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Global existence
for the primitive equations

with small anisotropic viscosity

Frédéric Charve and Van-Sang Ngo

Abstract
In this paper, we consider the primitive equations with zero verti-

cal viscosity, zero vertical thermal diffusivity, and the horizontal vis-
cosity and horizontal thermal diffusivity of size εα where 0 < α < α0.
We prove the global existence of a unique strong solution for large
data provided that the Rossby number is small enough (the rotation
and the vertical stratification are large).

1. Introduction

In this paper, we consider the primitive equations with no vertical viscosity
and no vertical thermal diffusivity and we also suppose that the horizontal
viscosity and thermal diffusivity go to zero when the rotation goes to infinity.
We prove the convergence towards the quasi-geostrophic system and the
global existence of a unique strong solution when the rotation is fast enough.

The primitive equations describe the hydrodynamical flow in a large scale
(of order of hundreds or thousands of kilometers) on the earth, typically an
ocean or the atmosphere, under the assumptions that vertical motion is
much smaller than horizontal motion and that the fluid layer depth is small
compared to the radius of the earth. Concerning the difference between the
vertical and horizontal scales, it is also observed that for geophysical fluids,
the vertical component of the diffusion term (viscosity or thermal diffusiv-
ity in the case of primitive equations) is much smaller than the horizontal
component. In the case of a rotating fluid between two planes for example
(see [26] and [16]), the viscosity has the form (−νhΔh − βε∂2

3). It is then
relevant to consider a zero vertical diffusivity in the primitive equations.
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In the studies of the fluids of that scale, two important phenomena have
to be considered: the earth rotation and the vertical stratification of the
density due to the gravity. When the movement is observed in a frame
located at the surface of the Earth, the rotation of the earth, defined by the
Rossby number Ro, induces two additional force terms in the equations: the
Coriolis force and the centrifugal force. The latter is included in the gravity
gradient term in the right-hand side of the equations and has no important
influence in our work. The Coriolis force, on the other hand, induces a
vertical rigidity in the fluid. Under a fast rotation, the velocity of each
particle of an homogeneous fluid, which has the same horizontal coordinates,
is the same. This is called the phenomenon of Taylor-Proudman columns.

Gravity forces the fluid masses to have a vertical structure: heavier layers
lay under lighter ones. Internal movements in the fluid tend to destroy this
structure and the gravity basically tries to restore it, which gives a horizontal
rigidity (to be opposed to the vertical rigidity induced by the rotation). In
order to formally estimate the importance of this rigidity, we also compare
the typical time scale of the system with the Brunt-Väisälä frequency and
define the Froude number Fr. We will not give more details here and, for
more physical considerations, we refer to [17], [18], [39], and [6] for example.

The primitive equations are obtained with moment, energy, mass conser-
vations and scale simplifications by choosing the same scale for the rotation
and stratification (see Embid and Majda [21]). In what follows, we denote
by ε the Rossby number and we set Fr = εF , where Fr is the Froude num-
ber, and ε > 0 will go to zero. In the following, we call ε and F the Rossby
and Froude numbers. Then, the anisotropic primitive equations are give by

(APEε)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂tv
1
ε + vε.∇v1

ε − νΔhv
1
ε −

1

ε
v2
ε = −∂1Φε

ε
in R+ × R3

∂tv
2
ε + vε.∇v2

ε − νΔhv
2
ε +

1

ε
v1
ε = −∂2Φε

ε
in R+ × R3

∂tv
3
ε + vε.∇v3

ε − νΔhv
3
ε +

1

Fε
θε = −∂3Φε

ε
in R+ × R3

∂tθε + vε.∇θε − ν ′Δhθε − 1

Fε
v3
ε = 0 in R+ × R3

div vε = 0 in R+ × R3

(vε, θε)|t=0
= (v0, θ0) in R3,

where Δh = ∂2
x1

+ ∂2
x2

is the horizontal Laplacian, and where ν and ν ′

are the horizontal viscosity and the horizontal thermal diffusivity, which
are of order εα, where α is a positive constant which will be made more
precise in the last section. The vector field vε(t, x) is the fluid velocity,
θε(t, x) is the (scalar) density fluctuation and Φε(t, x) is the geopotential
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term, containing the pressure and the centrifugal force. Notice that, in
the case of meteorology problems, θε is only a function of the temperature
whereas, in oceanography, θε depends on both temperature and salinity. For
more details on the physical meanings of the quantities, we refer the reader
to [6], [18], [25] and [39].

Denoting Uε the pair (vε, θε), we can write the system (APEε) in the
more compact form

(APEε)

⎧⎪⎪⎨⎪⎪⎩
∂tUε + Uε.∇Uε − LUε +

1

ε
AUε =

1

ε
(−∇Φε, 0)

div vε = 0

Uε|t=0
= U0,ε.

where

Uε.∇Uε = vε.∇Uε =
3∑
i=1

viε.∂iUε,

the matrix A is defined by

A =

⎛⎜⎜⎝
0 −1 0 0
1 0 0 0
0 0 0 F−1

0 0 −F−1 0

⎞⎟⎟⎠
and L denotes the linear operator

LUε = (νΔhvε, ν
′Δhθε).

We introduce the potential vorticity:

Ω(Uε)
def
= ∂1v

2
ε − ∂2v

1
ε − F∂3θε.

Then we define the orthogonal decomposition of Uε into its quasi-geostrophic
part, and its oscillating part :

Uε = Uε,QG + (Uε − Uε,QG)
def≡ Uε,QG + Uε,osc,

where

Uε,QG
def
=

⎛⎜⎜⎝
−∂2ΔF

−1Ω(Uε)
∂1ΔF

−1Ω(Uε)
0

−F∂3ΔF
−1Ω(Uε)

⎞⎟⎟⎠ , Uε,osc
def
=

⎛⎜⎜⎝
v1
ε + ∂2ΔF

−1Ω(Uε)
v2
ε − ∂1ΔF

−1Ω(Uε)
v3
ε

θε + F∂3ΔF
−1Ω(Uε)

⎞⎟⎟⎠ ,

and
ΔF

def
= ∂2

1 + ∂2
2 + F 2∂3

3 .

Remark 1.1 We refer to [8] to [10] for general properties of the potential
vorticity, but we recall that Ω(Uε,osc) = 0 and Ω(Uε,QG) = Ω(Uε).
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In [39], assuming that the Brunt-Väisälä frequency is constant, the au-
thors have shown that, when ε goes to zero, the formal limit of the sys-
tem (APEε) is the following quasi-geostrophic system:

(QG)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂tŨQG − ΓŨQG = −

⎛⎜⎜⎝
−∂2

∂1

0
−F∂3

⎞⎟⎟⎠Δ−1
F

(
ŨQG · ∇Ω(ŨQG)

)
div ŨQG = 0

ŨQG|t=0
= U0,QG,

where ŨQG · ∇ def
= ṽQG · ∇, Γ is the operator:

Γ
def
= ΔhΔ

−1
F

(
ν∂2

1 + ν∂2
2 + ν ′F 2∂2

3

)
,

and U0,QG is the quasi-geostrophic part of the initial data U0.

In real observations, the rotation is usually not fast enough and the fluid
not homogeneous enough, but this quasi-geostrophic system (which consid-
ers not only rotation terms but also vertical stratification terms) is still a
very good approximation of the behavior of real geophysical fluids. From the
mathematical point of view, the quasi-geostrophic system has an “almost”
bidimensional behavior, thus, is globally wellposed. This fact is very useful
in proving the global existence of solutions of the primitive equations when
the rotation is fast enough.

Before stating the main theorem of this paper, let us briefly recall known
results for the primitive equations. We emphasize that all the following
mentioned results concern the isotropic case where the viscosity and the
thermal diffusivity are fixed and are the same in all directions (that is νΔh

and ν ′Δh are replaced by νΔ and ν ′Δ in the system (APEε) with constant ν
and ν ′).

First, we remark that, in the case of isotropic geophysical fluids, there are
results corresponding to the Leray ([31]) and Fujita-Kato ([23]) theorems.
The existence of a global weak solution and the existence and uniqueness of
a local strong solution (which is global for small data) are known. We also
remark that there are two different cases to be considered for the primitive
equations in the whole space R3, namely the case where F = 1 and where
there is no dissipation with respect to ε and the case where F �= 1 and where
the dissipation plays an important role. In [13], Chemin studied the first
case and proved the convergence of the solutions towards those of the quasi-
geostrophic system for regular, well prepared data, under the assumption
that |ν − ν ′| is small.
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In the case where F �= 1, the dissipation allows not only to prove the con-
vergence of the primitive system towards the quasi-geostrophic system but
also to prove the global existence of solutions when the Rossby number ε
is small (fast rotation). Thus, the quasi-geostrophic system can be inter-
preted as the asymptotics of the primitive equations when the rotation and
stratification have an important influence. In this case, one needs to decom-
pose the general solution into its quasi-geostrophic part (which has the same
structure as the solution of the quasi-geostrophic system) and its oscillating
part (the remaining terms). Then, filtering the fast oscillating terms leads to
the stabilization the system and makes it tend to the slow quasi-geostrophic
system. In [8], [9] and [10], in the case of constant isotropic viscosity and
thermal diffusivity, the first author of this paper proved, for various initial
data, that the limit system of the primitive equations is the quasi-geostrophic
system (QG) when ε goes to zero. In [7], he considered strong solutions and
showed that the oscillating part goes to zero, whereas the quasi-geostrophic
part goes to the unique global solution of the 3D quasi-geostrophic system
whose initial data is the quasi-geostrophic part of the initial data. As in [21],
[24] and [14], the methods used in [7] are given by the study of spectral prop-

erties of the matrix ̂−L+ 1
ε
PA, where P denotes the Leray projection of L2

onto the subspace of divergence free vector fields.
Finally, we recall some further results concerning the primitive equations.

We refer to Lions, Temam and Wang ([32] and [33]), for the asymptotic
expansion of the primitive equations with respect to the Rossby number ε,
where one recovers the geostrophic system and the quasi-geostrophic system
as expansions of zero and first order respectively. In [4], Beale and Bourgeois
studied the quasi-geostrophic system in periodic domains and proved the
convergence of the primitive system towards the quasi-geostrophic system
when ε goes to zero, provided that the initial data are well prepared in H3.
This convergence was also proved by Gallagher in [24], using Schochet’s
methods. For the case of inviscid primitive equations with F �= 1, in [29],
Iftimie proved the local convergence in time of the primitive system towards
the quasi-geostrophic system with regular data.

