
Rev. Mat. Iberoamericana 26 (2010), no. 3, 975–1012

Loewner chains in the unit disk

Manuel D. Contreras, Santiago Dı́az-Madrigal
and Pavel Gumenyuk

Abstract

In this paper we introduce a general version of the notion of
Loewner chains which comes from the new and unified treatment,
given in [5], of the radial and chordal variant of the Loewner dif-
ferential equation, which is of special interest in geometric function
theory as well as for various developments it has given rise to, in-
cluding the famous Schramm-Loewner evolution. In this very general
setting, we establish a deep correspondence between these chains and
the evolution families introduced in [5]. Among other things, we show
that, up to a Riemann map, such a correspondence is one-to-one. In
a similar way as in the classical Loewner theory, we also prove that
these chains are solutions of a certain partial differential equation
which resembles (and includes as a very particular case) the classical
Loewner-Kufarev PDE.

1. Introduction

1.1. Classical Loewner theory

In 1923 Loewner [25] introduced the so-called parametric method in geome-
tric function theory, mainly in the hopes of solving the famous Bieberbach
problem about obtaining sharp estimates of Taylor coefficients of normalized
holomorphic univalent functions in the unit disk. It is worth recalling that
the solution of this problem, given in 1984 by de Branges, relied also on
this method. The modern form of the parametric method is mainly due to
contributions by Kufarev [18] and Pommerenke [27]. Let us briefly recall the
main constructions (see, e.g., [28, Chapter 6]).
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Let f0(z) = z + a2z
2 + · · · be a holomorphic univalent function in the

unit disk D := {z : |z| < 1}. One can always embed this function into a
uniparametric family (ft)t≥0 of holomorphic univalent functions in D satis-
fying the following two properties: ft(z) = etz + a2(t)z

2 + · · · for any t ≥ 0
and fs(D) ⊂ ft(D) whenever t ≥ s ≥ 0. These type of families are called
(classical) Loewner chains. One of the keystones of the parametric method is
the fact that every such a family is differentiable in t almost everywhere on
[0,+∞) and independently on z. Moreover, they satisfy the following PDE

(1.1)
∂ft(z)

∂t
= z

∂ft(z)

∂z
p(z, t),

where the driving term p(z, t) is measurable with respect to t ∈ [0,+∞) for
all z ∈ D and holomorphic in z ∈ D with p(0, t) = 1 and Re p(z, t) > 0
almost everywhere on t ∈ [0,+∞). This equation is called the Loewner –
Kufarev PDE.

For each t ≥ s ≥ 0, the function ϕs,t := f−1
t ◦ fs is clearly a holomorphic

univalent self-mapping of D and the whole family (ϕs,t)t≥s≥0 is referred to as
the associated evolution family (sometimes transition family or semigroup
family) of the Loewner chain. The remarkable fact is that, fixing z ∈ D

and s ≥ 0, the functions w(t) = ϕs,t(z) are integrals of the characteristic
equation for (1.1)

(1.2)
dw

dt
= −wp(w, t)

with the initial condition w(s) = z. This equation is called the Loewner –
Kufarev ODE and the right member of the equation, the associated vector
field. Note that the family (ϕs,t) is continuous in t ∈ [s,+∞) in the compact-
open topology of Hol(D,C) for each s ≥ 0, and satisfies the algebraic condi-
tions

(1.3) ϕs,s = idD, s ≥ 0, and ϕs,t = ϕu,t ◦ ϕs,u, 0 ≤ s ≤ u ≤ t < +∞.

Another crucial point in the parametric method is that the function f0

can be reconstructed by means of the integrals of (1.2). Namely,

lim
t→+∞

etϕ0,t = f0.

Equation (1.2) can be considered on its own, without any a priori connec-
tion to Loewner chains. However, taking any driving term p(z, t) satisfying
the above conditions, this equation has a unique solution w(t) = ϕs,t(z),
assuming the initial condition w(s) = z. Then, it is possible to define
fs := limt→+∞ etϕs,t and generate in this way a Loewner chain. Clearly,
(ϕs,t) is an evolution family associated to this chain (ft).
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In other words, within the framework of the classical parametric method,
there is a one-to-one correspondence between this concept of evolution fami-
lies, the driving terms (or the vector fields) appearing in Loewner equations
and the so-called classical Loewner chains.

1.2. Chordal Loewner equation

In his original work [25], Loewner paid special attention to what we call now
Loewner chains of slit mappings of the unit disk D. This Loewner chain (ft)
starts with a conformal mapping onto the complex plane minus a Jordan
curve going to infinity and, thereafter, the family is obtained by erasing gra-
dually this curve. In this case, the ODE equation (1.2) assumes the following
form (see, e. g., [13, chapter III §2] or [12, chapter 3])

(1.4)
dw

dt
= −w κ(t) + w

κ(t) − w
,

where κ : [0,+∞) → R is a continuous function. The corresponding func-
tions ϕs,t = f−1

t ◦ fs map D onto D with a slit generated by a Jordan curve
starting from the boundary (see [11, Chapter 17]). These self-mappings of
the unit disk are normalized at the origin: ϕs,t(0) = 0, ϕ′

s,t(0) > 0. However,
in many applications, one find quite similar examples but where the natu-
ral normalization is at a boundary point of the unit disk. In this case, it is
possible to consider a real analogue of (1.4), the chordal Loewner equation
(see, e. g., [2, chapter IV §7]), which is traditionally written for the upper
half-plane U := {z : Im z > 0} instead of the unit disk D because there the
associated vector field assumes the simpler form

(1.5)
dw

dt
=

2

ξ(t) − w
, w(0) = z,

where ξ : [0,+∞) → R is a real-valued driving term. In this chordal context,
we could also talk again about driving terms, Loewner chains and evolution
families. In contrast to the chordal variant, classical Loewner theory is men-
tioned in the recent literature as the radial case.

The above chordal variant has been extended to cover a wider variety of
new situations. For instance, the relationship between some kind of what we
can name chordal Loewner chains and what deserves to be named chordal
evolution families has been considered by Goryainov and Ba in [17] and by
Bauer in [3].

A recent burst of interest in Loewner theory is due in part to the so-called
Schramm–Loewner evolution (SLE, also known as stochastic Loewner evolu-
tion), introduced in 2000 by Schramm [31]. SLE is an evolution model similar
to Loewner chains (namely, given by equation (1.4) or (1.5)) but with the
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driving term defined via a Brownian motion. In other words, it is a proba-
bilistic version of the previously known radial and chordal Loewner chains.
Both radial and chordal cases of SLE have important applications. In fact,
they turn out to be very useful tools for the study of conformally invari-
ant scaling limits of some classical statistical 2-dimensional lattice models,
see [20 – 24].

Some recent developments concerning the relationship between proper-
ties of the driving term and the geometry of solutions to (1.4) and (1.5) can
be found in [19, 26, 30].

1.3. Generalization of classical evolution families

The Loewner – Kufarev ODE (1.2) defines a holomorphic evolution in the
unit disk. That is, for any initial point z ∈ D and any starting instance
s ≥ 0, the solution w = w(t) to the initial value problem w(s) = z for
equation (1.2) is unique, exists for all t ≥ s, and the dependence of w(t) on z
reveals a holomorphic self-mapping of D. The same is true for the chordal
Loewner equation (1.5) and its generalizations when being rewritten for D.
Some natural questions arise: are there other examples of ODE with the
same property?, what is the most general form of such type of equations?, is
it possible to unify these holomorphic evolutions, bearing in mind the many
similarities between them?

The answer for the autonomous case (the vector field is of the form
dw/dt = G(w)) comes from the theory of one-parametric semigroups of
holomorphic functions (see the definition in Section 5). They have important
applications in the theory of operators acting on spaces of analytic functions
(see, e.g., [32, 33]) as well as in the theory of stochastic processes (see,
e.g., [15, 16]). Berkson and Porta [4] found the most general form of such a
function G, namely

G(z) = (τ − z)(1 − τz)p(z), z ∈ D,

where p is a holomorphic function in D with Re p(z) ≥ 0 and τ ∈ D (again
see Section 5 for more details).

However, in the non-autonomous case and as far as we know, there were
no satisfactory answers to the above questions before [5]. Certainly, a large
number of examples related to chordal and radial Loewner differential equa-
tions has been treated in the literature but, at the same time, one can also
find several (similar but different) notions playing the role of Loewner chains,
vector fields or, specially, evolution families. For instance, in [14] some classes
of holomorphic univalent self-mappings, closed with respect to composition,
are considered and evolution families within these classes are defined as two-
parametric families (ϕs,t)0≤s≤t continuous with respect to t ∈ [s,+∞) in the
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open-compact topology of Hol(D,C) for each s ≥ 0 and satisfying the al-
gebraic conditions (1.3). Moreover, in order to describe evolution families
by means of differential equations, an additional condition is also imposed:
namely, a certain functional applied to ϕ0,t is required to be (locally) ab-
solutely continuous with respect to t. It is worth comparing this approach
with the very classical case, where one can regard the equality ϕ′

0,t(0) = e−t

as a kind of additional condition ensuring differentiability in t.
As we have just partially said, answers to the above questions under very

general assumptions follow from results of the recent paper [5] by Bracci and
the first two authors of this paper. Taking the whole class of holomorphic
self-maps of D, they introduced a general notion of evolution family in the
unit disk which includes, as very particular cases, one-parametric semigroups
as well as all of those evolution families arising in Loewner theory, both for
the radial and chordal variants. Now we cite their definition. Note that the
functions ϕs,t are not assumed a priori to be univalent in D.

Definition 1.1. A family (ϕs,t)0≤s≤t<+∞ of holomorphic self-maps of the
unit disk is an evolution family of order d with d ∈ [1,+∞] (in short, an
Ld-evolution family) if

EF1. ϕs,s = idD ,

EF2. ϕs,t = ϕu,t ◦ ϕs,u for all 0 ≤ s ≤ u ≤ t < +∞ ,

EF3. for all z ∈ D and for all T > 0 there exists a non-negative function
kz,T ∈ Ld([0, T ],R) such that

∣∣ϕs,u(z) − ϕs,t(z)
∣∣ ≤ ∫ t

u

kz,T (ξ)dξ

for all 0 ≤ s ≤ u ≤ t ≤ T.

One of the main results of [5] is that any evolution family (ϕs,t) can be
obtained via solutions to an ODE of the form dw/dt = G(w, t). Moreover,
they characterize all the functions (or, in other words, all the vector fields) G
that generate evolution families. Indeed, these vector fields resembles a non-
autonomous (the variable t is present) version of the celebrated Berkson-
Porta representation theorem (see Section 2 for further definitions and full
statements of these results). Nevertheless, a one-to-one correspondence be-
tween evolution families and certain type of vector fields is established in
that paper. There, it is also explained how to recover the semigroup, radial
and chordal cases in this new framework. Indeed, the three authors were able
to formulate a similar theory of generalized evolution families for arbitrary
hyperbolic complex manifolds [6].
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In [5], the following natural question was implicitly left opened: is there
a generalized notion of Loewner chain which can be put in one-to-one cor-
respondence with those generalized evolution families or, equivalently, with
those generalized Berkson-Porta vector fields? In the next subsection, we
deal with this question presenting our main results about it.

