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Well-posedness in critical spaces for the
compressible Navier-Stokes equations

with density dependent viscosities

Qionglei Chen, Changxing Miao and Zhifei Zhang

Abstract

In this paper, we prove the local well-posedness in critical Besov
spaces for the compressible Navier-Stokes equations with density de-
pendent viscosities under the assumption that the initial density is
bounded away from zero.

1. Introduction

In this paper, we consider the compressible Navier-Stokes equations with
density dependent viscosities in Rt x RY(N > 2):

8tp + le(pU) = 07

(1.1) < O(pu)+ div(pu @ u) — div(2u(p)D(u)) =V (A(p)divu) + VP(p) =0,
(P, u)|t:0 = (PO, UO).

Here p(t,x) and u(t,x) are the density and velocity of the fluid. The pres-

sure P is a smooth function of p, D(u) = 1(Vu + Vu') is the strain tensor,
the Lamé coefficients p and A depend smoothly on p and satisfy

(1.2) >0 and A+2u >0,

which ensures that the operator —div(2u(p)D-) — V(A(p)div-) is elliptic. An
important example is included in the system (1.1): the viscous shallow water
equations(N = 2, uu(p) = p,A(p) = 0 and P(p) = p?).
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The local existence and uniqueness of smooth solutions for the sys-
tem (1.1) were proved by Nash [23] for smooth initial data without vacuum.
Later on, Matsumura and Nishida [20] proved the global well-posedness for
smooth data close to equilibrium, see also [18] for one dimension. Concern-
ing the global existence of weak solutions for the large initial data, we refer
to [2, 3, 19, 21]. We may refer to [4, 10, 25] and references therein for the
viscous shallow water equations.

This paper is devoted to the study of the well-posedness of the sys-
tem (1.1) in the critical spaces. Recently, Danchin has obtained several
important well-posedness results in the critical spaces for the compressible
Navier-Stokes equations [11, 12, 14]. To explain the precise meaning of crit-
ical spaces, let us consider the incompressible Navier-Stokes equations

ou—Au+u-Vu+Vp=0,
(NS) { divu = 0.

It is easy to find that if (u,p) is a solution of (NS), then

(1.3) un(t, 1) a2 2),  palts ) B Ap(A2, M)

is also a solution of (NS). For the (NS) equations, a functional space X
is critical if the corresponding norm is invariant under the scaling of (1.3).
Obviously, H%-1is a critical space. Fujita and Kato [16] proved the well-
posedness of (NS) in H %_1, see also [5, 6, 22] and references therein for
the well-posedness in the other critical spaces. For the compressible Navier-
Stokes equations, let us introduce the following transformation

def

pa(t, ) def p(N2t, \x),  up(t,z) = Mu(NPt, Ax).

Then if (p, u) solves (1.1), so does (py, uy) provided the viscosity coefficients
are constants and the pressure law has been changed into A>P. This moti-
vates the following definition:

Definition 1.1 We will say that a functional space is critical with respect
to the scaling of the equations if the associated norm is invariant under the
transformation.:

(p7 u) I (p)u UA)

(up to a constant independent of \).
A natural candidate is the homogenous Sobolev space H/2x (HN/z_l) N

but since HV/? ig not included in L™, we can not obtain a L> control of the
density when p, € HN/2.
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Instead, we choose the initial data (pg,ug) for some py in a critical ho-
mogenous Besov spaces:
N N
(pO - ﬁOau()) € Bp?jl X (Bp?jl 1)N7
N
since B, is continuously embedded in L.

However, working in the critical spaces, if we deal with the elliptic op-
erators of the momentum equations as a constant coefficient second order
operator plus a perturbation induced by the density and viscosity coeffi-
cients, the pej\l;turbation will be a trouble term. In the case when p — pg

is small in B}: 1 or has more regularity, the perturbation can be treated as
a harmless source term and the corresponding local well-posedness can be
obtained by following the argument of Danchin [12], see [17].

The purpose of the present paper is to obtain a local well-posedness re-
sult in the critical Besov spaces under the natural physical assumption that
the initial density is bounded away from zero. Our new observation is that

N
if p — po is small in the weighted Besov spaces Bgl (w)(see Section 3 for the
definition), the perturbation can still be treated as a harmless source term.
Similar idea has been used by the authors of this paper to prove the local
well-posedness in Bil X (3871)2 for the viscous shallow water equations [10].
Very rencently, Danchin [15] proved a similar result for the system (1.1)
with constant coefficients. The key of his proof is a new and interesting esti-
mate for a class of parabolic systems with the coefficients in C([0, T'); Bév 2.
It seems to be possible to adapt his method to the present model. Here we
would like to present a general functional framework to deal with the local

well-posedness in the critical spaces for the compressible fluids.

Our main result is as follows:

Theorem 1.2 Let py and cq be two positive constants. Assume that the
initial data satisfies
. N . ﬂ_l N
(Po — po, uo) € By X (Bp’j1 ) and py > cp.
Then there exists a positive time T such that

(a) Existence: If p € (1, N], the system (1.1) has a solution (p — po, u)
€ EL with
def . ﬂ . ﬁ_l . ﬁ_i_l N 1
L C(0,T)s B x (CU0. TS B )N LHO.T: B ) L o= Ses

(b) Uniqueness: If p € (1, N]|, then the uniqueness holds in E%..
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Remark 1.3 If the Lamé coefficients p and \ are constants satisfying (1.2),
then the range of p in the existence result of the system (1.1) can be extended
top € (1,2N), since we can take p € (1,2N) in Proposition 5.1 for the case

when A and 1 are constants.

The structure of this paper is as follows:

In Section 2, we recall some basic facts about the Littlewood-Paley de-
composition and the functional spaces. In Section 3, we firstly introduce
the weighted Besov spaces, then present some nonlinear estimates. Sec-
tion 4 is devoted to the estimates in the weighted Besov spaces for the linear
transport equation. Section 5 is devoted to the estimates in the weighted
Besov spaces for the linearized momentum equation. In Section 6, we prove
the existence of the solution. In Section 7, we prove the uniqueness of the
solution.

