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Overdetermined problems in unbounded

domains with Lipschitz singularities

Alberto Farina and Enrico Valdinoci

Abstract
We study the overdetermined problem

Au+ f(u) =0 in Q,
u=20 on 0f),
oyu=c on I,

where € is a locally Lipschitz epigraph, that is C2 on I' C 09, with
00\ I consisting in nonaccumulating, countably many points.
We provide a geometric inequality that allows us to deduce geo-
metric properties of the sets {2 for which monotone solutions exist.
In particular, if ¥ € R"™ is a cone and either n = 2 or n = 3 and
f =2 0, then there exists no solution of

Au+ f(u) =0 in ¢,

u >0 in €,

u=0 on 0%,
dyu=c on 0% \ {0}.

This answers a question raised by Juan Luis Vazquez.

Introduction
Let n > 2. We consider an epigraph in R", that is
Q:={(z/,z,) ER" " xR s.t. 7, > (') }.

We suppose that  is locally Lipschitz and that it is C® except, at most, at
a countable family of points that do not accumulate.
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Explicitly, we suppose that there exists ¢ C N and a family
T ={p,eR"", je 7}
such that
. / /
(0.1) inf_1p; — il >0

and
b e 03(R”—1\ ( U p;.>).
jes
Notice that V® exists a.e.: we suppose that
IV oo (re) < 400,

for any bounded set K in R*!.
We denote p; := (p;-, @(p;)) and

F::aQ\(Upj).

jes
We remark that, by construction, the exterior derivative v is always well
defined at points of T'.
Given ¢ € R, we will study the following overdetermined elliptic problem:
Au+ f(u) =0 in Q,
(0.2) u=0 on 0,
ou=c onl.
We will prove a geometric inequality for solutions of (0.2) and some
rigidity results in low dimension.
For this, we introduce some notation.
Given a smooth function v, one may consider the level sets of v: in the

vicinity of {Vuv # 0}, these level sets are smooth manifolds, so one can
consider the principal curvatures

K1y« 5 Rn-1

at any point of such manifolds.
We set

t%/::\/%%+”'+'%%—l‘

Also, it is customary to consider the tangential gradient along level sets
of v at these points, that is

A\ Vv
Vg :=Vg - (Vg' |Vv|) Vol
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Thus, we may state the main results of this paper as follows:

Theorem 1. Let u € C2(QUT) N C(Q) NWEX(Q) be a solution of (0.2),
with Opu > 0 in €.

Then, for any & € C°(R™),
(0.3) / (IVul2? + 14| Vul?)e? < / VuP| Ve
Q Q

Theorem 2. Let u € C*(Q UT) N Wh(Q) be a solution of (0.2), with
u >0 1in Q and Q globally Lipschitz.

Suppose

e cither that n =2
e orthatn =3 and f > 0.

Then, ) cannot be coercive, that is, it cannot be that

lim ®(z') = +o0.

ja/| =400

The result in Theorem 1 may be seen as a weighted Poincaré inequality.
Similar inequalities have been used first in [5, 6], where no boundary term
was present, and in [2, 3] to deduce symmetry results for PDEs. In [4] re-
lated inequalities have been used for problems like (0.2) in smooth domains.
Differently than [4], in this paper we take into account also domains with
Lipschitz singularities: indeed, when the domains are smooth, Theorems 1
and 2 here boil down to Theorems 1.1 and 1.6 in [4].

As a side remark, we also notice that the left hand side of (0.3) is well-
defined, since Vu # 0 in €.

We now use Theorem 2 in order to answer a question posed to us by
Juan Luis Vazquez [7]. For this, let € be a cone.

More precisely, if n = 2, we write

I N1 if t >0, I if t <0,
t‘_{o ifr<o, M T =0 ez,

and, given o™, a~ € (0,400), we define the cone
¢ = {(x1,22) € R® s.t. w2 > aTa] +a a7}
When n > 3, given a € (0,400), we write the cone as

¢ = {(z/,2,) e R" " xR s.t. x, > alz|}.
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With this notation, we obtain the following result:
Corollary 3. If

o cithern =2

e orn=3and f >0,
then there exists no solution u € C%(€ \ {0}) N W1=(%) of

Au+ f(u)=0 in¥,
u >0 in E,
u=0 ond¥,
du=c ond¥€\{0}.

(0.4)

Corollary 3 is a simple consequence of Theorem 2. We also recall that
solutions of (0.4) satisfy

Opu(z) > 0 for any = € Q,

thanks to Theorem 1.3 in [1].

We prove Theorems 1 and 2 in the forthcoming Sections 1 and 2, respec-
tively.

1. Proof of Theorem 1

Let now £ € C°(R™).
We define

= inf |p — )|
pi=inf 1D — D]

We recall that p > 0 because of (0.1).
We fix K > 2 and n > 0 such that

1
(1.1) ngmin{L g, @}.
We define
0 if |z| < n/K,
(@) = log 2| —log(n/K) 0/ K < |2l <,

log K
1 if |z| > n.
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Notice that 7, i is Lipschitz continuous and

X(By\Byyx0) ()

1.2 <
( ) |V7—777K(x)| |x| logK

Here above, as customary, we have denoted by y 4 the characteristic function
of the set A.

We also set
E(x) = &) - [ mx (e —py)-
€S
This function is well-defined, since 7, i (v —p;) = 1 for x € B, (p;) and these
balls are disjoint.
We now take , x to be an open set with C® boundary such that

2\ ( U Bujex) @j)) C Sy C O\ ( U Bn/(4K)(pj)>-
i€s ies
We make use of (1.4) of [4] to obtain that

/ (qu|2J£/2 + |VT|Vu||2><,02
Q’U:K

2
+ lim sup/ L4 (|Vu|20fwu - 0iyu3iu0nu) <
B

e—0t+ Qo K €+ anu

(13) < / Va2V f?
inK

for any ¢ € W, (R™).
On the other hand, from (3.15) in [4] and (0.2) here, we know that

(1.4) IVul*02 u — 07 udiud,u =0 on I'.

