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On some maximal multipliers in Lp

Ciprian Demeter

Abstract

We extend an L2 maximal multiplier result of Bourgain to all Lp

spaces, 1 < p < ∞.

1. Introduction

Consider a finite set Λ = {λ1, . . . , λN} ⊂ R and let D > 0 be the separation
constant

D := min
1≤i�=j≤N

|λi − λj |.

For each k ∈ Z with 2k < 10−2D define Rk to be the collection1 of all
intervals of length 2k centered at some element from Λ. The following result
was proved in [1].

Theorem 1.1. For each f ∈ L2(R),

(1.1)

∥∥∥∥ sup
k

∣∣∣ ∫
Rk

f̂(ξ)e2πiξxdξ
∣∣∣∥∥∥∥

L2
x

�
(
logN

)2∥∥f∥∥
2
.

In [4] it was proved that at least a factor of (logN)1/4 is needed on the
right hand side. Inequality (1.1) found multiple applications in the work
of Bourgain on various ergodic averages, see for example [1], [2] and [3].
Lacey [13] has used the inequality to prove bounds for the bilinear maximal
function. More recently, it has become apparent that variants of (1.1) play
a significant role in the analysis of maximal truncations associated with
modulation invariant operators, see [6], [7] and [8].

2000 Mathematics Subject Classification: 42A45.
Keywords : Maximal multipliers, phase space projections.

1We will abuse notation and also denote by Rk the union of the intervals in the
collection.
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For each 1 ≤ r < ∞ and each sequence (xk)k∈Z in a Hilbert space H,
define the r-variational norm of (xk)k∈Z to be

‖xk‖V r
k (H) := sup

k
‖xk‖H + ‖xk‖Ṽ r

k (H)

where Ṽ r
k (H) is the homogeneous r-variational seminorm

‖xk‖Ṽ r
k (H) := sup

M, k0<k1<···<kM

( M∑
m=1

‖xkm − xkm−1‖r
H

)1/r

.

If H is the set of complex numbers C, then the dependence on H will be
suppressed. The only other instance that will occur is when H = l2(N)
(i.e. RN with the euclidean inner product). In that case we will use the
notation V r

k (N) and Ṽ r
k (N). Also, ‖xQ‖V r

v1≤Q≤v2
will refer to the variational

norm of a sequence xQ indexed by some quantity Q that takes dyadic values
between v1 and v2.

For each interval ω ∈ Rk, let mω be a complex valued Schwartz function
adapted to ω, that is, supported on ω and satisfying

‖∂αmω‖∞ ≤ |ω|−α, α ∈ {0, 1}.

Let (wω)ω∈Rk
be a collection of complex weights. Define

Δkf(x) :=
∑
ω∈Rk

∫
wωmω(ξ)f̂(ξ)e2πiξxdξ,

and also

‖wω‖V r,∗ := max
1≤n≤N

∥∥{wωk
: λn ∈ ωk ∈ Rk}

∥∥
V r

k

,

‖mω‖V r,∗ := max
1≤n≤N

∥∥{mωk
(λn) : λn ∈ ωk ∈ Rk}

∥∥
V r

k

.

The following weighted version of (1.1) was proved in [8]

Theorem 1.2. For each r > 2 and f ∈ L2(R) we have the inequality∥∥∥ sup
2k<10−2D

|Δkf(x)|
∥∥∥

L2
x(R)

� N1/2−1/r‖wω‖V r,∗(1 + ‖mω‖V r,∗)‖f‖2,

with the implicit constant depending only on r.

Theorem 1.2 was one of the tools needed to prove the following extension
of Bourgain’s Return Times theorem:
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Theorem 1.3. ([8]) Let X = (X,Σ, μ, τ) be a dynamical system, and let
1 < q ≤ ∞ and p ≥ 2. For each function g ∈ Lq(X) there is a universal
set X0 ⊆ X with μ(X0) = 1, such that for each second dynamical system
Y = (Y,F , ν, σ), each f ∈ Lp(Y ) and each x ∈ X0, the averages

1

N

N∑
n=0

g(τnx)f(σny)

converge for ν-almost every y.

