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Elliptic equations in the plane satisfying

a Carleson measure condition

Martin Dindos and David J. Rule

Abstract

In this paper we settle (in dimension n = 2) the open question
whether for a divergence form equation div(AVwu) = 0 with coeffi-
cients satisfying certain minimal smoothness assumption (a Carleson
measure condition), the LP Neumann and Dirichlet regularity pro-
blems are solvable for some values of p € (1,00). The related question
for the LP Dirichlet problem was settled (in any dimension) in 2001
by Kenig and Pipher [11].

1. Introduction

In this paper we prove some two dimensional results for second order elliptic
operators under certain natural, minimal conditions on the coefficients of
these operators. Primarily, our operators L are of divergence form Lu =
div(AVu), where A(X) = (a;;(X)) is a (not necessarily symmetric) strongly
elliptic matrix in the sense that there exists a positive constant A such that

Agf? < Zaij(X)&fj < AP,
ij

for all X and £ € R2.

The motivation for the conditions placed upon the matrix A come from the
following example due to Kenig and Pipher [11] who studied the LP Di-
richlet boundary value problem for elliptic equations in divergence form:
div(AVu)=0. Consider the Dirichlet problem for the Laplacian A =9? + 9%

Au=0, in Q4
u= fo, on 0y,
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where Q4 = {(z,t) | ¢(z) < t} and ¢: R — R is a Lipschitz function. It is
well-know [2] that the L? Dirichlet boundary value problem is solvable for
such a domain and operator, that is, we have the following estimate for the
nontangential maximal function Ny, (see below for the definition):

(1.1) [Noa(W)l 2wy < Cll follL2(00,)-

We now consider the transformation ®: R2 — Qg, used by Dahlberg, Kenig
and Stein (see [3] and [5]), but also earlier by Necas [13], defined as

(1.2) O(x,t) = (x,cot + (0 % d)(x)),

where {6, }1~0 is a smooth compactly supported approximate identity and cq
can be chosen large enough, depending only on ||¢'|| =(r), so that ® is one-
to-one. One may compute that the function ® enjoys the properties

o [0%(z,t)] < C,
o |0?°®(z,t)| < C/t, and
e t|0*°®(z,t)|*dzdt is a Carleson measure.

Moreover, it is straightforward to see that the composition w = wo ® is such
that div(AVw) = 0 in R3, where A = (det ®)((®')~")*(®')~". Therefore A
inherits from ® the properties

(i) |0A(x,t)] < ¢1/t and
(ii) t|0A(z,t)|*dxdt is a Carleson measure with norm c;,

and from (1.1) we can see the corresponding non-tangential estimate

(1.3) [ Noa(w)|l 2@y < Cllfo(-, 0()| z2(m)

holds. So the natural question is: “Are the conditions (i) and (ii) sufficient
to conclude estimate (1.3) for an arbitrary solution to a divergence form
equation?” Kenig and Pipher [11] prove an L? version of such estimate holds
under closely related conditions, where p > 1 may possibly be large and
Dindos, Petermichl and Pipher [6] show that the L” version holds for any
given 1 < p < oo under the same assumptions, but when c¢; is sufficiently
small (depending on p). In fact, both of these results are proved for bounded
Lipschitz domains in any dimension and the elliptic equation may have lower-
order drift terms satisfying a similar Carleson measure condition.

Given [9], the same motivation can be used to justify posing the same
question regarding the regularity and Neumann problems. We will obtain an
analogous result to that proved for the Dirichlet problem, more specifically,
for a given p € (1,2], we prove that the regularity problem (R), and the
Neumann problem (V), hold under the hypotheses (i) and (ii) provided ¢
is sufficiently small.
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We remark that our method does not allow one to move beyond dimen-
sion two, that is, this problem is completely open for n > 3.

We note here that we eventually want to replace the conditions (i) and (ii)
by an averaging condition on coefficients of A as was done in [6] for the
Dirichlet problem. In this paper, a solvability result was first established
with a condition similar to (i) and (ii). Then this condition was replaced by
a weaker averaging condition by the use of perturbation theory that is known
for the Dirichlet problem. Moreover, our Ny, . defined below is a slightly
weaker L' average of the L? average used elsewhere. What we present here
should therefore be considered as a first step on the road that will bring our
knowledge of the Neumann and regularity problem to the same level as the
Dirichlet problem.

The layout of this paper is as follows. In Section 2 we introduce some
notation, state the main result, Theorem 2.2, and provide an outline of its
proof. In Section 3 we reduce the proof of Theorem 2.2 to several inequalities,
which are then proved.