1.4. Main results

As we mentioned in Section 1.1, the Loewner – Kufarev equation (1.2) ge-
nerates a special type of evolution families and there is a one-to-one corres-
pondence between such evolution families and classical Loewner chains.

In this paper we consider the analogous question for arbitrary evolution
families in the sense of Definition 1.1. First of all, we give a suitable definition
of Loewner chain for our general setting.

Definition 1.2. A family (ft)0≤t<+∞ of holomorphic maps of the unit disk
will be called a Loewner chain of order d with d ∈ [1,+∞] (in short, an
Ld-Loewner chain) if

LC1. each function ft : D → C is univalent,

LC2. fs(D) ⊂ ft(D) for all 0 ≤ s < t < +∞,

LC3. for any compact set K ⊂ D and all T > 0 there exists a non-negative
function kK,T ∈ Ld([0, T ],R) such that∣∣fs(z) − ft(z)

∣∣ ≤ ∫ t

s

kK,T (ξ)dξ

for all z ∈ K and all 0 ≤ s ≤ t ≤ T .

A Loewner chain (ft) will be said to be normalized if f0(0) = 0 and f ′
0(0) = 1

(notice that we only normalize the function f0).

Our main results concerning relations between Loewner chains and evo-
lution families are stated in the following three theorems.

Theorem 1.3. For any Loewner chain (ft) of order d ∈ [1,+∞], if we
define

ϕs,t := f−1
t ◦ fs, 0 ≤ s ≤ t,

then (ϕs,t) is an evolution family of the same order d. Conversely, for any
evolution family (ϕs,t) of order d ∈ [1,+∞], there exists a Loewner chain
(ft) of the same order d such that the following equation holds

(1.6) ft ◦ ϕs,t = fs, 0 ≤ s ≤ t.

Definition 1.4. A Loewner chain (ft) is said to be associated with an evo-
lution family (ϕs,t) if it satisfies (1.6).
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Remark 1.5. We will actually prove (see Lemma 3.2) that any Loewner
chain (ft) associated with an evolution family (ϕs,t) of order d ∈ [1,+∞]
must be of the same order d.

In general, for a fixed evolution family (ϕs,t), the algebraic equation (1.6)
does not define a unique Loewner chain. In fact, in some case, plenty of
different Loewner chains are associated with the same evolution family. The
following theorem gives necessary and sufficient conditions for the uniqueness
for a normalized Loewner chain associated with a given evolution family.

Theorem 1.6. Let (ϕs,t) be an evolution family. Then there exists a unique
normalized Loewner chain (ft) associated with (ϕs,t) such that ∪t≥0ft(D)
is either an Euclidean disk or the whole complex plane C. Moreover, the
following statements are equivalent:

(i) the family (ft) is the only normalized Loewner chain associated with
the evolution family (ϕs,t);

(ii) for all z ∈ D,

β(z) := lim
t→+∞

|ϕ′
0,t(z)|

1 − |ϕ0,t(z)|2 = 0;

(iii) there exist at least one point z ∈ D such that β(z) = 0;

(iv)
⋃
t≥0

ft(D) = C.

The Loewner chain (ft) in the above theorem will be called the standard
Loewner chain associated with the evolution family (ϕs,t).

In case of non-uniqueness (when conditions (i) – (iv) in Theorem 1.6 fail
to be satisfied), we provide an explicit formula expressing all the associated
normalized Loewner chains by means of the standard Loewner chain plus
some Riemann map. In some sense, this formula tell us that the evolution
procedures described by our Loewner chains are essentially unique up to a
choice of the simply connected domain they are located in. Denote by S the
class of all univalent holomorphic functions h in the unit disk D, normalized
by h(0) = h′(0) − 1 = 0.

Theorem 1.7. Suppose that under conditions of Theorem 1.6,

Ω :=
⋃
t≥0

ft(D) 
= C.

Then Ω = {z : |z| < 1/β(0)} and the set L[(ϕs,t)] of all normalized Loewner
chains (gt) associated with the evolution family (ϕs,t), is given by the formula

L[(ϕs,t)] =
{
(gt)t≥0 : gt(z) = h

(
β(0)ft(z)

)
/β(0), h ∈ S}

.
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In Section 2 we state some results from [5] along with the necessary
definitions. Moreover, we prove new statements concerning evolution fam-
ilies (see Definition 1.1), which we later use to obtain the main results of
the paper.

In Section 3 we reformulate and prove the theorems stated above.
Namely, Theorem 1.3 follows from Theorems 3.1 and 3.3, while Theo-
rems 1.6 and 1.7 follow from Theorem 3.6 and Proposition 3.4. Besides
that, in some cases we establish a necessary and sufficient condition (Theo-
rem 3.8) for a uniparametric family (ft)t≥0 of holomorphic (but not a priori
univalent) maps defined in D to be a normalized Loewner chain associated
with a given evolution family.

In Section 4 we find an analogue (Theorem 4.1) of the Loewner – Kufarev
PDE in this abstract context. We also show that there is a one-to-one corre-
spondence between our concept of generalized Loewner chain and the gen-
eralized Berkson-Porta vector fields shown in [5].

In Section 5 we consider the special case of evolution families induced by
semigroups of holomorphic functions in D. In particular, we show that the
uniqueness of the Kœnigs function is a consequence of Theorems 1.3 and 1.6.

2. Evolution families and Herglotz vector fields in the
unit disk

Here we collect some known and new statements on evolution families (see
Definition 1.1).

Let us first of all note that by [5, Corollary 6.3], given an evolution family
(ϕs,t), every function ϕs,t is univalent. The following statement turns out to
be also quite useful.

Lemma 2.1. [5, Lemma 3.6] Let (ϕs,t) be an evolution family in the unit
disk D of order d ∈ [1,+∞]. Then for each 0 < T < +∞ and 0 < r < 1,
there exists R = R(r, T ) < 1 such that

|ϕs,t(z)| ≤ R

for all 0 ≤ s ≤ t ≤ T and |z| ≤ r.

Any evolution family (ϕs,t) is differentiable almost everywhere with re-
spect to t. Besides the proof of this fact, a characterization of all vector fields
generating evolution families in the disk is established in [5]. In order to give
a strict statement of this result we need the following
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Definition 2.2. Let d ∈ [1,+∞]. A weak holomorphic vector field of order d
in the unit disk D is a function G : D × [0,+∞) → C with the following
properties:

WHVF1. For all z ∈ D, the function [0,+∞) � t �→ G(z, t) is measurable;

WHVF2. For all t ∈ [0,+∞), the function D � z �→ G(z, t) is holomorphic;

WHVF3. For any compact set K ⊂ D and all T > 0 there exists a non-
negative function kK,T ∈ Ld([0, T ],R) such that

|G(z, t)| ≤ kK,T (t)

for all z ∈ K and for almost every t ∈ [0, T ].

Moreover, we say that G is a (generalized) Herglotz vector field (of order d)
if for almost every t ∈ [0,+∞) it follows G(·, t) is the infinitesimal generator
of a semigroup of holomorphic functions (see Section 5 for further details
about semigroups of analytic functions and their infinitesimal generators).

Theorem 2.3. [5, Theorems 6.2, 5.2] For any evolution family (ϕs,t) of order
d ∈ [1,+∞] there exists an (essentially) unique Herglotz vector field G(z, t)
of order d such that for all z ∈ D,

(2.1)
∂ϕs,t(z)

∂t
= G(ϕs,t(z), t), a.e. t ∈ [0,+∞).

Conversely, for any Herglotz vector field G(z, t) of order d ∈ [1,+∞] there
exists a unique evolution family (ϕs,t) of order d such that (2.1) is satisfied.

Here by essential uniqueness we mean that two Herglotz vector fields
G1(z, t) and G2(z, t) corresponding to the same evolution family must coin-
cide for a.e. t ≥ 0.

Herglotz vector fields can be further characterized in similar terms of the
Berkson – Porta representation of infinitesimal generators.

Definition 2.4. Let d ∈ [1,+∞]. A Herglotz function of order d is a function
p : D × [0,+∞) → C with the following properties:

HF1. For all z ∈ D, the function [0,+∞) � t �→ p(z, t) ∈ C belongs to
Ldloc([0,+∞),C);

HF2. For all t ∈ [0,+∞), the function D � z �→ p(z, t) ∈ C is holomorphic;

HF3. For all z ∈ D and for all t ∈ [0,+∞), we have Re p(z, t) ≥ 0.
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Theorem 2.5. [5, Theorem 4.8] Let G(z, t) be a Herglotz vector field of
order d ∈ [1,+∞] in the unit disk. Then there exist an (essentially) unique
measurable function τ : [0,+∞) → D and a Herglotz function p(z, t) of order
d such that for all z ∈ D

(2.2) G(z, t) = (z − τ(t))(τ(t)z − 1)p(z, t), a.e. t ∈ [0,+∞).

Conversely, given a measurable function τ : [0,+∞) → D and a Herglotz
function p(z, t) of order d ∈ [1,+∞], equation (2.2) defines a Herglotz vector
field of order d.

There is thus an (essentially) one-to-one correspondence between evo-
lution families (ϕs,t) of order d ∈ [1,+∞], Herglotz vector fields G(z, t) of
order d, and couples (p, τ) of Herglotz functions p(z, t) of order d and mea-
surable functions τ : [0,+∞) → D. In what follows we say that the couple
(p, τ) is the Berkson – Porta data for (ϕs,t).

Now we state and prove some new assertions concerning evolution fami-
lies, which we use in the proof of the main results.

Denote by ACd(X, Y ), X ⊂ R, d ∈ [1,+∞], the class of all locally
absolutely continuous functions f : X → Y such that the derivative f ′

belongs to Ldloc(X).

Proposition 2.6. Let (ϕs,t) be an evolution family of order d ∈ [1,+∞].
Then the following statements hold:

1. For any compact set K ⊂ D and all T > 0 there exists a non-negative
function kK,T ∈ Ld([0, T ],R) such that

∣∣ϕs,u(z) − ϕs,t(z)
∣∣ ≤ ∫ t

u

kK,T (ξ)dξ

for all 0 ≤ s ≤ u ≤ t ≤ T and all z ∈ K.

2. For every z ∈ D the maps a(t) := ϕ0,t(z) and b(t) := ϕ′
0,t(z) belong to

ACd([0,+∞),C) and b(t) 
= 0 for all t ∈ [0,+∞).

Proof. By Theorem 2.3, there is a Herglotz vector field of order d such that
for all z ∈ D

∂ϕs,t(z)

∂t
= G(ϕs,t(z), t), a.e. t ∈ [0,+∞).