2. Littlewood-Paley theory and the functional spaces

Let us introduce the Littlewood-Paley decomposition. Choose a radial func-
tion ¢ € S(RY) supported in C = {¢ € RV, 2 < |¢| < 8} such that

Z@(Z‘jf) =1 forall £#0.
JEL
The frequency localization operator A; and \S; are defined by
Nif=9@27D)f, Sif= > Af for jeZ
k<j—1
With our choice of ¢, one can easily verify that
NALf=0 if |j—k]>2 and

(2.1)
Aj(Sk-1fARf) =0 if [j—k|l=5.

We denote the space Z'(R") by the dual space of Z(RY) = {f € S(R");
Df(0) = 0; Va € N¥ multi-index}, it also can be identified by the quotient
space of §'(RY)/P with the polynomials space P. The formal equality

f=> Auf
keZ
holds true for f € Z'(RY) and is called the homogeneous Littlewood-Paley
decomposition.
The operators A; help us recall the definition of the Besov space (see
also [24]).
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Definition 2.1 Lets €R, 1<p,r <4o00. The homogeneous Besov space B;T
1s defined by .
By, ={feZ'®"): |f|

Bé,r < —|—oo},
where

def

1.f1

2 A @)l

5 S
Bp,r

We next introduce the Besov-Chemin-Lerner space Z%(Bfm) which is
initiated in [9].

Definition 2.2 Let s € R, 1 < p,q,7 < 400, 0 < T < +oo. The space
L7(B;,) is defined as the set of all the distributions f satisfying

11l zg 55,y < 00,

where
def
) =

21 AL f Olloirien|,

.

Obviously, Z%(B;l) = L%(B;l). In the sequel, we will constantly use the
Bony’s decomposition from [1] that

(2.2) wo =T, + Tyu+ R(u, v),
with
Tu/U = Z Sj—IUAjU> R(U7U) = Z Ajuzjv’ zjv - Z Aj//U'
ez jez 7/=iI<1

Let us conclude this section by collecting some useful lemmas.

Lemma 2.3 ([7]) Let 1 <p < q < +oo. Assume that f € LP(RY), then for
any v € (NU{0})Y, there exist constants Cy, Cy independent of f, j such
that

suppf C {|¢] < Ag2} = 07 f|l, < Cy2MHING=D) 11,

suppf C {4127 < |¢] < A2} = || fll, < Cy271 sup 10° fl, -
Bl=l|vy

Lemma 2.4 ([12]) Let 1 <p < oo, and a > a > 0 be a bounded continuous
function. Assume that u € LP(RY) and suppi C {&: Ry < |€| < Ry}. Then
there exists a constant ¢ depending only on N and Ry/ Ry such that

-1
cang/ lulPdx < —/ div(aVu)|ulP *udz.
p RN RN
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Lemma 2.5 Let s > 0, and 1 < p < oo. Assume that f,g € B;}l N L*>®.
Then there holds

C (Il g llgllz Be)-
Lemma 2. 6 Let 1,80, < %, 31+32>Nmax(0,2%—1), and 1< p,q, q1, qa <0
;Luz;‘z - q2 %. Assume that f € L% (B;ll) and g € Zg?(B;fl) Then there
olds

Hng~ gy S Ol iz 9l oz

pl

Lemma 2.7 Let 51 < %,52 < 281+ 89 > Nmax(O,Z% — 1), and 1 <

Assume that f € qu1(3;11) and g €

NIE

Py g q1,q2 < 00 with qil + qi2 —
L#(B,). Then there holds

101, s, < Ol e Moz

Lemma 2.8 Let s € (—N min( | and 1 < p,q,q1,q2 < 00 with

1 1

b):
L L =1 Assume that f € LE (B},
holds

1) and g € LqQ(B;l). Then there

N
p

N
p
7

> 20V div[A,, AVgligan < CISIL

J

£ (5 N+1 HgHqu B3 )

Lemma 2.9 Let s > 0 and 1 < p,q < co. Assume that F' € W/l[j;goo(R)
with F(0) = 0. Then for any f € LF(L>*) N L3(B; ), we have

[s]+2
HF(f)”z%(B;’l) < C(l + HfHL%C’(L“)) Hf”i;(B;,l)

Lemma 2.6-Lemma 2.9 can be easily proved by using Bony’s decompo-
sition and Lemma 2.3, see also [8, 12] or Section 3 for similar results.

Remark 2.10 Lemmas 2.6-2.9 still remain true for the usual homogenous
Besov spaces. For example, the estimate in Lemma 2.6 becomes

/9] 19152,

Bt
p,1

B;’ll+827% S C{||f‘|

with p, s1, se satisfying the conditions as in Lemma 2.6.
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3. Nonlinear estimates in the weighted Besov spaces

Let us firstly introduce the weight function. Let {ex(t)}rez be a sequence
defined in [0, +00) satisfying the following conditions:

(3.1) ex(t) €0,1], en(t) <ew(t) ifk <k and e(t) ~ep(t)if k~Fk.

where k ~ k' means that there exists a constant Ny such that |k — k| < Nj.
Then the weight function {wy(t)}rez is defined by

= Z 2k=te,(t), keZ.

>k
It is easy to verify that for any k € Z,

wi(t) <2, ep(t) < wi(t),
(3.2) wp(t) <25 Fwop(t) k> K, wp(t) <3wp(t) ifk <K,
wk(t) ~ wk/(t) if k ~ ]f/.