In [8], Theorem 1.3 was proved in the case p = 2, and the case p > 2
followed immediately due to the nestedness of Lp(Y ) spaces. If one wants
to extend the approach from [8] to generalize Theorem 1.3 even further, to
the case p < 2, then an Lp version of Theorem 1.2 needs to be proved. We
achieve this here, see Theorem 1.5 bellow. This result gives hope that the
following conjecture can be proved, and it is a first step in the direction of
its resolution:

Conjecture 1.4. Theorem 1.3 holds whenever 1 < p, q ≤ ∞ and

1

p
+

1

q
<

3

2
.

Theorem 1.5. For each 1 < p < 2, each ε > 0 and each r > 2 we have the
inequality∥∥ sup

2k<10−2D

|Δkf(x)|∥∥
Lp

x(R)
� N1/p−1/r+ε‖wω‖V r,∗(1 + ‖mω‖V r,∗)‖f‖p,

with the implicit constant depending only on r, ε and p.

2. Where the difficulty lies

Theorem 1.5 would typically be applied to the Conjecture 1.4 with r very
close to (but larger than2) 2, in which case the exponent of N approaches
1/p−1/2. On the other hand, this is also the best possible exponent one can
hope for in Theorem 1.5. This was already observed in [8], and it suffices to
consider a single scale. We reproduce the construction for completeness.

Proposition 2.1. For each N ∈ N and p ∈ (1, 2) there is a choice of signs

(εn)1≤n≤N such that if f̂N = 1[0,N ] then∥∥∥∥
∫
f̂N(ξ)

N−1∑
l=0

εn1[n,n+1](ξ)e
2πiξxdξ

∥∥∥∥
Lp

x(R)

� N1/p−1/2‖fN‖Lp(R).

2The weights wω are typically averages at scale |ω|−1 of the weight function g; the r
variation of these averages is only bounded when r > 2.
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Proof. It immediately follows that

‖fN‖Lp(R) ∼ N1−1/p,∥∥∥∥( N−1∑
n=0

|
∫
f̂N(ξ)1[n,n+1](ξ)e

2πiξxdξ|2
)1/2

∥∥∥∥
Lp

x(R)

∼ N1/2.

Khintchine’s inequality ends the proof. �
It is worth mentioning that Theorem 1.5 also holds in the case p > 2,

with the bound3 N
1
2
− 2

pr
+ε but the proof in this case is immediate. Indeed,

due to interpolation with the L2 result in Theorem 1.2, it suffices to achieve
the crude bound N1/2 for each p > 2. To get this, note that by the inequality
of Cauchy-Schwartz we have

sup
2k≤10−2D

∣∣Δkf(x)
∣∣ ≤ N1/2‖wω‖V r,∗

( N∑
n=1

(M(fn)(x))2
)1/2

,

where

fn(x) =

∫
|ξ−λn|<D/10

f̂(ξ)e2πiξdξ,

and M(f) denotes the Hardy-Littlewood maximal function of f . The result
then follows from a combination of the Fefferman-Stein inequality [10] and
Rubio de Francia’s result [17] on the Lp boundedness (p > 2) of the square
function

SQ(f)(x) :=
( N∑

n=1

|fn(x)|2
)1/2

.

The main difficulty in proving Theorem 1.5 is that the square function
SQ(f), while it has Lp → Lp norm independent of N in the case p ≥ 2,
it will have a norm of magnitude N1/p−1/2 in the case p < 2. To over-
come this deficit, what we will do instead is relate ‖ supk |Δkf(x)|‖Lp

x(R) to
a more complicated square function, V f , without the use of the Cauchy-
Schwartz inequality (and thus without any further loss in powers of N).
Most of the paper is then devoted to proving that V has essentially the
same Lp, 1 < p < 2 operator norm as SQ (see Theorem 5.1). This itself
is a result of independent interest, and we use time-frequency techniques to
prove it. It would be interesting to know whether one could use a more stan-
dard approach, via interpolation with an L1 → L1,∞ result. In particular, it
is not clear whether the operator norm ‖V ‖L1→L1,∞ is also of order N1/p−1/2.
Our approach seems to shed no light on this issue.