2. The Main Result

First we fix some well-known notation adapted to the domain €24, where ¢ is
a Lipschitz function. The p-adapted square function S, 4 ,(g) with aperture
a of a function g: 24 — R is defined by

Spesal9)(y) = ( J[ - watwoplate.or dxdt) |
a(y,0(y))

where Io(y, ¢(y)) = {(2,1) | [z —y| < a(t—¢(y))} and we take a < [|¢/'[| 7 g)-
We define the non-tangential maximal function of g: 5 — R as

Nya(9)(y) = sup |g|
Ta (4,6(1))

and, for g: R2 — R and « € (0,1/2],

1
ma(o)(@.1) = T / / l

where B,(z,t) = {(y, )| (y —2)* + (s —t)> < r°} is a ball with radius r and
centre (x,t). Finally, we set Ny qa(9) = Nga(ma(g)).
We will consider the Dirichlet problem

_ : 2
(2.1) { Lu=0, in RZ

u=fy, on JR%
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with data fo: OR2 — R and the Neumann problem

(2.2)

Lu =0, in Ra_
v- AVu = gy, on JR%

with data go: ORZ2 — R. The operator L = div AV is an elliptic opera-
tor in divergence form with coefficients given by the matrix A = (a;;)i;-
The matrix A is assumed to have real-valued bounded measurable entries
(max; ; ||a;||Le@) = A < 00) and satisfy the uniform ellipticity condition

(2.3) NEP <€ A¢

for some A > 0 and all £ € R?, but A is not necessarily symmetric. In
addition we will assume

(x,t) — Z \Va;;|*tdzdt
]

is a Carleson measure with norm no more than c;, that is to say
1 2
sup /) E |Va;|“tdedt < ¢,
I 5

where I = I x (0, |I|) € R2. Finally, we assume sup;; |Vag(x,t)| < e1/t for
all (z,t) € RZ. Both (2.1) and (2.2) have weak solutions for data in the set
Cgo of compactly supported smooth functions with mean-value zero. Such
functions are dense in LP(9R?) for 1 < p < co. (See [12].)

Definition 2.1 (i) We say that the Dirichlet problem holds for p, or (D)2
= (D)p holds, if for any u solving (2.1) with boundary data fo € LP(OR%) N
Cs°(OR3) we have

[ No,a ()l Logorz ) < C0) ol Lo(orz)-

(ii) We say that the Neumann problem holds for p, or (N)4 = (N), holds,

p .
if for any u solving (2.2) with boundary data go € LP(ORZ) N C§°(OR2)
we have

HNO,a,a(VU)HLP(aRi) < C(?)HQOHLP(@R&)-

(iii) We say that the regularity problem holds for p, or (R)) = (R), holds,
if for any u solving (2.1) with boundary data fo € WH?(9R2) N C°(OR%)

we have B
HNO,a,a(VU)HLP(aRi) < O(p)||an0||LP(8Ri)‘
In each case, the constant C'(p) >0 must depend only on X\, A,Q, a,a and p.
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Our main result is the following.

Theorem 2.2 Let L = div(AV-) be an elliptic operator as described above.
For each fized 1 < p < 2, there exist a, o and cy such that, if c; < c,
then (R)Z' and (N)2 hold, where A = A"/ det(A).

p

The proof of Theorem 2.2 will be based on a duality estimate. Consider
the inhomogeneous Dirichlet problem

{ div(A'Vo) = div(F) in R2,

2.4
(24) v =0, on JR? .

We compute

//Ri(Vu)Fdxdt: —//Riudiv(F)dxdt—k/aRiuy.Fdx
/I
/L.

:/ uv - (F — A'Vv) dz.
ORZ

udiv(A'Vv) dzdt + / uv - Fdz

2 2
+ ORY

div(AVu)v dzdt + / uwv- (F — A'Vv)dr

oR2

Now, for a solution v to (2.4), we can define a conjugate T to v via the
system

(2.5) AVo—F = (" §)Vo.

This is only possible because we are in two dimensions. Importantly, it
allows us to write

// (Vu)F dxdt = / uv - (F— A'Vov)dx
RZ OR2

= —/ w0, vdr = o, uvdx.
OR% OR%

From here we can easily see how we might obtain our main result. The idea
is that we can now test Vu against a suitable class of dual functions F', with
norm || F|y,, say, via the above equality. We can conclude

||N0,a,a(vu)||Lp(aRi) < OHarfoHLp(aRi),

provided |[v][ s (or2) < C|[F|[(p. This would prove that (R);! holds; that (N)/!
holds would then follow by considering a conjugate for a solution to (2.1)
defined similarly to (2.5) (see [12]).
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We now need to describe an appropriate class of F, but first we will
fix some well-known notation. For a Lipschitz function ¢, 1 = Q, =
{(z,t) |t > ¢(2z)}. For a measure f on Q,, we define

caor=s (i )

where f¢ ={(z,t) |z € I,¢(x) <t < ¢(x)+|I|}is a tent over the interval I.
When we write Cy(F), where F is is a function on €, we mean the natural
modification

I3y

1
C(F)(y) = sup (— / |F(ac,t)|dacdt).
1 JJ3,
We know from [1] that

(2.6) / [ < O ma / Ny ol G) () Co(£) (v) dy,

and the space of measures f such that Cy(f) € LP(R) is the dual of the
space of functions G such that N,,(G) € L” (R). We will also need the
inequality from [1]

(2.7) / /Q Fla, )V G(x, 1) tdudt <

(¢ 1gey. @) / ColtF?)(5)} Soa(G)(y) dy.

