}
M

for a smooth principal G-bundle P — M and 1 < p < oo. Here the norm
of the curvature Fy € C°(M, N> T*M ® Aut(P)) is taken with respect to
the Riemannian metric on M and the bi-invariant metric on G. Since the
norm |Fy| is gauge invariant, m,(P;G) depends only on the isomorphism
class of P. It is also known from the work of Uhlenbeck [38] that m,(P;G)
is attained for any P — M provided p > m/2. It is not true, however,
in general that m,(P;G) is attained for the case p < m/2. For exam-
ple, if p < m/2, using the conformal dilation of S™ it is easy to see that
m,(P;G) =0 for any P — S™. Thus m,(P;G) is not attained if P — S™
is not trivial. For the case p = m/2, some partial results are known. A par-
ticularly interesting case is the case m = 4 and p = 2. In this case msy(P; G)
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is attained by a special kind of solutions to the Yang-Mills equations, the
(anti-)self-dual connections. This particularly interesting case is studied
in [31], [32], [6] and [7]. The direct variational approach in this case is given
in [27] based on the Uhlenbeck’s result [38]. The case p = m/2 with m >3
is recently studied in [13] via the direct variational methods.

As we have observed above, m,(P; G) is not attained in general and the
general existence result is unknown for the case p < m/2. To understand
the problem (6.1) in this case, we need to understand the quantity m,(P; G)
more deeply. The above observed example indicates that m,(P; G) is deter-
mined by coarser invariants of P — M than the ordinary isomorphism class
of P. (This is not the case for p < m/2. For example, recall that mq(M; Q)
determines completely the isomorphism class of P — M for m =4 and G a
simple Lie group). In this section, we first introduce an invariant of P — M
which is coarser than the ordinary isomorphism class of P, but it completely
determines the value m,(P;G). The introduction of the following invariant

is inspired by the corresponding invariant for mappings between manifolds
introduced by White [41].

Definition 6.1 Assume M is triangulated. Let P — M be a smooth princi-
pal G-bundle. For1 < k < m, the k-class of P is defined as the isomorphism
class of the restriction Py — M", where M* is the k-skeleton of the tri-
angulation. We denote the k-class of P by [P]y.

Notice that the k-class does not depend on the particular choice of the
triangulation in the following sense: Suppose P — M and () — M are
principal G-bundles. If M'* is the k-skeleton of another triangulation of M
and Py — MF* is isomorphic to Q|yx — M*, then P|,x — M'™ is also
isomorphic to Q| — M * . To see this, by the cellular approximation
theorem there exists a continuous map ¢ : M — M which is cellular with
respect to these triangulations, i.e., ¢(M"*) c M* and homotopic to the
identity. By the assumption, we have ¢*P|,;x ~ ¢*Q|,,x. Since ¢ is homo-
topic to the identity, we also have ¢*P ~ P and ¢*@) ~ (). Therefore we
obtain P|yx >~ Q| as asserted.

The following is the first main result of this section.

Theorem 6.1 Let P — M and Q) — M be smooth principal G-bundles with
the same [2p]-class, [Pliay) = [Qli2p). Then we have my(P; G) = my(Q; G).

The above is the analogue of the result of White [41, Corollary 1] for the
mapping problem. In our case, however, the converse of the above theorem
does not hold in general. For example, suppose P — M is the trivial bundle
and Q — M is a flat bundle, then we have m,(P;G) = m,(Q;G) = 0 for
any p > 1 but Qs — M is not necessary trivial in general.
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To prove Theorem 6.1, we need some preparations. Following [41]
and [10], we first introduce a function |- |, : M — Ry for 1 <k <m — 1.
Let K be an m-dimensional polyhedron and h : K — M a bi-Lipschitz
map which gives the triangulation of M. For each cell e C K, we denote
by c. € e the barycenter of e. For z € K*, we define |z|r = 1. Assume
inductively that |z|; is defined for z € K*™! (k+ 1 < i < m). We then
define for i-cell e C K and x € e, |z|y = |z|c|ze + (v — z.)/|2|e|r, Where
|z]e == inf{t > 0: 2 € x. + t(e — 2z.)}. Notice that for z € e, we have
Te + (x — x.)/|x|e € Je and |z, + (x — 2.)/|2|c| is defined by our inductive
hypothesis. Notice also that if € de, we then have |z|. = 1 and |z, defined
above coincides with the one already defined on K*~!. From these observa-
tions, we inductively define a function || : K — Rsq. Composing with h™1,

we obtain a function on M which is also denoted by || : M LIy ‘LR R>o.