Proof of (1). Let K be a compact set in the unit disk and fix 0 < T < +∞.
By Lemma 2.1, there is R < 1 such |ϕs,t(z)| ≤ R for all z ∈ K and for all
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0 ≤ s ≤ t ≤ T . By the very definition of Herglotz vector field there exists a
non-negative function k ∈ Ld([0, T ],R) such that

(2.3) |G(z, t)| ≤ k(t)

for all |z| ≤ R and for almost every t ∈ [0, T ]. Therefore, statement (1) is
an easy consequence of the following inequalities

|ϕs,u(z) − ϕs,t(z)| =

∣∣∣∣
∫ t

u

∂ϕs,ξ(z)

∂ξ
dξ

∣∣∣∣ =

∣∣∣∣
∫ t

u

G(ϕs,ξ(z), ξ)dξ

∣∣∣∣ ≤
∫ t

u

k(ξ)dξ.

Proof of (2). From the very definition of Herglotz vector field, evolution
family of order d, and inequality (2.3) it follows that the map a belongs
to ACd([0,+∞),C). Moreover, since the functions ϕs,t are univalent [5,
Corollary 6.3], we have b(t) 
= 0 for all t. Fix T ∈ (0,+∞) and z ∈ D.
There is R < 1 such that |ϕ0,t(z)| < R for all t ∈ [0, T ]. Then there is
kR,T ∈ Ld([0, T ],R) such that

|G(w, t)| ≤ kR,T (t)

for all |w| ≤ R and for almost every t ∈ [0, T ]. Therefore,

|b′(t)| =

∣∣∣∣ 1

2π

∂

∂t

(∫
C(0,R)+

ϕ0,t(w)

w2
dw

)∣∣∣∣ =

∣∣∣∣ 1

2π

∫
C(0,R)+

∂

∂t

(
ϕ0,t(w)

w2

)
dw

∣∣∣∣
=

∣∣∣∣ 1

2π

(∫
C(0,R)+

G(ϕ0,t(w), t)

w2
dw

)∣∣∣∣ ≤ 1

R
kR,T (t)

for almost every t ∈ [0, T ], where C(0, R)+ stands for the positively oriented
circle of radius R centered at the point z = 0. This implies that b belongs
to ACd([0,+∞),C) and therefore completes the proof. �

It appears to be useful to consider evolution families that consists of
automorphisms of D. The following example is the most general form of
such evolution families.

Example 2.7. Take two functions a, b ∈ ACd([0,+∞),C) with |a(t)| < 1
and |b(t)| = 1 for all t and write

ht(z) :=
b(t)z + a(t)

1 + b(t)a(t)z
for all t ≥ 0 and all z ∈ D.

Then (ht ◦ h−1
s ) and (h−1

t ◦ hs) are evolution families of order d. Indeed, it
is clear that both families of functions satisfy EF1 and EF2. Moreover, for
any T < +∞ and z ∈ D there exists R < 1 such that

|h−1
s (z)| =

∣∣∣∣∣b(s) z − a(s)

1 − a(s)z

∣∣∣∣∣ ≤ R, 0 ≤ s ≤ T.
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Denote w = h−1
s (z). Then we have

|ht ◦ h−1
s (z) − hu ◦ h−1

s (z)| = |ht(w) − hu(w)|

=

∣∣∣∣∣ b(t)w + a(t)

1 + b(t)a(t)w
− b(u)w + a(u)

1 + b(u)a(u)w

∣∣∣∣∣
≤ 1

(1 − R)2
(|b(t) − b(u)| + |a(u)a(t)b(u) − a(t)a(u)b(t)| + 2|a(t) − a(u)|)

≤ 1

(1 − R)2
(|b(t) − b(u)| + |a(u)b(u) − a(t)b(t)| + 3|a(t) − a(u)|)

for all 0 ≤ s ≤ u ≤ t ≤ T . Using the hypothesis on a and b, we deduce that
the function ab belongs to ACd([0,+∞),C). This fact, the above inequali-
ties, and again the hypothesis on a and b imply that the family (ht ◦ h−1

s )
satisfies EF3. Similarly, the family (h−1

t ◦ hs) satisfies EF3 as well.

The following lemma allows us to transform evolution families by means
of time-dependent changes of variable in the unit disk.

Lemma 2.8. Let (ψs,t) be an evolution family of order d ∈ [1,+∞] and
take two functions a ∈ ACd([0,+∞),D) and b ∈ ACd([0,+∞), ∂D). Write
ϕs,t = ht ◦ ψs,t ◦ h−1

s and ϕ̃s,t = h−1
t ◦ ψs,t ◦ hs, where

ht(z) :=
b(t)z + a(t)

1 + b(t)a(t)z
for all t ≥ 0 and all z ∈ D.

Then (ϕs,t) and (ϕ̃s,t) are evolution families of order d.

Proof. We present the proof for the family (ϕs,t) and leave to the reader
the one for the family (ϕ̃s,t) which is quite similar.

It is clear that the functions (ϕs,t) satisfy properties EF1 and EF2. So
we just have to prove that this family of functions satisfy EF3.

Notice that, by Example 2.7, (ht ◦ h−1
s ) is an evolution family. Fix z ∈ D

and T ∈ (0,∞). By Lemma 2.1 and the continuity of the functions a and b,
there exists a number R < 1 such that

|ψs,t ◦ h−1
s (z)| ≤ R and |ϕs,t(z)| = |ht ◦ ψs,t ◦ h−1

s (z)| ≤ R

for all 0 ≤ s ≤ t ≤ T . Therefore, by Proposition 2.6 applied to the evolution
families (ht ◦ h−1

s ) and (ψs,t), there are two functions k1, k2 ∈ Ld([0, T ],R)
such that

(2.4)
|ψs,u(w) − ψs,t(w)| ≤

∫ t

u

k1(ξ)dξ and

|hu ◦ h−1
s (w) − ht ◦ h−1

s (w)| ≤
∫ t

u

k2(ξ)dξ
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for all 0 ≤ s ≤ u ≤ t ≤ T and whenever |w| ≤ R. Moreover, there is a
positive number M such that

(2.5) |ht(w1) − ht(w2)| ≤M |w1 − w2|
whenever t ∈ [0, T ] and |w1|, |w2| ≤ R. Now, let us fix 0 ≤ s ≤ u ≤ t ≤ T
and write z1 = ψs,u(h

−1
s (z)) and z2 = hu(z1). Note that |z1|, |z2| ≤ R. The

following chain of inequalities (where we use (2.4) and (2.5)) allows us to
complete the proof

|ϕs,t(z) − ϕs,u(z)| = |ϕu,t(ϕs,u(z)) − ϕs,u(z)| = |ht ◦ ψu,t(z1) − hu(z1)|
≤ |ht ◦ ψu,t(z1) − ht(z1)| + |ht(z1) − hu(z1)|
≤ M |ψu,t(z1) − z1| + |ht(z1) − hu(z1)|
= M |ψu,t(z1) − ψu,u(z1)| + |ht ◦ h−1

u (z2) − hu ◦ h−1
u (z2)|

≤
∫ t

u

(Mk1(ξ) + k2(ξ))dξ.
�

Now we use Lemma 2.8 in order to establish a kind of decomposition for
a given evolution family.

Proposition 2.9. Let (ϕs,t) be an evolution family of order d ∈ [1,+∞].
Then there exist unique a ∈ ACd([0,+∞),D), b ∈ ACd([0,+∞), ∂D), and
ψs,t : D → D, 0 ≤ s ≤ t < +∞, such that the following assertions hold

1. a(0) = 0, b(0) = 1,

2. (ψs,t) is an evolution family of order d such that ψs,t(0) = 0 and
ψ′
s,t(0) > 0 for all 0 ≤ s ≤ t,

3. ϕs,t = ht ◦ ψs,t ◦ h−1
s for all 0 ≤ s ≤ t < +∞, where

ht(z) :=
b(t)z + a(t)

1 + b(t)a(t)z
, t ≥ 0, z ∈ D.

Proof. Write a(t) = ϕ0,t(0) and b(t) =
ϕ′

0,t(0)

|ϕ′
0,t(0)| . By Proposition 2.6, a ∈

ACd([0,+∞),D) and b ∈ ACd([0,+∞), ∂D). Now define ht as in the state-
ment of the proposition and take ψs,t = h−1

t ◦ ϕs,t ◦ hs. Notice that h0 is the
identity, ht(0) = a(t) and h′t(0) = b(t)(1−|a(t)|2). By Lemma 2.8, the family
(ψs,t) is an evolution family of order d. Moreover, from the very definition of
a it follows that ψ0,t(0) = 0 for all t. Using EF2, we deduce that ψs,t(0) = 0

for all s ≤ t. In a similar way, we show that ψ′
0,t(0) =

|ϕ′
0,t(0)|

1−|a(t)|2 > 0 for all t

and then ψ′
s,t(0) > 0 for all 0 ≤ s ≤ t.
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The uniqueness is clear because from the equality ϕs,t = ht ◦ ψs,t ◦ h−1
s

we deduce that a(t) = ht(0) = ht(ψ0,t(0)) = ϕ0,t(0), b(t) =
ϕ′

0,t(0)

|ϕ′
0,t(0)| (which

defines the functions ht uniquely) and ψs,t = h−1
t ◦ϕs,t ◦hs. The proof is now

complete. �
The following result gives the converse of Proposition 2.6(2).

Proposition 2.10. Let (ϕs,t) be a family of holomorphic self-maps of D.
Suppose that conditions EF1 and EF2 are fulfilled. Then condition EF3 is
equivalent to the following condition:

EF4. The maps a(t) := ϕ0,t(0) and b(t) := ϕ′
0,t(0) belong to ACd([0,+∞),C)

and b(t) 
= 0 for all t ∈ [0,+∞).

Proof. By Proposition 2.6 any evolution family satisfies EF4.
Let (ϕs,t) be a family of holomorphic self-maps of the unit disk satisfy-

ing EF1, EF2, and EF4. Write

ht(z) :=
b0(t)z + a(t)

1 + b0(t)a(t)z
for all t ≥ 0 and all z ∈ D,

where b0(t) = b(t)/|b(t)|. Define ψs,t = h−1
t ◦ ϕs,t ◦ hs for all 0 ≤ s ≤ t <

+∞. It is clear that the family (ψs,t) satisfies EF1, EF2, ψs,t(0) = 0, and
ψ′

0,t(0) = |b(t)|/(1 − |a(t)|2) for all 0 ≤ s ≤ t. Using [5, Theorem 7.3] with
τ = z0 = 0 in that statement, we deduce that (ψs,t) is an evolution family
of order d. Finally, we just have to apply Lemma 2.8 to deduce that (ϕs,t)
is also an evolution family of order d. �

3. Loewner chains and evolution families

In this section we reformulate and prove our main results connecting evo-
lution families with Loewner chains in a way similar to the one given in
classical Loewner theory.

