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The Cm Norm of a Function with
Prescribed Jets I

Charles Fefferman

Abstract
We prove a variant of the classical Whitney extension theorem,

in which the Cm-norm of the extending function is controlled up to
a given, small percentage error.

0. Introduction

Here and in [16], we compute the least possible (infimum) Cm norm of a
function F having prescribed Taylor polynomials at N given points of R

n.
Moreover, given ε > 0, we exhibit such an F, whose Cm norm is within ε

of the least possible. Our computation consists of an algorithm, to be im-
plemented on an (idealized) digital computer. The algorithm works, thanks
to a variant of the classical Whitney extension theorem, in which we con-
trol the Cm norm of the extending function up to an ε percentage error.
This paper gives the variant of Whitney’s theorem, while [16] presents the
algorithm and the rest of the mathematics behind it. The number of opera-
tions used by our algorithm is C(ε)N log N, where N is the number of given
points, and C(ε) grows rapidly as ε tends to zero.

To state our results precisely, we set up notation. Fix m, n ≥ 1. We
pick a norm on Cm(Rn), subject to restrictions to be spelled out in the
next section. We write ‖ F ‖Cm(Rn) to denote the norm of F. Given x ∈ R

n

and F ∈ Cm(Rn), we write Jx(F) to denote the mth order Taylor polynomial
of F at x. Thus, Jx(F) belongs to P, the vector space of all (real) mth degree
polynomials on R

n.
Let E ⊂ R

n. We write #(E) for the number of points in E. (If E is infinite,

then #(E)=+∞.) A Whitney field on E is a family �P = (Px)x∈E of polyno-

mials Px ∈ P, indexed by x ∈ E. If �P = (Px)x∈E is a Whitney field and S ⊂ E

is a subset, then in an obvious way we can define the restriction �P|S of �P to S.

2000 Mathematics Subject Classification: 49K24, 52A35.
Keywords : Whitney extension theorem, optimal Cm norm.



1076 C. Fefferman

We say that a function F ∈ Cm(Rn) agrees with a Whitney field �P =
(Px)x∈E, provided Jx(F) = Px for each x ∈ E. We define a Cm-norm on
Whitney fields, by setting

‖ �P ‖= inf{‖ F ‖Cm(Rn): F ∈ Cm(Rn), F agrees with �P} .

(If there exists no such F, then we define ‖ �P ‖= +∞; this can happen
only when E is infinite.) Similarly, for a function f : E → R, we define the
Cm-norm

‖ f ‖= inf{‖ F ‖Cm(Rn): F ∈ Cm(Rn), F = f on E} ,

with ‖ f ‖= +∞ if there is no such F.

We are concerned with the following questions.

Problem 1: Compute the norm ‖ �P ‖ of a given Whitney field �P on a finite

set. Given ε > 0, exhibit a function Fε ∈ Cm(Rn) that agrees with �P, and

satisfies ‖ Fε ‖Cm(Rn)≤ (1 + ε) ‖ �P ‖.

Problem 2: Compute the norm ‖ f ‖ of a given function f : E → R (E
finite). Given ε > 0, exhibit a function Fε ∈ Cm(Rn), such that Fε = f

on E, and ‖ Fε ‖Cm(Rn)≤ (1 + ε) ‖ f ‖.

In this paper and [16], we give an efficient solution of Problem 1, and an
inefficient solution of Problem 2.

From previous work, it is known how to compute the “order of magni-
tude” of the norm in Problems 1 and 2. That is, one can give upper and
lower bounds for ‖ �P ‖ or ‖ f ‖, that differ by a constant factor depending
only on m, n and the choice of the norm on Cm(Rn). We review the previous
work, then state our results on Problem 1, and finally return to Problem 2.

The order of magnitude of the norm of a Whitney field is provided by
the classical Whitney extension theorem [22, 26, 27], which we now recall,
in the case of finite sets E.

Theorem 1. Let �P = (Px)x∈E be a Whitney field on a finite set. Let M ≥ 0

be the smallest number for which we have

|∂αPx(x)| ≤ M for |α| ≤ m, x ∈ E; and

|∂α(Px − Py)(y)| ≤ M|x − y|m−|α| for |α| ≤ m − 1, x, y ∈ E.

Then
cM ≤‖ �P ‖≤ CM,

where c and C depend only on m, n and the choice of norm on Cm(Rn).

The proof of Theorem 1 is constructive; it exhibits a function F ∈ Cm(Rn)

that agrees with �P and satisfies ‖F‖Cm(Rn)≤ C ‖�P‖, with C as in Theorem 1.
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The order of magnitude of the Cm-norm of a function on a finite set E

is computable, thanks to the following result.

