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Overdetermined problems in unbounded
domains with Lipschitz singularities

Alberto Farina and Enrico Valdinoci

Abstract

We study the overdetermined problem
⎧⎨
⎩

Δu + f(u) = 0 in Ω,
u = 0 on ∂Ω,

∂νu = c on Γ,

where Ω is a locally Lipschitz epigraph, that is C3 on Γ ⊆ ∂Ω, with
∂Ω \ Γ consisting in nonaccumulating, countably many points.

We provide a geometric inequality that allows us to deduce geo-
metric properties of the sets Ω for which monotone solutions exist.

In particular, if C ∈ R
n is a cone and either n = 2 or n = 3 and

f � 0, then there exists no solution of
⎧⎪⎪⎨
⎪⎪⎩

Δu + f(u) = 0 in C ,
u > 0 in C ,
u = 0 on ∂C ,

∂νu = c on ∂C \ {0}.
This answers a question raised by Juan Luis Vázquez.

Introduction

Let n � 2. We consider an epigraph in R
n, that is

Ω :=
{
(x′, xn) ∈ R

n−1 × R s.t. xn > Φ(x′)
}
.

We suppose that Ω is locally Lipschitz and that it is C3 except, at most, at
a countable family of points that do not accumulate.
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Explicitly, we suppose that there exists J ⊆ N and a family

F :=
{
p′j ∈ R

n−1, j ∈ J
}

such that

(0.1) inf
j,k∈J

|p′j − p′k| > 0

and

Φ ∈ C3

(
R

n−1 \
( ⋃

j∈J

p′j
))

.

Notice that ∇Φ exists a.e.: we suppose that

‖∇Φ‖L∞(K) < +∞,

for any bounded set K in R
n−1.

We denote pj :=
(
p′j , Φ(p′j)

)
and

Γ := ∂Ω \
( ⋃

j∈J

pj

)
.

We remark that, by construction, the exterior derivative ν is always well
defined at points of Γ.

Given c ∈ R, we will study the following overdetermined elliptic problem:

(0.2)

⎧⎪⎨
⎪⎩

Δu + f(u) = 0 in Ω,

u = 0 on ∂Ω,

∂νu = c on Γ.

We will prove a geometric inequality for solutions of (0.2) and some
rigidity results in low dimension.

For this, we introduce some notation.
Given a smooth function v, one may consider the level sets of v: in the

vicinity of {∇v �= 0}, these level sets are smooth manifolds, so one can
consider the principal curvatures

κ1, . . . , κn−1

at any point of such manifolds.
We set

K :=
√

κ2
1 + · · ·+ κ2

n−1.

Also, it is customary to consider the tangential gradient along level sets
of v at these points, that is

∇T g := ∇g −
(
∇g · ∇v

|∇v|
) ∇v

|∇v| .
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Thus, we may state the main results of this paper as follows:

Theorem 1. Let u ∈ C2(Ω ∪ Γ) ∩ C(Ω) ∩ W 1,∞
loc (Ω) be a solution of (0.2),

with ∂nu > 0 in Ω.

Then, for any ξ ∈ C∞
0 (Rn),

(0.3)

∫
Ω

(
|∇u|2K 2 + |∇T |∇u||2

)
ξ2 �

∫
Ω

|∇u|2|∇ξ|2.

Theorem 2. Let u ∈ C2(Ω ∪ Γ) ∩ W 1,∞(Ω) be a solution of (0.2), with
u > 0 in Ω and Ω globally Lipschitz.

Suppose

• either that n = 2

• or that n = 3 and f � 0.

Then, Ω cannot be coercive, that is, it cannot be that

lim
|x′|→+∞

Φ(x′) = +∞.

The result in Theorem 1 may be seen as a weighted Poincaré inequality.
Similar inequalities have been used first in [5, 6], where no boundary term
was present, and in [2, 3] to deduce symmetry results for PDEs. In [4] re-
lated inequalities have been used for problems like (0.2) in smooth domains.
Differently than [4], in this paper we take into account also domains with
Lipschitz singularities: indeed, when the domains are smooth, Theorems 1
and 2 here boil down to Theorems 1.1 and 1.6 in [4].

As a side remark, we also notice that the left hand side of (0.3) is well-
defined, since ∇u �= 0 in Ω.

We now use Theorem 2 in order to answer a question posed to us by
Juan Luis Vázquez [7]. For this, let C be a cone.

More precisely, if n = 2, we write

t+ :=

{|t| if t > 0,
0 if t � 0,

and t− :=

{|t| if t < 0,
0 if t � 0,

and, given α+, α− ∈ (0, +∞), we define the cone

C :=
{
(x1, x2) ∈ R

2 s.t. x2 > α+x+
1 + α−x−

1

}
.

When n � 3, given α ∈ (0, +∞), we write the cone as

C :=
{
(x′, xn) ∈ R

n−1 × R s.t. xn > α|x|}.
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With this notation, we obtain the following result:

Corollary 3. If

• either n = 2

• or n = 3 and f � 0,

then there exists no solution u ∈ C2(C \ {0}) ∩ W 1,∞(C ) of

(0.4)

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

Δu + f(u) = 0 in C ,

u > 0 in C ,

u = 0 on ∂C ,

∂νu = c on ∂C \ {0}.