First of all we prove that any Loewner chain of order d ∈ [0,+∞] gener-
ates an evolution family of the same order.

Theorem 3.1. Let (ft) be a Loewner chain of order d ∈ [1,+∞]. Set

ϕs,t(z) := f−1
t (fs(z)), z ∈ D, 0 ≤ s ≤ t.

Then (ϕs,t) is a well-defined evolution family of order d in the unit disk and
(trivially) satisfies the equality

ft(ϕs,t(z)) = fs(z), z ∈ D, 0 ≤ s ≤ t.
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Proof . The proof of this theorem is quite long so we have divided it into
several steps of independent interest on their own. In what follows, Ωt :=
ft(D), t ≥ 0. We also comment that ins Γ will denote the interior of a Jordan
curve Γ and N(g,Γ) stands for the number of zeros (counting multiplicity),
inside a rectifiable Jordan curve Γ contained in D, of a holomorphic map g
defined in the whole unit disk. Finally, by ind(Γ, ξ) we denote the index of
a closed rectifiable curve Γ with respect to a point ξ, and D(ξ, r) := {z ∈
C : |z − ξ| < r}.

[Step 1] For every t ≥ 0 and every ω ∈ Ωt, there exist ε > 0, δ > 0 and a
rectifiable Jordan curve γ with γ ∪ ins γ ⊂ D such that the following
“locally uniform formula for the inverses” holds:

f−1
u (w) =

1

2πi

∫
γ

ξf ′
u(ξ)

fu(ξ) − w
dξ,

whenever u ∈ [t− δ, t+ δ] ∩ [0,+∞) and w ∈ D(ω, ε).

Fix t ≥ 0 and ω ∈ Ωt. Denote z0 := f−1
t (ω) ∈ D and choose any r ∈

(|z0|, 1) and R ∈ (r, 1). Consider the complex domain Dt := ft(D(0, r)) ⊂ Ωt

and define γ as the positively oriented circle of radius R centered at the
origin. Since ft is univalent, it follows from the Argument Principle that for
each w ∈ Dt,

1

2πi

∫
γ

f ′
t(ξ)

ft(ξ) − w
dξ = N(ft − w, γ) = 1.

Note that
inf

{|w − ft(z)| : w ∈ Dt, |z| = R
}
> 0,

because r < R and ft is continuous and univalent in D. Moreover, by prop-
erty LC3, we know that fs → ft uniformly on D(0, R) as s→ t. This implies
the existence of a number δ0 > 0 such that

inf{|w − fu(z)| : w ∈ Dt, |z| = R} > 0,

for all non-negative u ∈ [t− δ0, t+ δ0]. In particular, this allows to consider,
for every w ∈ Dt and every non-negative u ∈ [t − δ0, t+ δ0], the Argument
Principle formula

1

2πi

∫
γ

f ′
u(ξ)

fu(ξ) − w
dξ = N(fu − w, γ).

Again, using property LC3 and the Weierstrass Theorem, we conclude that

lim
u→t

sup {|N(fu − w, γ) − 1| : w ∈ Dt} = 0.
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But N(fu − w, γ) can take only integer values, so there exists δ1 ∈ (0, δ0)
such that

sup {|N(fu − w, γ) − 1| : w ∈ Dt} = 0,

whenever u ∈ [t− δ1, t+ δ1]∩ [0,+∞). In other words, we have showed that

N(fu − w, γ) = 1, when u ∈ [t− δ1, t+ δ1] ∩ [0,+∞) and w ∈ Dt.

At this point, we fix u ∈ [t− δ1, t+ δ1] and w ∈ Dt. Our idea is to apply
now the generalized Argument Principle for the couple (id, fu −w) and the
rectifiable closed curve γ (see, e. g., [10, p. 124, chapter V, Theorem 3.6]).
Namely, recalling that fu−w is analytic in the unit disk with a unique zero
(denoted by f−1

u (w)) which is contained in ins γ, we deduce that

1

2πi

∫
γ

id(ξ)
f ′
u(ξ)

fu(ξ) − w
dξ = id(f−1

u (w))N(fu − w, γ) = f−1
u (w).

In order to finish the proof of Step 1 it is enough to define ε as the
distance between ω and the boundary of Dt, which is positive since Dt is
open and ω ∈ Dt by construction.

[Step 2] For any r ∈ (0, 1) and any T > 0, we have that

sup
{|(f−1

t ◦ fs)(z)| : 0 ≤ s ≤ t ≤ T, |z| ≤ r
}
< 1.

Fix r ∈ (0, 1) and T > 0 and suppose that the above supremum is 1.
Then, there exist sequences (sn), (tn) and (zn) such that:

(a) for all n ∈ N, 0 ≤ sn ≤ tn ≤ T, |zn| ≤ r,

(b) the following limits exist s := limn sn, t := limn tn, z0 := limn zn, β :=
limn(f

−1
tn ◦ fsn)(zn), and

(c) 0 ≤ s ≤ t ≤ T, |z0| ≤ r, β ∈ ∂D.

We note that fs(z0) ∈ Ωs ⊂ Ωt and limn fsn(zn) = fs(z0). Therefore,
by [Step 1], there exist ε > 0, δ > 0 and a Jordan curve γ with γ∪ ins γ ⊂ D

such that

f−1
u (w) =

1

2πi

∫
γ

ξf ′
u(ξ)

fu(ξ) − w
dξ,

whenever u ∈ [t − δ, t + δ] ∩ [0,+∞) and w ∈ D(fs(z0), ε). In particular,
for n large enough, we have that

f−1
tn (fsn(zn)) =

1

2πi

∫
γ

ξf ′
tn(ξ)

ftn(ξ) − fsn(zn)
dξ.
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Clearly, by property LC3 and the above formula

f−1
tn (fsn(zn)) =

1

2πi

∫
γ

ξf ′
tn(ξ)

ftn(ξ) − fsn(zn)
dξ

−→ 1

2πi

∫
γ

ξf ′
t(ξ)

ft(ξ) − fs(z0)
dξ = f−1

t (fs(z0))

as n→ +∞. Since f−1
t (fs(z0)) ∈ D, we obtain a contradiction, which finishes

the proof of Step 2.

[Step 3] Let γ : [a, b] → C be a rectifiable curve in D and T > 0. Then, for
all t ∈ [0, T ], the curve

γt : [a, b] → C, ξ �→ ft(γ(ξ)) ∈ Ωt

is a well-defined rectifiable curve in Ωt. Moreover,

sup{len(γt) : t ∈ [0, T ]} < +∞,

where, as usual, len(γt) denotes the length of γt.

The fact that γt is a well-defined rectifiable curve is widely known. So,
suppose that the above supremum is +∞. In this case, there exists a sequence
(tn) in the interval [0, T ] such that limn tn = t ∈ [0, T ] and limn len(γtn) =
+∞. However, the well-known estimate

len(γtn) ≤ len(γ) max{|f ′
tn(ξ)| : ξ ∈ γ},

shows (recall that γ is a compact set) that there exists a subsequence (znk
)

in the curve γ converging to some z0 ∈ γ such that limk f
′
tnk

(znk
) = ∞. How-

ever, by property LC3 and Weierstrass’ Theorem, we deduce limk f
′
tnk

(znk
) =

f ′
t(z0), obtaining in this way a contradiction.

[Step 4] In this step we will finally prove the theorem.

By properties LC1 and LC2, we see that the functions

ϕs,t(z) := f−1
t (fs(z)), z ∈ D, 0 ≤ s ≤ t

are well-defined and, indeed, ϕs,t ∈ Hol(D,D), for any 0 ≤ s ≤ t. Hence,
(ϕs,t) will be an evolution family of order d if we are able to prove properties
EF1, EF2, and EF3. The first two properties follow easily from the way we
have defined the family (ϕs,t). The third property is more difficult to prove.
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We fix z ∈ D and T > 0. By [Step 2], there exists R1 := R1(z, T ) ∈ (0, 1)
such that

sup{|ϕa,b(z)| : 0 ≤ a ≤ b ≤ T} ≤ R1.

Applying again [Step 2], we obtain another R2 := R2(z, T ) ∈ (0, 1) such
that R2 > R1 and

sup{|ϕa,b(ξ)| : 0 ≤ a ≤ b ≤ T, |ξ| ≤ R1} < R2.

Additionally, we denote by γ the positively oriented circle of radius R2 cen-
tered at the origin. As in [Step 3], we also consider the rectifiable curves
γt := ft ◦ γ, which are Jordan curves due to the univalence of ft.

Now, assume that 0 ≤ s ≤ u ≤ t ≤ T. Then, using property EF2, we
obtain

|ϕs,u(z) − ϕs,t(z)| = |ϕs,u(z) − ϕu,t(ϕs,u(z))| ≤ sup{|ϕu,t(ξ) − ξ| : |ξ| ≤ R1}.

But, for any |ξ| ≤ R1, we have that |f−1
t (fu(ξ))| < R2, so fu(ξ) ∈ ft(ins γ).

Applying [28, Lemma 1.1], we see that fu(ξ) ∈ ins γt. The same argument
shows that ft(ξ) ∈ ins γt. Therefore, using the Cauchy Integral Formula, for
all |ξ| ≤ R1 we get∣∣f−1

t (fu(ξ)) − ξ
∣∣ =

∣∣f−1
t (fu(ξ)) − f−1

t (ft(ξ))
∣∣

=

∣∣∣∣ ind(γt, fu(ξ))

2πi

∫
γt

f−1
t (η)dη

η − fu(ξ)
− ind(γt, ft(ξ))

2πi

∫
γt

f−1
t (η)dη

η − ft(ξ)

∣∣∣∣
≤ 1

2π
|fu(ξ) − ft(ξ)|

∣∣∣∣
∫
γt

f−1
t (η)

(η − fu(ξ))(η − ft(ξ))
dη

∣∣∣∣ .
We claim that

l = l(z, T ) := inf{|ft(a) − fu(b)| : 0 ≤ u ≤ t ≤ T, |a| = R2, |b| ≤ R1} > 0.

Therefore, recalling that f−1
t (Ωt) ⊂ D and using the above estimation, we

have ∣∣f−1
t (fu(ξ)) − ξ

∣∣ ≤ 1

2π
|fu(ξ) − ft(ξ)| 1

l2
len(γt).

Now, by [Step 3], there exists C = C(z, T ) > 0 such that

sup{len(γt) : t ∈ [0, T ]} ≤ C,

so

|ϕs,u(z) − ϕs,t(z)| ≤ C

2πl2
sup{|fu(ξ) − ft(ξ)| : |ξ| ≤ R1}.
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Finally, by property LC3 with K := D(0, R1), there exists a non-negative
function kz,T ∈ Ld([0, T ]; R) such that

|ϕs,u(z) − ϕs,t(z)| ≤ C

2πl2

∫ t

u

k(η)dη.