The anisotropic primitive equations with evanescent viscosity and evanes-
cent thermal diffusivity introduce new difficulties. First of all, in the case
where there is no vertical viscosity and thermal diffusivity, the theorems of
Leray-type are no longer available and the existence of a weak solution is
still open. For strong solutions, the problem comes from the lack of regular-
izing effect in the third direction. Here, the fundamental idea is to use the
divergence free property of the velocity. We note that the vertical derivative
in the term u ·∇ is multiplied by u3. However, the divergence free condition
implies that ∂3u

3 = −∂1u
1 − ∂2u

2, so we can still use the regularizing effect
induced by the horizontal viscosity and thermal diffusivity.
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In order to state our results, we need to introduce anisotropic Sobolev
spaces. In what follows, we use the index “h” (respectively “v” or “3”) to
refer to the horizontal variable (respectively to the vertical variable). Thus,
xh = (x1, x2) and ξh = (ξ1, ξ2). The anisotropic Sobolev spaces Hσ,s are
defined as the closure of the set of smooth functions under the norm

‖u‖Hσ,s

def
=

(∫
R3

(
1 + |ξh|2

)σ (
1 + |ξ3|2

)s |û|2 dξ)1
2

.

In the spirit of [15], we can prove the following theorem for the local exis-
tence (global existence for small data) of a strong solution of the primitive
equations. The proof of this theorem follows the lines of the proof of exis-
tence given in [15] in the case of anisotropic rotating fluids. The uniqueness
is proved as in [30]. For these reasons, the details are left to the reader.

Theorem 1.2 (Local Existence) Let s > 1
2
, ε > 0 and U0 = (u0, θ0)

be a divergence-free vector field ( i.e. div u0 = 0) in H0,s. Then there
exists Tε > 0 such that the system (APEε) has a unique solution Uε in
L∞([0, Tε], H

0,s) and ∇hUε ∈ L2([0, Tε], H
0,s).

Moreover, there exists a constant c > 0 such that if the initial data
satisfies ‖U0‖H0,s ≤ cmin(νε, ν

′
ε), then Tε = ∞.

Proving the global existence of strong solutions for large data in this case
is more delicate. To simplify the situation, we go back to a much simpler
system, namely the system of rotating fluids:

(NSC)

⎧⎪⎪⎨⎪⎪⎩
∂tu+ u.∇u− νΔhu+

1

ε
u ∧ e3 = −∇p

div u = 0

u|t=0
= u0.

Let wF be the solution of the linear free waves system corresponding to (NSC)⎧⎪⎪⎨⎪⎪⎩
∂twF − νΔhwF +

1

ε
wF ∧ e3 = −∇pF

div wF = 0

wF |t=0
= w0.

In [15], when the viscosity ν > 0 is fixed, Chemin, Desjardins, Gallagher
and Grenier proved the following Strichartz-type estimates:

Theorem 1.3 For any 0 < r < R, there exists a constant Cr,R > 0 such
that if the support of the Fourier transform of w0 is localized in the set
{ξ ∈ R3 | |ξ3| ≥ r and |ξ| ≤ R}, then, for any 1 ≤ p ≤ +∞, we have

‖wF‖Lp([0,T ],L∞
h L2

v(R3)) ≤ Cr,Rε
1
4p ‖w0‖L2(R3) .
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Here, the anisotropic Lesbesgue spaces LphL
q
v with p, q ≥ 1 are defined by

the norm

‖u‖Lp
hL

q
v

=
(∫

R2
h

(∫
Rv

|u(xh, x3)|q dx3

) p
q
dxh

) 1
p
.

Then using the so-called “bootstrap” argument, they proved the global ex-
istence of a strong solution for large data, provided that ε is small enough.

Now, if in the equations (NSC), the viscosity ν is not fixed, but depends
on ε, say ν = εα, with α > 0, an additional difficulty arises in showing
global existence of strong solutions. Indeed, by using the method of [15], in

the energy estimates, we have to deal with the coefficient 1
ν = 1

εα
, which

goes to infinity when ε goes to 0. Nevertheless, in [35], the second author of
this paper proved the global existence of a unique strong solution of (NSC)
with ν = εα, for large data, when ε is small and α ≤ α0. The idea is to
carefully study the dependence with respect to the cut-off radii r and R
of the constant Cr,R arising in the Strichartz estimates in order to get an

estimate which is able to absorb the blowing-up term 1
εα

.

The goal of this paper is to extend the result obtained in [35] to the
primitive equations (APEε) and to show global existence of strong solutions
of (APEε) for large data when ε is small enough, in the case where ν = εα,
ν ′ = ρεα for α ≤ α0 and without any particular assumption on ρ. We will
adapt the computations of eigenvalues and eigenvectors of the linearized
primitive equations developed by F.Charve in [8], [7], [9], and [10] in the
isotropic case to the anisotropic case.

We remark that, if ν ∼ ν ′ ∼ εα, then unlike the case of rotating flu-
ids ([35]) where the limit system is zero, the limit system of the primitive
equations, when ε goes to zero, is the inviscid quasi-geostrophic system,
which has no regularizing effect. So we have to estimate the Hσ-norm,
with σ > 5

2
, of the solution of the quasi-geostrophic system. The theory

of hyperbolic systems implies the existence of a unique strong solution of
this quasi-geostrophic system in Hσ with σ > 5

2
, but this solution could

exponentially blow up in time at infinity. We have two different cases:

• The quasi-geostrophic part of the initial data is zero: the limit system
is then zero, so we can use the idea of [35] with the adapted compu-
tations from [7] and [9] to prove a Strichartz-type estimate which will
help to absorb the blow-up term and then prove the global existence
of strong solutions of (APEε) for large data when ε is small. This is
the case considered in this paper.

• The quasi-geostrophic part of the initial data is not zero: the limit sys-
tem is then a hyperbolic-type system. Mathematically, an idea to deal
with this kind of system is to add a “friction” term γu, with γ > 0,
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in order to obtain an exponential dissipation in time which will bal-
ance the possible exponential blow-up of the solution of the quasi-
geostrophic system. We will treat this case in a subsequent paper.

Before stating the main theorem of this paper, we recall that, for η ∈ R,
the usual homogenous Sobolev space Ḣη is defined by the (semi-)norm

‖u‖Ḣη =

(∫
R3

|ξ|2η |û|2 dξ
)1

2

.

For s > 1
2

and η > 0, we define

Ys,η = Hη,s+η ∩ L2
hḢ

−2η
v ∩ Ḣ−η

h Hs
v .

The main result of this paper is the following

Theorem 1.4 (Global Existence) Let s > 1
2

and η > 0. There exists
α0 > 0 and for any r0 > 0, a positive number ε0 = ε0(r0), such that, for
all 0 < α < α0, for all 0 < ε < ε0 and for all U0 ∈ Ys,η with a zero quasi-
geostrophic part and with ‖U0‖Ys,η

≤ r0, the system (APEε) has a unique

global solution Uε in Cb(R+, H
0,s), with ∇hUε ∈ L2(R+, H

0,s).

The structure of the paper is as follows. In Section 2 we recall basic
results on anisotropic spaces and Littlewood-Paley decomposition. Section 3
is devoted to the spectral properties of the linearized problem corresponding
to the system (APEε). In Section 4, we study the dispersive effect and
prove Strichartz estimates that will be used in the proof of Theorem 1.4.
Finally, Section 5 contains the proof of Theorem 1.4 and a discussion on the
constant α0.

2. Preliminaries

2.1. Anisotropic spaces

We briefly recall some basic properties of the anisotropic spaces. We refer
to [14], [38] and [35] for more details. First we recall that the anisotropic
Lebesgue spaces LphL

q
v with p, q ≥ 1 are defined as

LphL
q
v(R

3) =
{
u ∈ S ′(R3) | ‖u‖Lp

hL
q
v
< +∞

}
,

where

‖u‖Lp
hL

q
v

=

(∫
R2

h

(∫
Rv

|u(xh, x3)|q dx3

) p
q
dxh

) 1
p

.
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The order of integration is important. Indeed, let (X1, dμ1), (X2, dμ2) be
measurable spaces, if 1 ≤ p ≤ q and if u : X1 × X2 → R is a function in
Lp(X1;L

q(X2)), then u ∈ Lq(X2;L
p(X1)) and

‖u‖Lq(X2;Lp(X1)) ≤ ‖u‖Lp(X1;Lq(X2)) .

We first recall the definition of the dyadic localization operators in the
Fourier space. Let ψ be an even smooth function in C∞

0 (R) such that the
support of ψ is contained in the ball BR(0, 4

3
) and ψ equals to 1 on a neigh-

bourhood of the ball BR(0, 3
4
). Let

ϕ(ξ) = ψ

(
ξ

2

)
− ψ(ξ),

Clearly the support of ϕ is contained in the ring
{
ξ ∈ R : 3

4
≤ |ξ| ≤ 8

3

}
, ϕ is

identically equal to 1 on the ring
{
ξ ∈ R : 4

3
≤ |ξ| ≤ 3

2

}
and

∀ξ ∈ R, ψ(ξ) +
∑
j∈N

ϕ

(
ξ

2j

)
= 1,

Let F and F−1 be the Fourier and inverse Fourier transforms respectively.
We will often use the notation û = Fu. We introduce the following frequency
truncation operators.

Definition 2.1 For any tempered distribution u, we set

Δv
qu = F−1

(
ϕ(2−q |ξ3|)û(ξ)

)
, ∀q ∈ N,

Δv
−1u = F−1 (ψ(|ξ3|)û(ξ)) ,
Δv
qu = 0, ∀q ≤ −2,

Svqu =
∑
q′≤q−1

Δv
q′u.

We refer to [5] and [12] for a more detailed construction of the dyadic de-
composition. By using this definition, we can decompose all tempered dis-
tributions with respect to the vertical frequencies as

u =
∑
q≥−1

Δv
qu.

We denote Fv the Fourier transform in the vertical direction. In our
arguments, we shall use the following vertical Bernstein inequality (for the
proof, see [12], [28] and [37]).
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Lemma 2.2 (Vertical Bernstein Lemma) Let 0 < r1 < r2. There ex-
ists a positive constant C0 such that, for any u ∈ S ′(R3) for which the support
of Fvu is contained in the domain R2

ξh
× {2qr1 ≤ |ξ3| ≤ 2qr2}, we have:

(2.1) 2qkC−k
0 ‖u‖L

p1
h L

p2
v

≤ ∥∥∂k3u∥∥L
p1
h L

p2
v

≤ 2qkCk
0 ‖u‖L

p1
h L

p2
v
, ∀k≥0, ∀p1, p2≥1,

and

(2.2) ‖u‖L
p1
h L

p3
v

≤ C02
q( 1

p2
− 1

p3
) ‖u‖L

p1
h L

p2
v
, ∀ p1 ≥ 1, ∀ 1 ≤ p2 ≤ p3.

This lemma allow us to rewrite the norm of the anisotropic Sobolev
spaces H0,s in terms of dyadic sums in the vertical frequencies.

Lemma 2.3 Suppose that u ∈ H0,s with s ∈ R, then we have

‖u‖H0,s ∼
(∑

q

22qs
∥∥Δv

qu
∥∥2

L2

) 1
2

.

