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Elliptic equations in the plane satisfying
a Carleson measure condition

Martin Dindoš and David J. Rule

Abstract
In this paper we settle (in dimension n = 2) the open question

whether for a divergence form equation div(A∇u) = 0 with coeffi-
cients satisfying certain minimal smoothness assumption (a Carleson
measure condition), the Lp Neumann and Dirichlet regularity pro-
blems are solvable for some values of p ∈ (1,∞). The related question
for the Lp Dirichlet problem was settled (in any dimension) in 2001
by Kenig and Pipher [11].

1. Introduction

In this paper we prove some two dimensional results for second order elliptic
operators under certain natural, minimal conditions on the coefficients of
these operators. Primarily, our operators L are of divergence form Lu =
div(A∇u), where A(X) = (aij(X)) is a (not necessarily symmetric) strongly
elliptic matrix in the sense that there exists a positive constant λ such that

λ|ξ|2 ≤
∑
ij

aij(X)ξiξj ≤ λ−1|ξ|2,

for all X and ξ ∈ R
2.

The motivation for the conditions placed upon the matrixA come from the
following example due to Kenig and Pipher [11] who studied the Lp Di-
richlet boundary value problem for elliptic equations in divergence form:
div(A∇u)=0. Consider the Dirichlet problem for the Laplacian Δ=∂2

x + ∂2
t :{

Δu = 0, in Ωφ

u = f0, on ∂Ωφ,
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where Ωφ = {(x, t) |φ(x) < t} and φ : R → R is a Lipschitz function. It is
well-know [2] that the L2 Dirichlet boundary value problem is solvable for
such a domain and operator, that is, we have the following estimate for the
nontangential maximal function Nφ,a (see below for the definition):

(1.1) ‖Nφ,a(u)‖L2(R) � C‖f0‖L2(∂Ωφ).

We now consider the transformation Φ: R
2
+ → Ωφ, used by Dahlberg, Kenig

and Stein (see [3] and [5]), but also earlier by Nečas [13], defined as

(1.2) Φ(x, t) = (x, c0t+ (θt ∗ φ)(x)),

where {θt}t>0 is a smooth compactly supported approximate identity and c0
can be chosen large enough, depending only on ‖φ′‖L∞(R), so that Φ is one-
to-one. One may compute that the function Φ enjoys the properties

• |∂Φ(x, t)| � C,

• |∂2Φ(x, t)| � C/t, and

• t|∂2Φ(x, t)|2dxdt is a Carleson measure.

Moreover, it is straightforward to see that the composition w = u◦Φ is such
that div(A∇w) = 0 in R

2
+, where A = (det Φ)((Φ′)−1)t(Φ′)−1. Therefore A

inherits from Φ the properties

(i) |∂A(x, t)| � c1/t and

(ii) t|∂A(x, t)|2dxdt is a Carleson measure with norm c1,

and from (1.1) we can see the corresponding non-tangential estimate

(1.3) ‖N0,a(w)‖L2(R) � C‖f0(·, φ(·))‖L2(R)

holds. So the natural question is: “Are the conditions (i) and (ii) sufficient
to conclude estimate (1.3) for an arbitrary solution to a divergence form
equation?” Kenig and Pipher [11] prove an Lp version of such estimate holds
under closely related conditions, where p > 1 may possibly be large and
Dindoš, Petermichl and Pipher [6] show that the Lp version holds for any
given 1 < p < ∞ under the same assumptions, but when c1 is sufficiently
small (depending on p). In fact, both of these results are proved for bounded
Lipschitz domains in any dimension and the elliptic equation may have lower-
order drift terms satisfying a similar Carleson measure condition.

Given [9], the same motivation can be used to justify posing the same
question regarding the regularity and Neumann problems. We will obtain an
analogous result to that proved for the Dirichlet problem, more specifically,
for a given p ∈ (1, 2], we prove that the regularity problem (R)p and the
Neumann problem (N)p hold under the hypotheses (i) and (ii) provided c1
is sufficiently small.
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We remark that our method does not allow one to move beyond dimen-
sion two, that is, this problem is completely open for n ≥ 3.

We note here that we eventually want to replace the conditions (i) and (ii)
by an averaging condition on coefficients of A as was done in [6] for the
Dirichlet problem. In this paper, a solvability result was first established
with a condition similar to (i) and (ii). Then this condition was replaced by
a weaker averaging condition by the use of perturbation theory that is known
for the Dirichlet problem. Moreover, our Ñφ,a,α defined below is a slightly
weaker L1 average of the L2 average used elsewhere. What we present here
should therefore be considered as a first step on the road that will bring our
knowledge of the Neumann and regularity problem to the same level as the
Dirichlet problem.

The layout of this paper is as follows. In Section 2 we introduce some
notation, state the main result, Theorem 2.2, and provide an outline of its
proof. In Section 3 we reduce the proof of Theorem 2.2 to several inequalities,
which are then proved.

2. The Main Result

First we fix some well-known notation adapted to the domain Ωφ, where φ is
a Lipschitz function. The p-adapted square function Sp,φ,a(g) with aperture
a of a function g : Ωφ → R is defined by

Sp,φ,a(g)(y) =

(∫∫
Γa(y,φ(y))

|∇g(x, t)|2|g(x, t)|p−2 dxdt

) 1
p

,

where Γa(y, φ(y)) = {(x, t) | |x−y| � a(t−φ(y))} and we take a < ‖φ′‖−1
L∞(R).

We define the non-tangential maximal function of g : Ωφ → R as

Nφ,a(g)(y) = sup
Γa(y,φ(y))

|g|

and, for g : R
2
+ → R and α ∈ (0, 1/2],

mα(g)(x, t) =
1

|Bαt(x, t)|
∫∫

Bαt(x,t)

|g|,

where Br(x, t) = {(y, s) | (y−x)2 +(s− t)2 � r2} is a ball with radius r and

centre (x, t). Finally, we set Ñφ,a,α(g) = Nφ,a(mα(g)).