3Note that the argument above also shows that this bound is essentially best possible,
when r is close to 2 and ε is close to 0.
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We mention that both Theorem 1.1 and Theorem 1.2 have variants in [1]
and [8] respectively, in which the separation restriction on λn is eliminated.
In each case, the boundedness of the unrestricted operator supk∈Z

|Δkf | fol-
lows from the boundedness of the restricted version and by using techniques
related to the Rademacher-Menshov theorem. A similar approach can prob-
ably be pursued with Theorem 1.5 here, too. One would first have to bound
locally the Lp norm by the L2 norm and then apply Rademacher-Menshov
type arguments to the localized operator. These local contributions are then
summed over the whole real line, to produce the desired estimate. We refer
the interested reader to the proof of Theorem 8.7 in [8] for details.

3. A variational inequality

The following simple inequalities will be useful throughout the rest of the
paper.

Lemma 3.1. For each k, let ak, bk be some complex numbers. Then, for
each r ≥ 1,

‖akbk‖V r
k

� ‖ak‖V r
k
‖bk‖V r

k
.

Lemma 3.2. Let {ck := (c
(n)
k )1≤n≤N : k ∈ Z} ⊆ l2(N). Then

‖ck‖V r
k (N) ≤

( N∑
n=1

‖c(n)
k ‖2

V r
k

)1/2

.

Lemma 3.3. Let (xk)k0≤k<kL
∈ C and let k0 < k1 < · · · < kL. Then

‖xk‖V r
k0≤k<kL

≤
L−1∑
l=0

‖xk‖V r
kl≤k<kl+1

.

There is an extensive literature on variational estimates in Harmonic
Analysis and Ergodic Theory. We confine ourselves to mentioning only a
few such papers: [5], [11] and [12].

For each4 x ∈ R and k ∈ Z denote by I(x, k) the unique dyadic interval
of length 2−k which contains x. Let φ(k) be Schwartz functions with Fourier
transform adapted to [−1

2
, 1

2
]. For each interval I of length 2−k, define

φI(y) :=
1

|I| φ
(k)

(y − c(I)

|I|
)
.

4We can ignore the dyadic points, since they have measure zero.
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Lemma 3.4. We have for each 1 < p <∞ and each r > 2∥∥∥‖〈f, φI(k,x)〉‖V r
k

∥∥∥
Lp

x

�
(
1 + ‖φ̂(k)(0)‖V r

k

)
‖f‖p,

with the implicit constant depending only on φ, r and p.

Proof. Consider the dyadic martingale

Ek(f)(x) =
〈
f,

1

|I(k, x)|1I(k,x)

〉
.

A result of Lepingle [14] implies that∥∥‖Ek(f)(x)‖V r
k

∥∥
Lp

x
� ‖f‖p.

By using this and Lemma 3.1 we get that∥∥∥‖φ̂(k)(0)Ek(f)(x)‖V r
k

∥∥∥
Lp

x

� ‖φ̂(k)(0)‖V r
k
‖f‖p.

It suffices now to note that the difference operator can be bounded as
follows∥∥∥∥∥∥〈f, φ̂(k)(0)

|I(k, x)|1I(k,x) − φI(k,x)〉
∥∥

V r
k

∥∥∥∥
Lp

x

≤

≤
∥∥∥∥
( ∑

k

∣∣〈f, φ̂(k)(0)

|I(k, x)|1I(k,x) − φI(k,x)〉
∣∣2)1/2∥∥∥∥

Lp
x

� ‖f‖p.

The first inequality holds since r > 2, while the second one is a consequence

of the Littlewood-Paley theory, since φI − φ̂(k)(0)
|I| 1I has mean zero (when

|I| = 2−k). �

4. Time-frequency interlude

The purpose of this section is to prepare the ground for the proof of Theo-
rem 5.1 in the next section.