Let ¢ € C*(R?) be a fixed positive function, having support in Bjs(0)
and such that ¢ = 1 on By/(0). Then ¢ = @q/12 * ¢, where, for a > 0,
0o = a 2p(a~!), has support in B,(0) and ¢ = 1 on By2(0). We then
consider datum F in (2.4) of the form

(2.8) FX) = x(X) (@ + £)(X) = x(X)(Parr2 * ar * [)(X)

where X = (z,t), |x| < 1 and f is a measure such that Co(f) € LP(OR?)
(i.e. we use Cy(f) defined above for the function ¢ = 0). The norm placed
on the set of such I is then

1E ) = [1Co ()| o ey
With F as in (2.8), by Fubini’s Theorem we have

(2.9) //]R2 F(z,t)G(x,t) dxdt ://]R2 /R2 (X =Y )x(X)G(X)dX df(Y),
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where X = (z,t). An straightforward calculation shows
map(G)V) < [ [ X = YNXIGX) 4X < Cman(G)(Y)
RY

for < 1/2 and x(X) = G(z)/|G(z)|, so with the duality above, the set of F
as in (2.8) with norm ||Cy(f)||z»(r) is an appropriate set of F'. To complete
the proof it suffices to prove for 2 < p < oo the inequality

(2.10) | No.a (@) zr@) < ClCo(f)l|rm)

under the hypothesis ¢; is sufficiently small. We will do this in Section 3.

It would be interesting to also prove (2.10) for 1 < p < 2 when ¢
is small as this would imply the regularity and Neumann problems held
for any given p when ¢, is sufficiently small, as is the case for the Dirichlet
problem [6]. Unfortunately we are not able to do this. Possibly an even more
interesting question would be whether or not the Neumann and regularity
problems can be shown to hold for some (small) exponent p when ¢; is
only assumed to be finite. Given [12] and [11] one would conjecture this is
the case, but again our methods are not powerful enough to do this. To
prove this conjecture via the methods used here, one would require better
knowledge of the constants involved our estimates.

3. Estimates for the Inhomogeneous Equation

It will be useful to consider an inhomogeneous Dirichlet problem which is
slightly more general than (2.4):

51) { L'v = div(F), in R2

v = fo, on JR%

with data fo: OR3 — R and F': R7 — R?. We make the same assumptions
on L here as we did in (2.1) and (2.2) (and L' = div(A'V")).

With F' as in (2.8), by Fubini’s Theorem and (2.6) we have

// (2,t)G(x,t) dedt < // |(Yat * )y, )|ma/10( )y, s) dyds
Q¢ C3¢

(3.2 < / Coy (M ) Negg (110/10(G)) .

where ¢3 =1 — ay/1 + ||¢']|%,/10. We will use this later.
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Observe that we are free to assume A is upper triangular, provided we
introduce lower order terms. Indeed

Ly = &c(all@xv -+ (a12 + agl)aﬂ)) + @(aggatv) + (0,5@21)8931) — (893@21)8,52).

In this section we set about proving that solutions v to (3.1) satisfy the
estimates

33)  [[Noa(v)llriorzy < Clp, DI Sp0a(0)lrorz ) + 1Co(f)ll Liorz))
for2<p<ooand 0 << oo and

(3.4) HSp,O,a(U)HLq(aRQ) < Clp, Q)(HNo,a(U)HLq OR%) + ||OO(f)||L‘1(8R2 ))

for 2 < p < o0 and p < ¢ < oco. These estimates can be viewed as a
generahsatlon of the main estimates in [10], which themselves are closely
related to the work of Dahlberg [4]. The methods we use are essentially
the distributional inequality methods used in [10]. The estimate (3.3) is
eventually achieved in Theorem 3.6. Then we move on to prove (3.4) which
we state as Corollary 3.9. Lemma 3.11 enables us to relate the conjugate ©
to v via the following estimate:

35)  [1520a(®)lLr(arz) < C(p) (192,0,a(0)ll L (or2 ) + HCO(f)HLp(aRi))

for 1 < p < co. The final ingredient required to prove (2.10) is the estimate
(3.6) 19p,0.a(0) | Lo (or2 )y < C(0)[[Co(f)ll Lr(om2 )

which requires that v have zero boundary value and ¢; be sufficiently small.
The estimate (3.6) is proved in Lemma 3.10. Let us now take these estimates
as given and use them to complete the proof of Theorem 2.2.

Proof of Theorem 2.2. As discussed in Section 2, it suffices to prove (2.10).
We remark that 7 also satisfies an equation of the form (3.1) were the coef-
ficient matrix has ellipticity constants which are multiples of those for A
and its first derivatives satisfy the same Carleson measure condition with
constant being a multiple of ¢;. Specifically, A’ is replaced by A/ det(A)
and on the right-hand side, ' becomes a bounded matrix multiplied by F',
and so is still of the form (2.8). This means that (3.3) and (3.4) are also
valid for v.
Now, by (3.3) and (3.5), we have

[No.a (@)l zrorz) < CU1520,0(0) |l Lrorz) + 1Co(F)Loor2))
(1520.a(0) lzoar2) + 1Co ()l Lror2))-

When p = 2 we can use (3.6) to obtain the bound C|Co(f)|[r2@rz2), as
required.