For 1 <k<m-1and 0 <e <1, define I'*:= {2 € K : |z| = ¢}
Notice that T¥ = K* and I'} is the dual (m — k — 1)-skeleton of K. For
0 <e<1,wedefine " : {x € K:0 < |z[ <1} — I'* as follows: First ®f
is defined as ®%¥(z) = z for x € K* and for (k+ 1)-cell e C K and z € e,
O¥(z) = x. + (v — y)/|z|.. This defines ®¥ on {z € K*1:0 < |z|, < 1}.
Suppose inductively that ®% is defined on {z € K'™' : 0 < |z|;, < 1} for
some k+2 < i < m. Then for z € K*\ K'~! with 0 < |z|, < 1, there exists a
i-cell e C K such that z € e. We then define ®%(x) = ®f(z, + (v —x.)/|z|.).
In this way, we have defined ®} on {r € K’ : 0 < |z|;, < 1}. Thus by
induction, ®f is defined on {z € K : 0 < |z|; < 1} such that ®} : {z €
K :0 < |z|, <1} — T'f is a retraction. Next for 0 < ¢ < 1, we define
oF . {r € K :0 < |z|y < 1} — I'*. For this, we define ®* : {z €
K :0< |zl <1} x (0,1) — K as ®*(z,¢) = 2, + e(x — x.)/|x]|. for
z € e and € € (0,1), where e is a (k + 1)-cell of K. This defines ®* on
{x € K*':0 < |z|, <1} x (0,1). Suppose inductively that ®F is defined
on{z € K':0 < |z| <1} x (0,1) for some k +2 < i < m. We then
define for i-cell e C K, ®*(z,¢) = e + NP (we + (v — xe) /|21, €/N) — T0),
where A\ = A(z,¢) = 1 — (1 —€)(1 — |z|.)/(1 — |z|x). This defines ®* on
{r € K":0 < |zt <1} and by induction, ®* is defined on {z € K : 0 <
|z|, < 1} x (0,1). We then set ®*(z) = ®*(z,¢). This defines a retraction
PF{re K:0< |z <1} — Tk

From ®*, we define U} : K — K for 0 < § < e <1 as follows:

T ife <zl <1
O (z, €) if§ < |zl <e

k o ) ~ ~
Wsel®) =9 @k (z 5-1elaly) if 0 < |zl < 6

-1 N2
We also denote the compositions M POK S KM M by W5 .
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| - [ and W5 _have the following properties (see [41], [10]):

(6.2) H"({z € M: |z, <e}) < O H™ W ({z € M :|z|p = €}) < O,
(6.3) C™H < |dlzl| < C,
(6.4) |d\IJ’§76(x)| < Celz|! for 6 < |z|, <e,
(6.5) |dVS ()| < Ced™t for |z], <6,
k
(6.6) Jac(@(-.8)lr) < (%)
€

We are now ready to prove Theorem 6.1.

Proof of Theorem 6.1. Suppose [Py = [@li2y)- In the following, we
set k = [2p], MF := {z € M : |z|;, > ¢} and | - | = | - | for simplicity of
notation. Then M} is a deformation retract of M*. (¥¥, for e <t <1 gives
a deformation retraction). Thus in particular M* and M}, have the same

homotopy type and we have from our assumption that P| Mk, = Q| M-

Let ¢c/9 1 Q) Mk, = P| Mk, be a bundle isomorphism. We may assume that
©e/2 is smooth over the interior of Mf/2. Let Ap € A®(P) and Ag € A®(Q)
be arbitrary connections. Choose a cut off function p. € C*°(M) such
that p(x) = 1 for |z| < € and p. = 0 for |z| > 3¢/2. Since the space of
connections on Q)| M, is an affine space modeled on C*°(M f/2, Ad(Q)), there

exists acjp € C°(Mf),, Ad(Q)) such that

(6.7) @i 2(Ap) = Ag + proac)s,

where prg, : () — M is the bundle projection.