To prove Theorem 1.5, it will suffice by scaling invariance to assume that

(4.1) min
1≤i�=j≤N

|λi − λj | = 1.

We will do so throughout the rest of the paper.
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Definition 4.1. A tile s = s(I, n) will be a rectangle of the form

s(I, n) := I × [λn − 2k−1, λn + 2k−1],

where 1 ≤ n ≤ N , while I is a dyadic interval of length 2−k > 100. We refer
to Is := I and ωs := [λn−2k−1, λn +2k−1] as the time interval and frequency
interval of the tile s.

The collection of all tiles will be denoted by S. We define Sn to consist
of the collection of all tiles s ∈ S such that λn ∈ ωs. Note that (Sn)N

n=1

forms a partition of S.

Definition 4.2. A collection S′ ⊂ S will be referred to as convex, if when-
ever s, s′′ ∈ S′, s′ ∈ S, λn ∈ ωs ∩ ωs′ ∩ ωs′′ for some n and Is ⊆ Is′ ⊆ Is′′,
these also imply that s′ ∈ S′.

Definition 4.3. A tree (T, T ) with top T ∈ S is a convex collection of tiles
T ⊂ S such that Is ⊆ IT and ωT ⊆ ωs for each s ∈ T.

Note that each tree is entirely contained in some Sn.
We will denote by Tm the Fourier projection associated with the multi-

plier m:

Tmf(x) :=

∫
f̂(ξ)m(ξ)e2πiξxdξ.

We will use the notation

χ̃I(x) =
(
1 +

|x− c(I)|
|I|

)−1

.

Definition 4.4. Let f be a L2 function and let S′ ⊂ S. We define the size
size(S′) of S′ relative5 to f as

size(S′) := sup
s∈S′

sup
ms

1

|Is|1/2
‖χ̃10

Is
(x)Tmsf(x)‖L2

x
,

where ms ranges over all functions adapted to 10ωs.

For a fixed tile s, the quantity

size(s) = sup
ms

1

|Is|1/2
‖χ̃10

Is
(x)Tmsf(x)‖L2

x
,

is an approximate measure for the L2 norm of the portion of f that is
localized in time-frequency in s.

We need some notation and results from [16].

5The function with respect to which the size is computed will change throughout the
paper; however, it will always be clear from the context.
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Definition 4.5. Let (T, T ) be a tree, and let IT be the collection of all
maximal dyadic intervals I ⊆ IT which have the property that 3I does not
contain any of the intervals Is with s ∈ T . For an integer j with 2−j ≤ |IT |
let Ẽj be the union of all intervals I in IT such that |I| < 2−j

For an integer j with 2−j > |IT | we define Ẽj = ∅.
The sets Ẽj obviously depend on the tree T, but we suppress this de-

pendence.
We recall the following Lemma 4.12 from [16].

Lemma 4.6. Let Ωj be the collection of connected components of Ẽj. Then
Ωj is a finite collection of dyadic intervals each of which has length equal to
an integer multiple of 2−j.

For each I ∈ Ωj, let xl
I and xr

I denote the left and right endpoints of I,
and let I l

j and Ir
j denote the intervals

I l
j := (xl

I − 2−j−1, xl
I − 2−j−2)

Ir
j := (xr

I + 2−j−2, xr
I + 2−j−1).

Then the intervals I l
j are disjoint as j varies in the integers with 2−j ≤ |IT |

and I varies in Ωj.
Similar statements hold for the Ir

j .

Recall also the weight function from [16].

μj,T(x) :=
∑

j

2−|j′−j|/100
∑

y∈∂Ẽj

(1 + 2j′|x− y|)−100.

An important role in our future investigation is played by the function

WT(x) :=
∑
s∈T

1Is(x)

|Is|
∫
μj(s)(y)χ̃

2
Is

(y)dy,

where |Is| = 2−j(s).
In the same Lemma 4.12 from [16] it was proved (and this is an immediate

consequence of Lemma 4.6) that∑
j

2−j#∂Ẽj � |IT |.