Theorem 2. Let f : E → R, with E ⊂ R
n finite. Then

‖ f ‖≤ C · max{‖ (f|S) ‖: S ⊂ E , #(S) ≤ k#} .

Here, k# depends only on m, n; and C depends only on m, n, and the choice
of the norm on Cm(Rn).

Elementary linear algebra provides upper and lower bounds for ‖ (f|S) ‖
that differ by a factor depending only on #(S), m, n and the choice of the
norm in Cm(Rn). In particular, we can compute the “order of magnitude”
of ‖ (f|S) ‖ when #(S) ≤ k#. Therefore, Theorem 2 provides the order of
magnitude of ‖ f ‖, for any function f defined on a finite set. See [10], and
also Fefferman-Klartag [17,18]. Theorem 2 was conjectured by Y. Brudnyi
and P. Shvartsman, and proven by them [6] for m = 2, with an optimal k#.
(It is trivial for m = 1.) The general case was proven in Fefferman [10].
See Brudnyi-Shvartsman [3,...8], Fefferman [9...15], Fefferman-Klartag [17,
18], Bierstone-Milman-Paw�lucki [1, 2], Whitney [27, 28, 29], Glaeser [21],
Shvartsman [23, 24, 25], and Zobin [30, 31] for several related results and
conjectures. The proof of Theorem 2 is again constructive.

Theorem 1 can be reformulated to look like Theorem 2. In fact, the
following result is easily seen to be equivalent to Theorem 1.

Theorem 1′. Let �P = (Px)x∈E be a Whitney field on a finite set. Then

‖ �P ‖≤ C · max{‖ (�P|S) ‖: S ⊂ E , #(S) ≤ 2} ,

with C depending only on m, n and the choice of the norm on Cm(Rn).

One computes the order of magnitude of ‖ (�P|S) ‖ for #(S) ≤ 2 by using
the case #(E) ≤ 2 of Theorem 1, which is a triviality.

We are ready to state our first result on Problem 1.

Theorem 3. Let ε > 0, and let �P be a Whitney field on a finite set E. Then

‖ �P ‖≤ (1 + ε) · max{‖ (�P|S) ‖: S ⊂ E, #(S) ≤ k#(ε)} ,

where k#(ε) depends only on ε, m, n, and on the choice of the norm on
Cm(Rn).

Thus, the computation of the norm in Problem 1 is reduced to the case
#(E) ≤ k#(ε). In fact, we can do a bit better, by reducing the problem to
subsets S ⊂ E, with #(S) ≤ k#(ε), that also satisfy a favorable geometrical
condition. We call a set S ⊂ R

n an ε-testing set, provided it satisfies

• #(S) ≤ k#(ε), and

• |x − y| ≥ c(ε) · diam (S) for any two distinct points x, y ∈ S.
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Here, diam(S) denotes the diameter of S, k#(ε) is as in Theorem 3, and
c(ε) is a small enough constant determined by ε, m, n and the choice of the
norm on Cm(Rn).

We will prove the following sharper version of Theorem 3.

Theorem 4. Let ε > 0, and let �P be a Whitney field on a finite set E. Then

‖ �P ‖≤ (1 + ε) · max{‖ (�P|S) ‖: S ⊂ E, S an ε-testing set} .

Thus, the computation of the norm in Problem 1 is reduced to the case
of a Whitney field on an ε-testing set. This case is unfortunately non-trivial.
Already, one needs an idea in order to compute ‖ �P ‖ exactly (not just the

order of magnitude) for a Whitney field �P on a single point. We show in [16]

how to compute ‖ �P ‖ up to a percentage error at most ε, in the case of

a Whitney field �P on an ε-testing set. That computation is done by an
algorithm that requires C(ε) steps, with C(ε) depending only on ε, m, n

and the choice of the norm on Cm(Rn).

Our methods are constructive. In computing ‖ �P ‖ to within a percentage
error at most ε, we produce along the way a function Fε ∈ Cm(Rn) that

agrees with �P and satisfies ‖ F ‖Cm(Rn)≤ (1+ε) ‖ �P ‖. Thus, our result solves
Problem 1.

In [16], we discuss also some computer-science issues arising in the imple-

mentation of our algorithm. For a Whitney field �P on a set with N elements,
we can compute ‖ �P ‖ to within a percentage error ε, using C(ε)N log N

operations and C(ε)N storage. Also, in a sense to be made precise as in
Fefferman-Klartag [17, 18], a function Fε as in Problem 1 may be computed
in C(ε)N log N operations and C(ε)N storage. Here again, C(ε) depends
only on ε, m, n and the choice of the Cm-norm. Compare with Fefferman-
Klartag [17, 18].

We provide an oversimplified sketch of the proof of Theorem 4. Recalling
the definition of ‖ �P ‖ for a Whitney field �P, we see that Theorem 4 amounts
to the following statement.