Define Ag . := Ag +pr*Q(pEa€ /2). This defines a connection on Q). We de-
fine the bundle Q#.P — M by gluing Q|Mk/2 — 5/2 and Pl{g<q —

{lz] < €} over {€/2 < |x| < €} via the bundle isomorphism ¢, /5. Notice that
Pe/2 - Q|Mk/2 — Ple/2 and the identity iSOHlOl”phiSHl P|{\$\SE} Ld> P|{\$\SE}

are glued together over {¢/2 < |z| < €} to give a bundle isomorphism
Q#.P — P over M. Two connections Ag . and Ap are also glued together
over {€/2 < |z| < €} via ¢, /s to give a connection Agy p on Q#.P. Thus we
have Agy. p = Ag.e over Mf/Q and Agy.p = Ap over {|z| < e} with respect
to suitable trivializations.

We consider the bundle Ps, := Wi, ,"(Q#.P) — M. Since Wk, , is
homotopic to the identity, we have P5. ~ P. We also notice that for any
1 < ¢ < 00, Pj, is a bundle of class W4 and a connection defined by As. :=
\1115736/2*(14@#613) is a AM%-connection on Ps,, i.e., As. € L* and dA;s, € L.
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We now estimate the energy [, [Fa, |V dvoly. We write

/ | Fa, |7 dvoly = / |FA56|pdvolM—|—/ |Fa, |P dvoly = 11 + L.
M ’ |z|>3¢/2 ' |z|<3e/2 '
Here
(6.8) ]i = U/P |fi4Q|p(iV01A4
|| >3¢/2
and
(6.9) ]é = U/P |}?A6¢|p(jV01A4 +-U/P |}?45£|p(jV01A12=I]éJ +‘]572.
6<|x|<3¢/2 |z| <6
We have the following estimate:

Iy < O / 2] 22| Fa, (T ()P dvolyy
§<|z|<3e/2 ’

< ClPagllen® [ el ds

5<|a|<3¢/2

3e/2
< gl [ 790 (el = )y dr

3e/2
e e A e
1)
6@p}+1
1—2p+[2p]’

where we have used (6.4) in the first line, co-area formula in the third line
and (6.2) in the fourth line.
I, 5 is estimated as:

1272 < 062176—2]7/ |FAQ#€P|p dVOlM
lz|<d
‘i‘x’(M)’

(6.11) < ORI By

Q#eP

where in the first line we have used (6.5) while in the second line we have
used (6.2).
From (6.8), (6.9), (6.10) and (6.11) we obtain

[2p]+1

€

/M |FA5’5|p dvoly, < /;3>3€/2 |FAQ|p dvoly, + C’HFAQHJZOO(M) . T—l—[?p]
(6.12) + OEQpéple_%HFAQ#eP ZEOO(M)’

Here we notice that || Fa,, .|z depends on e but does not depend on 4.
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For any n > 0, we first choose Ag € A(Q) such that

(6.13) / [Fagl? dvolys < my(@: ) + .

We next choose € > 0 such that

(6.14) Fa P dvoly <L ClFag ey — e </

6.14 / FaolPdvoly <2 ClFa P — < /4.
|z|<3e/2 Ao My Ao M7 — 2p + [2p]

For such a choice of € > 0, we choose § > 0 such that

(6.15) Cl|Fagyp By dt 200 < 1

Lo (M)

For such € and ¢, we have from (6.12)

(6.16) / |F s |7 dvoly < m,(Q; G) +
M

To conclude m,(P;G) < m(Q; G) from (6.16), we need to approximate P,
and A, by smooth ones. But this follows from an approximation theorem
proved in [13, Theorem 2.1]: We have proved in [13, Theorem 2.1] that
any Sobolev bundle P = ({U,}, {gag}) of class W N CY and any A4(P)-
connection A = {A,} on it can be approximated by smooth ones in the
following sense: Passing to a refinement if necessary (we use the same {U,}
for simplicity of notation), there exist C*°-bundles P, = ({Ua},{g05}) and
C*-connections A, = {Aan} such that [|gh; — gasllwrew,,) — 0 and