We will consider the Dirichlet problem

(2.1)

{
Lu = 0, in R

2
+

u = f0, on ∂R
2
+



1016 M. Dindoš and D. J. Rule

with data f0 : ∂R
2
+ → R and the Neumann problem

(2.2)

{
Lu = 0, in R

2
+

ν · A∇u = g0, on ∂R
2
+

with data g0 : ∂R
2
+ → R. The operator L = divA∇ is an elliptic opera-

tor in divergence form with coefficients given by the matrix A = (aij)ij.
The matrix A is assumed to have real-valued bounded measurable entries
(maxi,j ‖aij‖L∞(Ω) = Λ <∞) and satisfy the uniform ellipticity condition

(2.3) λ|ξ|2 � ξ ·Aξ
for some λ > 0 and all ξ ∈ R

2, but A is not necessarily symmetric. In
addition we will assume

(x, t) �→
∑
ij

|∇aij|2tdxdt

is a Carleson measure with norm no more than c1, that is to say

sup
I

1

|I|
∫∫

Î

∑
ij

|∇aij|2tdxdt � c1,

where Î = I × (0, |I|) ∈ R
2. Finally, we assume supij |∇aij(x, t)| � c1/t for

all (x, t) ∈ R
2
+. Both (2.1) and (2.2) have weak solutions for data in the set

Ċ∞
0 of compactly supported smooth functions with mean-value zero. Such

functions are dense in Lp(∂R
2
+) for 1 < p <∞. (See [12].)

Definition 2.1 (i) We say that the Dirichlet problem holds for p, or (D)A
p

= (D)p holds, if for any u solving (2.1) with boundary data f0 ∈ Lp(∂R
2
+)∩

Ċ∞
0 (∂R

2
+) we have

‖N0,a(u)‖Lp(∂R
2
+) � C(p)‖f0‖Lp(∂R

2
+).

(ii) We say that the Neumann problem holds for p, or (N)A
p = (N)p holds,

if for any u solving (2.2) with boundary data g0 ∈ Lp(∂R
2
+) ∩ Ċ∞

0 (∂R
2
+)

we have
‖Ñ0,a,α(∇u)‖Lp(∂R

2
+) � C(p)‖g0‖Lp(∂R

2
+).

(iii) We say that the regularity problem holds for p, or (R)A
p = (R)p holds,

if for any u solving (2.1) with boundary data f0 ∈ W 1,p(∂R
2
+) ∩ Ċ∞

0 (∂R
2
+)

we have
‖Ñ0,a,α(∇u)‖Lp(∂R

2
+) � C(p)‖∂τf0‖Lp(∂R

2
+).

In each case, the constant C(p)>0 must depend only on λ, Λ,Ω, a, α and p.
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Our main result is the following.

Theorem 2.2 Let L = div(A∇·) be an elliptic operator as described above.
For each fixed 1 < p � 2, there exist a, α and c2 such that, if c1 < c2,
then (R)A

p and (N)Ã
p hold, where Ã = At/ det(A).

The proof of Theorem 2.2 will be based on a duality estimate. Consider
the inhomogeneous Dirichlet problem

(2.4)

{
div(At∇v) = div(F ) in R

2
+ ,

v = 0, on ∂R
2
+ .

We compute∫∫
R

2
+

(∇u)F dxdt = −
∫∫

R
2
+

u div(F ) dxdt+

∫
∂R

2
+

u ν · F dx

= −
∫∫

R
2
+

u div(At∇v) dxdt+
∫

∂R
2
+

u ν · F dx

= −
∫∫

R
2
+

div(A∇u)v dxdt+

∫
∂R

2
+

u ν · (F − At∇v) dx

=

∫
∂R2

+

u ν · (F −At∇v) dx.

Now, for a solution v to (2.4), we can define a conjugate v to v via the
system

(2.5) At∇v − F = ( 0 1
−1 0 )∇v.

This is only possible because we are in two dimensions. Importantly, it
allows us to write∫∫

R
2
+

(∇u)F dxdt =

∫
∂R

2
+

u ν · (F −At∇v) dx

= −
∫

∂R
2
+

u ∂τv dx =

∫
∂R

2
+

∂τu v dx.

From here we can easily see how we might obtain our main result. The idea
is that we can now test ∇u against a suitable class of dual functions F , with
norm ‖F‖[p], say, via the above equality. We can conclude

‖Ñ0,a,α(∇u)‖Lp(∂R
2
+) � C‖∂τf0‖Lp(∂R

2
+),

provided ‖v‖Lp(∂R
2
+) � C‖F‖[p]. This would prove that (R)A

p holds; that (N)Ã
p

holds would then follow by considering a conjugate for a solution to (2.1)
defined similarly to (2.5) (see [12]).
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We now need to describe an appropriate class of F , but first we will
fix some well-known notation. For a Lipschitz function φ, Ω = Ωφ :=
{(x, t) | t > φ(x)}. For a measure f on Ωφ, we define

Cφ(f)(y) = sup
I�y

(
1

|I|
∫∫

Îφ

|df |
)
,

where Îφ = {(x, t) | x ∈ I, φ(x) < t < φ(x)+ |I|} is a tent over the interval I.
When we write Cφ(F ), where F is is a function on Ωφ, we mean the natural
modification

Cφ(F )(y) = sup
I�y

(
1

|I|
∫∫

Îφ

|F (x, t)| dxdt
)
.

We know from [1] that

(2.6)

∫∫
Ωφ

Gdf � C(‖φ′‖L∞(R), a)

∫
Nφ,a(G)(y)Cφ(f)(y) dy,

and the space of measures f such that Cφ(f) ∈ Lp(R) is the dual of the
space of functions G such that Nφ,a(G) ∈ Lp′(R). We will also need the
inequality from [1]∫∫

Ωφ

F (x, t)∇G(x, t) tdxdt �(2.7)

� C(‖φ′‖L∞(R), a)

∫
Cφ(tF

2)(y)
1
2S2,φ,a(G)(y) dy.

Let ϕ ∈ C∞(R2) be a fixed positive function, having support in B5/6(0)
and such that ϕ ≡ 1 on B4/6(0). Then ψ = ϕα/12 ∗ ϕα, where, for α > 0,
ϕα = α−2ϕ(α−1·), has support in Bα(0) and ψ ≡ 1 on Bα/2(0). We then
consider datum F in (2.4) of the form

(2.8) F (X) = χ(X)(ψt ∗ f)(X) = χ(X)(ϕαt/12 ∗ ϕαt ∗ f)(X)

where X = (x, t), |χ| � 1 and f is a measure such that C0(f) ∈ Lp(∂R
2
+)

(i.e. we use Cφ(f) defined above for the function φ = 0). The norm placed
on the set of such F is then

‖F‖[p] = ‖C0(f)‖Lp(R).