Definition 3.1 Let s € R, 1 < p,r < 400, 0 < T < +o00. The weighted
Besov space By, (w) is defined by

B (w) = 1f € ZRY) : |If]

By @) < tooh,

where

B ) = [|25wk(T)

/1

Definition 3.2 Let s € R, 1 < p,q < 400, 0 < T < +o00. The weighted
function space L7.(B; 1 (w)) is defined by

LE(B; (w) = {f € LY(B;, (W) -

[z, @ < To0),

where

T q
115355, 20 ([ Iaes o)

keZ

Remark 3.3 If ex(t) is continuous on [0,+00) and e,(0) = 0 for k € Z,
fe L"O(BS ), then for any € > 0, there exists a T € (0,T] such that

HfHEOTO(B;l(w)) <e
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Indeed, due to f € Z%O(le) and wg(T') < 2, there exists Ny € N such that

> 20D Ak f |l < /3,

|k|>N1+1

Y2 Y 2 e(D)| Ak lngry < e/3.

k|<N1  €>k+Ni+1

Thus, we have

ks k=t (o
||f“f,%°(3;’1(w)) <2e/3+ Z 2 Z 2" eg(T)| Al oo ory

|k|< Ny k<t<k+Ni
< 2¢/3+ 2eay, (1) ) 25| A fll e o)
|k|<N:
<e

— Y

if T € (0,T) is chosen such that

2ean (T) Z 2ks||Akf||L°T°(LP) <e/3.

|k|<N1
Next, we present some estimates in the weighted Besov spaces.

Lemma 3.4 Let 1 < p < oo. Assume that f € B;}l(w),g € B;,Qr Then
there hold
(a) if s2 < %, we have

1T, f] st < Cllfllsey @ llgllze;
(b) if s1 < % — 1, we have
1T s < Cllfll sz gl 3
(c) if s1 + s2 > N max(0, % — 1), we have
|R(f, 9)l B;’llﬂr%(w < C||f| B;}l(w)H9| B2

Proof. Due to (2.1), we have

AN(T,f) = Z Aj(Sj-19A; ),

l7'—jl<4
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then we get by Lemma 2.3 and (3.2) that

17, f1 = Y P (AT,

.sl+s2—%

(w) j
< 022“51*”" Wi (1) 15519 ocl| 35 1l

< OHf!

By (w) gl

B2
where we used in the last inequality

N (—s2 N
15j-19lls < C Y 2 | Aggll, < C2TF)

1<5—2

This proves (a). We next prove (b). Similarly, we have

1T¢g|

= Y oilrm i (T) AT
B;11+527—( ) Z ] )” ( fg)Hp

< CZQJ ()18 1F ool As gl
and by Lemma 2.3 and (3.2), we have
(DS flle < €237 25 Dug(T) Akl

1<j—2

< PG|

(@)
which lead to (b). Now we prove (c). Notice that

Ai(R(f,9) = > 8j(ApfAzg),

3’233

then we get by Lemma 2.3 that if p > 2

g ¥, SO 20 2O flbI1B5 gl

Pt JoJ'>5-3

IR(f; 9)I

923

<O ST S 2 e (1) 2Dy I A gl

Jo3zi=3 62

=22, 2. 0+> > > O

J 323362355 J 3'25-35'202]

L1411
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For I1, using the fact that e,(T") < e;(T) < wj(T) if ¢ < j', we get

IT < O3 3 w22 A f |1 A5g],

i §'>j-3

< 0> ST w2 A £l

J Jj'zj-3
< Cllfllgn ol

52

B2
and for I, using the fact that

D27y (T) <27 27 ey (T) = 277wy (T),

02j.5" 24’
we obtain
I < O 3 w2227 A, £l )|zl
J 3'>j-3
< OY N (T Ay || ] e
J 3'=2j-3
< Ol sy llolezs,

If p < 2, we get by Lemma 2.3 that

. s1+sg— p <

R
IR v,

<03 N e NG () A fI1 A gl

J j'zi-3

SCY D DY )2 NG A f 1A g2

J j'zj—3 €23

Then treating it as in the case of p > 2, we obtain the same inequality for
51+ s > N(% — 1). This proves (c). [ |

We have a similar result in the weighted Besov spaces with the time.

Lemma 3.5 Let 1 < p,q,q1,q2 < 00 with qil + q% = %. Assume that f €
Zqu (B;,ll(w))>9 € Z%(Bgzl) Then there hold

(a) if s9 < %, we have

HTfH~ 81+52*7(

o < Cllllzg o @p 9l @)

)
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(b) if s1 < % — 1, we have

ITsgll i s

< O fll+ar, e .
¥ S Ol o lolzg s,

(c) if s1 + s2 > N max(0, % — 1), we have

I1R(f.9)

!Iqu(Bﬂl+sg—%(w)) < Ollfllzer o1, @y 19l zo2 2,

The following proposition is a direct consequence of Lemma 3.5.

Proposition 3.6 Let s; < % — 1,8 < %, S1 + 89 > Nmax(O,% — 1), and
1 S?,q,gl,qg < oo with qil + q% = %. Assume that f € L%(B;}l(w)) and
g € LF(B,%). Then there holds

HfQHEQT(BsﬁsQ_%(w)) < C”JCHE?(BZ}I@))HQHE;Q(BZ?I)-

p,1

From the proof of Lemma 3.4, we can also obtain

Proposition 3.7 Let s; < % — 1,8 < %, $1 + 89 > Nmax(O,Z% —1), and

1 <p,q,q,q < oo with qil + q% = %. Assume that [ € L#(B;}l(w)) and

geL? (B;2OO) Then there holds

01, ¥, < Oz, oz

Proposition 3.8 Lets>0 and 1< p,q <oo. Assume that F' € W[SHB’OO(R)

loc

with F(0) = 0. Then for any f € LF(L>)N ZqT(B;J(w)), we have
HF(f)HZ,‘}(BZ’I(w)) <C(1+ ||f||L%°(L°°))[S]+2||f||Z%(B;’1(w))'

Proof. We decompose F(f) as

1
Hﬂ=§:ﬂ&uﬁ%4%%ﬂ=§:%fl1W%J+ﬂ¥ﬁw

J'EL JEL

£ Apfmy(f),

VS

where m;/(f) = fol F'(Sj f + 1Ay f)dr. Furthermore, we write

NF(F) =Y DNj(Apfmp(£)+ > A (Apfmy(f) £ T+11.