D N Aam — Aall2awa) + ldAam — dAal| Lo,y — 0

as n — oo. Therefore from (6.16), we conclude that m,(P;G) < m,(Q;G)
since 7 > 0 is arbitrary. Reversing the roles of P and (), we also have
my(Q; G) < my(P;G). We thus obtain m,(P;G) = m,(Q;G). This com-
pletes the proof. [ |

As a corollary we have
Corollary 6.1 Suppose P — M is a principal G-bundle such that its re-

striction to MPP), P|, i, — MPP) is isomorphic to a flat bundle over M?P),
Then we have m,(P;G) = 0.

Proof. Under the assumption, we need to show that there exists a flat
bundle () — M such that [P]s,) = [Q][2. Since P)| P is flat, there exists

a representation p : 7 (M%) — G such that P = M M X, G, where M VES
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—_~—

is the universal covering of M2l and m (M) = m(MPP) acts on MI2Pl
as deck transformations. Since 7 (M) = 7 (M), p naturally defines a
representation p’ : m (M) — G and @ := M x » G is a flat bundle over M
such that its restriction to M) is P|yem; Q|psize = Plyee. In particular,
[Pliap) = [Q]j2p) and the assertion follows from Theorem 6.1. [ |

Thus in particular, if P|y ey is flat but P itself is not, m,(P; G) is never
attained.

Example. The condition of Corollary 6.1 is satisfied if P|,qp is the trivial
flat bundle. This is the case if there exists 0 < j < [2p] such that m;(M) =0
for 0 <i < jand m(G) =0 for j <i <[2p] — 1. In fact, by the obstruction
theory, the bundle P|y2,; — M has a global section and it is trivial in
such a case.

We conjecture that the converse of Corollary 6.1 is also true, i.e., if
my(P;G) = 0, then P|yey is flat. At present, only partial results are
proved, see the remark after Proposition 6.1 and Proposition 6.2 below.

As a special case G = T*, we have

Proposition 6.1 Assume G = T* (k> 1) and p > 1. Let P — M be a
principal G-bundle. Then m,(P; G) is always attained in the sense that there

exist 0 < o < 1, a principal G-bundle Q of class C* and a CY*-connection
A on Q such that Q ~ P and m,(P;G) = [, |Fal? dvoly;.

Proof. Let {A,} C A®(P) be a minimizing sequence of m,(P;G), i.e.,
Y M,(A,) — m,(P;G) as n — oo. Let {U,} be an open covering of M such
that U, = B™ and U,s = B™ whenever U,z # 0 (i.e., a “good” cover).
We fix trivializations of P over each U, and with respect to these, we write
A, = {Asn}, where A,.,, € C°(U,,T*U, ® iR*) (iR* is the Lie algebra
of TF). We choose gun = exp(famn) € C®(Ua, TF) (farn € C®(U,,iRF))
such that

(6.17) & (dfai + Aa) =0 in U,
and
(6.18) t(dfam + Aan) =0 on OU,,

where v is the outward normal vector of OU, in M. f,., is uniquely deter-
mined up to constants. The gauge transformed connection

A:];TL ::ga_;izdgam + Aa;n
satisfies

(6.19) d'A,., =0 inU, wA,,=0 ondl,.
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We may assume at the beginning that the trivializations of P are chosen such
that A, satisfies (6.19). By the elliptic estimate, we have from (6.19) that

(6.20) | Aasnllwrewa) < ClldAan|lrw.) = CllFa, ||l Lr @),

where C' > 0 is a constant independent of n.

Let {gap:n } be the gluing cocycle of P with respect to the trivialization as
described above. Since {A,} is W'?-bounded (see (6.20)) and g_ 3., dgasn =
Apn — Aaun, 1t follows that {gas.,} is W?P-bounded. We may assume (after
passing to a subsequence if necessary) {A,.,} weakly converges to some
Ay € WIP(U,; T*U, @ iRF) in WLP(U,,).