With F as in (2.8), by Fubini’s Theorem we have

(2.9)

∫∫
R

2
+

F (x, t)G(x, t) dxdt =

∫∫
R

2
+

∫∫
R

2
+

ψt(X−Y )χ(X)G(X) dX df(Y ),
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where X = (x, t). An straightforward calculation shows

mα/4(G)(Y ) �
∫∫

R
2
+

ψt(X − Y )χ(X)G(X) dX � Cm2α(G)(Y )

for α � 1/2 and χ(X) = G(x)/|G(x)|, so with the duality above, the set of F
as in (2.8) with norm ‖C0(f)‖Lp(R) is an appropriate set of F . To complete
the proof it suffices to prove for 2 � p <∞ the inequality

(2.10) ‖N0,a(v)‖Lp(R) � C‖C0(f)‖Lp(R)

under the hypothesis c1 is sufficiently small. We will do this in Section 3.
It would be interesting to also prove (2.10) for 1 < p < 2 when c1

is small as this would imply the regularity and Neumann problems held
for any given p when c1 is sufficiently small, as is the case for the Dirichlet
problem [6]. Unfortunately we are not able to do this. Possibly an even more
interesting question would be whether or not the Neumann and regularity
problems can be shown to hold for some (small) exponent p when c1 is
only assumed to be finite. Given [12] and [11] one would conjecture this is
the case, but again our methods are not powerful enough to do this. To
prove this conjecture via the methods used here, one would require better
knowledge of the constants involved our estimates.

3. Estimates for the Inhomogeneous Equation

It will be useful to consider an inhomogeneous Dirichlet problem which is
slightly more general than (2.4):

(3.1)

{
Ltv = div(F ), in R

2
+

v = f0, on ∂R
2
+

with data f0 : ∂R
2
+ → R and F : R

2
+ → R

2. We make the same assumptions
on L here as we did in (2.1) and (2.2) (and Lt = div(At∇·)).

With F as in (2.8), by Fubini’s Theorem and (2.6) we have∫∫
Ωφ

F (x, t)G(x, t) dxdt �
∫∫

Ωc3φ

|(ϕαt ∗ f)(y, s)|mα/10(G)(y, s) dyds

� C

∫
Cc3φ(mα(f))Nc3φ,a(mα/10(G)) dy,(3.2)

where c3 = 1 − α
√

1 + ‖φ′‖2∞/10. We will use this later.
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Observe that we are free to assume A is upper triangular, provided we
introduce lower order terms. Indeed

Lv = ∂x(a11∂xv + (a12 + a21)∂tv) + ∂t(a22∂tv) + (∂ta21)∂xv − (∂xa21)∂tv.

In this section we set about proving that solutions v to (3.1) satisfy the
estimates

(3.3) ‖N0,a(v)‖Ll(∂R
2
+) � C(p, l)(‖Sp,0,a(v)‖Ll(∂R

2
+) + ‖C0(f)‖Ll(∂R

2
+))

for 2 � p <∞ and 0 < l <∞ and

(3.4) ‖Sp,0,a(v)‖Lq(∂R
2
+) � C(p, q)(‖N0,a(v)‖Lq(∂R

2
+) + ‖C0(f)‖Lq(∂R

2
+))

for 2 � p < ∞ and p < q < ∞. These estimates can be viewed as a
generalisation of the main estimates in [10], which themselves are closely
related to the work of Dahlberg [4]. The methods we use are essentially
the distributional inequality methods used in [10]. The estimate (3.3) is
eventually achieved in Theorem 3.6. Then we move on to prove (3.4) which
we state as Corollary 3.9. Lemma 3.11 enables us to relate the conjugate v
to v via the following estimate:

(3.5) ‖S2,0,a(v)‖Lp(∂R
2
+) � C(p)

(‖S2,0,a(v)‖Lp(∂R
2
+) + ‖C0(f)‖Lp(∂R

2
+)

)
for 1 < p <∞. The final ingredient required to prove (2.10) is the estimate

(3.6) ‖Sp,0,a(v)‖Lp(∂R2
+) � C(p)‖C0(f)‖Lp(∂R2

+)

which requires that v have zero boundary value and c1 be sufficiently small.
The estimate (3.6) is proved in Lemma 3.10. Let us now take these estimates
as given and use them to complete the proof of Theorem 2.2.

Proof of Theorem 2.2. As discussed in Section 2, it suffices to prove (2.10).
We remark that v also satisfies an equation of the form (3.1) were the coef-
ficient matrix has ellipticity constants which are multiples of those for A
and its first derivatives satisfy the same Carleson measure condition with
constant being a multiple of c1. Specifically, At is replaced by A/ det(A)
and on the right-hand side, F becomes a bounded matrix multiplied by F ,
and so is still of the form (2.8). This means that (3.3) and (3.4) are also
valid for v.

Now, by (3.3) and (3.5), we have

‖N0,a(v)‖Lp(∂R
2
+) � C(‖S2,0,a(v)‖Lp(∂R

2
+) + ‖C0(f)‖Lp(∂R

2
+))

� C(‖S2,0,a(v)‖Lp(∂R
2
+) + ‖C0(f)‖Lp(∂R

2
+)).

When p = 2 we can use (3.6) to obtain the bound C‖C0(f)‖L2(∂R
2
+), as

required.
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When p > 2 we may first use (3.4) and then (3.3) and (3.6) to obtain
once again

‖N0,a(v)‖Lp(∂R
2
+) � C(‖N0,a(v)‖Lp(∂R

2
+) + ‖C0(f)‖Lp(∂R

2
+))

� C(‖Sp,0,a(v)‖Lp(∂R
2
+) + ‖C0(f)‖Lp(∂R

2
+))

� C‖C0(f)‖Lp(∂R
2
+).