This in turn automatically implies that∫
WT(x)dx � |IT |.
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We will need a stronger result, namely that∫
J

WT(x)dx � |J |

for each dyadic J ⊆ IT . This however also turns out to be an easy conse-
quence of Lemma 4.6. We leave the details to the reader. The following is
then a standard corollary.

Corollary 4.7. We have

‖WT‖BMO � 1,

where ‖ · ‖BMO stands for the dyadic BMO norm.

The following result is a simplified version6 of Proposition 7.4 from [16].
In its current form, it appears essentially in [9].

Each tree T defines a region in the phase-space domain. The operator V
from Theorem 5.1 will receive a contribution from all the trees. The lemma
below will show that for each tree, the most important contribution comes
from the part of the function f , denoted by ΠT(f), that essentially lives in
the region defined by T.

Lemma 4.8. (Phase-space projections) Let (T, T ) be a tree and f ∈ L2(R)7.
There is a function ΠT(f), called the phase-space projection of f on the
tree T, satisfying the properties:

• (i) (Control by size) ΠT(f) is supported in 2IT and satisfies the L∞

bound

‖ΠT(f)‖∞ � size(T).

As a consequence, for each 1 ≤ t ≤ ∞,

(4.2) ‖ΠT(f)‖t � |IT |1/tsize(T)

with the implicit constant independent of T or f .

• (ii) (ΠT(f) approximates f on T) For each s ∈ T with |ωs| = 2j, each
m adapted to ωs we have

∥∥(|Is|φIs

)1/2
Tm

(
ΠT(f)−f)∥∥

2
� size(T)|Is|−1/2

∫
χ̃2

Is
(x)μj(x)dx.(4.3)

6One of the simplifications arises from the simpler definition of size from Definition 4.4.
7Since we only want an L2 estimate in (ii), there is no need for the extra assumption

‖f‖∞ ≤ 1 from [9] or [16].
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Assume that for each k ∈ Z we have n functions φ
(k)
1 , . . . , φ

(k)
n whose

Fourier transforms are adapted to the interval [−1/2, 1/2]. Define also the
modulated versions

(4.4) φI,n(x) :=
1

|I|φ
(k)
n

(x− c(I)

|I|
)
e2πiλnx,

whenever |I| = 2−k. Also, if s ∈ Sn, define φs := φIs,n. We will assume
throughout the rest of the section that

max
n

‖φ̂(k)
n (0)‖V r

k,2−k>100
≤ 1.

If (T, T ) is a tree and r > 2, define

VTf(x) := ‖1Is(x)〈f, φs〉‖V r
s∈T

.

As a consequence of Lemma 3.4, Corollary 4.7 and Lemma 4.8 we have

Proposition 4.9. Let (T, T ) be a tree and let f ∈ L2(R)∩Lt(R), for some
1 < t <∞. Then

(4.5) ‖VTf‖t � |IT |1/tsize(T).

Proof. Triangle’s inequality implies

‖VTf‖t ≤ ‖VTΠT(f)‖t + ‖VT(f − ΠT(f))‖t.

Since the first term above is well controlled by Lemma 3.4 and by (4.2),

it suffices to control the second term. Note that by (4.3) and the fact that φ̂s

is supported in ωs, we have for each s ∈ T

|〈f − ΠT(f), φs〉| ≤
∫

|φIs(x)Tms(f − ΠT(f))(x)|dx
� ‖(|Is|φIs(x))

1/2Tms(f − ΠT(f))(x)‖2‖(|Is|−1φIs)
1/2‖2

� size(T)|Is|−1

∫
χ̃2

Is
(x)μj(s)(x)dx,

where ms is an appropriate function, adapted to ωs and equal to 1 on the
support of φ̂s.

Next, by using the above and the trivial estimate ‖xk‖V r
k
≤ ‖xk‖l1(Z), we

obtain the following pointwise estimate

|VT(f − ΠT(f))(x)| ≤ size(T)WT(x).