Since U, is contractible, there exists a lift @qg., € C®°(Uag, i]Rk) of gaBin,
i.e., gagim = €XP(Papn). We write

Papn = Sozéﬂ;n + @a,@;na
where B4, = [ ; Gapn/H™(Usg) € iR¥ is the mean value of p,g., over
Uap. Define
Capin = Papm + 2mik,  where ¢ = —[@,5.,,/2mi] € ZF.

(For a = (ay,...,a;) € R* we write [a] = ([a1],...,[ax]) € Z¥). Then each
component of c,p., /7 i in [0, 27) and gapmn = exp(@gg., + Capin)- Since Ag.p
is in Coulomb gauge, we have

(621) L e
af

Moreover, since {gagn } is W>P-bounded, dyg, 5., and Vdg? 5., are bounded in
LP(Uyp) and thus ¢f 5., is bounded in W*P(Uqs) by the Poincaré inequality.
Therefore from (6.21) and the boundedness of {cag.,}, there exists a subse-
quence (which we still denote by the same sequence) and p,g € C*(Uyg, iR¥)
such that

@;ﬁ;n + Capn = Pap I Cioe(Uag)-
Define go3 = exp(@ag). Then
Japin = Yap n Ol?c(Uoéﬂ)

and a G-bundle defined by Py :=({U,}, {gag}) is isomorphic to P. By the
lower semi-continuity of the integral [, |F4, [ dvolys, we have

/M [Ful? dvoly < my(P: G).

Therefore m,(P; G) is attained.

Since the limit connection A, := {A,} is in Coulomb gauge, the regu-
larity of the limit connection A, follows from [37] and [11]. This completes
the proof. [ |
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Thus in particular, if m,(P;T*) = 0, P is flat. For general G, we only
have the following partial converse of Corollary 6.1:

Proposition 6.2 Suppose that m,(P;G) = 0 for a compact Lie group G
and a smooth principal G-bundle P — M. Then we have:

(1) If M is ([2p] — 1)-connected (i.e., m;(M) =0 for 1 <i < [2p] —1), then
[Plizp) = 0.

(2) For any ¢ € I"(G) with 2k < [2p], we have Py(P) =0 in H*(M;R).

Proof. Let h : K — M be a Lipschitz triangulation of M and ¢ : SI?! — K27l
any Lipschitz map. We claim that for a.e. v € BL, we have my((h, o
©)*P;G) = 0. To see this, choose {A4,} C A>(P) such that m,(P;G) =
lim,, oo [3, [Fa,|? dvoly, = 0. By Fubini’s theorem, we have

<0, [ (] 1P tmntbtetn + o) ast ) ) volgo

(622) < Ccp/ |FAn|pdVOlM.
M

By (6.22) and Fatou’s lemma, we have liminf [ ., | Fi, 00 4,/F dvolges = 0

for a.e. v € BL. From this, we have m,((h, o p)*P;G) = 0 for a.e v € B,
From [13, Corollary 5.1], we deduce that (h, o @)*P — S is isomorphic to
the trivial bundle.

We now consider the case (1). Since M is ([2p] — 1)-connected, there
exists a CW-complex L such that L is homotopy equivalent to M and
L-1 = & Thus in particular, L = \/_ S (P is a copy of S2)).
Let ¢p: M — BG be the classifying map of P, i.e., P ~ ¢p(EG), where
EG — BG is the universal G-bundle. By the claim proved in the previous
paragraph, cp o h, o ¢ is homotopically trivial for a homotopy equivalence
o LI =\/_ Sl 2, K29 Thus cp o h, : K22/ — BG@ is also homotopi-
cally trivial and h}P|rs is isomorphic to the trivial bundle. Therefore we
have [P]j, = 0. This completes the proof of (1).

To prove (2), as the proof of the above claim, for any 2k-dimensional sub-
manifold S C M, we have P|g is flat (see [13, Lemma 5.1]) and (Ps(P), [S])=
([Ps(A)], [S]) for any A € A>®(P|g). Since P|s — S has a flat connection,
we thus have (Py(P),[S]) = 0. Since H,(M;Q) = Q.(M) ® Q, this implies
P,(P) = 0. This completes the proof of (2). [ |
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7. Appendix

In this appendix, we prove two results: An approximation theorem of Sobolev
bundles defined over polyhedron and the intersection lemma, Lemma 5.1.