Thus, we are left with the task of establishing (3.3), (3.4), (3.5) and (3.6). We
remark that it is sufficient to establish these inequalities only for exponents
p = 2k, where k ∈ N. This establishes the boundedness of ∂τf0 �→ Ñ0,a,α(∇u)
on the Lp′(∂R

2
+) for p′ = (1− 2−k)−1 and we can use interpolation to obtain

all p′ ∈ (1, 2]. �
Lemma 3.1 Let v be a solution to (3.1) as described above and let φ and φ+

be non-negative Lipschitz functions such that φ+ � 2φ. Let I be an interval
in R with r := |I| and p = 2k for some k ∈ N. Then there exists a sufficiently
small choice of a and α, depending only on λ, Λ, p, c1 and ‖φ′

+‖L∞(R), and
a constant C(p), depending on the same parameters, along with a and α,
such that

‖v(·, φ+(·))‖p
Lp(I) � C(p)(‖Sp,φ,a(v)‖p

Lp(3I) + ‖Cφ(mα(f))‖p
Lp(3I)

+ ‖Nφ,a(v)‖p−1
Lp(3I)‖Cφ(mα(f))‖Lp(3I)

+ ‖Nφ,a(v)‖(p−2)/2
Lp(3I) ‖Sp,φ,a(v)‖p/2

Lp(3I)‖Cφ(mα(f))‖Lp(3I)

+ ‖Nφ,a(v)‖p/2
Lp(3I)‖Sp,φ,a(v)‖p/2

Lp(3I) + r|v(Xr)|p),
where Xr is any point in {(x, t) | x ∈ 3I, φ+(x) + r/2 � t � φ+(x) + 3r/a}.
Proof. In order to facilitate the use of integration by parts, we will use the
mapping from R

2
+ to Ωφ defined by (1.2). This maps v to a solution of an

equation of the same form as (3.1), with data controlled by multiples of the
constants controlling the data of the original equation. We will denote this
new solution by w = v ◦ Φ.

We choose a smooth function ξ1 : R → R such that ξ1(x) = 1 for x ∈ I,
|ξ′1| � 5/r and support contained in 2I. Choose a second ξ2 : [0,∞) → R

such that ξ2(t) = 1 for t ∈ [0, r], |ξ′1| � 5/r and support contained in [0, 2r].
Now define ξ(x, t) = ξ1(x)ξ2(t).

We proceed by calculating in a similar fashion to [10], [11] and [14]. First
of all,∫

w(x, 0)pξ1(x) dx = −
∫∫

R
2
+

∂t(w
pξ)(x, t) dxdt

= −
∫∫

R
2
+

pwp−1wtξ dxdt−
∫∫

R
2
+

wpξ1ξ
′
2 dxdt.(3.7)
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The second term on the right-hand side of (3.7) is controlled by

r−1

∫∫
K

wp dxdt

where K = {(x, t) | x ∈ (7/3)I, r � t � 2r}. Assume, for the moment,

(3.8) |w − c|p � C(p)|w|w|p−1 − c|c|p−1|
for all w, c ∈ R and p ∈ N. Let Xr be any point in K and set

K ′ = {(x, t) | x ∈ (8/3)I, 7r/8 � t � 17r/8}.
We choose c such that

(w|w|p/2−1)K ′ = c|c|p/2−1 where fK ′ =
1

|K ′|
∫∫

K ′
f.

Using [7, Thm 8.17] and Poincaré’s inequality, we may further estimate this
term, using (3.8) with exponent p/2,

r−1

∫∫
K

(w − w(Xr))
p dxdt+ r−1

∫∫
K

wp(Xr) dxdt �

� Cr oscK(w)p + Cr|w(Xr)|p
� Cr sup

K
|w − c|p + Cr|w(Xr)|p

� Cr−1

∫∫
K ′

|w − c|p dxdt+ Cr1+p(1−2/q)‖F‖p
Lq(K) + Cr|w(Xr)|p

� Cr−1

∫∫
K ′

|w|w|p/2−1 − c|c|p/2−1|2 dxdt
+ Cr1+p(1−2/q)‖F‖p

Lq(K) + Cr|w(Xr)|p

� Cr

∫∫
K ′

|∇(wp/2)|2 dxdt+ Cr inf
x∈(8/3)I

Cφ(mα(f))(x)p + Cr|w(Xr)|p

� C‖Sp,φ,a(v)‖p
L2(3I) + ‖Cφ(mα(f))‖p

Lp(3I) + Cr|w(Xr)|p.
We now prove (3.8). This is done by considering several cases. First,

if w and c are positive, and w � c, then there exists a constant C(p) such
that

|w|w|p−1 − c|c|p−1| = wp − cp = (w − c)

p−1∑
k=0

wp−1−kck

� C(p)(w − c)

p−1∑
k=0

(
p− 1

k

)
wp−1−kck = C(p)(w − c)p = C|w − c|p.
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Secondly, if wc � 0, then

|w − c|p = (|w|+ |c|)p � 2p max(|w|p, |c|p)
� 2p(|w|p + |c|p) = 2p|w|w|p−1 − c|c|p−1|.

All other cases can easily be reduced to the first and so (3.8) is proved.

Returning to our main estimate, the first term on the right-hand side
of (3.7) is

−
∫∫

R2
+

pwp−1wtξ dxdt = −
∫∫

R2
+

pwp−1a22wtξ

a22

∂t(t) dxdt

=

∫∫
R

2
+

∂t

(
pwp−1a22wtξ

a22

)
tdxdt

=

∫∫
R

2
+

(p− 1)wp−2a22w
2
t ξ
ptdxdt

a22

+

∫∫
R

2
+

wp−1∂t(a22wt)ξ
ptdxdt

a22

+

∫∫
R

2
+

wp−1a22wtξ1ξ
′
2

ptdxdt

a22
−

∫∫
R

2
+

wp−1wtξ∂ta22
ptdxdt

(a22)2

=: I + II + III + IV.

Using the fact that w solves (3.1) (where, we recall, we may take A to be
upper triangular and introduce a lower order term, B · ∇w) we see that II
is equal to∫∫

R
2
+

wp−1div(F )ξ
ptdxdt

a22
−

∫∫
R

2
+

wp−1∂x(a11wx + a12wt)ξ
ptdxdt

a22

−
∫∫

R
2
+

wp−1B · ∇wξ ptdxdt
a22

=: II1 + II2 + II3.

Integrating by parts we see that

II1 = −
∫∫

R
2
+

(p− 1)wp−2∇w · Fξ ptdxdt
a22

+

∫∫
R

2
+

wp−1F · ∇ξ ptdxdt
a22

+

∫∫
R

2
+

wp−1ξF · ( 0
1 )

pdxdt

a22
−

∫∫
R

2
+

wp−1ξF · ∇a22
ptdxdt

(a22)2
.