We also have the following relation between each vertical dyadic block
of a function u and its H0,s-norm.

Lemma 2.4 Suppose that u belongs to H0,s, then there exists a square-
summable sequence of positive numbers {cq(u)} with

∑
q cq(u)

2 = 1, such
that ∥∥Δv

qu
∥∥
L2 ≤ cq(u)2

−qs ‖u‖H0,s .

Finally, we define the spaces L̃p (I,H0,s), where p ≥ 2 and I is an interval
of R+, as the closure of the set of smooth vector-fields with respect to the
norms

‖u‖L̃p(I,H0,s) =
(∑

q

22qs
∥∥Δv

qu
∥∥2

Lp(I,L2)

) 1
2

.

With this definition, it is easy to see that, for any p ≥ 2, the norm
of L̃p (R+,H

0,s) is stronger than the usual norm of Lp (R+,H
0,s). From

the above definition, we can prove the following lemma which is similar to
Lemma 2.4.

Lemma 2.5 Suppose that u belongs to L̃p (I,H0,s) where I is an interval
of R+, then there exists a square-summable sequence of positive numbers
(cq(u)), with

∑
q cq(u)

2 = 1, such that∥∥Δv
qu

∥∥
Lp(I,L2)

≤ cq(u)2
−qs ‖u‖L̃p(I,H0,s) .
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2.2. A priori estimates

In what follows, we always denote by (cq) (respectively (dq)) a square-
summable (respectively summable) sequence of positive constants (which can
depend on several parameters), such that

∑
qc

2
q= 1 (respectively

∑
qdq= 1).

We recall that, using the above dyadic decomposition, J.-Y. Chemin, B.
Desjardins, I. Gallagher and E. Grenier have proved the following estimates
(see [15]).

Lemma 2.6 For any real number s > 1
2
, there exists a constant C such that

for any vector fields u and v, where u is divergence free,

(2.3)
∣∣∣〈Δv

q(u.∇v)|Δv
qv

〉
L2

∣∣∣ ≤ Cdq2
−2qs

(
‖∇hu‖H0,s ‖v‖H0,s ‖∇hv‖H0,s

+ ‖u‖
1
2

H0,s ‖∇hu‖
1
2

H0,s ‖v‖
1
2

H0,s ‖∇hv‖
3
2

H0,s

)
,

where (dq) is a summable sequence of positive constants with
∑

q dq = 1.

We also recall the following lemma [see [37], Lemma 3.3].

Lemma 2.7 For any real numbers m,n, l ≥ 1 such that 1
m

= 1
n

+ 1
l
, there

exists a constant C > 0 such that, for any functions u, v, we have

(2.4)
∥∥[Δv

q ; u
]
v
∥∥

L2
vL

m
h

≤ C2−q ‖∂3u‖L∞
v Ln

h
‖v‖L2

vL
l
h
.

In the previous paragraph, we introduced the vertical truncation and
recalled the vertical Bernstein inequalities to define the anisotropic Sobolev
spaces. We will also need to define truncations and anisotropic Bernstein
inequalities in all three directions.

Definition 2.8 For 0 < r < R, we introduce the set

Cr,R =
{
ξ ∈ R3 : |ξh| ≥ r, |ξ3| ≥ r, |ξ| ≤ R

}
.

Remark 2.9 In general, r will be chosen very small and R very large.

We have the following anisotropic Bernstein inequalities.

Lemma 2.10 (Anisotropic Bernstein Lemma) Let 0 < r1 < r2. There
exists a positive constant C0 such that, for any u ∈ S ′(R3) for which the
support of Fu is contained in the set 2qCr1,r2, we have, ∀ k ≥ 0, ∀ p1, p2 ≥ 1,

(2.5) 2qkC−k
0 ‖u‖L

p1
h L

p2
v

≤ sup
|α|=k

‖∂αu‖L
p1
h L

p2
v

≤ 2qkCk
0‖u‖L

p1
h L

p2
v
,

and, ∀ 1 ≤ p1 ≤ q1, ∀ 1 ≤ p2 ≤ q2,

(2.6) ‖u‖L
q1
h L

q2
v
≤ C02

q
(

2
p1

− 2
q1

+ 1
p2

− 1
q2

)
‖u‖L

p1
h L

p2
v
.
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3. Spectral aspects of the linear system

The aim of this section is to determine the eigenvalues and eigenvectors of the

matrix ̂L− 1
ε
PA, and to establish the estimates of the associate projectors

onto the eigenspaces. Recall that we already define

Cr,R def
=

{
ξ ∈ R3 : |ξh| ≥ r, |ξ3| ≥ r, |ξ| ≤ R

}
.

In what follows, we consider the following frequency cut-off function

Ψ(ξ) = χ

( |ξ|
R

)[
1 − χ

(
2 |ξh|
r

)][
1 − χ

(
2 |ξ3|
r

)]
,

where χ is a C∞-function from R to R such that

(3.1) χ(x) =

{
1 if 0 ≤ |x| ≤ 1

0 if |x| ≥ 2.

Thus, Ψ ∈ D(R3), supp Ψ ⊂ C r
2
,2R and Ψ ≡ 1 on Cr,R. The frequency cut

off operator is the following pseudo-differential operator:

(3.2) Pr,Rf def
= F−1 (Ψ(ξ)F(f)) , ∀ f ∈ S ′,

where F denotes the Fourier transform. In this paper, we do not consider a
“fixed” frequency cut-off but a cut-off that depends on ε. So the frequency
cut-off domain will be chosen as Crε,Rε, with Rε = ε−β, and rε = R−γ

ε = εβγ.
In this section, we consider the following cut-off linear system corre-

sponding to (APEε)⎧⎪⎪⎨⎪⎪⎩
∂tU ε − LU ε +

1

ε
AUε =

1

ε
(−∇Φε, 0)

div vε = 0

Uε|t=0
= U 0,ε = Prε,RεU0,ε.

Applying the Leray projection P of L2(R3)3 onto the subspace of divergence-
free vector fields and then the Fourier transformation, we have

∂tÛε = B(ξ, ε)Ûε,

where we define the matrix: B(ξ, ε) = ̂L− 1
ε
PA =

=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−νε|ξh|2 +
ξ1ξ2
ε|ξ|2

ξ2
2 + ξ2

3

ε|ξ|2 0
ξ1ξ3
εF |ξ|2

−ξ
2
1 + ξ2

3

ε|ξ|2 −νε|ξh|2 − ξ1ξ2
ε|ξ|2 0

ξ2ξ3
εF |ξ|2

ξ2ξ3
ε|ξ|2 − ξ1ξ3

ε|ξ|2 −νε|ξh|2 −ξ
2
1 + ξ2

2

εF |ξ|2
0 0

1

εF
−ν ′ε|ξh|2

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.
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The main result of this section is the following proposition, which will
be used later in the proof of the Strichartz estimates

Proposition 3.1 There exists ε0 > 0 such that for all ε < ε0, for all Rε

such that |νε − ν ′ε|R2
εε � 1 and for all ξ ∈ Crε,Rε with rε = R−γ

ε , the matrix

B(ξ, ε) = ̂L− 1
ε
PA is diagonalizable and its eigenvalues have the following

asymptotic expansions with respect to ε:

(3.3)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

μ0 = −νε|ξh|2,
μ = −(νεξ

2
1 + νεξ

2
2 + ν ′εF

2ξ2
3)
|ξh|2
|ξ|2F

+ εE2,

λ = −τ(ξ)|ξh|2 + i
|ξ|F
εF |ξ| + εE2,

λ = −τ(ξ)|ξh|2 − i
|ξ|F
εF |ξ| + εE2,

where |ξ|2F = ξ2
1 + ξ2

2 + F 2ξ3
3, E2 is uniformly bounded on Crε,Rε, and where:

ε|E2| ≤ CFε|νε − ν ′ε|.|ξh|2 ≤ CF |νε − ν ′ε|R2
εε� 1,

and

τ(ξ) =
νε
2

(
1 +

F 2ξ2
3

|ξ|2F
)

+
ν ′ε
2

(
1 − F 2ξ2

3

|ξ|2F
)
≥ min(νε, ν

′
ε) > 0.

Moreover, if we denote by Pi(ξ, ε), the projectors onto the eigenspaces cor-
responding to μ, λ and λ (i ∈ {2, 3, 4}), and we set

(3.4) Pi(u) = F−1
(Pi(ξ, ε)(û(ξ))),

then for any divergence-free vector field f whose Fourier transform is sup-
ported in Crε,Rε, we have the following estimates:

(3.5) ‖P2f‖Hσ,s ≤
{
CF‖f‖Hσ,s if Ω(f) �= 0,

CF |νε − ν ′ε|εR2
ε‖f‖Hσ,s if Ω(f) = 0,

and for i = 3, 4,

(3.6) ‖Pif‖Hσ,s ≤ CFR
1+γ
ε ‖f‖Hσ,s.

Remark 3.2 If Rε = ε−β, νε = εα and ν ′ε = ρεα, then the condition

|νε − ν ′ε|R2
εε � 1, for small ε > 0,

is equivalent to 1 + α− 2β > 0.
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In order to prove Proposition 3.1, we first determine the eigenvalues
of B(ξ, ε) (the roots of its characteristic polynomial). One of the roots
is easy to find. In order to calculate the others, we perform a change of
variable on the remaining polynomial of degree 3 and then, we use the
Cardan formulas. We show that, as ε goes to zero, the discriminent is
positive and we obtain the remaining three roots. The end of this section is
devoted to the asymptotic expansions of these eigenvalues and to the proof
of Proposition 3.1.

3.1. Eigenvalues

We recall that matrix B(ξ, ε) = ̂L− 1
ε
PA writes:

B(ξ, ε) =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−νε|ξh|2 +
ξ1ξ2
ε|ξ|2

ξ2
2 + ξ2

3

ε|ξ|2 0
ξ1ξ3
εF |ξ|2

−ξ
2
1 + ξ2

3

ε|ξ|2 −νε|ξh|2 − ξ1ξ2
ε|ξ|2 0

ξ2ξ3
εF |ξ|2

ξ2ξ3
ε|ξ|2 − ξ1ξ3

ε|ξ|2 −νε|ξh|2 −ξ
2
1 + ξ2

2

εF |ξ|2
0 0

1

εF
−ν ′ε|ξh|2

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

Its characteristic polynomial is:

χB(X) = (X + νε|ξh|2)P (X + νε|ξh|2),

with

(3.7) P (Y ) = Y 3 − (νε − ν ′ε)|ξh|2Y 2 +
|ξ|2F

ε2F 2|ξ|2Y − (νε − ν ′ε)
ξ2
3 |ξh|2
ε2|ξ|2 .