<C
<C
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When p > 2 we may first use (3.4) and then (3.3) and (3.6) to obtain
once again

[No,a(0) | r(orz) < CUINoa(0)[Lror2) + [|Col ) Lror2))

<
< (||Sp,0,a(v)||Lp(aRi) + ||Co(f)||Lp(aRi))
< ClCo(f)l o omz -

Thus, we are left with the task of establishing (3.3), (3.4), (3.5) and (3.6). We
remark that it is sufficient to establish these inequalities only for exponents
p = 2% where k € N. This establishes the boundedness of 9, fo +— Np 4.(Vu)
on the L (OR2) for p’ = (1 —27%)~! and we can use interpolation to obtain
all p’ € (1,2]. [ |

Lemma 3.1 Let v be a solution to (3.1) as described above and let ¢ and ¢4
be non-negative Lipschitz functions such that ¢ > 2¢. Let I be an interval
inR withr := |I| and p = 2* for some k € N. Then there exists a sufficiently
small choice of a and o, depending only on X, A, p, ¢ and [|¢'_|| o), and
a constant C(p), depending on the same parameters, along with a and «,
such that

(s S+ (DB < C@)Sp.a®)h0ary + 1Colmal IR h
+ [INo.a )2 1Cs (ma (£)) | Loan
+ I No a1 31 18060 ()55 | Co(ma ()| ogan

2
+ N0 () 17555 ISp.0.0(0) [isr) + (X P),
where X, is any point in {(x,t)|x € 31, ¢4 (x) +r/2 <t < ¢4 (x) + 3r/a}.

Proof. In order to facilitate the use of integration by parts, we will use the
mapping from R2 to Q4 defined by (1.2). This maps v to a solution of an
equation of the same form as (3.1), with data controlled by multiples of the
constants controlling the data of the original equation. We will denote this
new solution by w = v o ®.

We choose a smooth function & : R — R such that & (x) =1 for x € I,
|€1] < 5/r and support contained in 2/. Choose a second &: [0,00) — R
such that &(t) =1 for t € [0,7], |£}| < 5/r and support contained in [0, 2r].
Now define &(z,t) = & (2)&(1).

We proceed by calculating in a similar fashion to [10], [11] and [14]. First
of all,

/w(x, 0)P&(x) de = — / o Oy (wPé) (x, t) dadt

(3.7) = —// pwP w, € dadt — // wP& &L dadt.
R2 R
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The second term on the right-hand side of (3.7) is controlled by

r_l// w? dxdt
K

where K = {(x,t) |z € (7/3)],r <t < 2r}. Assume, for the moment,
(3.8) w— o < C(p)wlwl" = clef!
for all w,c € R and p € N. Let X, be any point in K and set

K' ={(z,t)|x € (8/3)1,7r/8 <t < 17r/8}.

We choose ¢ such that

1

(w|wP? Y g = e|e|P/*? where [y = w1 /)

f.

Using [7, Thm 8.17] and Poincaré’s inequality, we may further estimate this
term, using (3.8) with exponent p/2,

[ =gy s+t [ wrx) ot <
Croscg(w)? + Cr|w(X,)|?

<
< Crsup|w — cff + Cr|w(X,)P
K

N

- / [ = e dedt + OO P 4+ Crlu(X)P

<Crt // lw|w[P/?71 = c|e|P/*7? dedt
K/
+ Cptte(-2/q) HFHifI(K) + Cr|w(X,) [P

< OT’/ |V (wP’?)|2dadt + Cr  inf  Cy(ma(f))(2)? + Crlw(X,)[?
K’ x€(8/3)1

< CllSps.a(0)IL2ar) + 1Co(ma(FDI L + Crlw(Xe)[P.

We now prove (3.8). This is done by considering several cases. First,
if w and ¢ are positive, and w > ¢, then there exists a constant C'(p) such
that

p—1
|w|w|p—1 _ c|c|P—1| =wl —c = (w—¢) pr—l—kck
k=0

p—1

> C(p)(w—0) ) (p R 1) WPt = O(p)(w — ) = Clw — cf.

k=0
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Secondly, if we < 0, then

w —cl? = (Jw| + [e])” < 2P max(|w]?, |[?)

< 2(Jwl? + [ef!) = 2 jwlw]"™" = clef”].

All other cases can easily be reduced to the first and so (3.8) is proved.

Returning to our main estimate, the first term on the right-hand side
of (3.7) is

p—1
_// Py dudt — // w O4(t) dadt
p—1
/ / o, (pw_azwf) +dwdt
R2 22
tdxdt tdxdt
:// (p_l)wp_2a22wt§p ’ +// wp_lat(amwt)gp v
R3 RZ 22

td dt tdxdt
+ // wP™ 1(122wt§1§/ pres // wp_lwtgﬁtam prar 3
R2 a22 R% (az2)

= I+ 1T+ 1T+ 1IV.