Now it remains to prove that l > 0. Suppose on the contrary that l = 0.
Then, there exist sequences (an), (bn), (un) and (tn) such that:

(a) for all n ∈ N, 0 ≤ un ≤ tn ≤ T, |an| = R2, |bn| ≤ R1,

(b) there exist the following limits u := limn un, t := limn tn, a := limn an,
b := limn bn,

(c) 0 ≤ u ≤ t ≤ T, |a| = R2, |b| ≤ R1, and

(d) ftn(an) − fun(bn) → 0 as n→ +∞.

By property LC3, we know that (fun) and (ftn) tends to fu and ft, respec-
tively, in the compact-open topology of Hol(D,C). Therefore, by (b) and (d),
we conclude that fu(b) = ft(a). However, using (c) from the definition of the
Jordan curves γ and γt it is clear that a ∈ γ and ft(a) ∈ ft ◦ γ = γt. At the
same time, |b| ≤ R1. So by the choice of R2 we find that |f−1

t (fu(b))| < R2.
Thus, fu(b) ∈ ft(ins γ) = ins γt by [28, Lemma 1.1]. Obviously γt∩ins γt = ∅,
so we have a contradiction, which finishes the proof. �

The following lemma shows that if an evolution family has order
d ∈ [1,+∞], then any Loewner chain associated with it is also of or-
der d. From another point of view, the next lemma shows that the algebraic
equation (1.6) implies indirectly conditions LC2 and LC3.

Lemma 3.2. Let (ϕs,t) be an evolution family of order d ∈ [1,+∞]. Assume
that for all t ≥ 0 the function ft : D → C is univalent and

ft ◦ ϕs,t = fs, 0 ≤ s ≤ t < +∞.

Then the family (ft) is a Loewner chain of order d.

Proof. Let K be a compact subset of D and T > 0. By Lemma 2.1, there
exists R1 ∈ (0, 1) such that |ϕs,t(z)| ≤ R1 for all z ∈ K whenever 0 ≤ s ≤
t ≤ T . Write R2 = (1+R1)/2. Again by Lemma 2.1, there exists R3 ∈ (0, 1)
such that |ϕs,t(z)| ≤ R3 for all |z| = R2 and all 0 ≤ s ≤ t ≤ T . Since the
function fT is continuous, there is a positive constant M such that

|ft(ξ)| = |fT (ϕt,T (ξ))| ≤M

for all t ≤ T and any complex number ξ with |ξ| = R2.
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Fix z ∈ K and 0 ≤ s ≤ t ≤ T . We have

fs(z) − ft(z) = ft(ϕs,t(z)) − ft(z)

=
1

2πi

∫
C(0,R2)+

(
ft(ξ)

ξ − ϕs,t(z)
− ft(ξ)

ξ − z

)
dξ

=
1

2πi

∫
C(0,R2)+

(
ft(ξ)(ϕs,t(z) − z)

(ξ − ϕs,t(z))(ξ − z)

)
dξ

=
ϕs,t(z) − z

2πi

∫
C(0,R2)+

(
ft(ξ)

(ξ − ϕs,t(z))(ξ − z)

)
dξ.

Therefore,

|fs(z) − ft(z)| =

∣∣∣∣ϕs,t(z) − z

2πi

∫
C(0,R2)+

(
ft(ξ)

(ξ − ϕs,t(z))(ξ − z)

)
dξ

∣∣∣∣
≤ R2

M

(R2 − R1)2
|ϕs,t(z) − z|

for all z ∈ K and 0 ≤ s ≤ t ≤ T . Now the conclusion of the lemma easily
follows from the last inequality. �

Now we prove the existence of a Loewner chain associated with a given
evolution family.

Theorem 3.3. Let (ϕs,t) be an evolution family of order d ∈ [1,+∞]. Then
there exists a normalized Loewner chain (ft) of order d associated with the
evolution family (ϕs,t) such that the set Ω := ∪t≥0ft(D) coincides with the
disk {z : |z| < 1/β} if β > 0 and with the whole complex plane C if β = 0,
where

β = lim
t→+∞

|ϕ′
0,t(0)|

1 − |ϕ0,t(0)|2 .

Proof. By Proposition 2.9 we have ϕs,t = ht ◦ ψs,t ◦ h−1
s , where (ψs,t) is an

evolution family such that ψs,t(0) = 0 and ψ′
s,t(0) > 0 for all t ≥ s ≥ 0,

and ht is a conformal automorphism of D for each t ≥ 0, with h0 being the
identity map.

Now we build the Loewner chain for the evolution family (ψs,t) and then
a simple argument will allow us to finish the proof.

By Theorems 2.3 and 2.5, there exist a measurable function τ :
[0,+∞) → D and a Herglotz function p(z, t) of order d such that for
all z ∈ D and all s ≥ 0,

(3.1)
∂ψs,t(z)

∂t
= (ψs,t(z)− τ(t))(τ(t)ψs,t(z)− 1)p(ψs,t(z), t) a.e. t ∈ [0,+∞).
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Since ψs,t(0) = 0, ψ′
s,t(0) > 0, t ≥ s ≥ 0, we conclude that τ(t) ≡ 0. In this

case, one can rewrite equation (3.1) in the form

(3.2)
∂ψs,t(z)

∂t
= −ψs,t(z)p(ψs,t(z), t).

We will show that the functions

(3.3) gs(z) := lim
t→+∞

ψs,t(z)

ψ′
0,t(0)

,

where the limit is attained uniformly on compact subsets of the unit disk,
form a Loewner chain associated with (ψs,t). Our proof of the existence of
that limit follows the approach given in [28, Chapter 6]. However, for the
sake of clearness and completeness, we include the details.

Assume for a moment that such a limit does exist. Then g′s(0) :=

limt→+∞
ψ′

s,t(0)

ψ′
0,t(0)

= 1
ψ′

0,s(0)
> 0. Moreover, since all the functions ψs,t are uni-

valent [5, Corollary 6.3], we conclude that the function gs is univalent for
all s ≥ 0. Moreover, by construction

gt◦ψs,t(z) = lim
u→+∞

ψt,u(ψs,t(z))

ψ′
0,u(0)

= lim
u→+∞

ψs,u(z)

ψ′
0,u(0)

= gs(z), 0 ≤ s ≤ t < +∞.

Therefore, by Lemma 3.2, the family (gt) is a Loewner chain of order d
associated with (ψs,t). Also, it is clear that it is a normalized Loewner chain.

Therefore, we have only to prove the existence of (3.3).
By [5, Proof of Theorem 7.1], for all z ∈ D and t > s ≥ 0,

(3.4) ψs,t(z) = z exp

(
−

∫ t

s

p(ψs,ξ(z), ξ)dξ

)
.

Write Λs,t(z) :=
∫ t

s
(p(0, ξ) − p(ψs,ξ(z), ξ)) dξ. Notice that

ψ′
s,t(0) = exp

(
−

∫ t

s

p(0, ξ)dξ

)
> 0.

Therefore,

(3.5)
ψs,t(z)

ψ′
0,t(0)

= z exp

(∫ s

0

p(0, ξ)dξ

)
exp (Λs,t(z)) .

Now in order to prove the existence of the limit (3.3), it is sufficient to show
that Λs,t has a limit as t → +∞ which is attained uniformly on compact
subsets of the unit disk.
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By property EF2, we have that ψ′
0,t(0) = ψ′

s,t(0)ψ′
0,s(0) ≤ ψ′

0,s(0), because
ψs,t(0) = 0 and ψs,t(D) ⊆ D. That is

∂ψ′
0,t(0)

∂t
≤ 0, a.e. t ∈ [0,+∞).

Since

∂ψ′
0,t(0)

∂t
= −p(0, t) exp

(
−

∫ t

s

p(0, ξ)dξ

)
=−p(0, t)ψ′

s,t(0), a.e. t ∈ [0,+∞),

we conclude that p(0, t) ≥ 0 for a.e. t ∈ [0,∞).

When Re p(·, ξ) > 0 (otherwise, p(·, ξ) is constant), necessarily p(0, ξ) > 0

and the holomorphic map z �→ p(z,ξ)−p(0,ξ)
p(z,ξ)+p(0,ξ)

sends the unit disk into itself and

fixes the origin. Then

|p(z, ξ) − p(0, ξ)| ≤ |z|
∣∣∣p(z, ξ) + p(0, ξ)

∣∣∣ ≤ |z||p(z, ξ)| + |z||p(0, ξ)|

≤ |z|1 + |z|
1 − |z| |p(0, ξ)|+ |z||p(0, ξ)| =

2 |z|
1 − |z|p(0, ξ),

where we have used [28, pages 39-40]. Therefore, by [28, Theorem 1.6], we
have

|p(ψs,ξ(z), ξ) − p(0, ξ)| ≤ 2 |ψs,ξ(z)|
1 − |ψs,ξ(z)|p(0, ξ) ≤

2 |ψs,ξ(z)|
1 − |z| p(0, ξ)

≤ 2
∣∣ψ′

s,ξ(0)
∣∣

(1 − |z|)3
p(0, ξ) =

2 exp
(
− ∫ ξ

s
p(0, u)du

)
(1 − |z|)3

p(0, ξ).

Now, we can bound the function Λs,·(z):

|Λs,t(z)−Λs,u(z)| ≤
∫ t

u

|p(0, ξ) − p(ψs,ξ(z), ξ)| dξ

≤ 2

(1 − |z|)3

∫ t

u

exp

(
−

∫ ξ

0

p(0, u)du

)
p(0, ξ)dξ

=
2

(1 − |z|)3

∫ t

u

∂

∂ξ

[
− exp

(
−

∫ ξ

0

p(0, u)du

)]
dξ

=
2

(1 − |z|)3

[
exp

(
−

∫ u

0

p(0, ξ)dξ

)
− exp

(
−

∫ t

0

p(0, ξ)dξ

)]
.

Finally, from these last inequalities and the fact that

lim
t→+∞

exp

(
−

∫ t

0

p(0, ξ)dξ

)
∈ [0, 1]

(recall that p(0, ξ) ≥ 0 for a.e. ξ ∈ [0,+∞)), we conclude that the limit (3.3)
does exist.
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Now we consider the family ft = gt ◦h−1
t . It easy to see that (ft) satisfies

the hypothesis of Lemma 3.2 and hence it is a Loewner chain of order d
associated with (ϕs,t). Since f0 = g0, the Loewner chain (ft) is normalized.

Now, let us describe the set Ω = ∪t≥0ft(D) = ∪t≥0gt(D). An easy com-

putation shows ψ′
0,t(0) =

|ϕ′
0,t(0)|

1−|ϕ0,t(0)|2 . In particular, since the map t �→ ψ′
0,t(0)

is monotone, the number

β = lim
t→+∞

|ϕ′
0,t(0)|

1 − |ϕ0,t(0)|2
is well-defined.