This polynomial has no particular property so, in order to find its roots, we
use the Cardan formulas. We perform the following change of variable

X = U − ν ′ε + 2νε
3

|ξ|2

which takes into account the first change of variable (writing into the variable
(U+νε|ξ|2) to simplify the expression of χB) and the one performed to reduce
the polynomial into the particular formulation needed to apply the Cardan
formulas (U3 + pU + q). We refer to [8] and [9] for more details.

(3.8) P (X) = P (U +
ν ′ε + 2νε

3
|ξ|2) = U3 + pU + q,
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where ⎧⎪⎪⎨⎪⎪⎩
p =

|ξ|2F
ε2F 2|ξ|2 − (νε − ν ′ε)

2

3
|ξh|4,

q = (νε − ν ′ε)
|ξh|2
ε2|ξ|2

( |ξ|2F
3F 2

− ξ2
3

)
− 2

27
(νε − ν ′ε)

3|ξh|6.

Before applying the Cardan formulas we have to define the discriminant
of the equation

D =
q2

4
+
p3

27
·

We will see later that even if the radii rε and Rε of Crε,Rε depend on the
Rossby number, in the expression of D every term is negligible compared to

|ξ|2F
ε2F 2|ξ|2 . Thus, in the following (the proof and precise asymptotic expansions

are given in Section 3.3), if ε is small enough, the discriminant is positive,
so we can use the same methods as in [8] and [9] where r and R were fixed.

Now, as D > 0 we can use the Cardan formulas to compute the eigen-
values of B(ξ, ε). We define the following quantities:

(3.9) ω1 =
(
− q

2
+D

1
2

) 1
3

and ω2 =
(
− q

2
−D

1
2

) 1
3
.

Returning to the original variable, we obtain the eigenvalues of B(ξ, ε):

(3.10)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

μ0 = −νε|ξh|2,
μ = −ν

′
ε + 2νε

3
|ξh|2 + ω1 + ω2,

λ = −ν
′
ε + 2νε

3
|ξh|2 + ω1j + ω2j

2,

λ = −ν
′
ε + 2νε

3
|ξh|2 + ω1j

2 + ω2j,

where j is a primitive cube root of 1.

3.2. Eigenvectors

In this paragraph, we provide some properties of the eigenvectors of B(ξ, ε).
We refer to [8] and [9] for the precise computations. We use here the same
methods and notations (except the changes induced by the horizontal Lapla-
cian). Let ⎧⎪⎨⎪⎩

A = μ+ νε|ξh|2 =
νε − ν ′ε

3
|ξh|2 + ω1 + ω2,

B = λ+ νε|ξh|2 =
νε − ν ′ε

3
|ξh|2 + ω1 + ω2.
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Since A,B and B are the roots of the characteristic polynomial P of B(ξ, ε)
(see (3.8)), we have the following root-coefficient relations:

(3.11)

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

ABB = (νε − ν ′ε)
ξ2
3 |ξh|2
ε2|ξ|2 ,

A+B +B = (νε − ν ′ε)|ξh|2,

AB + AB +BB =
|ξ|2F

ε2F 2|ξ|2 .

Let Wi, i = 2, 3, 4, be the eigenvectors corresponding to the eigenvalues μ,
λ, λ. Using the above relations, and after computations close to those in [8],
we obtain the following matrix of change of basis: Q =⎛⎜⎜⎝

ξ2ξ3 ξ3(εξ1A + ξ2) ξ3(εξ1B + ξ2) ξ3(εξ1B + ξ2)
−ξ1ξ3 ξ3(εξ2A− ξ1) ξ3(εξ2B − ξ1) ξ3(εξ2B − ξ1)

−εF 2(νε − ν ′ε)|ξh|2ξ2
3 −εA|ξh|2 −εB|ξh|2 −εB|ξh|2

Fξ2
3 F (ε2|ξ|2A2 + ξ2

3) F (ε2|ξ|2B2 + ξ2
3) F (ε2|ξ|2B2

+ ξ2
3)

⎞⎟⎟⎠.
We recall that the eigenvectors Wi, i = 2, 3, 4, are orthogonal to (ξ1, ξ2, ξ3, 0)
and form a basis of the Fourier subspace of all divergence-free vector fields.
Thus, if a vector f , orthogonal to (ξ1, ξ2, ξ3, 0) in the space of frequencies, is
written

f = K2W2 +K3W3 +K4W4,

then ⎛⎜⎜⎝
0
K2

K3

K4

⎞⎟⎟⎠ = Q−1f.

Remark 3.3

• The fact that A,B and B are the roots of polynomial P implies that
we have the relation

(3.12)

⎧⎪⎨⎪⎩
W 3

2 = εF (A− (νε − ν ′ε)|ξ|2)W 4
2 ,

W 3
3 = εF (B − (νε − ν ′ε)|ξ|2)W 4

3 ,

W 3
4 = εF (B − (νε − ν ′ε)|ξ|2)W 4

4 .

• We have W4 = W3.
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3.3. Asymptotic expansions of the eigenvalues with respect to the
Rossby number ε

In this paragraph, we provide asymptotic expansions of quantities depending
on ξ ∈ Cr,R with respect to ε. The method is close to [9], except that r and R
are powers of the Rossby number and hence, we will need more precise
asymptotic expansions in terms of ε. We chose to denote by E2, E

(1)
2 , or

E
(2)
2 a regular function satisfying ∀ξ ∈ Crε,Rε, |E2(ξ)|, |E(1)

2 (ξ)|, |E(2)
2 (ξ)| ≤

CF (|νε − ν ′ε|R2
ε). We recall that the discriminant D = q2

4
+ p3

27
. We note⎧⎨⎩ p =

p1

ε2
+ p2

q =
q1
ε2

+ q2

where ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

p1 =
|ξ|2F
F 2|ξ|2,

p2 = −(νε − ν ′ε)
2|ξh|4

3
,

q1 = (νε − ν ′ε)
|ξh|2
|ξ|2 (

|ξ|2F
3F 2

− ξ2
3),

q2 = − 2

27
(νε − ν ′ε)

3|ξh|6,
then we have

D =
p3

1

27ε6

[
1 + C1(ξ)|νε − ν ′ε| |ξh|2 ε2 + C2(ξ)|νε − ν ′ε|2 |ξh|4 ε4

+C3(ξ)|νε − ν ′ε|3 |ξh|6 ε6
]
,

where Ci(ξ) are bounded functions. Thus, there exists a bounded function

E
(1)
2 (recall that |νε − ν ′ε|R2

εε � 1) such that, ∀ξ ∈ Crε,Rε, |E(1)
2 (ξ)| ≤

CF (|νε − ν ′ε|R2
ε), and

D =
p3

1

27ε6
(1 + E

(1)
2 ε2).

Then, writing precisely the majorations of the quantities depending on ξ
and taking advantage of the fact that ξ ∈ Crε,Rε, we finally obtain bounded

functions, all of them denoted by E
(2)
2 such that, ∀ξ ∈ Crε,Rε, |E(2)

2 (ξ)| ≤
CF (|νε − ν ′ε|R2

ε), and ⎧⎪⎪⎪⎨⎪⎪⎪⎩
ω1 =

p
1/2
1

ε
√

3
− q1

2p1
+ E

(2)
2 ε,

ω2 = − p
1/2
1

ε
√

3
− q1

2p1
+ E

(2)
2 ε,
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which allows us to get the following property:

Proposition 3.4 There exist a number ε0 > 0 and functions, all of them
denoted by the same notation E2(ξ, ε) and satisfying the uniform estimates
|E2(ξ)| ≤ CF |νε − ν ′ε|.|ξh|2, ∀ξ ∈ Crε,Rε, such that for all ε ≤ ε0 and all
ξ ∈ Crε,Rε the following asymptotic expansions hold:

A = (νε − ν ′ε)F
2ξ2

3

|ξh|2
|ξ|2F

+ εE2,

B = i
|ξ|F
εF |ξ| + (νε − ν ′ε)

|ξh|4
2|ξ|2F

+ εE2,

μ = −(νεξ
2
1 + νεξ

2
2 + ν ′εF

2ξ2
3)
|ξh|2
|ξ|2F

+ εE2,

λ = −τ(ξ)|ξh|2 + i
|ξ|F
εF |ξ| + εE2,

with

τ(ξ) =
νε
2

(
1 +

F 2ξ2
3

|ξ|2F
)

+
ν ′ε
2

(
1 − F 2ξ2

3

|ξ|2F
)
.

3.4. Projectors

We recall that Pi(ξ, ε) and Pi(u) = F−1(Pi(ξ, ε)(û(ξ))) have been defined
in (3.4). In this paragraph we provide estimates of the norms of these opera-
tors (defined on Sobolev spaces). We refer to [8] for the fact that (W2,W3,W4)
is a basis of the hyperplane of vectors orthogonal to (ξ1, ξ2, ξ3, 0), that a vec-
tor g = (X, Y, Z, T ), orthogonal to (ξ1, ξ2, ξ3, 0), writes g = K2W2 +K3W3 +
K4W4 and that the solution of the system:⎛⎜⎜⎝

0
K2

K3

K4

⎞⎟⎟⎠ = Q−1g,

is given by:

⎛⎝K2

K3

K4

⎞⎠ = M

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

ξ2X − ξ1Y

ξ3(ξ2
1 + ξ2

2)

ξ1X + ξ2Y

εξ3(ξ
2
1 + ξ2

2)

T

Fε2|ξ|2 − ξ3(ξ2X − ξ1Y )

ε2|ξ|2(ξ2
1 + ξ2

2)

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
,
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where the matrix M is defined by:⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

|B|2
|B|2−AB+A2−AB

−(B +B)

|B|2−AB+A2−AB
1

|B|2−AB+A2−AB
−AB

−AB+AB−B2+|B|2
A +B

−AB+AB−B2+|B|2
−1

−AB+AB−B2+|B|2

AB

−AB+AB−B2+|B|2
−(A+B)

−AB+AB−B2+|B|2
1

−AB+AB−B2+|B|2

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
Using Remark (3.12), we can compute the coefficients Ki the same way as
in [8] (taking account of the changes induced by the horizontal laplacian):

K2 =
1

(A− B)(A− B)ε2F 2|ξ|2ξ3(ε2|ξ|2A2 + ξ2
3)

(
− ξ2

3(ξ1Y − ξ2X − Fξ3T )

− εA|ξ|2(ξ1X + ξ2Y ) + Fε2|ξ|2A2ξ3T
)
,

and,

K3 =
1

(A− B)(B − B)ε2F 2|ξ|2ξ3(ε2|ξ|2B2 + ξ2
3)

(
− ξ2

3(ξ2X − ξ1Y )

+ εB|ξ|2(ξ1X + ξ2Y ) − Tξ3F (ξ2
3 + ε2|ξ|2B2)

)
.