The claim is now immediate from Corollary 4.7 and John-Nirenberg’s in-
equality. �
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The following lemma is immediate.

Lemma 4.10. If (T, T ) is a tree and let f ∈ L2(R) ∩ L∞(R) then

size(T) � sup
s∈T

inf
x∈Is

Mf(x).

We now show how to split S into trees with special properties.

Lemma 4.11. Let S′ ⊂ S be a finite convex collection of tiles and let f ∈
L2(R) ∩ L∞(R). Then we can split

S′ =
⋃

2−m≤2size(S′)

Sm,

where Sm is the union of disjoint trees

Sm =
⋃

T∈Fm

T

with size(T) ≤ 2−m for each T ∈ Fm and moreover

(4.6)
∑

T∈Fm

|IT| � 22m‖f‖2
2.

This lemma is obtained by iterating the following lemma

Lemma 4.12. Let S′ ⊂ S be a finite convex collection of tiles, and assume

size(S′) ≤ 2λ.

Then one can split
S′ = S′

1 ∪ S′
2,

where S′
1 is the union of disjoint trees

S′
1 =

⋃
T∈F

T

with ∑
T∈F

|IT| � λ−2‖f‖2
2,

while
size(S′

2) ≤ λ.

Proof. The proof is entirely standard. We briefly sketch the argument.

• Step 0: Set S := S′ and F := ∅.
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• Step 1: Select a tile T ∈ S with maximal time interval IT such that
there exists mT adapted to 10ωT satisfying

(4.7)
1

|IT |1/2

∥∥χ̃10
IT

(x)TmT
f(x)

∥∥
L2

x
> λ.

If there is more than one tile having a fixed (maximal) time interval
that qualifies to be selected, just select any of them. Construct the
maximal tree T in S having top T . Reset F := F∪{T} and S := S\T.

If there is no such tile to be selected, stop, the algorithm is over.

• Step 2: Go to Step 1.

After the algorithm stops, set

S′
1 :=

⋃
T∈F

T and S′
2 := S′ \ S′

1,

and note that size(S′
2) ≤ λ, as desired.

Observe also that the rectangles (IT × 10ωT )T∈F are pairwise disjoint.
Indeed, if T,T′ have the tops T and T ′ in the same Sn (1 ≤ n ≤ N)
then IT and IT ′ will be disjoint by maximality. If T and T ′ belong to
distinct Sn and Sn′ , then, while their time intervals may intersect, the fre-
quency components 10ωT , 10ωT ′ will be disjoint, due to (4.1) and the fact
that |ωT |, |ωT ′| < 1

100
.

Finally, inequality (4.7) combined with this pairwise disjointness implies
via a (now) very standard TT ∗ argument (see for example Corollary 7.6
in [15]) that ∑

T∈F
|IT | � λ−2‖f‖2

2.

�

Remark 4.13. Note that if S′ is convex, then each Sm is convex.

5. A square function estimate for the variational norm

Let as before φ
(k)
1 , . . . , φ

(k)
n be Schwartz functions whose Fourier transforms

are adapted to the interval [−1/2, 1/2], and let φI,n be defined as in (4.4).
For r > 2 define

V f(x) :=
( N∑

n=1

‖1I(x)〈f, φI,n〉‖2
V r

I,|I|>100

)1/2

.
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Theorem 5.1. We have for each 1 < p ≤ 2 and each ε > 0

(5.1) ‖V f‖p � N
1
p
− 1

2
+ε

(
1 + max

n
‖φ̂(k)

n (0)‖V r
k,2−k>100

)‖f‖p,

with the implicit constant depending only on r, p and ε.

Proof. We can and will assume that

max
n

‖φ̂(k)
n (0)‖V r

k,2−k>100
≤ 1.