J'<J J'zi
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By Lemma 2.3, we have

ooy <) NAG(AG f g (1) iy

i'<i
(3.3) <y 27l ‘S‘Ulﬁ‘ D7 A; (A f g ()| La.zrys
3'<j =l

with a to be determined later. Notice that for |y| > 0, we have
1D (f)lloe < C27 UL fllo) " IF ypiatoe,

from which and (3.3), it follows that

2°(|1]| g oy < 2D ST 2N A £ 0 1y (14 1 F 1Lz (200)) 2 F oo

J'<j

thus, if we take |a| = [s] + 2, we get by (3.2) that

34 LMl <
<OZ2J Wi (D) Ag £l g 1)

x Zw DD (Lt | fllagezoy) NE e

Ji>j’
< O (A 1 ) 2 lptasae | £l 55 oy

Now, let us turn to the estimate of 1. We get by Lemma 2.3 that
11| Lo zry < Cz 1A fllza(zr)-
J'2j

Then we write

> @i (M2 11| g 1) <022ﬂ52|m Flisary S 2 e
J

3'>3 7'>0>5
+OZQJSZ||A f”Lq(Lp Z 2] eeg
7'>5 0>7,9"

from which and a similar argument of (¢) in Lemma 3.4, we infer that

ZWJ(T)2j8||II||L%(L”) < ClAlzg s @

from which and (3.4), we conclude the proof of Proposition 3.8. [ |
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4. Estimates of the linear transport equation

In this section, we study the linear transport equation

{(9tf+v-vf=9,

(4.1) F(0.2) = fo.

Proposition 4.1 [14] Let s € (— Nmm(—, —,) 1+ ) 1 <p,r<+oc0, and

N
s=1+ %, if r = 1. Let v be a vector field such that Vv € LL(By, N L>).
Assume that fy € B;T, g € L%,,(B;’T) and f is the solution of (4.1). Then

there holds fort € [0,T],
t
v [Nyl dr)
0 ,

HfHZgO(B;,r) = ecv(t)<
where V (t effo |Vo(r)||. .~ dr. If r <400, then f belongs to C’([O,T];B; »)
Bf,nL> ’

D,T

Proposition 4.2 Let p € [1,+00] and s € (— len(1 Z%), %] Let v be a

N

vector field such that Vv € Lj (B ). Assume that fy € B;}l, g€ L%(B;l)
and f is the solution of (4.1). Then there holds fort e [0,T],

t
HfHZgO(B;,l(w < CV(©) (Hf |BS /0 e—CV(T)||g(7-)| B;,l(w)dT)’

where V (t def fo [Vo(r)[| | xdr.

B
Proof. Applying the operator A; to the transport equation, we obtain
(4.2) WA f+v-VA;f =Ajg+[v,Aj]- V.

Assume that p < 4+o00. Multiplying both sides of (4.2) by |A;f[P72A, f, we
get by integrating by parts over RY for the resulting equation that

1d 1 ) _
SN =~ [ I ppdiveds < (1859l + 1o A DAL)AL
then we have

4
L.
1A @)l < HAjfoHp+/0 (12jllp + I, A - V£l + EHdlvvllooHAijp)dT
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from which, it follows that

s o < Moll i o+ C / Jaivo ()l x 1) ot
p,1

" / lo(r

from which and Lemma 4.3, we infer that

b C / ROl Gl Py

" / lo(7)

Then Gronwall’s lemma applied implies the desired inequality. |

)| B§,1(w)d7— +/0 ZWJ(T)2j8||[U7 AJ] ’ vf(T)HP dr,
J

1l < 0]

| B;l(w) dT.

N
Lemma 4.3 Letp € [1,00],s € (—N min(%, L, %] Assume that v € Bpf1+l
and f € Bs 1(w). Then there holds

Z% )270[o, AL - Vfllp < Cllll g0 1S

pl

BS

Proof. Usmg the Bony’s decomposition, we write
W, A]-Vf = [T, A0k f + Toen, 10" + R(0°, 06 f)
—Aj (Takka) - AjR(Uk, 8kf)
Using Lemma 3.4 with s; = s —1 and sy = ﬂ + 1, we get

Zw] 2185 (To, M)l < Ol yulls

BS
Z%(T)WSHAJ-R( DDl < Clll ol F 1l
J pl

Notice that
TékAjka £ TakAjka + R( LORA f) = Z SirvaN;OLfA; Lok

j'>5-2

then we get by Lemma 2.3 that
Y w2 Ty a0l < O wi(D27IAV il Y 120",
J J

Jj'>j—-2
< C Z wi (T2 TN F L D 1A,
j >3
< B,

CHU” N+1Hf|
pl
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Now, we turn to estimate [T, A;]0kf. Set h(z) = (F'p)(z), we get by
using Taylor’s formula that

[TvkaAj]akf: Z [Sj/—lvk’AJ]ﬁkAj/f

7' —jl<4
=D, QNJ/ W2 (2 — ) (Sy-10"(x) = Sjr10™(9)) 0o f (y)dy
7' —j1<4
1
7/ —j1<4 0

w2 / (- Y))OkSjy—1v* (y) Ay f (y)dy,
R
from which and the Minkowski inequality, we infer that

Z% )2, A0k fllp < C D wi(T)2° > IVSy1v]laclAjr £l
i

7' —jl<4

< OHUH .%HHf’
Bp,1

35,1(‘“)'
Summing up the above estimates, we conclude the proof of Lemma 4.3. W

5. Estimates of the linearized momentum equation

In this section, we study the linearized momentum equation

(5.1) { O — div(aVu) — V(X + p)dive) = G,

u|t:0 = Ug-

In what follows, we assume that the viscosity coefficients A(p) and 7i(p)
depend smoothly on the function p and there exists a positive constant c;
such that

T>ci, AN+20>c.

Fix a positive constant ¢ to be chosen later. In this section, the weighted
function wy () is given by

)= 2""e,t)

1>k

with eg(t) = (1 — e=®")2. It is easy to verify that the function e,(t) satis-
fies (3.1).
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Proposition 5.1 Let q € [1,00]. Assume that G € L%F(B;fll),uo € B; .1
and p—p € L°°(B 1) Let u be a solution of (5.1). Then there hold
(a) If pe (1,N], s € (—Nmm(;, ]7) +1, %], we have

HuHE%(B;EHQ/q) <

< O (Iolagye +1G gy + ADNo = ol x Tl )

p,l

N

In addition, if p—p € LF (B?”