7.1. An approximation theorem of Sobolev bundles over polyhe-
dron

We extend the approximation theorem and other properties of Sobolev bun-
dles proved in [13, §3] for bundles over polyhedron. We only indicate needed
modifications and please refer to [13, §3] for details.

We assume throughout this subsection that K is an m-dimensional finite
regular polyhedron (we do not distinguish between a simplicial complex
and the polyhedron defined from it). It is known that polyhedron is ENR,
see [5, Appendix E|. Thus we may assume that X C O C R! for some open
set O C R and K is a retract of O. We further assume that there exists a
Lipschitz retraction 7 : O — K such that

(A-1) there exists C; > 0 such that C;t < H=™ (7 (y)) < C, forally € K,

(A-2) there exists Cy > 0 such that Cy' < Jac(mg)(z) < Cs for ae.
where Jac(mg) is the m-dimensional jacobian of 7.

The precise meaning of (A-2) is as follows: For each m-simplex A of K,
consider mg A = 7TK|7|_I—<1(A) c T (A) — A, (A-2) means that for each
such A, the m-dimensional jacobian, defined by Jac(mx ) = (det(dmga o
(drg.a)?))Y?, satisties C; ' < Jac(mg.a)(x) < Oy for ae. x € A.

(A-1) and (A-2) are satisfied for K the m-skeleton of a triangulated
smooth manifold. To see this, we assume dim M = m + m;, K = M™ and
M CR forl=m+m;+my. For0<e<l1,set K.={x€M: ||, > ¢}
where | - |,, is as defined in §6. Then ®(-,1) : K. — K as defined in §6 gives
a Lipschitz retraction of K, onto K. Let mp : O(M) — M be a (smooth)
retraction, where O(M) C R! is a tubular neighborhood of M in R!. Define
O = 7, (K,) and consider

T O 2L K, 2L K.
Then 7y is a Lipschitz neighborhood retract. For each m-simplex A, mx on
75 (A) is bi-Lipschitz equivalent to the composition

Tr = (xmaxmuxﬂm) = ('rmvxml) = Tm,

where z,, € R™, z,,, € R™ and z,,, € R™. From this it is easy to see
that (A-1) and (A-2) are satisfied.
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We show by a slight modification of the argument in [13, §3] that the
results obtained in [13, §3] (in particular Corollary 3.1) continue to hold
for Sobolev bundles over finite regular polyhedron under assumptions (A-1)
and (A-2).

Sobolev spaces on regular polyhedron are defined for example in [41].
The definition of Sobolev bundles over regular polyhedrons is the same as
that of Sobolev bundles over smooth manifolds. The proof of the approxi-
mation theorem, i.e., the proof of the assertion that any Sobolev bundle of
class W'™ is approximated by bundles of the class C° N W™ (in the sense
as presented in [13, §3]) is the same as that of the smooth base manifold
case, see [13, §3]. We need a slight modification of the argument for the
proof of the stability assertion [13, Proposition 3.1]. The only needed mod-
ification is in the proof of [13, Lemma 3.1]. In that proof (see in particular
the construction (3.22) in [13]) we have used collar neighborhood theorem
for smooth submanifolds of M which does not hold for the present case.
Once the construction of (3.22) in [13] is modified, the other arguments go
through for the present case.

We now give a modification of the argument. Fix an arbitrary n > 0
such that d(00,K) > 2n. Let K’ be a subdivision of K such that for
any m-simplex A™ of K’ there holds diam(A™) < 7. The set of all the
m-simplexes of K’ is denoted by {Aq}aca. Thus we have |K| = |K'| =
Uae 4 Og. Taking n > 0 small if necessary, we may assume that for the set

= {r € 0 : d(x, K) < n}, the restriction of mx to O, denoted also by
Tk + O — K satisfies conditions (A-1) and (A-2) above. For £ € R’ with
€| < n and an m-simplex A,, set Aag = A, +&and A, = WK(AM)
where A, = 1" (As). For U C K an open subset and f € L'(U), we first
remark that the following inequality holds:

(7.1) /5 ( / e dffcm*(x)) 159 < C [ 1) 307

To prove (7.1), we first have

/5<77 </7r;<1(aAa,5mU) Jomi(®) dﬂl_l(v”) dH(€)
7= lel<n (/WK (8AQ£OU)fOTrK(m)JaC(ﬂ-K)(x) del_l(m)) 47 (€)

(73) > 05 /5 ( | I ) e )) iz

(r4) > 050 lw( / AWf(y)dﬂfm*(y)) )
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where we have used (A-2) to derive (7.2), (7.3) is obtained by applying the
co-area formula [29] and (7.4) is by (A-1).
On the other hand, we have

/£<n (/w;(l(zma,gmz]) fomx(z) d%l_l(x)) d3'(¢)
B /g<n </aAa,§myf ° (@) dﬂl_l(m)) d3'(€) (U =i (U))

_ /a B ( /U o) di}{l(z)) 43 ()
( /U fome() di]{l(z)) 430 ()

(7.5) < Cy | fomk(z)dH!(2)

(76) < CaC /U F o () Tac(rre) (2) dH(2)

(77) Schcaéf@ﬁﬁ”%ﬁ?wﬁd%m@)

(7.8) sm@aéﬂ@mmm

where Cy in (7.5) is defined by Cy = sup,c4 H'"1(DA,), (7.6) is derived
by (A-2), (7.7) is obtained by applying the co-area formula and (7.8) is
by (A-1).

Combining (7.4) and (7.8), we obtain (7.1) with C' = C,C?C3.

We apply (7.1) for
U= ( U v,f) A Vi

a<k
and
f=1p =1 or  f=lg5—hgl,
where V¥, Vi1, piq, gig and hg’g are as defined in the proof of Lemma 3.1
in [13]. Then by Fubini’s theorem, there exist a sequence of positive num-
bers {e;} converging to 0 and € € R! with |¢] < 7 such that

(7'9) HP?H - 1||W17m(uaaAa7gmU) — 0 and

(7.10) b — g2 lwim(aon, ) — 0

as k — oo.
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We then define

VR = U0 | J{Lag: DaenNU #0, Daend( | ViENVin) N Vi = 0}

acA a<k

Since OVF'NU c |, 04 NU, we have from (7.9) and (7.10) that

(7.11) 1oh1 — Llwrm@vrtinuaviave.)) — 0
and

(7.12) 1 = gu llwrm@varinavinvis.y) — 0
as k — oo.

From here, the remaining argument is the same as in the smooth base
manifold case. Namely, from (7.11) and the Sobolev embedding theorem,
we can write

(7.13) Pir1 = exp(Xp )

on OV N Uagk VENViy1, where exp : g — G is the exponential map,

(7.14) 1 X llo= — 0
and
(7.15) X5 1 e — 0

as k — oo (L and W'™-norms are taken on OVF* N, ., VF N Vii1).

Since

vk n Vi1 C U 8Aa,§ N Vi

and |, 0A, ¢ is a Lipschitz deformation retract of J,(Aae\{ca}) (cqo is the
barycenter of A, ¢), X5, can be extended to a neighborhood of dV*™ NV,
in Viy1 as a Wh™-function which we denote as X[ +1- Let ¢ be a Lipschitz
function such that its support is contained in that neighborhood and ¢ =1
on another smaller neighborhood of OV**1 NV, in V,,;. Define Pj41 Such
that 55, = p§,, in V¥ and gi, = exp(¢Xf,,) in Vi \ VFFL For this
choice of pf.,,, the argument of [13] goes through and this completes the
proof. [ |
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7.2. Proof of the intersection lemma

We prove Lemma 5.1 in §5.

Proof of Lemma 5.1. We first assume that S C M is closed with
H™#(S) < +o0 and h : K — M is smooth, i.e., its restriction to each d-
cell A4 is smooth in the sense that h|,« has a smooth extension to an open
neighborhood of A% in the d-plane containing A?%. Define F': B, x K x M —
M x M by F(v,z,y) = (hy(x),y), where h,(z) = my(h(z) + v). For
A% a d-cell of K, define Faa = Flgi naxy. It is easy to see that Faa
intersects transversally to the diagonal A € M x M. In fact, we have
dFpa(v,z,y)(V,0,Y) = (drpy (h(z) +v)(V),Y) for (v,z,y) € BL x A% x M,
V e T,B. =R'and Y € T, M and this is onto as a map from T,BL x T,M
t0 Tn, () (M x M). Thus by the standard transversality theorem, we see
that F,;(A) C BL x A4 x M is a (I + d)-dimensional submanifold and

HT(FLi(A)) < +oo. Since F7HA) = Jpa Fri(A), we also have
(7.16) HHYEFH(A)) < +oo.