Corollary 3 is a simple consequence of Theorem 2. We also recall that
solutions of (0.4) satisfy

∂nu(x) > 0 for any x ∈ Ω,

thanks to Theorem 1.3 in [1].

We prove Theorems 1 and 2 in the forthcoming Sections 1 and 2, respec-
tively.

1. Proof of Theorem 1

Let now ξ ∈ C∞
0 (Rn).

We define

ρ := inf
j,k∈J

|p′j − p′k|.

We recall that ρ > 0 because of (0.1).

We fix K > 2 and η > 0 such that

(1.1) η � min

{
1,

ρ

2
,

1

log K

}
.

We define

τη,K(x) :=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

0 if |x| � η/K,

log |x| − log(η/K)

log K
if η/K < |x| � η,

1 if |x| > η.



Overdetermined problems 969

Notice that τη,K is Lipschitz continuous and

(1.2) |∇τη,K(x)| �
χ(Bη\Bη/K)(x)

|x| log K
.

Here above, as customary, we have denoted by χA the characteristic function
of the set A.

We also set
ξη,K(x) := ξ(x) ·

∏
j∈J

τη,K(x − pj).

This function is well-defined, since τη,K(x−pj) = 1 for x �∈ Bη(pj) and these
balls are disjoint.

We now take Ωη,K to be an open set with C3 boundary such that

Ω \
( ⋃

j∈J

Bη/(2K)(pj)
)
⊂ Ωη,K ⊂ Ω \

( ⋃
j∈J

Bη/(4K)(pj)
)
.

We make use of (1.4) of [4] to obtain that∫
Ωη,K

(
|∇u|2K 2 + |∇T |∇u||2

)
ϕ2

+ lim sup
ε→0+

∫
∂Ωη,K

ϕ2

ε + ∂nu

(
|∇u|2∂2

n,νu − ∂2
i,νu∂iu∂nu

)
�

�
∫

Ωη,K

|∇u|2|∇ϕ|2(1.3)

for any ϕ ∈ W 1,∞
0 (Rn).

On the other hand, from (3.15) in [4] and (0.2) here, we know that

(1.4) |∇u|2∂2
n,νu − ∂2

i,νu∂iu∂nu = 0 on Γ.

Also, by construction,

(1.5) ξη,K = 0 in
⋃

j∈J

Bη/(2K)(pj).

From (1.4) and (1.5) we thus obtain

∫
∂Ωη,K

ξ2
η,K

ε + ∂nu

(
|∇u|2∂2

n,νu − ∂2
i,νu∂iu∂nu

)
=

=
∑
j∈J

∫
∂Ωη,K∩Bη/(2K)(pj)

ξ2
η,K

ε + ∂nu

(
|∇u|2∂2

n,νu − ∂2
i,νu∂iu∂nu

)
= 0.
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Consequently, by taking ϕ := ξη,K in (1.3), we obtain

(1.6)

∫
Ωη,K

(
|∇u|2K 2 + |∇T |∇u||2

)
ξ2
η,K �

∫
Ωη,K

|∇u|2|∇ξη,K |2.

Also, recalling (1.1) and (1.2), a straightforward computation gives that

|∇ξη,K(x)| − |∇ξ(x)| � |∇ξη,K(x) −∇ξ(x)| �

� ‖ξ‖W 1,∞(Rn)

∑
j∈J

(
1 +

1

|x − pj| log K

)
χ(Bη(pj)\Bη/K(pj))(x)

� 2‖ξ‖W 1,∞(Rn)

∑
j∈J

χ(Bη(pj)\Bη/K(pj))(x)

|x − pj| log K
.(1.7)

We now fix an auxiliary parameter δ > 0 and we use a scaled Cauchy
Inequality to deduce from (1.7) that

|∇ξη,K(x)|2 � (1 + δ)|∇ξ(x)|2

+ Cδ‖ξ‖2
W 1,∞(Rn)

⎡
⎣∑

j∈J

χ(Bη(pj)\Bη/K(pj))(x)

|x − pj| log K

⎤
⎦

2

.

Since the balls Bη(pj) are disjoint, we can write the above inequality as

|∇ξη,K(x)|2 � (1 + δ)|∇ξ(x)|2

+ Cδ‖ξ‖2
W 1,∞(Rn)

∑
j∈J

χ(Bη(pj)\Bη/K(pj))(x)

|x − pj|2 (log K)2
.(1.8)

Now, we denote by S ⊂ R
n the support of ξ, and we define

JS :=
{
j ∈ J s.t. Bη(pj) ∩ S �= ∅}.