Using the fact that w solves (3.1) (where, we recall, we may take A to be
upper triangular and introduce a lower order term, B - Vw) we see that II
is equal to

tdzdt tdzdt
// wrtdiv(F)e 2 // WP O, (anw, + argw)€ T
RZ a2 R2

22

tdzdt
—// w B - Vwe PEE 11 T, 10,
R2

22

Integrating by parts we see that

1, = // )tV - FE ptdmdt // W Ve ptdzdt
RQ 2 22

d. dt tdxdt
// wP™ 1§F ) per // wP™ 1§F V(IQQ prer 5
R2 R2 (a22)

Transforming back to our original coordinate system via the inverse of (1.2),
each of these terms can be controlled using (3.2). Indeed, using the facts
that |Vag(z,t)] < Ce/t, [VE| < 5/r and that the integrands are zero
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when t > 2r or x & 21, we see that

' // (p— DwP*Vw - F¢ ptdazdt'
RZ 22

< C/ Ceso (Ma(f)) Neso aj2(Majio(t?~*|Vo))) da
31

tdxdt
'// w ' F - vel ‘ < C/ Ceso (Ma(f)) Negoy afa(Majio(? ™)) da,
R2 a922 37

'//R W ( )pdxdt

tdzxdt
' // wP~ lfF VCLQQ P a ‘ O/SIOC3¢+ (ma(f))Nc3d)+,a/2(ma/10(vp_1)) dzx.
2 22

C/ Cozor (Ma(f)) Neso a/2(Mayio(vP)) da

So, using the simple observation that
Negsia/2(Maio (007 ~*[V0])) < CNgo(0)P2725, 4 o (0)P2

for sufficiently small a and «, we find

0| < C (INpua (01t 1.0 () Fatsr 1Co(ma ()] oan
+ N0 () 1Co(ma (P 2o(an)) -

Again, using integration by parts,

tdzdt
I, = // wP?w, (a1, w, + algwt)fp ’
R2 a22
tdxdt
(3.9) // w”™ N a11w, + ar2we) 0, fp
RQ a9
tdxdt
+ // wp_l(anwm + algwt)ﬁ(‘?mam P 2I .
R2 32
The first integral may be combined with I to produce
tdxdt
[ =109 Avee IR < CYSpal0)
]RQ 22

What remains of Il may be dealt with as above using (2.7) once we observe
that, since |V&| < 5/r and supp(&) C 21 x [0, 2r], we have Cy(t|VE[?) < 100.
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So, for example,

// P [Vl [VE| tddt| <
=

0/3[ Nya(0)P256,0(0)""? diz. < C|| Noa(0) 25451 1Sp..0 (0) 1t

c / Colt]VE) (1)1 V1) 1)

Thus we obtain

2
s | < CUISp00(0)Faar) + I Noa(O)rtsr S0 (0) [ F(a1)

The terms II3, III and IV can also be dealt with in this way, and so, combi-
ning all of these estimates, we obtain the lemma. |

For any continuous function v: R — R and p € R, define

homa(v)(x) = sup{t > 6(x) | sup (v) > p}.

Lo(z,t)

Lemma 3.2 Provided v is such that hg , .(v) < 00, the function hg ,q(v) is
Lipschitz with constant 1/a.

Proof. See, for example, [11, Lem 3.5]. [ |

Given a non-empty open proper subset D C R we can find a family of
closed dyadic intervals {I;}, such that:

(a) U;I; = D and the [; have disjoint interiors;
(b) |1;] < dist(Z;, D) < 4|I;]; and
(c) If the boundaries of I; and I}, touch then
LI
4 |l
We call the family {I;}; a Whitney decomposition of D. Here we use the
construction in [8, pA-34]. We remark that an examination of the construc-

tion reveals that if {I7}; is a Whitney decomposition of the set D’ O D,
then if I, N I} # () we have I; C I.

Lemma 3.3 Suppose v is a solution to (3.1), b > 0 and ¢ is such that

bl|¢[| ooy < 1
Let I be a cube of the Whitney decomposition of {x | Nog.op(v) () > 11/24}
and let E,, , be the intersection of an interval I with

{lE € R| Nagp/12(v)(z) > p and Cy(ma(f))(@) + Spep(v)(@) < PM}'
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There exists a sufficiently small choice of p, independent of I, so that, for
each x € E, ,, there is a interval J with v € 6J and J C 31 and for which

V(2 hagup2(v)(2))] > p/2
forall z € J.