We recall that, thanks to the coefficient-root relations of the polynomial

(X − A)(X −B)(X − B),

we have the following equality:

(A− B)(A− B)ε2F 2|ξ|2 = |ξ|2F − 2(ν − ν ′)|ξ|2hAε2F 2|ξ|2 + 3A2ε2F 2|ξ|2,
So, if ε is small enough, the previous asymptotic expansions imply that:∣∣(A−B)(A−B)ε2F 2|ξ|2∣∣ ≥ 1

2
|ξ|2F .

Moreover, a simple computation leads to:

|W2|2 = (ξ2
3 + ε2A2|ξ|2)(|ξ|2F + ε2F 2A2|ξ|2),

and to the following estimate:

|K2W2|C4 ≤ 1

|(A− B)(A−B)ε2F 2|ξ|2|

( |ξ|2F + ε2F 2A2|ξ|2
ξ2
3 + ε2A2|ξ|2

) 1
2

(
|ξ3|.|ξ1Y − ξ2X − Fξ3T | + |A|ε(|ξ1| + |ξ2|) |ξ|

2

|ξ3| |f | + Fε2|ξ|2A2|f |
)
.
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We consider two cases:

• If Ω(f) �= 0, that is ξ1Y − ξ2X − Fξ3T �= 0, then when ε is small, we
cannot get a better estimate than:

|K2W2|C4 ≤ 2

|ξ|2F
|ξ|F
|ξ3| (|ξ3|.|ξ| + ε|A| |ξ|

3

|ξ3| + Fε2A2|ξ|2)|f | ≤ CF
|ξ|
|ξ|F |f |.

• If Ω(f) = 0, then we obtain that:

|K2W2|C4 ≤ 2

|ξ|2F
|ξ|F
|ξ3| ε|A|

|ξ|3
|ξ3| |f |

then, using the asymptotic expansions we get that the term is much
smaller than in the first case:

|K2W2|C4 ≤ CF |ν − ν ′|εR2
ε|f |

An adaptation of the previous computations (except that we have to be
careful for the asymptotic expansions of B, and that we do not have in
this case any simplification if Ω(f) = 0) leads to the estimates of KiWi for
i = 3, 4. We gather these estimates into the following lemma:

Lemma 3.5 There exists a constant CF and ε0 > 0 such that for all g(ξ) =
(X(ξ), Y (ξ), Z(ξ), T (ξ)) orthogonal to (ξ1, ξ2, ξ3, 0) and ε ≤ ε0, for all ξ ∈
Crε,Rε we have the estimates:

|K2W2|C4 ≤

⎧⎪⎪⎨⎪⎪⎩
CF

|ξ|
|ξF | |g(ξ)| if ξ1Y − ξ2X − Fξ3T �= 0,

CF |νε − ν ′ε|ε
|ξ|3
|ξ|3F

|ξh|2|g(ξ)| if ξ1Y − ξ2X − Fξ3T ≡ 0.

And for i = 3, 4,

|KiWi| ≤ CF (
|ξ3|
|ξ| +

|ξ|
|ξ3| +

|ξh|
|ξ| )|g(ξ)|.

As rε = R−γ
ε , it follows that:

Corollary 3.6 If f is a divergence-free vector field, we have the following
estimates on the norms of the projectors: for all ξ ∈ Crε,Rε

|P̂2f(ξ)| ≤
{
CF |f̂(ξ)| if Ω(f) �= 0,

CF |νε − ν ′ε|εR2
ε|f̂(ξ)| if Ω(g) = 0.

And for i = 3, 4, we have

|P̂if(ξ)| ≤ CFR
1+γ
ε |f̂(ξ)|.

The conclusion of the proof of proposition 3.1 is then easy. �
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4. Dispersion and Strichartz estimates

The aim of this section is to prove the following Strichartz estimates:

Lemma 4.1 Assume that f satisfies the following system:

(4.1)

{
∂tf − Lf + 1

ε
PAf = 0

f|t=0 = f0,

where div f0 = 0, and L is the operator defined in the introduction (with
νε = εα and ν ′ε = ρεα).

Assume also that the frequencies of f0 are localized in Crε,Rε. Then, there
exists a constant CF,ρ > 0 such that for i = 3, 4:

‖Pif‖L1(R+,L
∞,2
h,v ) ≤ CF,ρε

1−3α
4 R

7+9γ
2

ε ‖f0‖L2.

4.1. Duality

We have seen in Section 3.3 that matrix B has four distinct eigenvalues: two
of them are real (only μ will be useful in the following), and the other two
are conjugated complex numbers with the following asymptotic expansion:

λ = −τ(ξ)|ξh|2 + i
|ξ|F
εF |ξ| + εE2,

with |E2| ≤ CF |νε − ν ′ε|.|ξh|2 and τ(ξ) ≥ min(νε, ν
′
ε).

For i ∈ {3, 4}, Pif satisfies system (4.1) with Pif0 as its initial data, so
in the Fourier variable, we have:

̂Pif(t, ξ) = e−tτ(ξ)|ξh|
2+i

t|ξ|F
εF |ξ|+εtE2P̂if0(ξ).

In order to compute the desired norm, we introduce the set:

B =
{
ψ ∈ D(R+ × R3)/ ‖ψ‖L∞

T (L1,2
h,v) ≤ 1

}
,

and duality arguments allow us to write that:

‖Pif‖L1
T (L∞,2

h,v ) = sup
ψ∈B

∫ ∞

0

∫
R3

Pif(t, x)ψ(t, x)dxdt.

Thanks to the properties of the truncation function and the initial data f0,
we have f0 = P rε

2
,2Rε

f0, so using the Plancherel formula we obtain:

‖Pif‖L1
T (L∞,2

h,v ) = sup
ψ∈B

∫ ∞

0

∫
R3

χ

( |ξ|
2Rε

)(
1 − χ

(
2|ξ3|
rε

))(
1 − χ

(
2|ξh|
rε

))
e−tτ(ξ)|ξh|

2+i
t|ξ|F
εF |ξ|+εtE2P̂if0(ξ)ψ̂(t, ξ)dξdt.
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So, if we note φε = χ( |ξ|
2Rε

)(1 − χ(2|ξ3|
rε

))(1 − χ(2|ξh|
rε

)) and d(ξ) = |ξ|F
F |ξ| , using

the Fubini theorem and the Hölder estimate implies that

‖Pif‖L1
T (L∞,2

h,v ) ≤ C sup
ψ∈B

‖Pif0‖L2

(∫
R3

∫ ∞

0

∫ ∞

0

φε(ξ)
2

e−(t+s)τ(ξ)|ξh|2+i t−s
ε
d(ξ)+εtE2−εsE2ψ̂(t, ξ)ψ̂(s, ξ)dsdtdξ

)1
2
.

Another use of Fubini and the Plancherel formula gives:

‖Pif‖L1
T (L∞,2

h,v ) ≤ C sup
ψ∈B

‖Pif0‖L2

( ∫ ∞

0

∫ ∞

0

∫
R3

(∫
R3

eix.ξφε(ξ)
2

e−(t+s)τ(ξ)|ξh|2+i t−s
ε
d(ξ)+εtE2−εsE2ψ̂(t, ξ)dξ

)
ψ(s, x)dxdsdt

) 1
2
.

Then, we obtain that:

(4.2) ‖Pif‖L1
T (L∞,2

h,v ) ≤ C sup
ψ∈B

‖Pif0‖L2(∫ ∞

0

∫ ∞

0

‖K(t+ s,
t− s

ε
, .)‖L∞,2

h,v
‖ψ(s, .)‖L1,2

h,v
dtds

) 1
2

,

where

K(t+ s,
t− s

ε
, x)

def
=

∫
R3

eix.ξ−(t+s)τ(ξ)|ξh|2+i t−s
ε
d(ξ)+εtE2−εsE2

χ
( |ξ|

2Rε

)2(
1 − χ

(2|ξ3|
rε

))2(
1 − χ

(2|ξh|
rε

))2

ψ̂(t, ξ)dξ,

and where χ is defined as in (3.1).

If we manage to estimate ‖K(t+ s, t−s
ε
, .)‖L∞,2

h,v
then we immediately get

the estimate of ‖Pif‖L1
T (L∞,2

h,v ). In the following paragraph we will give the

dispersive estimates related to K, that is ‖K(t+ s, t−s
ε
, .)‖L∞,2

h,v
.

4.2. Dispersion

In this paragraph, we prove the following dispersive estimate

Lemma 4.2 There exists a constant CF,ρ > 0 such that for all t �= s ∈ R3,

‖K(t+ s,
t− s

ε
, .)‖L∞,2

xh,x3
≤ CF,ρ

ε
1
2

|t− s| 12
R5
ε

r4
ε

e−(t+s)νε,0
r2
ε
4 ‖ψ(t)‖L1,2

xh,x3
,

where νε,0 = min(νε, ν
′
ε) = min(1, ρ)εα > 0.
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The methods used here are the same as in [15] and [35]. First we intro-
duce:

I

(
t+ s,

t− s

ε
, zh, ξ3

)
def
=

(
1 − χ

(
2|ξ3|
rε

))2∫
R2

ξh

eizh.ξh−(t+s)τ(ξ)|ξh|2+i t−s
ε
d(ξ)

eεtE2−εsE2χ

( |ξ|
2Rε

)2(
1 − χ

(
2|ξh|
rε

))2

dξh.

As FK = FhI(t, ξh, ξ3).Fψ(t, ξ), we have F3K = I(t, ., ξ3) ∗h F3ψ(t, ., ξ3).
Using convolution properties it is then easy to see that:

‖K(t+ s,
t− s

ε
, .)‖L∞,2

xh,x3
≤ C‖I(t+ s,

t− s

ε
, .)‖L∞,∞

zh,ξ3
‖ψ(t)‖L1,2

xh,x3
.

So Lemma 4.2 is in fact a corollary of the following result:

Lemma 4.3 There exists a constant CF,ρ > 0 such that for all t �= s ∈ R3,∥∥I(t+ s,
t− s

ε
, .)

∥∥
L∞,∞

zh,ξ3

≤ CF,ρ
ε

1
2

|t− s| 12
R5
ε

r4
ε

e−
1
4
(t+s)νε,0r2ε .

Proof. We will only give a sketch of the proof, since it is very close to the
ones of [15] and [35] for example. The difference is that, like in [8] and [9],
we have to be careful with the asymptotic expansions in order not to get a
negative power of ε. Let us introduce the function

δ(ξ) = −∂ξ2
|ξ|F
F |ξ| = −F

2(F 2 − 1)ξ2ξ
2
3

|ξ|F |ξ|3 ,

and the operator:

L =
1

1 + t−s
ε
δ2

(1 + iδ∂ξ2).

We can assume t > s. If not, just take instead :

1

1 + s−t
ε
δ2

(1 + iδ∂ξ2).

The invariance under the rotation around the z-axis allows us to assume
that z2 = 0. So

L(eizh.ξh+i t−s
ε
d(ξ)) = eizh.ξh+i t−s

ε
d(ξ).