Transforming back to our original coordinate system via the inverse of (1.2),
each of these terms can be controlled using (3.2). Indeed, using the facts
that |∇a22(x, t)| � Cc1/t, |∇ξ| � 5/r and that the integrands are zero
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when t > 2r or x �∈ 2I, we see that∣∣∣∣ ∫∫
R

2
+

(p− 1)wp−2∇w · Fξ ptdxdt
a22

∣∣∣∣
� C

∫
3I

Cc3φ+(mα(f))Nc3φ+,a/2(mα/10(tv
p−2|∇v|)) dx,∣∣∣∣ ∫∫

R
2
+

wp−1F · ∇ξ ptdxdt
a22

∣∣∣∣ � C

∫
3I

Cc3φ+(mα(f))Nc3φ+,a/2(mα/10(v
p−1)) dx,

∣∣∣∣ ∫∫
R2

+

wp−1ξF · ( 0
1 )

pdxdt

a22

∣∣∣∣ � C

∫
3I

Cc3φ+(mα(f))Nc3φ+,a/2(mα/10(v
p−1)) dx

and∣∣∣∣ ∫∫
R

2
+

wp−1ξF ·∇a22
ptdxdt

a2
22

∣∣∣∣ � C

∫
3I

Cc3φ+(mα(f))Nc3φ+,a/2(mα/10(v
p−1)) dx.

So, using the simple observation that

Nc3φ+,a/2(mα/10(tv
p−2|∇v|)) � CNφ,a(v)

(p−2)/2Sp,φ,a(v)
p/2

for sufficiently small a and α, we find

|II1| � C
(‖Nφ,a(v)‖(p−2)/2

Lp(3I) ‖Sp,φ,a(v)‖p/2
Lp(3I)‖Cφ(mα(f))‖Lp(3I)

+ ‖Nφ,a(v)‖p−1
Lp(3I)‖Cφ(mα(f))‖Lp(3I)

)
.

Again, using integration by parts,

(3.9)

II2 =

∫∫
R

2
+

(p− 1)wp−2wx(a11wx + a12wt)ξ
ptdxdt

a22

+

∫∫
R

2
+

wp−1(a11wx + a12wt)∂xξ
ptdxdt

a22

+

∫∫
R

2
+

wp−1(a11wx + a12wt)ξ∂xa22
ptdxdt

a2
22

.

The first integral may be combined with I to produce∫∫
R

2
+

(p− 1)wp−2∇w · A∇wξ ptdxdt
a22

� C‖Sp,φ,a(v)‖p
Lp(3I).

What remains of II2 may be dealt with as above using (2.7) once we observe
that, since |∇ξ| � 5/r and supp(ξ) ⊂ 2I× [0, 2r], we have C0(t|∇ξ|2) � 100.
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So, for example,∣∣∣∣∣
∫∫

R
2
+

|w|p−1|∇w||∇ξ| tdxdt
∣∣∣∣∣ � C

∫
3I

C0(t|∇ξ|2)(y) 1
2S2,φ,a(v

p−1|∇v|)(y) dy

� C

∫
3I

Nφ,a(v)
p/2Sp,φ,a(v)

p/2 dx. � C‖Nφ,a(v)‖p/2
Lp(3I)‖Sp,φ,a(v)‖p/2

Lp(3I)

Thus we obtain

|II2| � C(‖Sp,φ,a(v)‖p
Lp(3I) + ‖Nφ,a(v)‖p/2

Lp(3I)‖Sp,φ,a(v)‖p/2
Lp(3I))

The terms II3, III and IV can also be dealt with in this way, and so, combi-
ning all of these estimates, we obtain the lemma. �

For any continuous function v : R
2
+ → R and μ ∈ R, define

hφ,μ,a(v)(x) = sup{t � φ(x) | sup
Γa(x,t)

(v) > μ}.

Lemma 3.2 Provided v is such that hφ,μ,a(v) <∞, the function hφ,μ,a(v) is
Lipschitz with constant 1/a.

Proof. See, for example, [11, Lem 3.5]. �
Given a non-empty open proper subset D ⊂ R we can find a family of

closed dyadic intervals {Ij}j such that:

(a) ∪jIj = D and the Ij have disjoint interiors;

(b) |Ij| � dist(Ij , D
c) � 4|Ij|; and

(c) If the boundaries of Ij and Ik touch then

1

4
� |Ij|

|Jk| � 4.

We call the family {Ij}j a Whitney decomposition of D. Here we use the
construction in [8, pA-34]. We remark that an examination of the construc-
tion reveals that if {I0

j }j is a Whitney decomposition of the set D0 ⊇ D,
then if Ij ∩ I0

k �= ∅ we have Ij ⊆ I0
k .

Lemma 3.3 Suppose v is a solution to (3.1), b > 0 and φ is such that
b‖φ′‖L∞(R) < 1.

Let I be a cube of the Whitney decomposition of {x |N2φ,2b(v)(x) > μ/24}
and let Eμ,ρ be the intersection of an interval I with{

x ∈ R |N2φ,b/12(v)(x) > μ and Cφ(mα(f))(x) + Sp,φ,b(v)(x) � ρμ
}
.



1026 M. Dindoš and D. J. Rule

There exists a sufficiently small choice of ρ, independent of I, so that, for
each x ∈ Eμ,ρ, there is a interval J with x ∈ 6J and J ⊂ 3I and for which

|v(z, h2φ,μ,b/12(v)(z))| > μ/2

for all z ∈ J .

Proof. See [10, 3.14]. Let x ∈ Eμ,ρ therefore, by definition,

h2φ,μ,b/12(v)(x) > 2φ(x),

and so we know there exists an (x0, t0) on ∂Γb/12(x, h2φ,μ,b/12(v)(x)) such that
|v(x0, t0)| = μ and we have h2φ,μ,b/12(v)(x0) = t0. Set

r0 = t0−2φ(x) > 0 and K = {(z, r) | |z−x0| � 11br0/72, |r−t0| � r0/6},
so then 3K ⊂ Γb(x, 2φ(x)). Moreover, since I is a Whitney cube, pro-
perty (b) implies that br0 � 60|I|/33.