) p € (1,00), s € (~Nmin(d, £)+1, 2 +1],
then

H“HE‘?T(B;;”Q”) <

< O (Jluwo]

izt NGOy + AN =l v Ty )

T p,1

(b)If pe (1,N], s € (— Nmm(}l7 pl) + 1,%], we have

lellzy sy + llellze s ) <

et 16O gyt A=l x Tl )

< O(Jluo

N
Here A(T) < (14 ||pllpz o)) 7'
Proof. Set d = divu and w = curlu. From (5.1), we find that (d, w) satisfies

3td - le(ﬁVd) =divG + Fla
(5.2) Oyw — div(zVw) = curlG + F,

(d,w)]=o = (divug, curlug) = (do, wo),
where 7 = X + 277 and

Fy = div(Vi - Vu) + div(V(X + 1)d),
Fy? = div(0,iVu’ — O;avw?), d,j=1,...,N.

Applying the operator A; to (5.2), we obtain

OAjw — div(aVA;w) = curlA;G + A; F, 4+ div]A;, | Vw.
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Multiplying the first equation by |A;d|P~2A;d, we get by integrating over RY
that

1d

= plasl - /R V(I A )| AP dr =

= / (leA]G + AjFl + le[AJ,v]VCD |Ajd|p_2Ajdd.T
RN

Lemma 2.4 ensures there exists a positive constant ¢, depending on ¢y, p, NV
such that

1d

Z—jﬁllﬁjdllz + 6, 27| Ayd]l <

< A;dlly (1divA; Gl + 18 Bl + [[div[A,, 7 Vd]],).
Thus, we have
d » . . _
EHAjde + cp223||Ajd||p < || divA;Gllp + [|AjF1l, + ||div[A;, 7]V, ,

which implies that

t
¢, 920 e 92 (7 .
1A, < e A doll,+ / e (| divA;Glly + 1A Filly
+ HdiV[Aj,?]Vde) dr.

Similarly, we can obtain
1850, < e Al [ e (| et
0
+ 1855l + [div]A;, 7Vl ) d .

From the above two inequalities, we infer that for any ¢ € [1,00] and
te 0,7,
(5.3)
[A;d ()|l Lo ey + [[AjwE) || Loy <
< C274/cy (T (|| Adoll, + | Ajwoll,)
+ C274/¢; (1)1 (| divA ;G| 1y ooy + |85 Fi | 1y oy + 1], 71V 110y
+ 0272, (T)a (| eurl A G|y oy + | A5 Fal| g oy + 1AV [A 1, BV | 1y )

with ¢;(T) = 1 — e%»*”T. Notice that

2N Ajully ~ [18dll, + 125wy, e5(T) < wi(T),
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which together with (5.3) implies that

||U||z%(3531+2/q) < C<||U0| Bt + ||G||EIT(B;;1) + || (£, F2)||EIT(B;;2))
G4)  +C 3P (JdivIA; AVl gy )+ VA TVl 1y 1),
J

and with ¢ = ¢, in the definition of ey (?),

lellzy o) + lellzz s ) <

SC(Hu0| B w) y T HGHLI (B33 )y T H(F1>F2)HL1 (B3 2(@))
(5.5) +C Y 207wy (T)(|ldiv]A jaV]VdHLlT(LP) + [ div[A;, T Vwll 1))
J

First of all, we deal with the right hand side of (5.4). From Lemma 2.6
and 2.9, we infer that

1Pl < CUVE: Vullgy s + IV K+ Bl 5e)

< (-7, .ﬂ)+u TR [T
(56) < camlp- g, ol

Similarly, we have

6D WPl < CADI =gl Tl gy

While, we write
[A;,7Vd = [A;,7 = V(p)]Vd = A (7 = 7(p))Vd) — (v = V(p))A;Vd,
then by Lemma 2.6, Lemma 2.9 we get for p € [1, N]

Zw vy (7 = PV lzgian) < CADNp = ol el

S 2 (7 Al m Tl
J

S LRV PP A Z B
<CA(T)|lp— P||~ ¥ lullzs 0y
pl
which imply that
(5.8) Z2j(s_2)HdiV[Ajaﬁ]VdHLlT(LP)SCA( )Nle— P”~ HUHLl(BS“)

j P,
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Similarly, we have

(5.9) Y 2CD|div]A;, I Vwl| 1y 1y < CAT)||p - pH~ %)Hullu B4

J Ppa

Then the first inequality of Proposition 5.1 (a) can be deduced from (5.4)
and (5.6)—(5.9). On the other hand, using Lemma 2.6 and 2.9, we also have

’|F1||E1T(B;32) + HFQHEIT(B’;;Q) < CA(T)|p— EHET BpN1+1 ||u||L1 (Bs,)

and by Lemma 2.8,

> 26 (||div[A;, PV Ly ey + (VA TVl 1y z0) <
J
< CAM)lp—pll__ g lullzy s s

T( p,1

which together with (5.4) lead to the second inequality of Proposition 5.1 (a).

Next, we deal with the right hand side of (5.5). From Proposition 3.6
and 3.8, it follows that

1z (522w SCUVE- Vullzy 5510 + IV + DAy 01 0)

<c(lm-ol__ » TR Pl oz s
( LB, (@) L3 (B],@) ez ez
(5.10)  <CA(D)lp—pll iz 540y

LT( pl( )

Similarly, we have

(5:11) 1Bl 2 < CAMD e = ol T Jellz e

Notice that
[Aj? ﬁ]Vd = [Aj7 Zae ?(p)]Vd, [Aja ﬁ]vw = [Aja = ﬂ(ﬁ)]vw

which together with Lemma 5.2 and Proposition 3.8 ensures that

223(5 2) ) ([|div([A,; VIV Ly ey + HdiV[Aj»ﬁ]Vw”LlT(LP)) <
<c(l7-w(p)||_ +lm—mlp )!L o )ullgy e
( Pl 37, ) By <w>>) bl
(5.12) < AD)llp = pll lullzs sy
E (5], )

Summing up (5.5) and (5.10)-(5.12), we obtain the inequality of Propo-
sition 5.1 (b). [ |
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Lemma 5.2 Let p € [1,N] and s € (— Nmm(zl7 ]%),%]. Assume that f €