We remark that JS is a finite set, so we denote by CS ∈ N its cardinality.
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Then, by (1.8),

∫
Ωη,K

|∇u(x)|2|∇ξη,K(x)|2 dx �

�
∫

S

|∇u(x)|2
[
(1+δ)|∇ξ(x)|2 + Cδ‖ξ‖2

W 1,∞(Rn)

∑
j∈J

χ(Bη(pj)\Bη/K(pj))(x)

|x − pj|2 (log K)2

]
dx

� (1 + δ)

∫
Ω

|∇u(x)|2|∇ξ(x)|2 dx

+ Cδ‖ξ‖2
W 1,∞(Rn)‖u‖2

W 1,∞(S )

∑
j∈JS

∫
(Bη(pj)\Bη/K(pj))

1

|x − pj |2 (log K)2
dx

= (1 + δ)

∫
Ω

|∇u(x)|2|∇ξ(x)|2 dx

+
Cδ‖ξ‖2

W 1,∞(Rn)‖u‖2
W 1,∞(S )

(log K)2

∑
j∈JS

∫ η

η/K

rn−1

r2
dr

� (1 + δ)

∫
Ω

|∇u(x)|2|∇ξ(x)|2 dx

+
CδCS ‖ξ‖2

W 1,∞(Rn)‖u‖2
W 1,∞(S )

(log K)2

∫ η

η/K

1

r
dr

= (1 + δ)

∫
Ω

|∇u(x)|2|∇ξ(x)|2 dx +
CδCS ‖ξ‖2

W 1,∞(Rn)‖u‖2
W 1,∞(S )

log K
.

This and (1.6) give that

∫
Ωη,K

(
|∇u|2K 2 + |∇T |∇u||2

)
ξ2
η,K �

� (1 + δ)

∫
Ω

|∇u(x)|2|∇ξ(x)|2 dx +
CδCS ‖ξ‖2

W 1,∞(Rn)‖u‖2
W 1,∞(S )

log K
.

We now take η = 1/ log K and we send K → +∞ (notice that (1.1) allows
us to do so), so that we obtain

∫
Ω

(
|∇u|2K 2 + |∇T |∇u||2

)
ξ2 � (1 + δ)

∫
Ω

|∇u|2|∇ξ|2.

By taking δ as small as we wish, we obtain (0.3), thus completing the proof
of Theorem 1.
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2. Proof of Theorem 2

We observe that, under the assumptions of Theorem 2,

u ∈ W 1,∞(Ω) ⊂ C(Ω).

We suppose, by contradiction, that Ω is coercive.

Then, ∂nu > 0, thanks to Theorem 1.3 in [1].

Thus, when n = 2, the claim of Theorem 2 follows from (0.3) here and
Lemma 5.1 in [4].

Thus, we focus on the case in which n = 3 and f � 0.
For any t � 0 and any (x′, x3) ∈ Ω, we define

ut(x
′, x3) := u(x′, x3 + t).

Due to standard elliptic regularity theory, we have that the following limit
exists for any x′ ∈ R

2, with (x′, x3) ∈ Ω, and it is attained in C2(R2):

(2.1) u∞(x′) := lim
t→+∞

ut(x
′, x3).

In particular,

(2.2) Δu∞ + f(u∞) = 0 in R
2.

We also set

F (r) :=

∫ r

0

f(s) ds.

Note that F ′ = f � 0 and so F is nondecreasing. Accordingly,

F (u(x)) � F (ut(x)) for any x ∈ Ω

and so

(2.3) F (u(x′, x3)) � F (u∞(x′)) for any (x′, x3) ∈ Ω.

Now, we take Ωε ⊆ Ω to be a C3 coercive epigraph that approaches Ω
when ε → 0+.

We make use of Lemma 9.1 in [4] (applied here to u in the smooth
domain Ωε): we obtain, for any t � 0,

∫
BR∩Ωε

|∇u|2
2

− F (u) dx � CR2 +

∫
BR∩Ωε

|∇ut|2
2

− F (ut) dx,

for a suitable constant C � 0.
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Therefore, keeping t fixed and sending ε → 0+,

∫
BR∩Ω

|∇u|2
2

− F (u) dx � CR2 +

∫
BR∩Ω

|∇ut|2
2

− F (ut) dx.

We now send t → +∞ and we conclude that∫
BR∩Ω

|∇u(x)|2
2

−F (u(x)) dx � CR2+

∫
BR∩Ω

|∇u∞(x′)|2
2

−F (u∞(x′)) d(x′, x3).

Therefore, from (2.3),

(2.4)

∫
BR∩Ω

|∇u(x)|2
2

dx � CR2 +

∫
BR∩Ω

|∇u∞(x′)|2
2

d(x′, x3).

We now observe that, by (2.2), it holds that Δu∞ � 0 in R
2 and therefore,

by a classical Liouville Theorem, we have that u∞ is constant.
Hence, (2.4) becomes

(2.5)

∫
BR∩Ω

|∇u(x)|2
2

dx � CR2.

Thus, in the light of (0.3) and (2.5), we may now apply Corollary 9.4 of [4]:
we obtain that ∂Ω is a hyperplane, in contradiction with the fact that Ω is
coercive.

This completes the proof of Theorem 2.
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