Proof. See [10, 3.14]. Let = € E, , therefore, by definition,

hagup/i2(v)(z) > 2¢(x),

and so we know there exists an (o, to) on 0Ly 12(2, hog up/12(v) (2)) such that
|v(z0,t0)| = p and we have hog, ,5/12(v)(z0) = to. Set

ro=to—2¢(x) >0 and K ={(z,7)]||z—x0| < 11bro/72,|r—to| < 1r0/6},

so then 3K C I'y(z,2¢(z)). Moreover, since [ is a Whitney cube, pro-
perty (b) implies that bro < 60|1|/33.

Now by [7, Thm 8.17] we have that
oscx (v) < Clrg v = eller) + 75 Il acarc));

for any constant c. But since |F(z,7)| < Cry'Cy(ma(f))(z) for (2,7) € 2K,

1 P s < COulmalf) (@)

and so, using Poincaré’s inequality and (3.8),

[v(z,7) = v(xo, to)| < 0scx(v) < C(IIV(U)”/QHEz(zK) + Co(ma(f))(@))

C(Spep(v)(@) + Cs(ma(f))(x)) < Cpp,
for any (z,7) € K. Thus, we may choose p sufficiently small, so that |v(z,r)—

v(zo,t0)| < /2. Then, clearly, |v(z, hop upn2(v)(2))] = p/2 for |z — x| <
bro/72 and the lemma is proved. [ |

<
<

Theorem 3.4 Let p = 28 > 2, for some k € N, v be a solution to (3.1)
and {I;}; be the Whitney decomposition of {x| Nagow(v)(z) > p/24}. Fix
an interval J and set F; equal to the intersection of I; with

{7 | Nogpy12(v) () > p1, (Mz(Cy(ma(f))?) < pp}

N H{z | M3y (Spsp(v)”)) () < pu}

p—1
NA{z | [M3;7(Ngo(v)?)(2)] 2 [M3;(Cy(ma(f))") ()]
N {z | [Msy(Ng.a(v)”

3

< pp}

(
(Noa(0)) (@)] 7 [Mas (S p.0(0)) ()] < pp},
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where Msy is the Hardy-Littlewood maximal function applied to functions
restricted to 3.J, that is Ms;(f) = M(x3sf) where xs; is the characteris-
tic function of 3J. Given b > 0 and a Lipschitz function ¢ > 0 such that
b|¢'|| Loy < 1, there exist sufficiently small a, o and p < 1, and a cons-
tant c(p), independent of j, such that, for all p >0,

|F5| < elp)l 11,
provided I; C J. Moreover, c(p) tends to zero as p — 0.

Proof. Fix j, set I := I; and F := F}. Define the interval

I = {(, hao uppa(v) () | = € T},

By Lemma 3.3, for each x € F and sufficiently small p, we have that
M, (vxr)(x) > p/12, where M, is the Hardy-Littlewood maximal function
on the graph of the function hgg ,.5/12(v). By (b), there exists a point ¢
such that dist(1,q) < 4|I| and Nogop(v)(q) < p/24. Therefore we can
choose X, as in Lemma 3.1, where we will take ¢ = hag up/12(v), such
that |v(X,)| < p/24. We have

1

M ((v = v(Xp))xr)(2) 2 Myu(oxr)(2) = [o(X0)] > 57

for all x € I, and applying the weak-type estimate for the maximal function,
we obtain
C

Pl [ =Xy,

Now we can apply Lemma 3.1 to the solution v — v(X,), with ¢, =
hog /12 (v), provided a and « are sufficiently small. Observe that since we
obviously have |I|*?|v(X,)| < C||Ngo(v)| r@1), we get the bound
1| < C([[Sp6,a(0) o ary + 1Cs(mal ) Ts@n

+ [No (@)t | o6 Ftary 1 Noa (0) 15y 1Cos (0 () | ogan
+ [ Noa0)1Frats 15p.6.0(0) s I Cs(ma () 2231
< Cl|(Ms(Spe(v)") (2 )+M3J(C¢(ma( ) )
+ [Mag (Noa(0)?) (2)] 7 [Mas (Co(ma())7)(2)]7
1 1
+ [M37(Ng,a(v)")(2)]2 [M3,7(Sp.6,0(v)") ()] %)
< CpPpP|I],

and so the proof is complete. |
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Corollary 3.5 Let v be a solution to (3.1), {I}}x be the Whitney decompo-
sition of {x | Nagap(v)(x) > po/24} and define the set

Gy = {x | Nagp12(v)(x) > po} N 1.

For each ¢ > p = 28 > 2 (k € N), Lipschitz function ¢ > 0 and b > 0
such that b||¢'||L~m®) < 1, there exist constants C(p,q) and C(e,p,q) and
sufficiently small a and o such that

’|N2¢>,b/12(v)||m(cg) < Cep, Q)(||Sp,¢,b(v)||m(3fg)
+ 1Co(malf)lLasg)) + 26 ([ N2o,20(0) | Lagarg) + | Ng.a(0)l Laarg));

Proof. Fix k. Let {I;}; and {F}}; be as in Theorem 3.4 with J = I}} and
let {I7}; and {F}'}; be the same, but with z replaced by 9. As we remarked
just above Lemma 3.3, if 1 > po and I N I; # 0, then I; C IY. This means,
using Theorem 3.4, we have, for p > pq,

GRS Y IBI<cp) Y 11l

(3.10) 19N £0 5900
< clp) |1y N (U;15)]

Now observe if u < g, then G N (U;F;) C FY and I} C U;I;. As a result
of this, when u < py,

(3.11) |G N (U F)| < TFRT < e(p)|IR] < elp) T N (U;1)].