N ~ .
L°°(Bp 1(w)) and g € Li.(BAY). Then there holds
Z2J<S Doy (T) [ divA;, fIVgll ey < ClIAI. %(w))HQHle(B;y)-

Proof. Using the Bony’s decomposition, we write
L A510kg = [Ty, 4]0kg + Ton,qf + R(f,0kA;9)
—A8j(To.gf) — A;R(f, Org)-

Using Lemma 3.5 (a) and (c) with s; = % and sy, = s, we get

> i ()P A Ty Dllyony < Oy ol gy
. D,

ij(T)Qj(s_l)HdiVAjR(ﬁ g zry < CHfHE%O(B%l(w))HQHle(B;jgl)-
] P,

Thanks to the proof of Lemma 4.3, we have

TakA gf TGkA]gf+R(f, ak ]g Z S] +2A 0kgA f

j'>5-2

then we get by Lemma 2.3 and (3.2) that

> w2V ATh, o fll o
j

<cz% 12 (18 Vglsyzy 3o 1830 oy

j'>j-2
18590y D 2 A Fllisen)
Jj'zj=2
i(s+ N . -/
SCZQJ( R VANTI P > (@ 4+ 2w (DA flly )
j =2
< T S .
O||f|| ﬁ(w))HgHL,}(Bpﬁl)

Set h(z) = (Flp) (ac) Thanks to the proof of Lemma 4.3, we have

7. Ao = 32 2 [ / Y- VSy 1 fla—ry)drdch(2y) Aygle — y)dy

7/ —j1<4

4 oNJ /RN W2 (x = y)OkSj—1 £ (y)Ajrg(y)dy,
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from which and a similar argument of Lemma 3.5 (b), we infer that

Z% T)2 T VN|div(Ty, Ajlokg ey < ClFIL Mallzy oz
Ly (B, 1(

Summmg up the above estimates, we conclude the proof of Lemma 5.2. W

To prove the uniqueness of the solution, we also need the following propo-
sition.
N N

Proposition 5.3 Letp € [2,N]. Assume that G € LL(BpL),ug € Bpd,
and p—p € LOO(B ). Let u be a solution of (5.1). Then there holds

Jull, e+l <

<C(llwoll,_y+HIGOI, 5 +ADlp=pl_ 5l oy ).

loll 1G5 FEAW)  LhEL )

Proof. We closely follow the proof of Proposition 5.1. From (5.3), we infer
that
(5.13)
HUH~1T( ;O%H + ”u”i%( ;O%H) <

<O(lluoll,_y  +lGI oy +NEBI oy )

By, & (w) Li(Bp & (@) Li(Bp  (w))

+ Csup 20 Ny (1) (I iv[Ay, 7]Vl 1) + VA TV 13 1)

JEL
We use Proposition 3.7 to get
W P, wy < CAMp—pll ox Clull, oy

Li(Bp% () T LEB W) Lh(Bp L)

From Lemma 5.4, the second term on the right hand side of (5.13) is
bounded by

LF (B (W) 7(Bpl )
This completes the proof of Proposition 5.3. ]
N N
Lemma 5.4 Let pe[1,N]. Assume thatfeLOO(Bp (w)) and ge LA(B, O’Q)H).
Then there holds
(LN
sup 2/ Doy (T)||div[A, f1V ]|y me) < ClIAI HQHN N
JEZ Ly (B, 1( Ly(Bp )

The proof of Lemma 5.4 is very similar to that of Lemma 5.2. Here we
omit its proof.
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6. The proof of existence

We set

DR ) =M Ry = 22

Then the system (1.1) reads

a(t,x) =

oa+u-Va=F,
(6.1) Ou — div(aVu) — V((A + m)divu) = G,

(CL, U)|t:0 = (GO, Uo),
with ay = % and

F(a,u) = —(1 + a)divu,

5P A
Gla,u) = —u - Vu + 2 p(p)V(H— u;p)Vp-Vu—l- WV@VU.

Step 1. The approzimate solution sequence.

We smooth out the data as follows:
ay = Sp+k Ao, Uy = Sy Ug,

where K € 7Z is chosen such that
3
(6.2) poll+a(2)) > S co

A standard linearized argument (as in the proof of Theorem 4.2 in [12])
will ensure that the system (6.1) with the smooth data (af, u{) has a solution
(a™,u™) on a time interval [0, T,] for some 7, > 0 such that

LN N
a” € C([0,T,.); By,Nn By, ) and
N N 2

(63) N N N REAE
u™ € C([0,T,); By, N Bp?jl) N L0, T,,]; By, NB), ).

In what follows, we also denote by 7), the maximal lifespan of the solution
(@™, u™).
Step 2. Uniform estimates.

Let
Bo 1= llaollx + luoll .,
1 1
and T € (0,7,,). We assume that the solutions (a", u") satisfy the following
inequalities for some positive constants ¢y, Cy, Ag and 1 (to be determined
later):
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(H1) po(1+ af(t,x)) > 2 for any (t,z) € [0,T] x RY;
(H2) 7(t.2) > o0, X' (t,2) + 20(1,2) > ¢ Tor any () € [0.7] x BY:

(H3) flamll_ &+ lull o < CoEy;

L%O(Bp,l T pl
H4) |la™ N <A u” N+ |lu” N <.
( ) H HZ%O(B;’?Z(LU S Apn, H Hle .pf%’lﬂ) H HE%(B;‘}Z) =7

In what follows, we will show that if the conditions (H1) to (H4) are
satisfied for some 7" > 0, then they are actually satisfied with strict inequal-
ities. Since all those conditions depend continuously on the time variable and
are satisfied initially, a standard bootstrap argument will ensure that (H1)

o (H4) are indeed satisfied for 7.