Let �P = (Px)x∈E be a Whitney field on a finite set. Assume that, for any
ε-testing set S ⊂ E, there exists FS ∈ Cm(Rn), such that

(1) ‖ FS ‖Cm(Rn)≤ 1 and FS agrees with �P|S.

Then there exists F̃ ∈ Cm(Rn), such that

(2) ‖ F̃ ‖Cm(Rn)≤ 1 + Cε, and

(3) F̃ agrees with �P.
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To prove this, we modify Whitney’s classical proof of Theorem 1. We
recall the main steps in Whitney’s argument:

• Partition R
n

� E into Whitney cubes {Qμ}, with δμ = diameter (Qμ)
comparable to the distance from Qμ to E.

• Introduce a partition of unity 1 =
∑

μθμ on R
n

� E, with each θμ

supported near Qμ, and satisfying estimates

(4) |∂αθμ| ≤ C · δ−|α|
μ on R

n, for |α| ≤ m.

• Define F =
∑

μθμ · Pxμ on R
n

� E, F(x) = (Px)(x) on E, where Pxμ

arises from our given Whitney field �P = (Px)x∈E, by taking xμ ∈ E as
close as possible to Qμ.

• The above F belongs to Cm and agrees with �P. Moreover, the Cm-norm
of F is bounded a-priori.

We now sketch the modifications of the above steps needed to prove
Theorem 4. In place of Whitney’s θμ, we introduce a “gentle partition of
unity”,

1 =
∑
�,ν

χ�
ν on R

n
� E .

In place of (4), the χ�
ν satisfy

(5) |∂αχ�
ν(x)| ≤ Cε · δ−|α|

μ for 0 < |α| ≤ m, x ∈ Qμ.

Note the extra “ε” on the right-hand side. Each χ�
ν is supported in a

cube Q�
ν. The cubes Q�

ν are bigger than Whitney’s Qμ.

In place of Whitney’s Pxμ , we use a function F�
ν ∈ Cm(Rn), obtained as

follows. For each χ�
ν, we pick out an ε-testing set S�

ν ⊂ E∩Q�
ν. (Essentially,

S�
ν is the largest possible such ε-testing set.) Our function F�

ν then arises by
applying the hypothesis (1) to our ε-testing set S�

ν. Thus,

(6) ‖ F�
ν ‖Cm(Rn)≤ 1, and

(7) F�
ν agrees with �P|S�

ν
.

Following Whitney, we define

F̃ =
∑
�,ν

χ�
ν · F�

ν on R
n

� E ; F̃(x) = (Px)(x) for x ∈ E .

Then F̃ belongs to Cm(Rn), and it satisfies the desired properties (2) and (3).
A bit more precisely, (2) follows from (5) and (6), with the extra “ε” in (5)
providing crucial help. In proving (3), we obtain crucial help from a geo-
metric property of the S�

ν, namely,

(8) Any given point in supp χ�
ν lies quite close to some point of S�

ν.
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Without (8), we would be in trouble, because the Q�
ν are too big. We

are able to arrange (8), because S�
ν is allowed to contain k#(ε) points, not

just two.
Since F̃ has the desired properties (2) and (3), the proof of Theorem 4

is complete. However, we stress that the above discussion is oversimplified.
For instance, what we really prove below is not Theorem 4, but rather a
generalization to Whitney fields on (possibly infinite) compact sets. See
Sections 1. . . 6 below for full details. This concludes our introductory re-
marks on the proof of Theorem 4.

Returning to Problem 2, an optimist might speculate as follows, moti-
vated by Theorems 2 and 3.

Conjecture. Let ε > 0, and let f : E → R, with E ⊂ R
n finite. Then

‖ f ‖≤ (1 + ε) · max{‖ (f|S) ‖: S ⊂ E , #(S) ≤ k#(ε)} ,

with k#(ε) depending only on ε, m, n and the choice of the Cm-norm.

Even an optimist might prefer to restrict attention to a single, favorable
norm on Cm(Rn). In fact, the above conjecture is false; see Fefferman-
Klartag [19]. Thus, an efficient solution of Problem 2 will require new ideas.

It would be interesting to find the best k#(ε) in Theorems 3 and 4.
I don’t even know whether it really depends on ε.

I am grateful to B. Klartag, and to N. Zobin, for many valuable discus-
sions of the problems treated here and in [9. . . 20]. As always, I am grateful
to Gerree Pecht for LATEX-ing my manuscript to the highest standards.

1. Picking a Norm on Cm(Rn)

In this section, we define the class of Cm-norms for which our results are
valid. For each x ∈ R

n, we suppose we are given a norm P �→ |P|x on the
vector space P.