Now by [7, Thm 8.17] we have that

oscK(v) � C(r−1
0 ‖v − c‖Lp(2K) + r

1−2/q
0 ‖F‖Lq(2K)),

for any constant c. But since |F (z, r)| � Cr−1
0 Cφ(mα(f))(x) for (z, r) ∈ 2K,

r
1−2/q
0 ‖F‖Lq(2K) � CCφ(mα(f))(x)

and so, using Poincaré’s inequality and (3.8),

|v(z, r) − v(x0, t0)| � oscK(v) � C(‖∇(v)p/2‖
2
p

L2(2K) + Cφ(mα(f))(x))

� C(Sp,φ,b(v)(x) + Cφ(mα(f))(x)) � Cρμ,

for any (z, r) ∈ K. Thus, we may choose ρ sufficiently small, so that |v(z, r)−
v(x0, t0)| � μ/2. Then, clearly, |v(z, h2ϕ,μ,b/12(v)(z))| � μ/2 for |z − x0| �
br0/72 and the lemma is proved. �

Theorem 3.4 Let p = 2k � 2, for some k ∈ N, v be a solution to (3.1)
and {Ij}j be the Whitney decomposition of {x |N2φ,2b(v)(x) > μ/24}. Fix
an interval J and set Fj equal to the intersection of Ij with

{x |N2φ,b/12(v)(x) > μ, (M3J(Cφ(mα(f))p) < ρμ}
∩ {x |M3J(Sp,φ,b(v)

p))(x)
1
p < ρμ}

∩ {x | [M3J(Nφ,a(v)
p)(x)]

p−1

p2 [M3J (Cφ(mα(f))p)(x)]
1

p2 < ρμ}
∩ {x | [M3J(Nφ,a(v)

p)(x)]
1
2p [M3J (Sp,φ,a(v)

p)(x)]
1
2p < ρμ},
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where M3J is the Hardy-Littlewood maximal function applied to functions
restricted to 3J , that is M3J (f) = M(χ3Jf) where χ3J is the characteris-
tic function of 3J . Given b > 0 and a Lipschitz function φ � 0 such that
b‖φ′‖L∞(R) < 1, there exist sufficiently small a, α and ρ < 1, and a cons-
tant c(ρ), independent of j, such that, for all μ > 0,

|Fj | � c(ρ)|Ij |,

provided Ij ⊆ J . Moreover, c(ρ) tends to zero as ρ→ 0.

Proof. Fix j, set I := Ij and F := Fj . Define the interval

I∗ = {(x, h2φ,μ,b/12(v)(x)) | x ∈ I}.

By Lemma 3.3, for each x ∈ F and sufficiently small ρ, we have that
Mμ(vχI∗)(x) > μ/12, where Mμ is the Hardy-Littlewood maximal function
on the graph of the function h2φ,μ,b/12(v). By (b), there exists a point q
such that dist(I, q) � 4|I| and N2φ,2b(v)(q) � μ/24. Therefore we can
choose Xr as in Lemma 3.1, where we will take φ+ = h2φ,μ,b/12(v), such
that |v(Xr)| � μ/24. We have

Mμ((v − v(Xr))χI∗)(x) � Mμ(vχI∗)(x) − |v(Xr)| > μ

24

for all x ∈ I, and applying the weak-type estimate for the maximal function,
we obtain

|F | � C

μp

∫
I∗

(v − v(Xr))
p.

Now we can apply Lemma 3.1 to the solution v − v(Xr), with φ+ =
h2φ,μ,b/12(v), provided a and α are sufficiently small. Observe that since we
obviously have |I|1/p|v(Xr)| � C‖Nφ,a(v)‖Lp(3I), we get the bound

μp|F | � C(‖Sp,φ,a(v)‖p
Lp(3I) + ‖Cφ(mα(f))‖p

Lp(3I)

+ ‖Nφ,a(v)‖p/2
Lp(3I)‖Sp,φ,a(v)‖p/2

Lp(3I)+‖Nφ,a(v)‖p−1
Lp(3I)‖Cφ(mα(f))‖Lp(3I)

+ ‖Nφ,a(v)‖(p−2)/2
Lp(3I) ‖Sp,φ,a(v)‖p/2

Lp(3I)‖Cφ(mα(f))‖Lp(3I))

� C|I|(M3J(Sp,φ,b(v)
p)(x) +M3J (Cφ(mα(f))p)(x)

+ [M3J (Nφ,a(v)
p)(x)]

p−1
p [M3J (Cφ(mα(f))p)(x)]

1
p

+ [M3J (Nφ,a(v)
p)(x)]

1
2 [M3J (Sp,φ,a(v)

p)(x)]
1
2 )

� Cρpμp|I|,
and so the proof is complete. �
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Corollary 3.5 Let v be a solution to (3.1), {I0
k}k be the Whitney decompo-

sition of {x |N2φ,2b(v)(x) > μ0/24} and define the set

G0
k = {x |N2φ,b/12(v)(x) > μ0} ∩ I0

k .

For each q > p = 2k � 2 (k ∈ N), Lipschitz function φ � 0 and b > 0
such that b‖φ′‖L∞(R) < 1, there exist constants C(p, q) and C(ε, p, q) and
sufficiently small a and α such that

‖N2φ,b/12(v)‖Lq(G0
k) � C(ε, p, q)(‖Sp,φ,b(v)‖Lq(3I0

k)

+ ‖Cφ(mα(f))‖Lq(3I0
k)) + 2ε(‖N2φ,2b(v)‖Lq(3I0

k) + ‖Nφ,a(v)‖Lq(3I0
k)),

Proof. Fix k. Let {Ij}j and {Fj}j be as in Theorem 3.4 with J = I0
k and

let {I0
j }j and {F 0

j }j be the same, but with μ replaced by μ0. As we remarked
just above Lemma 3.3, if μ � μ0 and I0

k ∩ Ij �= ∅, then Ij ⊆ I0
k . This means,

using Theorem 3.4, we have, for μ � μ0,

(3.10)

|G0
k ∩ (∪jFj)| �

∑
j:I0

k∩Ij �=∅
|Fj| � c(ρ)

∑
j:I0

k∩Ij �=∅
|Ij|

� c(ρ)|I0
k ∩ (∪jIj)|

Now observe if μ < μ0, then G0
k ∩ (∪jFj) ⊆ F 0

k and I0
k ⊆ ∪jIj. As a result

of this, when μ < μ0,

(3.11) |G0
k ∩ (∪jFj)| � |F 0

k | � c(ρ)|I0
k | � c(ρ)|I0

k ∩ (∪jIj)|.
Now we can proceed by standard arguments. We have

‖N2φ,b/12(v)‖Lq(G0
k) =

∫ ∞

0

qμq−1|{x ∈ G0
k |N2φ,b/12(v)(x) > μ}| dμ

=

∫ ∞

0

qμq−1|G0
k ∩ (∪jFj)| dμ+ C(ε)‖(M3I0

k
(Sp,φ,b(v)

p))1/p‖Lq(I0
k)

+ C(ε)‖(M3I0
k
(Cφ(mα(f))p))1/p‖Lq(I0

k) + ε‖(M3I0
k
(Nφ,a(v))

p)1/p‖Lq(I0
k)).