Now we can proceed by standard arguments. We have

| N (0) o) = / a1 € G| Nagyyra(0) () > p}] dp
0

_ / gt G2 O (U )] dit + CE) | (Mygo(Spgn(0)) 7 | g
0

+ O ()| (Mo (Co(ma ())Y) P | Laqrg) + el (Marp (Nip,a(0))) 7| agre) ).
Therefore, using (3.10) and (3.11), this is majorised by

C(p)/o g Ig 0 (U L) dp+ C(€)]]Sp.6(0) | acarg)

+ CENNCs(ma(f) Laarey + el No o)l Lagsro) =
= c(p)[| Ng,26(0) | Lar0y + C()[|Sp,6,(v) | Laa10)
+ CENCs(ma( ) Lagr0) + € Nga (V) I Lagaroy,

where we have used the boundedness of the Hardy-Littlewood maximal ope-
rator. Now choosing p so that ¢(p) < e completes the proof of the coro-
llary. |
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Theorem 3.6 Let v be a solution to (3.1). For each | > 0, there exist
constants b, ¢ and C(p,l) such that

[Nopnz(v)llzrw < €0, D([[Sp0e(0)l i@ + [1Co(H)lltm)

Proof. Fix b and choose ¢ > 2b, and a and « sufficiently small so that
we may apply Corollary 3.5 with ||¢'|| @) < 1/c. It suffices to prove the
distributional inequality

(3.12) |Eul < (C(e, p) + Cek?)[{z | Noaw(v)(w) > p1/24}],

where
B, = {z| Noppn2(v)(x) > pt, Noo(v)(x) < kp}

NH{z [ Spo.e(v)() + Co(f)(2) < put,

q > p, and C(e, p) tends to zero as p — 0, for each fixed ¢ > 0. Let ¢ be the
Lipschitz function for which 9D is the graph of 2¢, where

D = UzEEuFC/Q(‘rv 0)

is a sawtooth region above E,. Now let {/,}; be the Whitney decomposition
of {z| Nagyow(v)(x) > p/24} and define the set

G =A{x| Nogpy12(v)(x) > p} N I;.
When z € E,, ¢(z) =0, and so E, = U;(G; N E,). Now, for ¢ > p, by
Corollary 3.5,

1G5 N Bl < C [ Nagayalo)
G;

<CE) [ (Spanlo)+ Colmal ) +2¢ | (Napa0) + Noale)?)

31,
< (Cle)pu? + Ceku?)| 1],

since, as D is a sawtooth domain, for any y € supp(¢), Spss(v)(y) <
Sp.0.e(0) (), Nag2(v)(y) < Noo(v)(x) and Nyo(v)(y) < Noe(v)(x) for some
x € E,. Similarly, we have Cy(mq(f))(y) < CCy(f)(x) for some z € E,,.

Summing in j gives

|Eul < (C(e, p) + Cek?)[{z | Nag ap(v)(2) > p1/24}]
< (Cle, p) + Ceb){ | Noa(v)(x) > /243,

which concludes the proof of (3.12).
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We can now obtain the theorem using (3.12) and standard arguments.
We have

| Nows @) = / L {Noga(0) (@) > 1} i
0

< /OOO A7 Bl 4+ {Spo.e(v) (@) + Co(f) () > pu}|
+ [{Noe(v)(z) > ku}|) dp

< / (O, )+ Cek) o | Noan(o) () > 1724}

+ {Sp0e(v)(x) + Co(f)(x) > put| + {Noe(v)(z) > kp}) dp
< (Cle, p) + Cek®)l| Nozs (v) | ey

4! 4!
+ 7 ISn0e()lze + 1Co (@) + 271N (V) im)

< (Cle, p) + Cek?) | Nowr2 ()11 ey

4! C
+ 7 ISn0e()llze + 1Co(F)llm) + 2 lNop/12(0) 111 ey

where the last inequality follows from [15, p62]. Then we may choose first k
sufficiently large, secondly e sufficiently small, then p sufficiently small so
that we may hide the non-tangential maximal function on the left-hand
side. |

It will now be useful to introduce a truncated square function, which we

define as
e (// I9ateOFlg(e. O dedt) |
T (y,0(y

where I'7(y, ¢(y)) = {(, 1) [ |z — yl < a(t —¢(y)), t — ¢(y) < 7} is the cone
truncated at height 7.