We make the following assumptions on our norms | · |x.

The Bounded Distortion Property. There exist constants c̄0, C̄0 > 0,
for which we have

c̄0|P|x ≤ max
|α|≤m

|∂αP(x)| ≤ C̄0|P|x for all P ∈ P, x ∈ R
n .

Approximate Translation-Invariance. If P ∈ P and τ ∈ R
n, we define

the translate Pτ ∈ P by setting Pτ(z) = P(z − τ) for z ∈ R
n. We assume

that

|Pτ|x+τ ≤ (1 + C̄1|τ|) · |P|x for any P ∈ P, x ∈ R
n, |τ| ≤ 1 .

Here, C̄1 is a constant, independent of x, τ, P.
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These properties obviously hold, e.g., for

|P|x = max
|α|≤m

|∂αP(x)|,

or for |P|x = max
0≤k≤m

( n∑
i1···ik=1

∣∣∣ ∂k

∂xi1 · · ·∂xik

P(x)
∣∣∣2

)1/2

.

For a locally Cm function F defined on an open set Ω ⊂ R
n, we then define

(1) ‖ F ‖Cm(Ω) = sup
x∈Ω

|Jx(F)|x .

We write Cm(Ω) for the space of real-valued locally Cm functions on Ω for
which the norm (1) is finite.

Our results hold for Cm-norms of the form (1). This excludes, for exam-
ple, the Cm-norm ‖ F ‖=

∑
|α|≤m supx∈Rn |∂αF(x)|, since it is not given as

the sup on x of a single expression.

We say that a constant C is controlled if it depends only on m, n, c̄0, C̄0

and C̄1 in the Bounded Distortion and Approximate Translation-Invariance
Properties. We write c, C, C′, etc., to denote controlled constants.

The above conventions remain in force throughout our paper. In partic-
ular, we always assume that the norms | · |x are given, and that our Cm-norm
has the form (1).

We close this section with two elementary consequences of the Bounded
Distortion and Approximate Translation-Invariance Properties.

(2) Let F ∈ Cm(Ω), let U ⊂ R
n be open, let τ ∈ R

n with |τ| ≤ 1, and
suppose that the translate U−τ is contained in Ω. Define a function Fτ

on U by setting Fτ(z) = F(z − τ) for z ∈ U. Then

‖ Fτ ‖Cm(U)≤ (1 + C̄1|τ|) · ‖ F ‖Cm(Ω) .

(3) Suppose P ∈ P, x ∈ R
n, |τ| ≤ 1. If |P|x ≤ 1, then also |P|x+τ ≤ 1+C|τ|.

To see (3), we note that |∂αP(x)| ≤ C for |α| ≤ m, by the Bounded
Distortion Property. Since |τ| ≤ 1, it follows that |∂α(Pτ − P)(x + τ)| ≤
C′|τ| for |α| ≤ m, with Pτ as in the Approximate Translation-Invariance
Property. Another application of the Bounded Distortion Property therefore
gives |Pτ − P|x+τ ≤ C′′|τ|. Since also |Pτ|x+τ ≤ 1 + C̄1|τ| by Approximate
Translation-Invariance, our desired result (3) follows.
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2. Gentle Partitions of Unity

In this section, we will be discussing functions F defined on an open set
Ω ⊂ R

n. By the support of F, we mean the set of points x in Ω, such that F

is not identically zero on any ball centered at x.
We suppose we are given an open cover {Uν} of Ω, and a collection of

functions Fν ∈ Cm(Uν), each with norm at most M. We want to patch
together the Fν by using a partition of unity

∑
νχν = 1 on Ω, with each χν

supported in Uν.
We hope that F =

∑
νχνFν will have norm at most (1 + ε)M in Cm(Ω).

Our next result, proven by a variant of Whitney’s original argument in [27],
shows that this holds, provided Fν − Fμ satisfies favorable estimates on supp
χν∩ supp χμ, and provided the χν form a “gentle partition of unity”.

The estimates needed for Fν − Fμ, and for χν, involve a “lengthscale”
δ(x) > 0, defined for x ∈ Ω. In our applications below, we will take Ω =

R
n

� E and δ(x) comparable to dist (x, E) for x ∈ Ω. (Recall that our

Whitney field �P = (Px)x∈E is defined on a finite set E.)
The precise statement of our lemma on “gentle partitions of unity” is as

follows.

Lemma GPU. Let {Uν} be an open cover of an open set Ω ⊂ R
n; and let

δ(x) > 0 be defined for x ∈ Ω. Suppose that, for each ν, we are given a
function Fν ∈ Cm(Uν), and a function χν ∈ Cm(Ω).

Let ε, M, A0, A1 be positive real numbers. Assume that the following
conditions are satisfied.