Also, by construction,

(1.5) G =0 in ([ By (p)-
jes

From (1.4) and (1.5) we thus obtain

2
/ K (|Vu|2872m,u - 82Vu8iuanu) =
B

U, i €+ anu

2

— Z/ E;ﬁOVUF(‘fwu — azyua,;uanu> = 0.
80 ) n

je s n,xkNBy k) (0;
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Consequently, by taking ¢ := &, x in (1.3), we obtain

o) [ (VuPa 4 TAVP) < [ IVuPIVEl
Q’U:K

Qn,K

Also, recalling (1.1) and (1.2), a straightforward computation gives that

VEn k(@) = [VE(@)] < [VEk(2) = VE(2)] <

1
< J€llwroe@ny Y (1 + W) X(Bu(0;)\Byyxc (0)) (%)

ies
X(By(0:)\Byy s (0)) (%)
o Kl 2 0 Fog B

We now fix an auxiliary parameter 6 > 0 and we use a scaled Cauchy
Inequality to deduce from (1.7) that

IV&k(2)]? < (14 0)|VE(2)]?
2
X (B (05)\By i (0)) (T)
|z — pj| log K

+ G5 1€ 17100 @y Z
je s

Since the balls B,,(p;) are disjoint, we can write the above inequality as

VEnx(@)]* < (1+0)|VE(x)[*

(1.8) + CsllE ooy >
jes

X(By(0;)\Byy s (03)) (T)
|z — p;|? (log K)?

Now, we denote by . C R" the support of &, and we define

We remark that ¢ is a finite set, so we denote by C'» € N its cardinality.
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Then, by (1.8),

/ Vu(@) 2|V x(x) 2 d <
Q’U:K

X(By(0)\By i (0)) (T)
< V(@) P (140)|VE(@) 24 Cs||€ 70100 gn : da
| [wu@ [+ over + ol 3 F o 7
< (1+0) / V() PIVE @) da
Q
1
+ C&H&”%/VLOO(R")HUHIQ/VLOO(Y) Z iz — ;]2 (log K )? dx

I€S (By(pj)\Byyx (05)

—(1+4) / V() P VE()| de

dr

Cé”ﬁ”%/[/lvoo(n@n) Hquvlyoo(y) /77 !
n

<(1490) / V() V() de

C&CVHﬁH%VLoo(Rn)HuH%vl,oo(y) /" 1
—dr
n

(log K)? /KT

e 13 N 1/ S
log K

_a +5)/Q|Vu(ac)|2|V§(x)|2dx+

This and (1.6) give that

[ (1vuPor® Vel vulP g <
QK

0507”5”%4/1,00(11@) ”u”%/vl,oo(y)
log K

<(1+9) / Vu(e) | V()] de +

We now take n = 1/log K and we send K — +o0 (notice that (1.1) allows
us to do so), so that we obtain

| (1val? + vsi9ul?)t < @+0) [ [vuPiogr
Q Q

By taking ¢ as small as we wish, we obtain (0.3), thus completing the proof
of Theorem 1.
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2. Proof of Theorem 2
We observe that, under the assumptions of Theorem 2,
ue Wh>(Q) c C(Q).

We suppose, by contradiction, that €2 is coercive.
Then, d,u > 0, thanks to Theorem 1.3 in [1].

Thus, when n = 2, the claim of Theorem 2 follows from (0.3) here and
Lemma 5.1 in [4].

Thus, we focus on the case in which n =3 and f > 0.
For any t > 0 and any (2/, x3) € 2, we define

u(2! x3) = u(a', x3 + t).

Due to standard elliptic regularity theory, we have that the following limit
exists for any 2’ € R?, with (2/,x3) € €, and it is attained in C*(R?):

(2.1) Uoo(2') = lim wy(2', x3).

t—+o00

In particular,
(2.2) At + f(tne) =0 in RZ
We also set ;
F(r) = / f(s)ds.
Note that F' = f > 0 and so F' is nor?decreasing. Accordingly,
F(u(z)) < Fu(x)) for any x € Q
and so
(2.3) F(u(z',23)) < F(uso(z')) for any (2/, x3) € Q.

Now, we take Q. C Q to be a C? coercive epigraph that approaches Q
when € — 0F.

We make use of Lemma 9.1 in [4] (applied here to u in the smooth
domain §2.): we obtain, for any ¢ > 0,

2 2
Vul F(u)dr < OR* + Vel F(uy) dz,
2 2
BrMQ. BrMQ.

for a suitable constant C' > 0.
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Therefore, keeping t fixed and sending € — 07,

2 2
W—ul—F(u)dx<0R2+ M—F(ulf/)dx.
2 2
BRrNQ BrNQ

We now send t — +oo and we conclude that

/BROQM—F(U(I‘)) dx < CR2+/BROQM_F(UOO('T,)) d(l",l‘g).

Therefore, from (2.3),

2 NE
(2.4) Nulz)P dr < CR* + Vuoo(@)" d(z', z3).
BrN 2 ’

BrN 2

We now observe that, by (2.2), it holds that Au, < 0 in R? and therefore,
by a classical Liouville Theorem, we have that ., is constant.
Hence, (2.4) becomes

2
(2.5) / [Vul)l dr < CR?.
BrNQ 2

Thus, in the light of (0.3) and (2.5), we may now apply Corollary 9.4 of [4]:
we obtain that 02 is a hyperplane, in contradiction with the fact that  is
coercive.

This completes the proof of Theorem 2.
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