We have

I(t+ s,
t− s

ε
, zh, ξ3) =

∫
R2

ξh

[
1 − χ

(
2|ξ3|
rε

)]2

eizh.ξh+i t−s
ε d(ξ)

TL
(
e−(t+s)τ(ξ)|ξh|2+εtE2−εtE2χ

( |ξ|
2Rε

)2 [
1 − χ

(
2|ξh|
rε

)]2 )
dξh,
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and where the transposed operator of L writes:

TL(g) =

(
1

1 + t−s
ε
δ2

− i∂ξ2δ
1 − t−s

ε
δ2

(1 + t−s
ε
δ2)2

)
g − iδ

1 + t−s
ε
δ2
∂ξ2g.

If ε is small enough, we have

Re
(

(t+ s)τ(ξ) − tε
E2

|ξh|2 + sε
E2

|ξh|2
)

≥ (t+ s)
νε,0
2
,

where νε,0 = min(νε, ν
′
ε) = min(1, ρ)εα. Then, using the expression of δ, the

fact that ξ ∈ Crε,Rε and the inequality ue−mu ≤ 2
eme

−mu
2 , for u,m > 0, we

obtain:∣∣∣∣∣TL
(
e−(t+s)τ(ξ)|ξh|2+εtE2−εtE2χ

( |ξ|
2Rε

)2 [
1 − χ

(
2|ξh|
rε

)]2 )∣∣∣∣∣ ≤
≤ CF ;ρe

− νε,0
2

|ξh|2(t+s)

(
1 +

1

r2
ε

+ (t+ s)(νε + ν ′ε)|ξh|
)

1

1 + t−s
ε
δ2
.

Thus, we have∣∣∣∣I (
t+ s,

t− s

ε
, zh, ξ3

)∣∣∣∣ ≤ CF,ρ
r2
ε

e−
νε,0

4
|ξh|2(t+s)

∫
rε≤|ξh|≤Rε

dξh

1 + t−s
ε
CF

ξ22ξ
4
3

|ξ|2F |ξ|6

Performing a change of variable ζ =
(t− s)

1
2 ξ2

ε
1
2 r2
ε

, we get the proof of

Lemma 4.3, and then we can conclude the proof of Lemma 4.2. �

4.3. Proof of the Strichartz estimates

Going back to (4.2) and using the dispersive estimates, we obtain:

‖Pif‖L1
T (L∞,2

h,v ) ≤ CF,ρ sup
ψ∈B

‖Pif0‖L2(∫ ∞

0

∫ ∞

0

ε
1
2

|t− s| 12
R5
ε

r4
ε

e−(t+s)νε,0
r2
ε
4 ‖ψ(t)‖L1,2

xh,x3
‖ψ(s)‖L1,2

xh,x3
dtds

)1
2

.

Then the Hardy-Littlewood theorem implies that:

‖Pif‖L1
T (L∞,2

h,v ) ≤ CF,ρ‖Pif0‖L2

ε
1
4

ν
3
4
ε,0

R
5
2
ε

r
7
2
ε

,

We use Proposition 3.1 and it concludes the proof of Lemma 4.1. �

Remark 4.4 The result given in Lemma 4.1 only concerns P3f and P4f . It
is important to remember that f̂ has a component along W2.



Global existence for the primitive equations 25

5. Global existence, proof of the theorem

The aim of this section is to prove the following theorem, which is more
precise than Theorem 1.4 as it gives asymptotics. Recall that for s > 1

2
and

η > 0,
Ys,η = Hη,s+η ∩ L2

hḢ
−2η
v ∩ Ḣ−η

h Hs
v ,

where Ḣ−η are usual homogeneous Sobolev spaces. Let us consider the
spaces

Es =
{
u ∈ S ′(R+ × R3) : ‖u‖2

L∞(R+,H0,s) +

∫ ∞

0

‖∇hu(t)‖2
H0,sdt <∞}

.

The main theorem is as follows:

Theorem 5.1 (Global Existence) Let s > 1
2
, and η > 0. There exists

α0 > 0 such that for all 0 < α < α0, for all r0 > 0, for all 0 < ε < ε0

where ε0 depends on r0 and for all U0 ∈ Ys,η with a zero quasi-geostrophic
part and with ‖U0‖Ys,η

≤ r0, system (APEε) has a unique global solution Uε
in Cb(R+, H

0,s) with ∇hUε ∈ L2(R+, H
0,s).

Moreover, if U0,ε = Pr,RU0, where the cut-off operator Pr,R is defined as
in (3.2), and Uε is the solution of the following linear system:⎧⎪⎨⎪⎩

∂tUε − LUε + 1
ε
AUε = (−∇Φε, 0)

div vε = 0

Uε|t=0 = P3+4U0,ε,

with R = Rε = ε−β and r = rε = R−γ
ε , then there exist β and γ such that

Vε = Uε − Uε goes to zero in Es, when ε goes to zero.

5.1. The different systems

As announced in the introduction, we will consider oscillating initial data
(their quasi-geostrophic part is 0). So in system (APEε), we have U0,QG=0.

As in [35] we decompose the initial data with frequency truncations:
U0 = U0,ε + V0,ε, where:

(5.1)

{
U0,ε = Prε,RεU0

V0,ε = U0 − U0,ε.

Then we define Uε as the solution of the following linear system (projecting
this system with the Leray projector P gives exactly system (4.1)):

(5.2)

⎧⎪⎨⎪⎩
∂tUε − LUε + 1

ε
AUε = (−∇Φε, 0)

div vε = 0

Uε|t=0 = P3+4U0,ε

.
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And if we define Vε = Uε − Uε, then Vε satisfies the following system:
(5.3){
∂tVε−LVε+ 1

ε
AVε=−1

ε
(∇φε, 0)−Vε.∇Vε − Vε.∇Uε − Uε.∇Vε − Uε.∇Uε

Vε|t=0 = V0,ε + P2U0,ε

As both Uε and Uε are divergence free, so is Vε and then PVε = Vε, so
finally Vε satisfies the following system:

(5.4)

{
∂tVε − LVε + 1

ε
PAVε = −P(Vε.∇Vε + Vε.∇Uε + Uε.∇Vε + Uε.∇Uε)

Vε|t=0 = V0,ε + P2U0,ε

Remark 5.2 Obviously we have Ω(U0,ε) = 0, so we will be able to use
optimized estimates from Proposition 3.1 for P2U0,ε.

As Uε|t=0 = P3+4U0,ε has no “P2-component”, and as the system is diag-

onalizable, then for all t, so is Uε(t) and Uε = P3+4Uε. Using Lemma 4.1 and
the fact that P3+4U0,ε = (Id − P2)U0,ε (using Proposition 3.1 easily implies
‖Uε(0)‖L2 ≤ 2‖U0,ε‖L2 ≤ 2‖U0‖L2 if ε is small enough) we have:

‖Uε‖L1(R+,L
∞,2
h,v ) ≤ CF,ρε

1−3α
4 R

7+9γ
2

ε ‖U0‖L2.

Using the Bernstein Lemma, Proposition 3.1, and the energy estimates we
get:

‖Uε‖L∞(R+,L
∞,2
h,v ) ≤ CR

2( 1
2
− 1

∞ )
ε ‖Uε‖L∞(R+,L2)

≤ CRε‖P3+4U0,ε‖L2 ≤ CFR
2+γ
ε ‖U0‖L2.

Then, using interpolation we obtain the formulation of the Strichartz esti-
mates we will use in this article:

Lemma 5.3 With the same notations as above, the solution of (5.2) satisfies
the following Strichartz estimates:

‖Uε‖Lp(R+,L
∞,2
h,v ) ≤ CF,ρε

1−3α
4p R

3+7γ
2p

+2+γ
ε ‖U0‖L2 ,

and, localizing in frequency, we get that for all q,

‖Δv
qUε‖Lp(R+,L

∞,2
h,v ) ≤ CF,ρε

1−3α
4p R

3+7γ
2p

+2+γ
ε ‖Δv

qU0‖L2 ,

so, there exists a square summable sequence (cq)q∈{−1}∪N such that
∑

q c
2
q ≤ 1

and for all q,

‖Δv
qUε‖Lp(R+,L

∞,2
h,v ) ≤ cq2

−qsCF,ρε
1−3α

4p R
3+7γ
2p

+2+γ
ε ‖U0‖H0,s.



Global existence for the primitive equations 27

5.2. Truncation of the data

In this paragraph, we study the truncation in frequency of the initial data U0

introduced in the previous section: Vε|t=0 = V0,ε+P2U0,ε. Recall that U0 has
no quasigeostropic part so using Proposition 3.1, we get that the “P2 compo-
nent” of the medium-frequency part of U0 (with 0 < rε ≤ |ξh| , |ξ3| , |ξ| ≤ Rε)
goes to zero when ε goes to zero:

(5.5) ‖P2U0,ε‖H0,s ≤ CF,ρε
1+αR2

ε‖U0‖H0,s.

We prove now that with rε = R−γ
ε with γ > 0, chosen small, V0,ε, that

consists in the “low-frequency” and “high-frequency” parts of U0 is also
small in H0,s. We have:

‖V0,ε‖2
H0,s =

=

∫
R3

(1 + |ξ3|2)s
∣∣∣∣{1 − χ

( |ξ|
Rε

)[
1 − χ

( |ξ3|
rε

)(
1 − χ

( |ξh|
rε

))]}
Û0(ξ)

∣∣∣∣2dξ
≤
∫
|ξ3|≤rε

∫
R2

ξh

(
1 + |ξ3|2

)s ∣∣∣Û0(ξ)
∣∣∣2 dξhdξ3 +

∫
|ξh|≤rε

∫
Rξ3

(
1 + |ξ3|2

)s ∣∣∣Û0(ξ)
∣∣∣2 dξ3dξh

+

∫
|ξ|≥Rε

(
1 + |ξ3|2

)s ∣∣∣Û0(ξ)
∣∣∣2 dξ.(5.6)

First, we have

(5.7)

∫
|ξ3|≤rε

∫
R2

ξh

(
1 + |ξ3|2

)s ∣∣∣Û0(ξ)
∣∣∣2 dξhdξ3 ≤

≤
∫
|ξ3|≤rε

∫
R2

ξh

|ξ3|2η
[
|ξ3|−2η (1 + |ξ3|2

)s ∣∣∣Û0(ξ)
∣∣∣2]dξhdξ3 ≤ Cr2η

ε ‖U0‖2
L2

hḢ
−2η
v

.

Next,

(5.8)

∫
|ξh|≤rε

∫
Rξ3

(
1 + |ξ3|2

)s ∣∣∣Û0(ξ)
∣∣∣2 dξ3dξh ≤

≤
∫
|ξh|≤rε

∫
Rξ3

|ξh|η
[
|ξh|−η

(
1 + |ξ3|2

)s ∣∣∣Û0(ξ)
∣∣∣2]dξ3dξh ≤ Cr2η

ε ‖U0‖2
Ḣ−η

h Hs
v
.