(GPU1) Any given x ∈ Ω belongs to supp χν for at most A0 distinct ν.

(GPU2)
∑

ν χν = 1 on Ω.

(GPU3) χν ≥ 0 on Ω.

(GPU4) supp χν ⊂ Uν.

(GPU5) |∂αχν(x)| ≤ ε · (δ(x))−|α| for 0 < |α| ≤ m , x ∈ Ω.

(GPU6) |Jx(Fν)|x ≤ M for all x ∈ supp χν.

(GPU7) |∂α(Fν − Fμ)(x)| ≤ A1M · (δ(x))m−|α| for |α| ≤ m − 1, x ∈
supp χν ∩ supp χμ.

Then the function F =
∑

ν χνFν belongs to Cm(Ω), and satisfies

‖ F ‖Cm(Ω)≤ (1 + Aε) · M,

where A depends only on A0 in (GPU1), A1 in (GPU7), c̄0 and C̄0 in the
Bounded Distortion Property, and m, n.
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Proof. Clearly, F ∈ Cm
�oc(Ω). We must show that

(1) |Jx(F)|x ≤ (1 + Aε)M for all x ∈ Ω, with A as above.

For the proof of (1), we write A, A′, A′′, etc., to denote constants depending
only on A0, A1, c̄0, C̄0, m, n, as in the statement of Lemma GPU. These
constants need not be the same from one occurrence to the next.

To prove (1), we fix x ∈ Ω, and write

(2) Jx(F) =
∑

ν

Jx(χνFν) =
∑

ν

χν(x)Jx(Fν) +
∑

ν

Eν, where

(3) Eν = [Jx(χνFν) − χν(x)Jx(Fν)] ∈ P.

Since | · |x is a norm, our assumptions (GPU2,3,6) imply

(4) |
∑

ν

χν(x)Jx(Fν)|x ≤ M.

We next study the Eν, for those ν such that x ∈ supp χν. For |α| ≤ m, we
have

(5) ∂α Eν(x) =
∑

β+γ=α
β �=0

α!

β!γ!
∂β χν(x) · ∂γFν(x).

Fix μ such that x ∈ supp χμ. (Such a μ exists, by (GPU2).) Another
application of (GPU2) gives

∑
ν

∂β χν(x) = 0 for β 	= 0.

Consequently, (5) may be rewritten in the form

(6) ∂αEν(x) =
∑

β+γ=α
β �=0

α!

β!γ!
∂β χν(x) · ∂γ(Fν − Fμ)(x) .

If δ(x) ≤ 1, then (GPU5,7) and (6) together imply that

|∂αEν(x)| ≤
∑

β+γ=α
β �=0

α!

β!γ!

[
ε · (δ(x))−|β|

] · [
A1M · (δ(x))m−|γ|

]

≤ AεM · (δ(x))m−|α| ≤ AεM for |α| ≤ m .

On the other hand, if δ(x) > 1, then by (GPU5) and (5), together with
(GPU6) and the Bounded Distortion Property, we have

|∂αEν(x)| ≤
∑

β+γ=α
β �=0

α!

β!γ!
[ε · (δ(x))−|β|] · [AM] ≤ A′εM for |α| ≤ m .
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Thus, in either case, we have

|∂αEν(x)| ≤ AεM for |α| ≤ m .

Consequently, the Bounded Distortion Property gives

|Eν|x ≤ A′εM for each ν such that x ∈ supp χν.

Together with (GPU1), this implies

(7) |
∑

ν

Eν|x ≤ A′′εM.

Our desired conclusion (1) follows at once from (2), (4) and (7). The
proof of the Lemma is complete. �

3. Testing Sets

Let 0 < ε < 1/2. An ε-testing set is a subset S ⊂ R
n, such that

(1) #(S) ≤ (
2
ε
· e2/ε

)n
, and

(2) |x − y| ≥ ĉ ε e−2/εdiam (S), for any two distinct points x, y ∈ S.

Here, ĉ is a small enough controlled constant.

The above definition differs slightly from the notion of an ε-testing set,
given in the Introduction. (Here, we specify k#(ε) and c0(ε).) We use our
present definition in Sections 4, 5 and 6 below.

The following elementary observation, essentially a special case of Vitali’s
covering lemma, will be useful in the proof of our main result.

Lemma. Let Q be a cube of sidelength δQ, let E ⊂ R
n, and let 0 < ε < 1/2.

Then there exists an ε-testing set S ⊂ E ∩ Q, such that any point of E ∩ Q

lies within distance Cεe−2/εδQ from some point of S.