First of all, we get by Proposition 4.1 that

(6.4) o™ & < eV (Ilaoll x +||F”||~ %),

T(pl) pl pl)

and by Proposition 5.1, we have

lll x < Clluoll, HrCIIG"II~ N
L%?(Bp,l ) pl pl )
6.5 + CA" " N ||u" N,
(65) (T)lla ”zm%““ ”zm;é“)
where
N
/Hvu ydr and ANT) = (1 [|a"]_ P
B L$(B)
For I, we apply Lemma 2.6 to get
IIF"II~ y Sl w Ol (T a
pz:l) T P, 1+1 ( ppl LIT(Bp][,71+1

and for G", we use Lemma 2.6 and 2.9 to get
G"|. ~, < C|u"]_ yo el x
1671, oy S O L,
reama s (T ).

7 (Bp1) Bp,l )

Plugging the above two estimates into (6.4) and (6.5), we obtain

la"ll xS

LF(B,) LB, )

(6.6) < eV )(Eo + (CoEyp + 1)n) + CLA™(T)CoEo(T + n).
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Next, we get by Proposition 4.2 that

I T (T I o TP}
L%O(Bp{’l(w)) ( Bp{’l(w Lprl( ))

and by Proposition 5.1, we have

68) 'l g+l oy <
Ly(B), ) L3.(B))

< Ol g +IG, AN v )
BY @) ®) LEp@Bh@) LR BL)

For F", we have

[F8 I <2HF”H~ i, SCAHal s )l

1 P 1 /(7 %-‘—1 ’
LT(BPJ(W)) pyl) L%O(prl) LT(BpJ

and for G", we use Proposition 3.6 and 3.8 to get

HG"!L B )SCHU"W A Da"l (T, x ).

p 1 w) z%(B L (Bp,1(‘-")) T(Bpljl

3 ® |z

Plugging the above two estimates into (6.7) and (6.8), we obtain

(6'9) ||an||~ N < eV ||a0|| N +O2(1+00E0)7] )
LE (Bl (w) ( BF () )
(6.10) "]~ +HU"!L <
T pl T( p,l)

< Oy (ol s, 0+ AoA™(TIn(T + 7))

pl w

According to the definition of V™ and A", we have
VAT) <1, ANT) < (14 CoEp)lv ™2,

Let Cy = 4C; and Ay = 2C5(1 + CyEp). Then we take n small enough
such that

(6.11) e < %7 (CoEo+ 1)n < Ey, C1(CoEy + 1)[ 143 n <
' 0377 S éa C?)AO(l + CQEo)[%]—’_S’)’/ S é

16’

Next, we take 7" small enough such that

1

(6.12) C1(CoEo + 1)FHT < _6 C3A0(1 + CoEy) ¥ 3T < 5
N
and note that wi(0) = 0 and (ag,ug) € B | X B , we can also take T
small enough such that
Ui

6.13 <2 <
619 dwly < Il g < o
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Then it follows from (6.6) that

n n 7
la®(l_ o~ Al xS 2 CoE,
L (BD) Lpsr )~ 8
and from (6.9) and (6.10), we infer that
7 2
o™l o S gdom Wt L a H L, x <o,
LeBhw) — 8 PNV 2Br) 3

939

which ensure that (H3) and (H4) are satisfied with strict inequalities for T

and 7 satisfying (6.11)-(6.13).
Let X, (t,z) be a solution of

%Xn(t, ) = u"(t Xt 7)), Xo(0,7) = 2

and we denote by X !(¢,z) the inverse of X, (¢,x). Then a"(t,z) can be

solved as

a"(t,z) = ay (X, *(t, ) +/0 F™(7, X (7, X, M, 2)))dr,

thus, we have

(6.14) po(1+a"(t,x)) = po (X, (t,2)) + po/0 F"(r, Xa(r, X (t, @) )dr.

On the other hand, we have
| ||L1 L) < ||vu||L1 (o) (14 [l Lz () < Cu(1+ CoEo)n.

We take 7 such that

1
04(1 + CoEo)’I] < gCO.

Then from (6.14) and (6.2), it follows that

3 1 )
po(l+a"(t,x)) > 10— g > el

that is, (H1) is satisfied with the strict inequality. Finally, take

1
c1 = — min inf I inf X p) + 21 ))
b2 <|P|Sﬁo(1+CoE0)'u(p) \p\<po(1+CoEo)( (p) + 27(p))

which ensures that (H2) is satisfied with strict inequality.



940 Q. CHEN, C. MIAO AND Z. ZHANG

Let T* be the supremum of all time 7" such that (6.12) and (6.13) are
satisfied. We need to prove that T,, > T™. If T,, < T™*, then we can prove
that

a" € L0, T); Bp ﬂB" 1) and

(6.15) 50t gt
u” ELOO(O,TaBpI,) me,l)le([()»Tn];Bpfl NBy ),

thus, the solution (a”,u™) can be continued beyond 7™*. Indeed, from Propo-
sition 4.1, we have

©10) 1l g <O g+ [ 1PN,y 0.

and by Proposition 5.1 (a), we have

[ [ +HU”H sy < Cllugll +CHG”H~ e
L%O(Bp,l p 1 ) p 1 p,l)
(6'17) +0An( )HanH~ s HunH~1 A1
%O p,1 ) T( p,1
N

On the other hand, we use Lemma 2.5 and the embedding Bp’:l — L
to get

) s < Q] s + Clla™ || f[u”l] | xse + Clla™|] xpalle”]] s
p,1 Bp,l p,1 p,1 Bp,l p,1

and by Lemma 2.6 and 2.9, we have

67, x < Ol sty
LT(Bp,l T pl TBpl
FOADa" | i (T "], xn)
LTBpl TBp,l

which together with (6.16), (6.17) and (H3-H4) implies (6.15).
Step 3. Fuxistence of a solution.