The inequality when p = 2 (with ε = 0) follows immediately from Lemma 3.4
and by orthogonality. By interpolating with the L2 bound, it suffices to

prove (5.1) with the bound N1/2 rather than N
1
p
− 1

2
+ε

We rephrase the inequality to be proved in terms of tiles. We are to
prove that

VS′f(x) :=
( N∑

n=1

‖1Is(x)〈f, φs〉‖2
V r

s∈S′
n

)1/2

satisfies

‖VS′f‖p � N1/2‖f‖p,

uniformly over all finite S′ ⊆ S which in addition are also convex.

Also, by restricted type interpolation, it suffices to prove

(5.2)
∣∣{x ∈ R : VS′1F (x) > λ1−εN1/2}∣∣ � |F |

λp
,

for each F ⊂ R with finite measure and each ε > 0, with an implicit constant
depending just on p and ε. Moreover, due to the L2 result, it suffices to
prove (5.2) for λ < 1.

Consider the exceptional set

E := {x ∈ R : M1F (x) ≥ Cλ},

with C large enough, independent of F . Since

|E| ≤ 2C−p |F |
λp
,

it further suffices to prove

∣∣{x ∈ R \ E : VS′1F (x) > λ1−εN1/2}∣∣ � |F |
λp

.
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Obviously, on R \ E only the tiles s ∈ S′ with Is ∩ (R \ E) �= ∅ will
contribute to VS′1F . Thus we can assume S′ consists only of such tiles. Note
that S′ remains convex. Lemma 4.10 implies now that size(S′) ≤ λ/2, if C is
sufficiently large. Here, the size is computed with respect to the function 1F .

Recall now the decomposition in Lemma 4.11. For each 2−m ≤ λ and
each T ∈ Fm we define the exceptional set

ET := {x ∈ IT : VT1F (x) > λ
1
2
−ε2−m/2},

and we note that due to Proposition 4.9,

|ET| � λ−t( 1
2
−ε)2−mt/2|IT|.

Furthermore, due to (4.6) we get that

∣∣∣E ′ :=
⋃

2−m≤λ

⋃
T∈Fm

ET

∣∣∣ �
∑

2−m≤λ

λ−t( 1
2
−ε)2−mt/222m|F | � |F |

λp
,

assuming

t > max
{

4,
2 − p

ε

}
.

�

As a consequence, it further suffices to prove that for x ∈ R \ (E ∪ E ′)
we have

|VS′1F (x)| ≤ λ1−εN1/2.

Observe that each x ∈ R belongs to at most N time intervals IT of tops T
of trees in Sm, for each 2−m ≤ λ. For each m, at most one of these trees is
in each Sn (1 ≤ n ≤ N). Call these trees T1,m, . . . ,Tn,m, where we allow
some of them to be empty. Then

VSm1F (x) =
( N∑

n=1

(VTn,m1F (x))2
)1/2

.

By the triangle inequality in Lemma 3.3 (possible since each Sm is con-
vex) combined with the triangle inequality for the norm of l2(N), it follows
that whenever x ∈ R \ (E ∪ E ′) we have

|VS′1F (x)| ≤
∑

2−m≤λ

|VSm1F (x)| ≤
∑

2−m≤λ

N1/2λ
1
2
−ε2−m/2 = λ1−εN1/2.
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6. Proof of Theorem 1.5

We first use Fourier series to rewrite the maximal function supk |Δkf | as a
maximal expression involving sums of exponentials with variable coefficients.
We then estimate the Lp norm by the L2 norm, on each dyadic interval of
unit length. The L2 norm of these maximal exponential sums will then be
estimated by using the metric entropy method, see Lemma 6.1 below. The
result is that the local contribution, ‖ supk |Δkf |‖Lp(J), will be bounded by
‖V f‖Lp(J). These local contributions are then summed up and Theorem 5.1
finishes the argument.

The idea of reducing matters to maximal exponential sums goes back
to [1]. The advantage of dealing with expressions of the form

sup
k

|
N∑

n=1

ck,ne
2πiλny|

resides both in the almost orthogonality of the exponentials, but also in the
finite dimensionality of the coefficient space, l2(N). In [1], the reduction
to exponential sums is performed via an averaging procedure, that relies
crucially on Plancherel’s theorem. However, in our case, this type of argu-
ment is not available, since we deal with Lp estimates. We will instead use
windowed Fourier series expansions. The key is the fact that we can reduce
matters to L2 locally, without further loss in the constants.