Therefore, using (3.10) and (3.11), this is majorised by

c(ρ)

∫ ∞

0

qμq−1|I0
k ∩ (∪jIj)| dμ+ C(ε)‖Sp,φ,b(v)‖Lq(3I0

k)

+ C(ε)‖Cφ(mα(f))‖Lq(3I0
k) + ε‖Nφ,a(v))‖Lq(3I0

k) =

= c(ρ)‖Nφ,2b(v))‖Lq(I0
k) + C(ε)‖Sp,φ,b(v)‖Lq(3I0

k)

+ C(ε)‖Cφ(mα(f))‖Lq(3I0
k) + ε‖Nφ,a(v))‖Lq(3I0

k),

where we have used the boundedness of the Hardy-Littlewood maximal ope-
rator. Now choosing ρ so that c(ρ) � ε completes the proof of the coro-
llary. �
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Theorem 3.6 Let v be a solution to (3.1). For each l > 0, there exist
constants b, c and C(p, l) such that

‖N0,b/12(v)‖Ll(R) � C(p, l)(‖Sp,0,c(v)‖Ll(R) + ‖C0(f)‖Ll(R))

Proof. Fix b and choose c � 2b, and a and α sufficiently small so that
we may apply Corollary 3.5 with ‖φ′‖L∞(R) � 1/c. It suffices to prove the
distributional inequality

(3.12) |Eμ| � (C(ε, ρ) + Cεkq)|{x |N0,2b(v)(x) > μ/24}|,

where
Eμ = {x |N0,b/12(v)(x) > μ,N0,c(v)(x) � kμ}

∩ {x |Sp,0,c(v)(x) + C0(f)(x) � ρμ},
q > p, and C(ε, ρ) tends to zero as ρ→ 0, for each fixed ε > 0. Let φ be the
Lipschitz function for which ∂D is the graph of 2φ, where

D = ∪x∈EμΓc/2(x, 0)

is a sawtooth region above Eμ. Now let {Ij}j be the Whitney decomposition
of {x |N2φ,2b(v)(x) > μ/24} and define the set

Gj = {x |N2φ,b/12(v)(x) > μ} ∩ Ij.

When x ∈ Eμ, φ(x) = 0, and so Eμ = ∪j(Gj ∩ Eμ). Now, for q > p, by
Corollary 3.5,

μp|Gj ∩Eμ| � C

∫
Gj

N2φ,b/12(v)
q

� C(ε)

∫
3Ij

(Sp,φ,b(v)
q + Cφ(mα(f))q) + 2ε

∫
3Ij

(N2φ,2b(v)
q +Nφ,a(v)

q)

� (C(ε)ρqμq + Cεkqμq)|Ij|,

since, as D is a sawtooth domain, for any y ∈ supp(φ), Sp,φ,b(v)(y) �
Sp,0,c(v)(x), N2φ,2b(v)(y) � N0,c(v)(x) and Nφ,a(v)(y) � N0,c(v)(x) for some
x ∈ Eμ. Similarly, we have Cφ(mα(f))(y) � CC0(f)(x) for some x ∈ Eμ.

Summing in j gives

|Eμ| � (C(ε, ρ) + Cεkq)|{x |N2φ,2b(v)(x) > μ/24}|
� (C(ε, ρ) + Cεkq)|{x |N0,2b(v)(x) > μ/24}|,

which concludes the proof of (3.12).
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We can now obtain the theorem using (3.12) and standard arguments.
We have

‖N0,b/12 (v)‖l
Ll(R) =

∫ ∞

0

lμl−1|{N0,b/12(v)(x) > μ}| dμ

�
∫ ∞

0

4−llμl−1(|Eμ| + |{Sp,0,c(v)(x) + C0(f)(x) > ρμ}|
+ |{N0,c(v)(x) > kμ}|) dμ

�
∫ ∞

0

4−llμl−1((C(ε, ρ) + Cεkq)|{x |N0,2b(v)(x) > μ/24}|
+ |{Sp,0,c(v)(x) + C0(f)(x) > ρμ}| + |{N0,c(v)(x) > kμ}|) dμ

� (C(ε, ρ) + Cεkq)‖N0,2b(v)‖l
Ll(R)

+
4l

ρl
(‖Sp,0,c(v)‖Ll(R) + ‖C0(f)‖Ll(R)) +

4l

kl
‖N0,c(v)‖l

Ll(R)

� (C(ε, ρ) + Cεkq)‖N0,b/12(v)‖l
Ll(R)

+
4l

ρl
(‖Sp,0,c(v)‖Ll(R) + ‖C0(f)‖Ll(R)) +

C

kl
‖N0,b/12(v)‖l

Ll(R),

where the last inequality follows from [15, p62]. Then we may choose first k
sufficiently large, secondly ε sufficiently small, then ρ sufficiently small so
that we may hide the non-tangential maximal function on the left-hand
side. �

It will now be useful to introduce a truncated square function, which we
define as

Sτ
p,φ,a(g)(y) =

(∫∫
Γτ

a(y,φ(y))

|∇g(x, t)|2|g(x, t)|p−2 dxdt

) 1
p

,

where Γτ
a(y, φ(y)) = {(x, t) | |x− y| � a(t− φ(y)), t− φ(y) � τ} is the cone

truncated at height τ .