We will use a compact argument to prove that the approximate sequence
{a™, u"},en tends to some function (a,u) which satisfies the system (6.1) in
the sense of distribution. N N

. . . . N SN
Since {u"} is uniformly bounded in Ly-(B), )N LF(B), ), We get by

the interpolation that {u"},ey is also uniformly bounded in L%(B, » +2/q)

for any ¢ € [1, 00]. By Lemma 2.6, we have

|a"dive"|| x_, < Clla™] x[Ju"] x,
Bppl ppl Ppl
lu® - Va™|| xoy < COlla™|_xllu”]

pl pl pl
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from which and the first equation of the system (6.1), we infer that {0;a" },,en

LN
is uniformly bounded in L(B,}, 1). On the other hand, by Lemma 2.6 and
Lemma 2.9, we have

- Vurl] e <Ol sl aa e
pl Bpl Bpl
pP’( ")
|Z——=va | xoy <Clla"loo)lla™]] 5 (1+ [l x),
Pal Bpl pl

and

Hdlv(ﬁnvun)n N _3/2 + ||v((X” + ﬁn)dlvun)n N _3/0 + ||G711|| N _3/2 <
B? Bp Bp

< Clla™lloo)lla™l e 1+ lla™[| s )"l 1o,
pl Bpl prl
where Ao

(p ) (p")

Then, from the second equation of the system (6.1), we infer that {9,u"},en
LN
is uniformly bounded in L (B 0 74 B, 1).
Let {x;};jen be a sequence of smooth functions supported in the ball

B(0,j 4+ 1) and equal to 1 on B(0, j). The above proof ensures that for any
N _
Jj €N, {x;a" }nen is uniformly bounded in C2 ([0 T] Bp 1 ) and {x;u" }nen

5

is uniformly bounded in C'3 ([0, T; B P2y Bpf ) Since the embeddings

. %—1 . % . %—1 ;—3/ . % 1 ;—3/2
BID,1 N Bp71 — Bp71 and B N Bp71 B

are locally compact, by applying Ascoli’s theorem and Cantor’s diagonal
process, there exists some function (a,u) such that for any j € N,

(618) X]an — Xja in O([OJ ] BP )7
xju" — x;u in C([0, ]B” %),

as n tends to co(up to a subsequence).

By interpolation, we also have

LN
™ . 1 . P <
(6.19) x;a" — x;a in  C([0,T7; B%Llﬁ-i—z’ V0 <s<l1,
ju' — xu in LY[0,T];Br, ), V-2<s<l.
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Furthermore, we actually have

{ (a.0) € LE (B ® (LB )0 20,73 B2,)),
(6.20)
Po(l+alt, z)) > “

With (6.18)-(6.20), it is a routine process to verify that (a, u) satisfies the
system (6.1) in the sense of distribution(see also |1 1]) Fmally, followmg the

argument in [11], we can show that (a,u) € C([0,T]; B},)®C([0,T]; B” )

7. The proof of uniqueness

In this section, we prove the uniqueness of the solution. Assume that
(a',u') € EF and (a* u?) € EY are two solutions of the system (6.1) with
the same initial data. Without loss of generality, we may assume that a'
satisfies

p(ta) = po(1 + a'(t,2) = .
N
for any (t,z) € [0,T] x RY. Since a* € C([0,T]; B),) and p*(0,z) > c,

there exists a positive time T € (0,77 such that

C
P lt2) = pol1 + (7)) > 2.

for any (t,z) € [0,7] x RN. Set da = a' — a® and du = u' — u2. Then
(0a, du) satisfies

0,60+ u? - Via = 6F — du - Val,
(7.1) ¢ 90u— div(E'Vou) — V(N + 7@t)divou) = 6G + 6H,
(da, ou)|=o = (0,0),

where
6F = F(a*,u') — F(a*,u?), G = G(a,u') — G(a® u?),
0H = div((7" — 7®)Vu?) + V(A =X + 7' — @2)diva?),
with X' = Ma'), ' = 1(a?) for i = 1,2.

In what follows, we set

/ |’ (7 H NHdT for i =1, 2,

and denote by Az a constant depending on ||a!|| v and l|a?|| N

L (BP) Lo (BP)
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Due to the inclusion relation Ef. C E¥X | it suffices to prove the uniqueness
of the solution in E¥. So, we take p = N in the sequel.

We apply Proposition 4.1 to get for any t € [0, 7],

t
(72)  da(t)g < eCUQ“)/ (IBE ()l gg _ + 10w - Va' (7)l| 5 ).
il 0 ’ ’
By Lemma 2.7, we have

1F (g + 160~ Va' ()] gy _ <

< Ol g2 Idall sy +CU+ [a'l s )13ull g

Plugging it into (7.2), we get by Gronwall’s inequality that

t
T3)  Walay <O [0+ oty )oul g,
0 : :
We use Proposition 5.3 to get for any ¢ € [0, 7],
16w g3y ) + 0w lzz s ) <
t
(7.4) <C [ (18655100 + BH g )
0
+ OATHG1 ||Z;><>(B;,’l(w)) ||5U||Eg(3;,oo)‘
From Lemma 2.7, Proposition 3.7 and 3.8, we infer that for any ¢ € [0, f],
(7.5) 0H || 571, < Arllull 5z Nldall g .
(7.6) 110G 5710y < Cllu',u?)ll gy [0ull g + Arlla’llps ) lloullz
+ AR+ [Pl )all gy
We take 7' small enough such that
2
It ) g2 iz ) + 1@ @) o1 ) < 1

Thus, plugging (7.5) and (7.6) into (7.4), we infer that for any ¢ € [0, 7],

¢
(7.7) 1oullzyp ) < AT/ (L+[1Cu', u?)ll g2 ) l0all gy __dr.

: 0 , 7
Lemma 7.1 ([13]) Let s € R. Then for any 1 < p,p < 400 and 0 < e < 1,
we have

OHfHE”T(B;,oo) o (e Hf”Z;(B;;,g) + ”in%(Biié))
€ 1f .

1z 3 ) <

2055
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From Lemma 7.1, it follows that

I8ull i ) < Clldullzysy log (e +

||5U||Zt1(3g,oo) + ||5U||Z,}(B%,oo))

||5U||zg(3;,oo)

which together with (7.3) and (7.7) yields that for any ¢ € [0, T],

t
ol o,y < Ar [ (L1000 (e Crllbulz) )

where Cr = [|0ul|z3 g0 )+ H(SqulT(Bgyoo). Notice that 1+ [|(u!, u2)(t)|]312771 is

integrable on [0, T, and

/1 dr dr = 400
o rlog(e+ Cpr=1) " ’

Osgood lemma applied concludes that (da, du) = 0 on [0, f], and a continuity
argument ensures that (a',u') = (a?, u?) on [0, T).
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