Proof. Subdivide Q into a grid of cubes {Qν} of sidelength between ε
2
e−2/εδQ

and εe−2/εδQ. The number of such Qν is at most
(

2
ε
e2/ε

)n
. In each

non-empty E ∩ Qν, we pick a “representative” ŷν. Let Ŝ be the set of
all the representatives picked above. Then

(3) Ŝ ⊂ E ∩ Q,

(4) #(Ŝ) ≤ (
2
ε
e2/ε

)n
, and

(5) Any x ∈ E ∩ Q lies within distance Cε e−2/εδQ from some ŷ ∈ Ŝ.

(In fact, we can take ŷ to be the representative picked for the E ∩ Qν that
contains x.)
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Unfortunately, Ŝ may not satisfy (2). Therefore, we proceed as follows.
Let y1, y2, . . . , yL be an enumeration of Ŝ. By induction on 
(1 ≤ 
 ≤ L),
we decide whether to discard y�, according to the following rule:

We discard y� if and only if |y� − y�′ | < ε e−2/εδQ for some 
′ < 
 for
which we did not discard y�′.

Let S be the set of all the y� that were not discarded. Evidently,

(6) S ⊂ Ŝ ⊂ E ∩ Q, and

(7) |y − y′| ≥ ε e−2/εδQ for any two distinct points y, y′ ∈ S.

We claim that

(8) Any x ∈ E ∩ Q satisfies |x − y| ≤ Cε e−2/εδQ for some y ∈ S.

To see (8), let ŷ ∈ Ŝ be as in (5). If ŷ ∈ S, then (8) holds, with y = ŷ.
On the other hand, if ŷ /∈ S, then we have |ŷ − y| < ε e−2/εδQ for some
y ∈ S; consequently,

|x − y| ≤ |x − ŷ| + |ŷ − y| ≤ Cε e−2/εδQ + ε e−2/εδQ ≤ C′ε e−2/εδQ ,

and again (8) holds. Thus, (8) holds in all cases.

Since S ⊂ Q, we have diam (S) ≤ CδQ. Therefore, (4) and (7) imply (1)
and (2) for ĉ small enough. Thus, S is an ε-testing set. We know also that
S ⊂ E ∩ Q, and that (8) holds. Thus, S satisfies all the conclusions of the
Lemma. �

Note that any S ⊂ R
n with #(S) ≤ 2 is an ε-testing set.

4. The Main Result

Our main result is the following analogue of Theorem 4 for general compact
sets. Here, we use the notion of an “ε-testing set” from Section 3.

The (1 + ε)-Whitney Theorem. Let 0 < ε < c̃, for a small enough con-

trolled constant c̃. Let �P=(Px)x∈E be a Whitney field on a compact set E⊂R
n.

(A) Suppose ‖ (�P|S) ‖< 1 for every ε-testing set S ⊂ E. Then there exists
F̃ ∈ Cm(Rn

� E), such that

• ‖ F̃ ‖Cm(Rn�E)≤ 1 + Cε, and

• |∂α(F̃ − Py)(x)| ≤ C|x − y|m−|α| for |α| ≤ m, x ∈ R
n

� E, y ∈ E.
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(B) In addition to the assumption of part (A), suppose there exists a func-

tion F0 ∈ Cm(Rn) that agrees with �P. Then there exists F ∈ Cm(Rn),
such that

• ‖ F ‖Cm(Rn)≤ 1 + Cε, and

• F agrees with �P.

Trivially, if E is finite, then there exists a function F0 as in part (B).
Hence, the (1+ε)-Whitney theorem immediately implies Theorems 3 and 4
in the Introduction (with the definition of an ε-testing set given there). For
general compact E, the classical Whitney extension theorem tells us whether
there exists an F0 as in part (B).

5. Analysis on R
n

� E

In this section, we prove part (A) of the (1 + ε)-Whitney theorem. We

suppose ε, �P = (Px)x∈E satisfy the hypotheses of part (A). In particular, for
every ε-testing set S ⊂ E, there exists FS ∈ Cm(Rn), with

(1) ‖ FS ‖Cm(Rn)≤ 1, and

(2) Jx(F
S) = Px for all x ∈ S.

From (1) and the Bounded Distortion Property, we have

(3) |∂αFS(x)| ≤ C for |α| ≤ m, x ∈ R
n.

Recall that any set S ⊂ R
n with at most two points is an ε-testing set.

Hence, (1), (2), (3) and Taylor’s theorem yield

(4) |Px|x ≤ 1 for all x ∈ E,

(5) |∂αPx(x)| ≤ C for |α| ≤ m, x ∈ E, and

(6) |∂α(Px − Py)(y)| ≤ C|x − y|m−|α| for |α| ≤ m, x, y ∈ E.

Now let

(7) Ω = R
n

� E.

We prepare to set up a gentle partition of unity on Ω. The proof of the
classical Whitney extension theorem gives a function δ(x), defined on Ω,
with the following properties.