We next consider the set B := BL x K x S. For u € B, define B, = B. x
K x S,, where S, = my(S +u). We consider the intersection F'~*(A)N B,.
We claim that dim(F~'(A)N B,) <1+ d— s for a.e. u € BL. To prove
this claim, we consider the map F : Bl x K x O(M) — M x M defined by
F(v,2,y) = (hy(2), Ta(y)), where we set O(M) = O.jo(M). We also define
F:B. x KxOM)xS— MxMby Fo,z,y,2) = (hy(z), 7p(y)) and
Piosz Bix KxO(M) xS — B x KxO(M) by Pras(v,z,y,2) = (v,2,y).
As in the case of F, F transversally intersects with A and we have

(7.17) FHAHE(FHA)) < +oo

and hence we also have

~

(7.18) FEFIS(FHA)) < 400

since F~1(A)=F~'(A)xS and F~1(A) is a piecewise smooth manifold (i.e., a
finite union of manifolds of the form F;(A), so the result of [8, 2.10.45] is ap-
plicable and we have

A ~

FEFS(FPHA)) < CFHEFE(FTHA)DH™S(S) < 400

For the set V,, := {(v,2,9,2) € BL x K x O(M) x O(M) : y — z = u}
defined for u € B!, we have

FHA)NV, = {(v,2,2 +u,2) € FTH(A) x S}
(7.19) = F(A)np ! (u)
where p: B! x K x O(M) x O(M) — B is defined by p(v,z,y,2) =y — 2.
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By the co-area formula (see [19, Theorem 7.7]), we have
fHHd_S(F_l(A) ﬂp_l(u)) df}{l(u) < Cj_(2l+d—8(ﬁv—1(A)) < +00.
B!
Therefore for a.e. u € B!, we obtain
(7.20) HF=(FH(A)Np~Hu)) < 4o0.
Notice here that F~1(A) N p~Y(u) is given as

(7.21)  FY(A)NpHu) =
= {(v,2,2+u,2) €EB. x K x O(M) x S : hy(z) = 1,(2)}.

We consider the image of this set under the projection

Pilos :BLx K xO(M)xS>(v,z,yz2)— (v,r,2) € B.x K xS.
We denote this by A, := Py 54(F~(A)Np~*(u)). From (7.21), A, is given by
(7.22) Ay ={(v,2,2) €B. x K x S : hy(z) = 1,(2)}

and since this is a Lipschitz image of F~'(A)Np~"(u) which satisfies (7.20),
we have H'T475(A,) < +oo for a.e. u € BL. Thus, in particular, we have H-
dim A, < l+d—s. Since themap A4, 3 (v, , 2) — (v, 2, 1,(2)) € F1(A)NB,
is bi-Lipschitz, we also have H-dim(F~1(A)NB,) < l+d—s for a.e. u € B..
Thus the claim is proved.

We return to the proof of the lemma. Consider a.e u € BL such that
dim(F~Y(A)NB,) <l+d—s. Let P, : F~'Y(A)N B, — B be the projection
to the first factor. Then we have

PrHw) = {(z, hy(z)) € K x M :1;,* o hy(z) € S}.

Thus to complete the proof of the lemma for the case H™ *(S) < +oo, we
need to show that for a.e. v € B., we have P, *(v) = (. To prove this, we
again use the co-area formula of [19, Theorem 7.7] and obtain

HO(FHA)N B, NP (v)dH (v) < CH(FH(A)NB,) =0

By

since | +d — s < [ under our assumption. Therefore for a.e. v € B,
P *(v) = (. This completes the proof for the case H™ *(S) < +oo. The
proof of the general case follows from this special case by the standard
argument. We omit the details. |
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