The following lemma essentially appears in [1]. Its current formulation
is taken from [8].

Lemma 6.1. ([8, Lemma 8.4]) For each set C = {ck} ⊆ l2(N) and each
r > 2 we have

∥∥∥ sup
k

∣∣ N∑
n=1

ck,ne
2πiλny

∣∣∥∥∥
L2

y([0,D−1))
� N1/2−1/r‖ck‖V r

k (N),

with the implicit constant depending only on r.

Proof of Theorem 1.5. By rescaling, we can assume that the separation
constant D = 1.

Let ψ : R → C be a smooth function such that ψ̂ is supported on [−1, 1]
and equals 1 on [-1/2,1/2]. For each dyadic interval I := [l/2k, (l + 1)/2k]
denote by

φI,n(x) :=
1

|I|m̂ω,∗
(x− c(I)

|I|
)
e2πiλnx,
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where ω is the unique interval in Rk that contains λn, mω,∗ is the rescaled,
shifted at the origin version of mω, that is

mω,∗
(ξ − λn

|ω|
)

= mω(ξ).

Assume now ω is centered at some λn. By using windowed Fourier series
on ω we can write

f̂(ξ)mω(ξ) =
1

|ω|
∑
l∈Z

[ ∫
f̂(η)mω(η)e2πi l

|ω|ηdη
]
e−2πi l

|ω|ξψ̂
(ξ − λn

|ω|
)
,

so that ∫
mω(ξ)f̂(ξ)e2πiξxdξ =

∑
|I|=|ω|−1

I dyadic

e2πiλnx〈f, φI,n〉ψI(x).

where

ψI(x) := ψ
(x− c(I)

|I|
)
.

Let now J be a dyadic interval of unit length. For each 2k < 1
100

and
each l ∈ Z denote by I(J, k, l) the unique dyadic interval of length 2−k such
that l2−k + I(J, k, l) contains J . We have∥∥ sup

k
|Δkf(x)|∥∥

Lp
x(J)

≤

≤
∑
l∈Z

∥∥∥ sup
k

∣∣( ∑
n≤N

e2πiλnx〈f, φI(J,k,l),n〉wk,n

)
ψI(J,k,l)(x)

∣∣∥∥∥
Lp

x(J)

�
∑
l∈Z

2−100|l|
∥∥∥ sup

k

∣∣ ∑
n≤N

e2πiλnx〈f, φI(J,k,l),n〉wk,n

∣∣∥∥∥
Lp

x(J)
,

where wk,n := wω, given that ω is centered at λn and has scale 2k. By
invoking standard rescaling arguments it suffices to analyze the case l = 0,
so any further dependence on l will be suppressed. We can now invoke
Lemma 6.1, Lemma 3.2 and Lemma 3.1 to get∥∥∥ sup

k

∣∣ ∑
n≤N

e2πiλnx〈f,φI(J,k),n〉wk,n

∣∣∥∥∥
Lp

x(J)
≤

≤
∥∥∥ sup

k

∣∣ ∑
n≤N

e2πiλnx〈f, φI(J,k),n〉wk,n

∣∣∥∥∥
L2

x(J)

� N1/2−1/r max
n

‖wk,n‖V r
k

( N∑
n=1

‖〈f, φI(J,k),n〉‖2
V r

k

)1/2

= N1/2−1/r‖wω‖V r,∗VJf,

where VJf denotes the (constant) value of V f(x) on J .
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By raising to the pth power and by summing up over all dyadic J of unit
length, it suffices now to prove that

(6.1) ‖V f‖Lp(R) � N
1
p
− 1

2
+ε(1 + ‖mω‖V r,∗)‖f‖Lp(R).

This however was proved in Theorem 5.1. �
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