In view of the equality g′t(0) = 1/ψ′
0,t(0), Koebe’s theorem shows that

gt(D) contains a disk of radius 1/(4ψ′
0,t(0)) centered at the origin. In partic-

ular, if β = 0, then ∪t≥0gt(D) = C.
Suppose now that β > 0. We have proved that in this case ψs,t has

a limit ψs as t → +∞. Note that ψ′
s(0) = β/ψ′

0,s(0) → 1 as s → +∞,
while ψs(D) ⊂ D and ψs(0) = 0. It follows that ψs → idD as s → +∞.
Then gs tends to the mapping z �→ z/β as s → +∞ locally uniformly
in D. Since gs(D) forms an increasing family of domains, it follows that
∪s≥0gs(D) = {z : |z| < 1/β}.

The proof is now finished. �
In the above proof we have obtained that the function β : [0,+∞) →

(0, 1] given by

β(t) :=
1

1 − |ϕ0,t(0)|2 |ϕ
′
0,t(0)| for all t ≥ 0, z ∈ D

is non-increasing and, as a consequence, the following limit exist

β := lim
t→+∞

β(t) ∈ [0, 1].

This number will play a crucial role in the study of uniqueness of Loewner
chains associated with the evolution family (ϕs,t). For this reason, in the
next proposition we analyze in full generality the above limit.

Proposition 3.4. Let (ϕs,t) be an evolution family of order d ∈ [1,+∞] and
define

βz(t) :=
1 − |z|2

1 − |ϕ0,t(z)|2 |ϕ
′
0,t(z)| for all t ≥ 0, z ∈ D.

Then

1. For all z ∈ D, the map βz : [0,+∞) → (0, 1] is absolutely continuous
and non-increasing. In particular, there exists the following limit

β(z) := lim
t→+∞

βz(t).
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2. The following assertions are equivalent:

(a) There exists z ∈ D such that β(z) = 0.

(b) For all z ∈ D we have β(z) = 0.

3. The following assertions are equivalent:

(a) There exists z ∈ D with β(z) = 1.

(b) For all z ∈ D, we have β(z) = 1.

(c) For all t ≥ 0, the map ϕ0,t is an automorphism.

(d) For all 0 ≤ s ≤ t, the map ϕs,t is an automorphism.

4. If there is z ∈ D such that β(z) < 1, then there is T ∈ [0,+∞) such
that ϕ0,t is an automorphism for all 0 ≤ t ≤ T and ϕ0,t is not an
automorphism for all t > T.

Proof . By Proposition 2.9 we have ϕs,t = ht ◦ ψs,t ◦ h−1
s , where (ψs,t) is

an evolution family such that ψs,t(0) = 0 and ψ′
s,t(0) > 0 for all t ≥ 0,

and ht is a conformal automorphism of D for each t ≥ 0, with h0 being the
identity map.

One can check that

βz(t) :=
1 − |z|2

1 − |ϕ0,t(z)|2 |ϕ
′
0,t(z)| =

1 − |z|2
1 − |ψ0,t(z)|2ψ

′
0,t(z) for all t ≥ 0, z ∈ D.

Proof of (1). The absolute continuity of the function βz is just an easy
consequence of Proposition 2.6.

Denote by ρ̃D the pseudo-hyperbolic distance in the unit disk. Since any
holomorphic self-map of the unit disk is a contraction for ρ̃D, given s < t
and z, w ∈ D, we have

ρ̃D(ϕ0,t(w), ϕ0,t(z)) = ρ̃D(ϕs,t(ϕ0,s(w)), ϕs,t(ϕ0,s(z))) ≤ ρ̃D(ϕ0,s(w), ϕ0,s(z)).

That is ∣∣∣∣∣ ϕ0,t(w) − ϕ0,t(z)

1 − ϕ0,t(w)ϕ0,t(z)

∣∣∣∣∣ ≤
∣∣∣∣∣ ϕ0,s(w) − ϕ0,s(z)

1 − ϕ0,s(w)ϕ0,s(z)

∣∣∣∣∣ .
Dividing by |w − z| (w 
= z) and taking limits as w → z, we deduce that

|ϕ′
0,t(z)|

1 − |ϕ0,t(z)|2 ≤ |ϕ′
0,s(z)|

1 − |ϕ0,s(z)|2 .

Thus βz(t) ≤ βz(s) for all 0 ≤ s < t < +∞.
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Proof of (2). Notice that we know that the number β(0) = limt→+∞ ψ′
s,t(0)

is well defined. Moreover, the family of functions (ψ0,t)t≥0 is normal. So there
is a sequence (tn) → +∞ such that the limit f(z) = limn ψ0,tn(z) exists for all
z ∈ D and it is attained uniformly on compact subsets of D. The function
f is either constant or univalent in D, with f(0) = 0 and f ′(0) = β(0).
Therefore f vanishes identically if and only if β(0) = 0. Otherwise, f is
univalent and f ′(z) 
= 0 for all z ∈ D. Now, observe that

β(z) = lim
t→+∞

βz(t) = lim
n→+∞

βz(tn)

= lim
n→+∞

1 − |z|2
1 − |ψ0,tn(z)|2 |ψ

′
0,tn(z)| =

1 − |z|2
1 − |f(z)|2 |f

′(z)|.

That is, β(z) = 0 for some z ∈ D if and only if f ′(z) = 0 for some z ∈ D if
and only if f is zero (recall that f(0) = 0).

Assertions (3) and (4) are easy and we leave their proofs to the reader. �

Definition 3.5. Let ϕs,t be an evolution family and β = limt→+∞
|ϕ′

0,t(0)|
1−|ϕ0,t(0)|2 .

Let (ft) be a normalized Loewner chain associated with ϕs,t. We say that
(ft) is a standard Loewner chain if ∪t≥0ft(D) = {z : |z| < 1/β} (obviously,
when β = 0, by {z : |z| < 1/β} we mean the complex plane C).

Note that if (ft) is a Loewner chain associated with a given evolution
family (ϕs,t) and h is any univalent holomorphic function in Ω := ∪t≥0ft(D),
then the formula gt = h ◦ ft, t ≥ 0, defines a Loewner chain which is
also associated with (ϕs,t). In view of this remark, the following theorem
gives a necessary and sufficient condition for an evolution family to have a
unique normalized Loewner chain associated with it. Moreover, in case of
non-uniqueness, the set of all normalized Loewner chains associated with
(ϕs,t) is explicitly described.

As usual, we denote by S the class of all univalent holomorphic func-
tions h in the unit disk D, normalized by h(0) = h′(0) − 1 = 0. As above,
β = limt→+∞ |ϕ′

0,t(0)|/(1 − |ϕ0,t(0)|2).
Theorem 3.6. Let (ϕs,t) be an evolution family.

1. There is a unique standard Loewner chain (ft) associated with (ϕs,t).

2. If β = 0, then there is a unique normalized Loewner chain (ft) associ-
ated with (ϕs,t) (and obviously, it is the standard one.)

3. If β > 0 and (gt) is a normalized Loewner chain associated with (ϕs,t),
then there is an h ∈ S such that

(3.6) gt(z) = h
(
βft(z)

)
/β,

where (ft) is the unique standard Loewner chain associated with (ϕs,t).
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Proof. Let (ft) be the standard Loewner chain built in Theorem 3.3 and (gt)
another normalized Loewner chain associated with the evolution family
(ϕs,t). For each t ≥ 0 denote by kt : ft(D) → gt(D) the function kt = gt◦f−1

t .
Write Ω1 = ∪t≥0ft(D) = {z : |z| < 1/β} and Ω2 = ∪t≥0gt(D).

If s < t and w ∈ fs(D) with w = fs(z), we have that

kt(w) = gt ◦ f−1
t (fs(z)) = gt ◦ f−1

t (ft(ϕs,t(z)))

= gt(ϕs,t(z)) = gs(z) = gs(f
−1
s (w)) = ks(w).

That is, kt|fs(D) = ks. This property says that the function k : Ω1 → Ω2

defined by k(w) := kt(w) for some (or any) t such that w ∈ ft(D) is well-
defined, univalent and onto. Moreover k(0) = 0 and k′(0) = 1. Notice that
k ◦ ft = gt for all t.

Now suppose that β = 0. Then Ω1 = C. Since Ω2 is a simply connected
domain biholomorphic to C, we also have that Ω2 = C. In this case, k is
a univalent entire function such that k(0) = k′(0) − 1 = 0. Then k is the
identity and ft = gt for all t. This implies statement (2) and statement (1)
for the case β = 0.

If β > 0, denote by h : D → Ω2 the function h(z) = βk(z/β). Ob-
viously, h belongs to S and satisfies (3.6). This proves statement (3). Fi-
nally, if (gt) is also a standard Loewner chain associated with (ϕs,t), then
Ω2 = {z : |z| < 1/β}. In this case k : {z : |z| < 1/β} → {z : |z| < 1/β} is
biholomorphic and k(0) = k′(0)−1 = 1. That is k is the identity and ft = gt
for all t ≥ 0. This proves statement (1) for β > 0.

The proof is now complete. �

Remark 3.7. It is clear from the above proof that one can define the stan-
dard Loewner chain as the unique normalized Loewner chain (ft), associated
with the evolution family (ϕs,t), such that ∪t≥0ft(D) is either an Euclidean
disk or the whole complex plane.

Our next theorem says that, in some particular cases, the univalence of
the functions which form a Loewner chain can be replaced by an appropriate
bound of these functions on certain hyperbolic disks.

Theorem 3.8. Let (ϕs,t) be an evolution family in the unit disk having
a unique normalized Loewner chain associated with it. Suppose (ft)t≥0 is
a family in Hol(D,C). Then (ft) is the unique normalized Loewner chain
associated with (ϕs,t) if and only if the following three conditions are satisfied:

1. The function f0 is normalized, that is, f0(0) = f ′
0(0) − 1 = 0.

2. The equation ft ◦ ϕs,t = fs holds for any 0 ≤ s ≤ t.
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3. For each R > 0, there exists some C > 0 (independent of t) such that
for all t ≥ 0 the following inequality

|ft(z)| ≤ C

β(t)
,

where

β(t) =
|ϕ′

0,t(0)|
1 − |ϕ0,t(0)|2 , t ≥ 0,

holds for any z in the hyperbolic disk of radius R centered at ϕ0,t(0).

Proof. Before dealing with the proof of the theorem, we comment (really
recall) some facts and notations which will be used later on and which have
been shown in the course of proofs of previous results. In our case, according
to Theorem 3.6, we know that limt→+∞ β(t) = 0.

Write

a(t) = ϕ0,t(0), b(t) =
ϕ′

0,t(0)

|ϕ′
0,t(0)| , ht(z) =

b(t)z + a(t)

1 + b(t)a(t)z
,

and

h−1
t (z) = b(t)

z − a(t)

1 − a(t)z
,

for all z ∈ D and all t ≥ 0. Clearly, a(0) = 0 and b(0) = 1. Finally, define
ψs,t = h−1

t ◦ ϕs,t ◦ hs for all 0 ≤ s ≤ t. One can easily prove that ψs,t(0) = 0
and ψ′

s,t(0) = β(t)/β(s) > 0 for all 0 ≤ s ≤ t. Hence, by Proposition 2.9,
(ψs,t) is an evolution family.