(8) cδ(x) < dist (x, E) < Cδ(x) for all x ∈ Ω.

(9) |∂αδ(x)| ≤ C(δ(x))1−|α| for |α| ≤ m, x ∈ Ω.

Here, of course, dist(x, E) denotes the distance from x to E, and (9) includes
the assertion that the function δ(x) belongs to Cm

�oc(Ω). See [26, p. 171].
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We fix a Cm partition of unity

(10) 1 =
∑

−∞<�<∞
χ�(t) on R, where:

(11) χ�(t) ≥ 0 for all t ∈ R, 
 ∈ Z;

(12) supp χ� ⊂ (
 − 1, 
 + 1) for each 
 ∈ Z; and

(13)
∣∣∣( d

dt

)k
χ�(t)

∣∣∣ ≤ C for k ≤ m, t ∈ R, 
 ∈ Z.

Note that the function χ�(ε log δ(x)), defined for x ∈ Ω, has the follow-
ing properties.

(14) χ�(ε log δ(x)) ≥ 0 for all x ∈ Ω.

(15) supp χ�(ε log δ(x)) ⊂ {x ∈ Ω : e
�−1

ε < δ(x) < e
�+1

ε }

⊂ {x ∈ Ω : c e
�−1

ε < dist (x, E) < C e
�+1

ε } .

(See (8).) Also, we will check that

(16) |∂α[χ�(ε log δ(x))]| ≤ Cε · (δ(x))−|α| for 0 < |α| ≤ m, x ∈ Ω.

To see (16), we note first that ∂α[χ�(ε log δ(x))] is a sum of terms of the
form

r∏
ν=1

[∂αν(ε log δ(x))] · χ
(r)
� (ε log δ(x)) ,

where α1 + · · · + αr = α, each αν 	= 0, and χ
(r)
� denotes the rth derivative

of χ�. Next, observe that each factor [∂αν(ε log δ(x))] is a sum of terms of
the form

ε
[∂β1δ(x)] · · · [∂βsδ(x)]

(δ(x))s
, with β1 + · · ·+ βs = αν .

Consequently, ∂α[χ�(ε log δ(x))] (α 	= 0) is a sum of terms of the form

(17) εr [∂β1 δ(x)] ··· [∂βs δ(x)]
(δ(x))s · χ(r)

� (ε log δ(x)), with r ≥ 1 and β1+ · · ·+βs = α.

Each term (17) is bounded by Cε · (δ(x))−|α|, thanks to (9) and (13). This
completes the proof of (16). �

Next, for each 
 ∈ Z, we fix a partition of unity

(18) 1 =
∑

ν θ�
ν on R

n ,
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where the θ�
ν are Cm functions with the following properties.

(19) θ�
ν ≥ 0 on R

n, for each 
, ν.

(20) Each θ�
ν is supported in a cube Q�

ν of side 1
3ε

e
�+1

ε .

(21) |∂αθ�
ν(x)| ≤ C ·

(
1
ε
e

�+1
ε

)−|α|

for |α| ≤ m, x ∈ R
n, any 
, ν.

(22) For fixed 
 ∈ Z, any given x ∈ R
n belongs to at most C of the cubes Q�

ν.

We are now ready to define our gentle partition of unity. For each 
, ν,
we define

(23) χ�
ν(x) = θ�

ν(x) · χ�(ε log δ(x)) for x ∈ Ω. Thus,

(24) χ�
ν ∈ Cm(Ω).

We check that

(25) Any given x ∈ Ω belongs to supp χ�
ν for at most C distinct (
, ν).

To see (25), we note that x ∈ supp χ�
ν implies e

�−1
ε < δ(x) < e

�+1
ε , which

holds for at most two distinct 
 when x is fixed. (See (15).)

On the other hand, since supp χ�
ν ⊆ supp θ�

ν ⊆ Q�
ν (see (20) and (23)),

it follows from (22) that x ∈ supp χ�
ν for at most C distinct ν, once x and 


are fixed. This completes the proof of (25). �

In view of (25), the following formal calculation is justified, for any x ∈ Ω.

(26)
∑
�,ν

χ�
ν(x) =

∑
�

χ�(ε log δ(x)) ·
∑

ν

θ�
ν(x) (see (23))

=
∑

�

χ�(ε log δ(x)) (see (18)) = 1 (see (10)).

Next, note that

(27) χ�
ν ≥ 0 on Ω, for each 
, ν (see (11), (19), (23)), and

(28) supp χ�
ν ⊂ {x ∈ Q�

ν ∩ Ω : e
�−1

ε < δ(x) < e
�+1

ε } (see (15), (20), (23)).