Finally, we have:

(5.9)

∫
|ξ|≥Rε

(
1 + |ξ3|2

)s ∣∣∣Û0

∣∣∣2 dξ ≤
≤C

∫
|ξ|≥Rε

(
1 + |ξ|2)−η(1 + |ξh|2

)η(
1 + |ξ3|2

)s+η ∣∣∣Û0

∣∣∣2dξ≤CR−2η
ε ‖U0‖2

Hη,s+η .
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Let η0 = min (η, γη). Summing (5.7)-(5.9) we obtain

(5.10) ‖V0,ε‖2
H0,s ≤ C(U0)R

−2η0
ε .

Then, combining this and (5.5), we get:

(5.11) ‖Vε|t=0
‖H0,s ≤ C(U0)(ε

1+α−2β + εβη0).

5.3. Proof of Theorem 5.1

In the previous sections we obtained the following Strichartz estimates (see
Lemma 5.3) which we only write here in the cases p ∈ {1, 2}: there exists a
square summable sequence cq such that

∑
q c

2
q ≤ 1 and for all q,

‖Δv
qUε‖L1(R+,L

∞,2
h,v ) ≤ cq2

−qsCF,ρε
1−3α

4 R
7+9γ

2
ε ‖U0‖H0,s.

‖Δv
qUε‖L2(R+,L

∞,2
h,v ) ≤ cq2

−qsCF,ρε
1−3α

8 R
11+11γ

4
ε ‖U0‖H0,s.

and the initial data estimates (5.11):

‖Vε|t=0‖H0,s ≤ C(U0)(ε
1+α−2β + εβη0).

In the following, athough it may vary from line to line, dq will denote a
summable sequence, cq a square summable sequence and CF,ρ,s,U0 a constant
depending on the listed coefficients.

Let us go back to system (5.3). The aim is to show that, if ε is small
enough, the solution Vε of this system is global in time. For this we apply
the Leray projector P, then truncate with Δv

q , take the inner product in L2

with Δv
qVε and integrate in time from zero to t (remember that PVε = Vε

and (Pf |Vε)L2 = (f |Vε)L2). We obtain the estimate:

(5.12) ‖Δv
qVε(t)‖2

L2 + 2ν0,ε

∫ t

0

‖Δv
q∇hVε(τ)‖2

L2dτ ≤
≤ ‖Δv

qVε(0)‖2
L2 + (A1) + (A2) + (A3) + (A4),

with ⎧⎪⎪⎪⎨⎪⎪⎪⎩
A1 =

∫ t
0
|(Δv

q(Vε.∇Vε)|Δv
qVε)L2dτ

A2 =
∫ t
0
|(Δv

q(Vε.∇Uε)|Δv
qVε)L2dτ

A3 =
∫ t
0
|(Δv

q(Uε.∇Vε)|Δv
qVε)L2dτ

A4 =
∫ t
0
|(Δv

q(Uε.∇Uε)|Δv
qVε)L2dτ

.

The first term is estimated in the usual way with Lemma 2.6 (see for ex-
ample [15] for the proof): there exists a constant C > 0 and a summable
sequence (dq)q∈Z such that:

|(Δv
q(Vε.∇Vε)|Δv

qVε)L2| ≤ Cdq2
−2qs‖Vε‖H0,s‖∇hVε‖2

H0,s ,
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and from this we easily deduce that:

(5.13) A1 ≤ Cdq2
−2qs‖Vε‖L̃∞

T H0,s‖∇hVε‖2
L̃2

TH
0,s .

5.3.1. An additional estimate

As the viscosities are small as ε goes to zero, we cannot use this estimate
for A2, A3 or A4 because of terms like ‖Vε‖2

H0,s‖∇hUε‖2
H0,s/νε, introduced in

the energy and bootstrap methods. The only way for us is to take advantage
of the norm ‖Uε‖L∞,2

xh,x3
and the Strichartz estimates in order to balance

this 1/νε. This is the aim of the following lemma (adapted from the one
proven in [35], slightly different from [15]):

Lemma 5.4 For any s > 1
2

there exists a constant C = C(F, ρ, U0, s) > 0
such that for all tempered distribution w and all time T > 0, we have:∫ T

0

| (Δv
q(w(t).∇Uε(t)|Δv

qVε(t))H0,s

) |dt ≤(5.14)

≤ Cdq2
−2qsε

1−3α
4 R

9
2
(1+γ)

ε ‖Vε‖L̃∞
T H0,s‖w‖L̃∞

T H0,s

where (dq)q∈{−1}∪N is a positive summable sequence such that
∑

q dq ≤ 1 (and
it depends on the three functions involved).

Proof. For the convenience of the reader we adapt here the proof given
in [15] or [35]. Let us write, as in [15] or [35], the Bony decomposition into
the following way (we refer to Definition 2.1):

a.b =
∑
q

Svq−1a.Δ
v
qb+

∑
q

Svq+2b.Δ
v
qa.

So we get the estimate:

|(Δv
q(w

i.∂iUε)|Δv
qVε)L2 | ≤ I1 + I2,

with
I1 = |(Δv

q

( ∑
|q−q′|≤N0

Svq′−1w
i.Δv

q′∂iUε

)
|Δv

qVε)L2 |,

and,

I2 = |(Δv
q

( ∑
q′≥q−N0

Svq′+2∂iUε.Δ
v
q′w

i
)
|Δv

qVε)L2|,

Using Hölder estimates we get:∫ T

0

I1dt ≤
∑

|q−q′|≤N0

‖Svq′−1w
i‖L∞

T L2,∞
h,v

‖Δv
q′∂iUε‖L1

TL
∞,2
h,v

‖Δv
qVε‖L∞

T L2.
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We easily estimate the first term: using the Bernstein lemma (see 2.2), we
obtain

‖Svq′−1w‖L∞
T L2,∞

h,v
≤

∑
q′′≤q′−2

‖Δv
q′′w‖L∞

T L2,∞
h,v

≤
∑

q′′≤q′−2

2
q′′
2 ‖Δv

q′′w‖L∞
T L2,

so, with the definition of Besov spaces there exists a square summable se-
quence cq′′:

‖Svq′−1w‖L∞
T L2,∞

h,v
≤

∑
q′′≤q′−2

2q
′′( 1

2
−s)cq′′‖w‖L̃∞

T H0,s .

As s > 1
2

we get that:

‖Svq′−1w‖L∞
T L2,∞

h,v
≤
( ∑
q′′≤q′−2

22q′′( 1
2
−s)

) 1
2
( ∑
q′′≤q′−2

c2q′′

) 1
2

‖w‖L̃∞
T H0,s≤Cs‖w‖L̃∞

T H0,s .

The classical Bernstein lemma (recall that Uε has frequencies localized
in Crε,Rε) and Strichartz estimates allow to write:

‖Δv
q′∂iUε‖L1

TL
∞,2
h,v

≤ Rε‖Δv
q′Uε‖L1

TL
∞,2
h,v

≤ cq′2
−q′sCF,ρε

1−3α
4 R

9
2
(1+γ)

ε ‖U0‖H0,s.

The last term is estimated thanks to the Besov spaces definition. There
exists a square summable sequence with

∑
q c

2
q ≤ 1 such that:

‖Δv
qVε‖L∞

T L2 ≤ cq2
−qs‖Vε‖L̃∞

T H0,s ,

So going back to the estimate of (1) we obtain:

(5.15)

∫ T

0

I1dt ≤ 2−2qscq

( ∑
|q−q′|≤N0

cq′2
(q−q′)s

)
CF,ρ

ε
1−3α

4 R
9
2
(1+γ)

ε ‖U0‖H0,s‖Vε‖L̃∞
T H0,s‖w‖L̃∞

T H0,s ,

where the term
(∑

|q−q′|≤N0
cq′2

(q−q′)s
)

is nothing but the convolution of two

sequences in l1(Z) and l2(Z), so it is in l2(Z) and∫ T

0

I1dt ≤ CF,ρ,s,U02
−2qsdqε

1−3α
4 R

9
2
(1+γ)

ε ‖Vε‖L̃∞
T H0,s‖w‖L̃∞

T H0,s ,

For I2, Hölder estimates imply:∫ T

0

I2dt ≤
∑

q′≥q−N0

‖Svq′+2∂iUε‖L1
TL

∞‖Δv
q′w

i‖L∞
T L2‖Δv

qVε‖L∞
T L2 .



Global existence for the primitive equations 31

The first term is treated the same way as I1:

‖Svq′+2∂iUε‖L1
TL

∞ ≤
∑

q′′≤q′+1

‖Δv
q′′∂iUε‖L1

TL
2 ≤

∑
q′′≤q′−2

Rε2
q′′
2 ‖Δv

q′′∂iUε‖L∞
T L∞,2

h,v
,

Then, the very same arguments give that there exists a summable sequence
(dq) ∈ l1({−1} ∪ Z) such that:∫ T

0

I2dt ≤ CF,ρ,s,U02
−2qsdqε

1−3α
4 R

9
2
(1+γ)

ε ‖Vε‖L̃∞
T H0,s‖w‖L̃∞

T H0,s .

The lemma is proven. �
Going back to the energy estimate (5.12), this lemma allows us to obtain

the existence of a summable sequence (once again denoted by (dq)q∈Z) so
that:
(5.16)

A2 +A4 ≤ CF,ρ,s,U02
−2qsdqε

1−3α
4 R

9
2
(1+γ)

ε (‖Vε‖2
L̃∞

T H0,s +‖Vε‖L̃∞
T H0,s‖Uε‖L̃∞

T H0,s).

Unfortunately, this lemma is not useful for A3 where the derivative is
now applied to Vε which is not localized in frequency in Crε,Rε as Uε. So
using this lemma would force us to deal with an additionnal 2q that would
be impossible to absorb. This is the reason why we decompose it as in [15]
or [35]:

A3 =

∫ T

0

|(Δv
q(Uε.∇Vε)|Δv

qVε)L2 |dt ≤
∫ T

0

|(Δv
q(Uε

h
.∇hVε)|Δv

qVε)L2 |dt

+

∫ T

0

|(Δv
q(Uε

3
.∂3Vε)|Δv

qVε)L2|dt = A31 + A32

The term A31 is dealt the same way as in the proof of Lemma 5.4 except
that we take advantage of the estimate of ‖∇hVε‖L̃2

TH
0,s (and therefore use

the Strichartz estimate with p = 2) and we obtain that:

A31 ≤ CF,ρ,s,U02
−2qsdqε

1−3α
8 R

11
4

(1+γ)
ε ‖Vε‖L̃∞

T H0,s‖∇hVε‖L̃2
TH

0,s .