(⇒) Assume that (ft) is the (unique) normalized Loewner chain associ-
ated with (ϕs,t). By the very definition of normalized Loewner chains, we
see that only property (3) requires a proof. Note that

|ψ′
0,t(0)|

1 − |ψ0,t(0)|2 = |ψ′
0,t(0)| = β(t) → 0 as t→ +∞.

Therefore, according to Theorem 3.6 (now applied to the evolution family
(ψs,t)), we deduce that (ψs,t) has also a unique normalized Loewner chain
associated with it. Moreover, such a Loewner chain (gt) satisfies the equality
g′t(0)ψ′

s,t(0) = g′s(0). Consequently, g′t(0)β(t) = g′s(0)β(s) for all t, s ≥ 0. But
g′0(0)β(0) = 1. Thus g′s(0) = 1/β(s) for all s ≥ 0. Using the Distortion
Theorem, we conclude that

|gs(z)| ≤ 1

β(s)

|z|
(1 − |z|)2

for all s ≥ 0 and for all z ∈ D.
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Now, fix R > 0 and s ≥ 0 and consider r = eR−1
eR+1

∈ (0, 1). Take z in the
hyperbolic disk of radius R centered at the point a(s) = ϕ0,s(0). We have
that

ρD(h−1
s (z), 0)) = ρD(h−1

s (z), h−1
s (a(s))) = ρD(z, a(s)) ≤ R.

Thus, |h−1
s (z)| ≤ r and

|fs(z)| = |gs(h−1
s (z))| ≤ 1

β(s)

r

(1 − r)2
=
e2R − 1

2β(s)
.

(⇐) First of all, bearing in mind Lemma 3.2 and property (1) combined
with Theorem 3.6, we see that we only have to prove the univalence of each
function ft. We start by defining

gt := ft ◦ ht ∈ Hol(D,C), t ≥ 0.

By property (2), we observe that

gt ◦ ψs,t = gs, 0 ≤ s ≤ t.

We notice that the family (gt) satisfies the following three properties:

(a) gt(0) = 0, for all t ≥ 0.

(b) g′t(0) = β(t)−1, for all t ≥ 0.

(c) For all R > 0, there exists some C > 0 such that, for all t ≥ 0 and all
|z| ≤ R, we have

|gt(z)| ≤ Cβ(t)−1.

Now, fix s ≥ 0 and r ∈ (0, 1) and suppose that |z| ≤ r. Take also some
R ∈ (0, 1) with R > r. By Schwarz Lemma,

|ψs,t(z)| ≤ |z| ≤ r, for all t ≥ s.

Then by the Cauchy Integral Formula, for all t ≥ s we have

|gs(z) − β(t)−1ψs,t(z)| = |gt(ψs,t(z)) − β(t)−1ψs,t(z)|
= |gt(ψs,t(z)) − gt(0) − g′t(0)ψs,t(z)|
=

∣∣∣∣ 1

2πi

∫
C+(0,R)

gt(ξ)
(ψs,t(z))

2

ξ2(ξ − ψs,t(z))
dξ

∣∣∣∣
≤ 2πR

2πR2(R− r)
|ψs,t(z)|2 max{|gt(ξ)| : |ξ| ≤ R}.

Therefore, by property (3), we can find C = C(R) (independent of t) such
that

|gs(z) − β(t)−1ψs,t(z)| ≤ C

R(R − r)
β(t)−1|ψs,t(z)|2.
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In fact, since limt→+∞ β(t) = 0 and by the Distortion Theorem, we de-
duce that

|gs(z) − β(t)−1ψs,t(z)| ≤ C

R(R− r)
β(t)−1|ψ′

s,t(0)|2
( r

(1 − r)2

)2

≤ Cr2

R(R− r)(1 − r)4

1

β(t)

β2(t)

β2(s)

=
Cr2

R(R− r)(1 − r)4β2(s)
β(t) → 0 as t→ +∞.

Therefore, we conclude that

gs = lim
t→+∞

β(t)−1ψs,t,

in the compact-open topology of Hol(D,C). By Hurwitz’s Theorem and prop-
erty (b), we find that gs is univalent. Since ht is an automorphism of the disk,
we finally conclude that fs is univalent as well. The proof is complete. �

Remark 3.9. The above proof shows that statement (3) in this last theorem
can be replaced by “for all z ∈ D and for all s ≥ 0, the following inequality
holds

|fs ◦ hs(z)| ≤ 1

β(s)

|z|
(1 − |z|)2

,

where, as usual, hs(z) = b(s)z+a(s)

1+b(s)a(s)z
, a(t) = ϕ0,a(0), and b(s) =

ϕ′
0,s(0)

|ϕ′
0,s(0)| .”

4. Loewner chains and partial differential equations

In classical Loewner theory any Loewner chain satisfies the Loewner –
Kufarev PDE, while the corresponding evolution family satisfies the
Loewner – Kufarev ODE with the same driving term. Now we prove an
analogue of this statement in our general setting.

Theorem 4.1. The following assertions hold.

1. Let (ft) be a Loewner chain of order d ∈ [1,+∞]. Then

(a) There exists a set N ⊂ [0,+∞) (not depending on z) of zero
measure such that for every s ∈ (0,+∞) \N the function

z ∈ D �→ ∂fs(z)

∂s
:= lim

h→0

fs+h(z) − fs(z)

h
∈ C

is a well-defined holomorphic function on D.
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(b) There exist a Herglotz vector field G of order d and a set N ⊂
[0,+∞) (not depending on z) of zero measure such that for every
s ∈ (0,+∞) \N and every z ∈ D,

∂fs(z)

∂s
= −G(z, s)f ′

s(z).

2. Let G be a Herglotz vector field of order d ∈ [1,+∞] associated with
the evolution family (ϕs,t). Suppose that (ft) is a family of univalent
holomorphic functions in the unit disk such that for each z, the function
t �→ ft(z) is absolutely continuous and

∂fs(z)

∂s
= −G(z, s)f ′

s(z) for every z ∈ D, a.e. s ∈ [0,+∞).

Then (ft) is a Loewner chain of order d associated with the evolution
family (ϕs,t).

Proof of (1.a). By the very definition of Loewner chain, the map s ∈
[0,+∞) �→ fs(z) ∈ C is absolutely continuous, for all fixed z ∈ D. Thus
there exists a set of zero measure N1(z) ⊂ [0,+∞) such that for every
s ∈ [0,+∞) \N1(z) the following limit exists

Ds(z) =
∂fs(z)

∂s
= lim

h→0

fs+h(z) − fs(z)

h
.

Let kn ∈ Ldloc([0,+∞),R) be a non negative function such that

|fs(z) − ft(z)| ≤
∫ t

s

kn(ξ)dξ

whenever |z| ≤ 1 − 1/n and 0 ≤ s ≤ t. For each n, there exists a set
N2(n) ⊂ [0,+∞) of zero measure such that for every s ∈ [0,+∞) \ N2(t)
there exists the limit

kn(s) = lim
h→0

1

h

∫ s+h

s

kn(η)dη.

Let us define

N :=

( ∞⋃
n=1

N1

(
1

n+ 1

) ) ⋃( ∞⋃
n=1

N2(n)

)
.

Obviously, N is a subset of [0,+∞) of zero measure, independent of z. We
are going to prove that for all s ∈ [0,+∞) \N the following limit

lim
h→0

fs+h(z) − fs(z)

h

exists and attained uniformly on compact subsets of D.
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First of all we show that for every s ∈ (0,+∞) \N the family

Fs := {Fh :=
1

h
(fs+h − fs) : 0 < h < 1 or − s < h < 0}

is a relatively compact set in Hol(D,C). To this aim, we consider two cases:
(a) 0 < h < 1; (b) −s < h < 0.

Case (a): Fix r ∈ (0, 1). Let n ∈ N be such that r < 1 − 1/n. Then, for
every |z| ≤ r,

|Fh(z)| =

∣∣∣∣1h(fs+h(z) − fs(z))

∣∣∣∣ ≤ 1

h

∫ s+h

s

kn(ξ)dξ ≤ C̃ < +∞,

where the last inequality takes place since s /∈ N2(n). Hence,

sup{|Fh(z)| : |z| ≤ r, 0 < h < 1} < +∞
and consequently, by the Montel criterion, the subfamily of Fs with 0 < h <
1 is a normal family in D, as wanted.

Case (b): the proof is similar to that of case (a) and we omit it.

Thus the family Fs is relatively compact in Hol(D,C). Let ψ, φ be any
pair of limit functions of Fs as h→ 0. By the very definition of N ,

Ds

(
1

m+ 1

)
= ψ

(
1

m+ 1

)
= φ

(
1

m+ 1

)
,

for every m ∈ N. But { 1
m+1

} is a sequence accumulating at 0, hence by the
identity principle ψ = φ. This shows that

lim
h→0

fs+h(z) − fs(z)

h
,

exists for all s ∈ (0,+∞) \N and is attained uniformly on compact subsets
of D, which finishes the proof of (1.a).

Proof of (1.b). By Theorem 3.1, there is an evolution family (ϕs,t) of
order d associated with (ft). Let G : D × [0,+∞) → C be the Herglotz
vector field whose positive trajectories are (ϕs,t) (such a vector field exists
by Theorem 2.3). Let N1 ⊂ [0,+∞) be the set of zero measure given by [5,

Theorem 6.4] such that
∂ϕ0,u

∂u
(z) = G(ϕ0,u(z), u) for all u ∈ (0,+∞)\N1 and

all z ∈ D. Let N2 ⊂ [0,+∞) stand for the set of zero measure which has
been denoted by N in part (1.a) of this theorem.

Let N := N1 ∪ N2. Differentiating with respect to t the equality
ft(ϕ0,t(z)) = f0(z), for z ∈ D and t ∈ (0,+∞) \N we obtain

0= f ′
t(ϕ0,t(z))

∂ϕ0,t

∂t
(z)+

∂ft
∂t

(ϕ0,t(z)) = f ′
t(ϕ0,t(z))G(ϕ0,t(z), t)+

∂ft
∂t

(ϕ0,t(z)).
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Therefore, f ′
t(w)G(w, t) = −∂ft

∂t
(w) for all w ∈ ϕ0,t(D). Since the ϕ0,t’s

are univalent, the identity principle for holomorphic maps implies that this
equality is valid for the whole unit disk D.

Proof of (2). Fix a point z in the unit disk. Then, up to a set of measure
zero, we have

∂

∂t
(ft(ϕs,t(z))) = f ′

t(ϕs,t(z))
∂ϕs,t
∂t

(z) +
∂ft
∂t

(ϕs,t(z))

= f ′
t(ϕs,t(z))

∂ϕs,t
∂t

(z) −G(ϕs,t(z), t)f
′
s(ϕs,t(z))

= f ′
t(ϕs,t(z))

[∂ϕs,t
∂t

(z) −G(ϕs,t(z), t)
]

= 0.