Lemma 3.7 Let v be a solution to (3.1) and let φ and φ+ be non-negative
Lipschitz functions such that φ+ � 2φ. Let I be an interval in R and r := |I|.
Then there exists a sufficiently small choice of a and α, depending only on
λ, Λ, p, c1, τ and ‖φ′

+‖L∞(R), and a constant C(p), depending on the same
parameters, along with a and α, such that

‖Sτr
p,φ,a(v)‖p

Lp((1/2)I) � C(p)(‖Nφ,a(v)‖p
Lp(3I)

+ ‖Nφ,a(v)‖p−1
Lp(3I)‖Cφ(mα(f))‖Lp(3I)

+ ‖Nφ,a(v)‖(p−2)/2
Lp(3I) ‖Sp,φ,a(v)‖p/2

Lp(3I)‖Cφ(mα(f))‖Lp(3I)

+ ‖Nφ,a(v)‖p/2
Lp(3I)‖Sp,φ,a(v)‖p/2

Lp(3I)).
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Proof. We perform the same calculation as we did in the proof of Lemma 3.1,
but with ξ2 replaced by ξ2(τ ·). The second term on the right-hand side
of (3.7) can be controlled by ‖Nφ,a(v)‖p

Lp(3I). Then, with the same notation

as Lemma 3.1, we see ‖f0ξ1‖p
Lp(R) = I + II + III + IV. The first term of II2

in (3.9) can be combined with I to produce∫∫
R

2
+

∇w · A∇wξ 2tdxdt

a22
� C‖Sτr

p,0,a(v)‖p
Lp((1/2)I)).

and all the other terms can be bounded about as before to obtain the theo-
rem. �

Theorem 3.8 Let p � 2, v be a solution to (3.1) and {Ij}j be the Whitney
decomposition of {x |Sp,φ,b(v)(x) > μ/4}. Fix an interval J and set

Fj = Ij ∩ ({x |Sp,φ,a(v)(x) > μ}
∩ {x | (M6J(Cφ(mα(f))p) +M6J(Nφ,b(v)

p))(x)
1
p < ρμ}

∩ {x | [M6J(Nφ,a(v)
p)(x)]

p−1

p2 [M6J (Cφ(mα(f))p)(x)]
1

p2 < ρμ}
∩ {x | [M6J(Nφ,a(v)

p)(x)]
1
2p [M6J (Sp,φ,a(v)

p)(x)]
1
2p < ρμ}

∩ {x | [M6J(Cφ(mα(f))p)(x)]
1
2p [M6J(Sp,φ,a(v)

p)(x)]
1
2p < ρμ}),

where M6J is the Hardy-Littlewood maximal function applied to functions
restricted to 6J , that is M6J (f) = M(χ6Jf) where χ6J is the characteristic
function of 6J . Given a Lipschitz function φ � 0 such that b‖φ′‖L∞(R) < 1
and for sufficiently small a, α and ρ < 1, there exists a constant c(ρ),
independent of j, such that for all μ > 0

|Fj | � c(ρ)|Ij |,
provided Ij ⊆ J . Moreover, c(ρ) tends to zero as ρ→ 0.

Proof. Fix j and set I := Ij and F := Fj. By property (b) of the Whitney
decomposition we know that if x ∈ F , then there exists a point x′ ∈ 8I such
that Sφ,b(v)(x

′) � μ/4. Therefore, since we may assume b > a,

Sτr
p,φ,a(v)(x) � Sp,φ,a(v)(x) − Sp,φ,b(v)(x

′) � μ− μ/4 > μ/2,

for some τ > 0, depending only on a, b and ‖φ′‖L∞(R). Thus,

μp|F | � C

∫
I

Sτr
p,φ,a(v)(x)

p dx

and we may apply Lemma 3.7 to obtain the Theorem via standard argu-
ments. �
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Corollary 3.9 Let q > p � 2, v be a solution to (3.1). There exists a
constant C(p, q) > 0, depending only on λ, Λ, c1, p and q, such that

‖Sp,0,a(v)‖Lq(R) � C(p, q)(‖N0,a(v)‖Lq(R) + ‖C0(f)‖Lq(R))

Lemma 3.10 Let v be a solution to (2.4) (that is, (3.1) with f0 ≡ 0).
Then there exists a constant c2, depending only on a, p and the ellipticity
constants, such that

‖Sp,0,a(v)‖Lp(R) � C(p, c1)‖C0(f)‖Lp(R),

for some C(p, c1) > 0, depending on the same parameters and c1, provi-
ded c1 < c2.

Proof. We perform the same calculation as we did in the proof of Lemma 3.1,
but with ξ ≡ 1. With the same notation, but with w replaced by v (as we
have no need of the transformation Φ), we see ‖f0‖p

Lp(R) = I + II + IV. The

first term of II2 in (3.9) can be combined with I to produce∫∫
R

2
+

∇v · A∇v 2tdxdt

a22

� C‖Sp,0,a(v)‖p
Lp(R).

and all other terms can be bounded about as before. We can then use Cau-
chy’s Inequality and Theorem 3.6 to hide ‖N0,a(v)‖Lp(R) and ‖Sp,0,a(v)‖Lp(R)

as necessary. The only terms for which this is not possible are II3 and the
third term on the right-hand side of (3.9), so it is here we use that c1 is
small. �

Lemma 3.11 For be a solution v to (3.1) and its conjugate v, we have

‖S2,0,a(v)‖Lp(∂R
2
+) � C(p)(‖S2,0,a(v)‖Lp(∂R

2
+) + ‖C0(f)‖Lp(∂R

2
+))

for 1 < p <∞.

Proof. Using (2.5) and (2.3) it is easy to see

S2,0,a(v)(x)
2 � C

(
S2,0,a(v)(x)

2 +

∫∫
Γa(x,0)

|F |2
)
,

so, to complete the proof, it suffices to show

(3.13)

∫ (∫∫
Γa(x,0)

|F |2
) p

2

dx � C‖C0(f)‖p
p.
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We can do this via duality [1], testing F against g such that

x �→
(∫∫

Γa(x,0)

|G(y, s)|2 dyds
s2

) 1
2

∈ Lp′(R),

where 1
p

+ 1
p′ = 1. Indeed,∫∫

R
2
+

G(x, t)F (x, t) dxdt �
∫∫

R
2
+

mα(G)(x, t)f(x, t) dxdt

�
∫

R

N0,a/2(mα(G))(x)C0(f)(x, t) dxdt

�
∥∥N0,a/2(mα(G))

∥∥
Lp′(R)

∥∥C0(f)
∥∥

Lp(R)
.

But since

N0,a/2(mα(G))(x) �
(∫∫

Γa(x,0)

|G(y, s)|2 dyds
s2

) 1
2

,

the proof of (3.13) is complete. �
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