For the last term, as usual (we refer for example to [15]) we decompose:

A32 =

∫ T

0

|(Δv
q(Uε

3
.∂3Vε)|Δv

qVε)L2|dt ≤ A321 + A322,

where

A321 =

∫ T

0

|(Δv
q

( ∑
|q−q′|≤N0

Svq′−1Uε
3
.Δv

q′∂3Vε

)
|Δv

qVε)L2 |dt,

and A322 =

∫ T

0

|(Δv
q

( ∑
q′≥q−N0

Svq′+2∂3Vε.Δ
v
q′Uε

3
)
|Δv

qVε)L2 |dt,
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Let us write that

A322 ≤
∑

q′≥q−N0

‖Svq′+2∂3Vε‖L∞
T L2,∞

h,v
.‖Δv

q′Uε
3‖L1

TL
∞,2
h,v

‖Δv
qVε‖L∞

T L2 .

The same arguments imply that for all q′ ≥ −1,

‖Svq′+2∂3Vε‖L∞
T L2,∞

h,v
≤ C2q

′ ∑
q′′≤q′+1

2
q′′
2 ‖Δv

q′′Vε‖L∞
T L2 ≤ 2q

′
Cs‖Vε‖L̃∞

T H0,s .

And for all q ≥ 0 we can absorb 2q
′

thanks to the anisotropic Bernstein
lemma:

‖Δv
q′Uε

3‖L1
TL

∞,2
h,v

≤ 2−q
′‖Δv

q′∂3Uε
3‖L1

TL
∞,2
h,v

≤ 2−q
′
Rε‖Δv

q′Uε
3‖L1

TL
∞,2
h,v
,

which is also obviously true when q′ = −1 so using the Strichartz estimates
and the same method as before we finally obtain:

A322 ≤ CF,ρ,s,U02
−2qsdqε

1−3α
4 R

9
2
(1+γ)

ε ‖Vε‖2
L̃∞

T H0,s .

It is less easy to estimate A321 because we cannot move the derivative, as
we have done above, without introducing an additional 2q

′
(which couldn’t

be balanced by Rε2
−q′). As in [15] or [35] we need to decompose A321 ≤

A1
321 + A2

321 + A3
321 in the following way:

A1
321 =

∫ T

0

∑
|q−q′|≤N0

|([Δv
q , S

v
q′−1Uε

3
]∂3Δ

v
q′Vε|Δv

qVε)L2 |dt,

A2
321 =

∫ T

0

∑
|q−q′|≤N0

|((Svq − Svq′−1)Uε
3
∂3Δ

v
q′Vε|Δv

qVε)L2 |dt,

and A3
321 =

∫ T

0

|(SvqUε3.∂3Δ
v
qVε|Δv

qVε)L2 |dt

The last term is dealt using an integration by parts:

A3
321 ≤

1

2
‖Svq∂3Uε

3‖L1
TL

∞ ‖Δv
qVε‖2

L∞
T L2 .

The usual computations imply then:

A3
321 ≤ CF,ρ,s,U02

−2qsdqε
1−3α

4 R
9
2
(1+γ)

ε ‖Vε‖2
L̃∞

T H0,s .

For A2
321 we use the same tools as in the proof of Lemma 5.4 together with the

argument in the estimate of A322. Then we use Lemma 2.6 (with p = t = 2
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and r = ∞) followed by the same arguments as above for A1
321 and we obtain

the estimate:

A321 ≤ CF,ρ,s,U02
−2qsdqε

1−3α
4 R

9
2
(1+γ)

ε ‖Vε‖2
L̃∞

T H0,s ,

which is the last part of the estimate of A3:

A3 ≤ CF,ρ,s,U02
−2qsdqε

1−3α
8 R

11
4

(1+γ)
ε ‖Vε‖L̃∞

T H0,s‖∇hVε‖L̃2
TH

0,s .(5.17)

+ CF,ρ,s,U02
−2qsdqε

1−3α
4 R

9
2
(1+γ)

ε ‖Vε‖2
L̃∞

T H0,s

Plugging (5.13), (5.16) and (5.17) into (5.12) then multiplying by 22qs before
summing over q, we obtain, for all T ∈ [0, T ∗

ε [:

‖Vε‖2
L̃∞

T H0,s + 2ν0,ε‖∇hVε‖2
L̃2

TH
0,s ≤ ‖Vε(0)‖2

H0,s + C‖Vε‖L̃∞
T H0,s‖∇hVε‖2

L̃2
TH

0,s

(5.18)

+ CF,ρ,s,U0ε
1−3α

4 R
9
2
(1+γ)

ε

(‖Vε‖2
L̃∞

T H0,s + ‖Vε‖L̃∞
T H0,s‖Uε‖L̃∞

T H0,s

)
+ CF,ρ,s,U0ε

1−3α
8 R

11
4

(1+γ)
ε ‖Vε‖L̃∞

T H0,s‖∇hVε‖L̃2
TH

0,s

The classical estimate ab ≤ a2+b2

2
allows us to write:

CF,ρ,s,U0ε
1−3α

8 R
11
4

(1+γ)
ε ‖Vε‖L̃∞

T H0,s‖∇hVε‖L̃2
TH

0,s ≤

≤ ν0,ε‖∇hVε‖2
L̃2

TH
0,s +

CF,ρ,s,U0

ν0,ε
ε

1−3α
4 R

11
2

(1+γ)
ε ‖Vε‖2

L̃∞
T H0,s

Remark 5.5 It is important to outline that it is here that Strichartz esti-
mates balance 1/νε,0.

On the other hand, energy estimates in H0,s for system (5.2) and Pro-
position 3.1 imply that (if ε is small enough):

‖Uε(t)‖H0,s ≤ ‖Uε(0)‖H0,s ≤ ‖(Id − P2)Uε(t)‖H0,s

≤ (1 + CF |νε − ν ′ε|εR2
ε)‖U0‖H0,s ≤ 2‖U0‖H0,s .

Then we can write:

CF,ρ,s,U0(‖Vε‖2
L̃∞

T H0,s + ‖Vε‖L̃∞
T H0,s‖Uε‖L̃∞

T H0,s) ≤ CF,ρ,s,U0(1 + ‖Vε‖2
L̃∞

T H0,s).

Replacing Rε by its value and using (5.11) we finally get:

(5.19) ‖Vε‖2
L̃∞

T H0,s + ν0,ε‖∇hVε‖2
L̃2

TH
0,s

≤ C(εβη0 + ε1+α−2β)2 + C‖Vε‖L̃∞
T H0,s‖∇hVε‖2

L̃2
TH

0,s

+ CF,ρ,s,U0ε
1−3α

4
− 9

2
β(1+γ) + Φ(ε)‖Vε‖2

L̃∞
T H0,s ,
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where
Φ(ε) = CF,ρ,s,U0(ε

1−3α
4

− 9
2
β(1+γ) + ε

1−7α
4

− 11
2
β(1+γ)).

In order to set up the usual boostrap argument let us define:

Tε = sup{t ∈]0, T ∗
ε [ such that ‖Vε‖L̃∞

t H0,s ≤ ν0,ε

2C
}.

We are sure that Tε > 0 as soon as:

‖Vε(0)‖H0,s ≤ C(εβη0 + ε1+α−2β) ≤ ν0,ε

4C
,

that is (when ε is small enough) when (recall that ν0,ε = min(1, ρ)εα):{
βη0 > α

1 + α− 2β > α.

For all T < Tε,

‖Vε‖2
L̃∞

T H0,s +
ν0,ε

2
‖∇hVε‖2

L̃2
TH

0,s ≤ C(εβη0 + ε1+α−2β)2

+CF,ρ,s,U0ε
1−3α

4
− 9

2
β(1+γ) + Φ(ε)‖Vε‖2

L̃∞
T H0,s .

To be able to conclude we need to adjust the parameters: in order to com-
plete the boostrap argument, we need the following estimates:

(5.20)

{
Φ(ε) ≤ 1

2

CF,ρ,s,U0ε
1−3α

4
− 9

2
β(1+γ) + C(εβη0 + ε1+α−2β)2 ≤ ( ε

α

4C
)2

As ε goes to zero, it is sufficient to require:

(5.21)

{
α
η0
< β < 1

2
1−11α

4
− 11

2
β(1 + γ) > 0

We refer to the last section for a discussion on the parameters. For now let
us just say that if α < 1

11
we can choose parameters β and γ satisfying (5.21).

Plugging it into the energy estimates allows us to write that for all T < Tε,

(5.22) ‖Vε‖2
L̃∞

T H0,s + ν0,ε‖∇hVε‖2
L̃2

TH
0,s ≤ ε2α

8C
≤ 1

2

( ν0

2C

)2
.

And then by contradiction it gives us that Tε = T ∗
ε = ∞ and Vε and the

solution Uε are global in time. Moreover Uε goes to zero in the sense that
the energy estimate (5.22) for Vε = Uε − Uε is bounded by a positive power
of ε and goes to zero. And, with this classical bootstrap argument, we have
proven the second part of Theorem 5.1: the solution Uε goes to zero in a
certain way.
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Remark 5.6 We have shown that the solution Uε goes to zero in a certain
way but we didn’t mention anywhere the quasi-geostrophic system. Indeed
the solution of the anisotropic quasi-geostrophic system with zero initial data
is zero. That is also the reason why (contrary to [8]) we didn’t have to use
the orthogonal projectors on oscillating or quasi-geostrophic vector fields.

Remark 5.7 Technical problems forced α < 1
11

but the question of the
optimal value of α is open (see the next paragraph).

5.4. Discussion on the parameter α

In the previous section we concluded the boostrap argument thanks to a
precise estimation of the parameters β and γ (α, η and p being given in the
beginning). In order to conclude the classical boostrap method, we required
that the parameters satisfy (5.20). It is sufficient to have:⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

α
η0
< β < 1

2
1−3α

4
− 9

2
β(1 + γ) > 2α

1−3α
4

− 9
2
β(1 + γ) > 0

1−7α
4

− 11
2
β(1 + γ) > 0.

which is implied by: {
α
η0
< β < 1

2
1−11α

4
− 11

2
β(1 + γ) > 0.

Choosing γ = 1, so η0 = η and the problem is then, given α > 0 and η > 0,
to find β so that:

(5.23)

{
α
η
< β < 1

2

1 > 11α+ 44β.

Choosing η > 0 large enough and β > 0 such that α < βη, simple calcula-
tions imply

α <
1

11 + 44
η

.

The greatest possible value for the parameter α is 1
11

and the greatest we
want to choose α (nearest α < 1

11
), the greatest has to be η which means we

must require more regularity on the initial data. Typically, choose α < 1
11

,
then choose η > 0 such that α < 1

11+ 44
η

, which implies that α
η
< 1−11α

44
.

Finally, use (5.23) and choose β between those two values (γ = 1).
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Laboratoire d’Analyse et de Mathématiques Appliquées (UMR 8050)
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