Lemma 3.7 Let v be a solution to (3.1) and let ¢ and ¢, be non-negative
Lipschitz functions such that ¢ > 2¢. Let I be an interval in R and r = |I|.
Then there exists a sufficiently small choice of a and «, depending only on
N A, p,ar, T oand || || Loy, and a constant C(p), depending on the same
parameters, along with a and «, such that

177 ) oy < COUNoa@)B s
+ [1Ng 0 () 1T an 1o (ma ()| 2ogan)
+ Noa )1 s 1Spa @) | Co(ma ()| zogany
+ [ Nga ()t 15,0 (0) [ty
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Proof. We perform the same calculation as we did in the proof of Lemma 3.1,
but with & replaced by & (7-). The second term on the right-hand side
of (3.7) can be controlled by || Ng,o(v)[|75@7)- Then, with the same notation
as Lemma 3.1, we see || fo&i[|7p@ = I+ 11+ I+ IV. The first term of 1l
in (3.9) can be combined with I to produce

2tdxdt

/R2 Vuw - AVwé CHS;?E)Q( )HLP ((1/2)I

and all the other terms can be bounded about as before to obtain the theo-
rem. [ |

Theorem 3.8 Let p > 2, v be a solution to (3.1) and {I;}; be the Whitney
decomposition of {z | Spd)b(v) x) > p/4}. Fiz an interval J and set
(v)

Fy = 1;0 ({2 ] Sppa(v)(x) > 41}
(| (Mo (Colmal 1)) + Mos(Nos(0)) ()7 < pu)
A {2 | [Mag (Nia(0))(@)] 7 (Mo (Co(malF)P) ()] < pii}
N {2 | [Mos(Ni.a(0)7) ()% [ Mo (Spa(0)7) (1)) < ppi}
N {@ | [Mos(Colma(f))P) ()] [M6J< Spaa(0))(@)]7 < pu}).

where Mgy is the Hardy-Littlewood maximal function applied to functions
restricted to 6.J, that is Mes(f) = M(xesf) where xe¢; is the characteristic
function of 6J. Given a Lipschitz function ¢ > 0 such that b||¢'|| pm®) < 1
and for sufficiently small a, o and p < 1, there exists a constant c(p),
independent of j, such that for all pn > 0

|F51 < elp)l 11,

D=

)
")(z
f)

provided I; C J. Moreover, c(p) tends to zero as p — 0.

Proof. Fix j and set [ := [; and F' := F}. By property (b) of the Whitney
decomposition we know that if x € F', then there exists a point 2’ € 81 such
that Sy (v)(2') < p/4. Therefore, since we may assume b > a,

p6a(0)(@) 2 Sp6.a(v) (@) = Spp(v)(@’) = p—p/4> p/2,

for some 7 > 0, depending only on a, b and ||¢'|| = (r). Thus,

2|F| < 0/ o do

and we may apply Lemma 3.7 to obtain the Theorem via standard argu-
ments. |
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Corollary 3.9 Let ¢ > p > 2, v be a solution to (3.1). There ezists a
constant C(p,q) > 0, depending only on A\, A, ¢1, p and q, such that

15p,0,a(0) | Lar) < C(p, @) (| Noa () || Law) + [|Co(f) || Lar))

Lemma 3.10 Let v be a solution to (2.4) (that is, (3.1) with fo = 0).
Then there exists a constant co, depending only on a, p and the ellipticity
constants, such that

15p.0a(0)llLr) < C(p, ) [|Colf)lLr),

for some C(p,c;) > 0, depending on the same parameters and ci, provi-
ded ¢1 < co.

Proof. We perform the same calculation as we did in the proof of Lemma 3.1,
but with £ = 1. With the same notation, but with w replaced by v (as we
have no need of the transformation @), we see | fo|[7,@) =1+ 11+ 1IV. The

first term of Il in (3.9) can be combined with I to produce

2tdxdt
/ Vo AV > C|Sp0.a(0) 55
R2 Q22

and all other terms can be bounded about as before. We can then use Cau-
chy’s Inequality and Theorem 3.6 to hide || Ny o(v)| £o®) and [|Sp,0.a(v)] Le(r)
as necessary. The only terms for which this is not possible are II3 and the
third term on the right-hand side of (3.9), so it is here we use that ¢; is
small. |

Lemma 3.11 For be a solution v to (3.1) and its conjugate v, we have

152,0a(0)l|zrorz) < C()11520.0(0) Lo (or2) + 1Co () Loor2))

+

forl<p< oo.

Proof. Using (2.5) and (2.3) it is easy to see

Sr0a(v)(a)? < C (SQ,O,Q@ = » |F|2) |

so, to complete the proof, it suffices to show

(3.13) / ( i » |F|2)g dz < ClCo( DI,
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We can do this via duality [1], testing F' against g such that

(] Jew 0P

where 1 + 1 = 1. Indeed,
p P

dyds
52

feﬁﬁx

//R Gla, ) F(z, 1) dedt < / (G (2. (2. dudt

< [ Naopalma(G)a)Col )1 dc

< HNO,a/Q(ma(G))HLp’(]R) Hco(f)HLP(]R)

1
) 2
9

the proof of (3.13) is complete. [ |

But since

dyds
52

Noa/a(ma(G))(2) < ( Il RGO
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