Therefore, ft(ϕs,t(z)) does not depend on t. Hence, ft(ϕs,t(z))=fs(ϕs,s(z)) =
fs(z) and the proof finishes just by applying Lemma 3.2. �

5. Remarks about semigroups

A (one-parameter) semigroup of holomorphic functions is a continuous ho-
momorphism Φ : t �→ Φ(t) = φt from the additive semigroup of non-negative
real numbers into the composition semigroup of holomorphic self-maps of D.
Namely, Φ satisfies the following three conditions:

S1. φ0 is the identity in D,

S2. φt+s = φt ◦ φs, for all t, s ≥ 0,

S3. φt(z) tends to z as t tends to 0, uniformly on compact subsets of D.

Let (φt) be a semigroup of holomorphic self-maps of D. Let ϕs,t := φt−s
for 0 ≤ s ≤ t < +∞. Then, by [5, Example 3.4], (ϕs,t) is an evolution family
of order ∞.

Given a semigroup Φ = (φt), it is well-known (see [33], [4]) that there
exists a unique holomorphic function G : D → C such that,

∂φt(z)

∂t
= G (φt(z)) = G (z)

∂φt(z)

∂z
for all z ∈ D and t ≥ 0.

The function G is known as the infinitesimal generator of the semigroup and,
obviously, G (that clearly does not depend on t) is the Herglotz vector field
associated with the evolution family (ϕs,t). Berkson and Porta [4] proved that
there exist τ ∈ D and a holomorphic function p : D → C with Re p(z) ≥ 0
such that

G(z) = (τ − z)(1 − τz)p(z), z ∈ D,

and moreover, any function G of this form is the infinitesimal generator of
some semigroup.
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In this very particular case when the evolution family is generated by a
semigroup, the point τ has a dynamical meaning. To explain this meaning,
we have to recall some notions from iteration theory.

It can be easily deduced from the Schwarz-Pick lemma that a non-
identity self-map φ of the unit disk can have at most one fixed point in D.
If such a unique fixed point in D exists, it is usually called the Denjoy-Wolff
point . The sequence of iterates {φn} of φ converges to it uniformly on the
compact subsets of D whenever φ is not a disk automorphism.

If φ has no fixed points in D, the Denjoy-Wolff theorem (see, e. g., [1])
guarantees the existence of a unique point τ on the unit circle ∂D which is
the attractive fixed point , that is, the sequence of iterates {φn} converges to
τ uniformly on the compact subsets of D. Such a point τ is again called the
Denjoy-Wolff point of φ. When τ ∈ ∂D is the Denjoy-Wolff point of φ, the
angular derivative φ′(τ) is actually real-valued and, moreover, 0 < φ′(τ) ≤ 1
(see [29]). As it is often done in the literature, we classify the holomorphic
self-maps of the disk into three categories according to their behavior near
the Denjoy-Wolff point:

(a) elliptic: the ones with a fixed point inside the unit disk D;

(b) hyperbolic: the ones with the Denjoy-Wolff point τ ∈ ∂D such that
φ′(τ) < 1;

(c) parabolic: the ones with the Denjoy-Wolff point τ ∈∂D such that φ′(τ)=1.

Going back to semigroups, we have to say that the point τ that appears
in the Berkson-Porta representation formula for the infinitesimal generator
of the semigroup (φt) is the Denjoy-Wolff point of all the functions φt. In
particular, all the functions share the Denjoy-Wolff point. But something
more can be said. If there is t0 > 0 such that the function φt0 is elliptic
(resp. hyperbolic, parabolic) then all the functions of the semigroup are
elliptic (resp. hyperbolic, parabolic).

Besides the above classification of self-maps of the unit disk, there are
two quite different types of parabolic functions. To distinguish such func-
tions, we have to recall the notion of hyperbolic step. Given a holomorphic
self-map φ of D and a point z0 in D, we define the forward orbit of z0 under
φ as the sequence zn = φn(z0). It is customary to say that φ is of zero hy-
perbolic step if for some point z0 the orbit zn = φn(z0) satisfies the condition
limn→∞ ρD(zn, zn+1) = 0. It is well-known that the word “some” here can
be replaced by “all”. In other words, the definition does not depend on the
choice of the initial point of the orbit (see, for example, [8]).

Using the Schwarz-Pick Lemma, it is easy to see that the maps which
are not of zero hyperbolic step are precisely those holomorphic self-maps φ
of D for which

lim
n→∞

ρD(zn, zn+1) > 0 ,
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for some forward orbit {zn}∞n=1 of φ, and hence for all such orbits. This is
the reason why they are called maps of positive hyperbolic step. For a survey
of these properties, the reader may consult [8].

It is easy to show that if φ is elliptic and is not an automorphism, then it
is of zero hyperbolic step. If φ is hyperbolic, then it is of positive hyper-
bolic step. For parabolic maps the situation is more complicated: there are
parabolic functions of zero hyperbolic step and of positive hyperbolic step.
For example, the following dichotomy holds for parabolic linear-fractional
maps: every parabolic automorphism of D is of positive hyperbolic step, while
all non-automorphic linear-fractional parabolic self-maps of D are of zero hy-
perbolic step. For semigroups of holomorphic functions we can state the fol-
lowing

Lemma 5.1. Let (φt) be a semigroup of parabolic functions in the unit disk.
If there exists t0 > 0 such that the function φt0 is of zero hyperbolic step, then
all the functions φt, with t > 0, of the semigroup are of zero hyperbolic step.

Proof. In this proof we will use different well-known properties of the hy-
perbolic distance on simply connected domains in the complex plane that
can be seen in [32].

By [35], there exists a univalent function h : D → C, with h(0) = 0,
such that h ◦ φt = h + t for all t > 0. Write Ω = h(D) and denote by δΩ(w)
the Euclidean distance from w ∈ Ω to ∂Ω. Since Ω + t ⊆ Ω for all t > 0,
we can easily obtain that the function δΩ : [0,+∞) → R is non-decreasing
(we are considering here the restriction of δΩ to the half-line [0,+∞)). By
hypothesis, the sequence ρD(φnt0(0), φ(n+1)t0(0)) goes to zero. Moreover, by
the Distance Lemma, we have that

ρD(φnt0(0), φ(n+1)t0(0)) = ρΩ(h(0) + nt0, h(0) + (n+ 1)t0)

= ρΩ(nt0, (n+ 1)t0)

≥ 1

2
log

(
1 +

|t0|
min{δΩ(nt0), δΩ((n+ 1)t0)}

)
,

where ρΩ denotes the hyperbolic distance on Ω. Thus δΩ((n+1)t0) goes to ∞
and we conclude that limt→+∞ δΩ(t) = ∞.

Now fix t > 0. Write Γn = [nt, (n+ 1)t] and denote by lΩ(Γn) the hyper-
bolic length of Γn in Ω. We have

ρD(φnt(0), φ(n+1)t(0)) = ρΩ(nt, (n+ 1)t) ≤ lΩ(Γn) ≤ 2

∫
Γn

|dw|
δΩ(w)

≤ 2
t

δΩ(nt)
,

where again we have used the monotonicity of δΩ on [0,+∞). Since
the sequence δΩ((n + 1)t) goes to ∞, the above inequality implies that
ρD(φnt(0), φ(n+1)t(0)) tends to zero as n goes to ∞. The arbitrariness of t
concludes the proof. �
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What can we say about the Loewner chains associated with the evolution
families (ϕs,t) = (φt−s)?

If the semigroup (φt) is elliptic and its Denjoy-Wolff point is zero, then
(see [35]) there is a complex number c and a univalent function h such that
Re c ≥ 0, h(0) = 0, h′(0) = 1, and

(5.1) h ◦ φt = e−cth.

The function h is called the Kœnigs function of the semigroup (φt). From
equation (5.1), it is clear that the functions ft = ecth form a norma-
lized Loewner chain associated with the evolution family (ϕs,t) = (φt−s).
If Re c > 0, then ∪t≥0ft(D) = C and, by Theorem 3.6, this is the unique
normalized Loewner chain associated with (ϕs,t). In particular, this implies
the uniqueness of the Kœnigs function, a fact which is very well-known. If
Re c = 0, then h is the identity map.

Now suppose that the Denjoy-Wolff point of the semigroup is on the
boundary of the unit disk. Without loss of generality, we assume that such a
point is 1. Then there is a univalent function h such that h(0) = 0 and h◦φt =
h+ t [35]. As in the elliptic case, the function h is referred to as the Kœnigs
function of the semigroup (φt). Siskakis [34] (see also [35]) proved that the
Kœnigs function is unique in this case as well. As an easy application of
our results we will reprove the uniqueness of the Kœnigs function. Similarly
to the elliptic case, we have that the functions ft = h − t form a Loewner
chain associated with the evolution family (ϕs,t) = (φt−s). Notice that this
Loewner chain is not necessarily normalized. To proceed let us distinguish
the different type of semigroups.

If the functions φt are hyperbolic, then by [7, Theorem 2.1], there
is a horizontal strip Ω such that the range of h is included in Ω and
∪t≥0ft(D) = Ω. In this case, there are much more Loewner chains associated
with (ϕs,t) but there is no other Loewner chain (gt) of the form gt = k − t,
where k, k(0) = 0, is a univalent holomorphic function in D. Indeed, if such
another function k does exist, then by Theorem 3.6, there is a univalent
holomorphic function a : Ω → C such that a(h(z)−t) = k(z)−t for all t ≥ 0
and for all z ∈ D. Derivating with respect to t, we have a′(h(z) − t) = 1
for all t ≥ 0 and for all z ∈ D. That is a(z) = z + c for some constant c.
Therefore h(z) − t + c = k(z) − t for all t ≥ 0 and for all z ∈ D. Since
h(0) = k(0) = 0, we deduce that c = 0 and h = k.

Consider now the parabolic case. According to the above lemma we have
to distinguish two subcases. On one hand, if for some (or for any) t0 > 0
the function φt0 is of zero hyperbolic step, then by [9, Theorem 3.1 and
Proposition 3.3], the range of h is not included in any horizontal half-plane.
In this case, we have that ∪t≥0ft(D) = C. Therefore, up to normalization,
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this is a unique Loewner chain associated with (ϕs,t). On the other hand, if
one (and then all) of the mappings φt is of positive hyperbolic step, then the
range of h is included in a horizontal half-plane Ω. In fact, we can choose the
half-plane such that ∪t≥0ft(D) = Ω. By the same reason as in the hyperbolic
case, there are much more Loewner chains associated with (ϕs,t) but there
is no other Loewner chains (gt) of the form gt = k− t, where k, k(0) = 0, is
a univalent holomorphic function in D. That is, again, the Kœnigs function
of the semigroup is unique.
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Educación y Ciencia de la Junta de Andalućıa and by the ESF Networking Programme
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