Next, we check that

(29) |∂αχ�
ν(x)| ≤ Cε · (δ(x))−|α| for 0 < |α| ≤ m, x ∈ Ω, any 
, ν.

To prove (29), we may restrict attention to x ∈ supp χ�
ν. Hence, δ(x) < e

�+1
ε

(see (28)), and therefore (21) implies that

(30) |∂αθ�
ν(x)| ≤ Cε · (δ(x))−|α| for 0 < |α| ≤ m.
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We have also

(31) 0 ≤ θ�
ν(x) ≤ 1 (see (18), (19)), and 0 ≤ χ�(ε log δ(x)) ≤ 1 (see (10)

and (11)).

The desired estimate (29) now follows from (16), (30) and (31), thanks
to (23) and the product rule for derivatives.

This completes the proof of (29). �

Properties (24). . . (27) and (29) are hypotheses of Lemma GPU from
Section 2. Thus, we have constructed our gentle partition of unity.

Next, we prepare to define functions F�
ν ∈ Cm(Rn), to be patched to-

gether using the gentle partition of unity. To do so, we apply the lemma
from Section 3, to the cube (Q�

ν)
∗, which has the same center as Q�

ν but
three times the sidelength. Thus,

(32) sidelength ((Q�
ν)

∗) = 1
ε
e

�+1
ε (see (20)),

and the lemma from Section 3 yields a set S�
ν with the following properties:

(33) S�
ν is an ε-testing set.

(34) S�
ν ⊂ E ∩ (Q�

ν)
∗.

(35) For any y ∈ E ∩ (Q�
ν)

∗, there exists y′ ∈ S�
ν, such that |y − y′| ≤

C e(�−1)/ε. (See (32).)

To define F�
ν, we now apply (1), (2), (3) to the ε-testing set S�

ν. Thus,
for each 
, ν, we have:

(36) F�
ν ∈ Cm(Rn), ‖ F�

ν ‖Cm(Rn)≤ 1,

(37) Jy(F�
ν) = Py for all y ∈ S�

ν, and

(38) |∂αF�
ν(x)| ≤ C for |α| ≤ m, x ∈ R

n.

To apply Lemma GPU from Section 2, we must estimate the difference
F�

ν − F�′
ν′ on supp χ�

ν ∩ supp χ�′
ν′ .

Thus, let x ∈ supp χ�
ν ∩ supp χ�′

ν′ be given. According to (28), we have

(39) x ∈ Q�
ν ∩ Ω and e(�−1)/ε < δ(x) < e(�+1)/ε, and similarly,

(40) x ∈ Q�′
ν′ ∩ Ω, and e(�′−1)/ε < δ(x) < e(�′+1)/ε.

We will check, using (35) and (39), that there exists

(41) y ∈ S�
ν, such that

(42) |x − y| ≤ Cδ(x).
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In fact, (39) and (8) produce a point z ∈ E, with |z − x| ≤ Cδ(x) ≤
C e(�+1)/ε. Since x ∈ Q�

ν, with the sidelength of Q�
ν equal to 1

3
ε−1 e(�+1)/ε,

we have z ∈ E ∩ (Q�
ν)

∗. (Here, we use our assumption that ε < c̃ for a small
enough c̃.) Hence (35) produces a point y ∈ S�

ν, with |z − y| ≤ C e(�−1)/ε ≤
Cδ(x). Thus, |x − y| ≤ |x − z| + |z − y| ≤ C δ(x), and we obtain (41), (42).
Similarly, there exists

(43) y′ ∈ S�′
ν′ such that

(44) |x − y′| ≤ Cδ(x).

Let y, y′ be as in (41). . . (44). By (37), (38), and Taylor’s theorem, we have

|∂α(F�
ν − Py)(x)| ≤ C|x − y|m−|α| for |α| ≤ m .

Applying (42), we learn that

(45) |∂α(F�
ν − Py)(x)| ≤ C · (δ(x))m−|α| for |α| ≤ m.

Similarly,

(46) |∂α(F�′
ν′ − Py′

)(x)| ≤ C · (δ(x))m−|α| for |α| ≤ m.

From (6), we have

|∂α(Py − Py′
)(y)| ≤ C|y − y′|m−|α| for |α| ≤ m .

Applying (42), (44), we see that |y − y′| ≤ Cδ(x), and therefore

|∂α(Py − Py′
)(y)| ≤ C · (δ(x))m−|α| for |α| ≤ m .

In view of (42), this in turn implies that

(47) |∂α(Py − Py′
)(x)| ≤ C · (δ(x))m−|α| for |α| ≤ m.

Combining (45), (46), (47), we find that

(48) |∂α(F�
ν−F�′

ν′)(x)| ≤ C · (δ(x))m−|α| for |α| ≤ m, x ∈ supp χ�
ν ∩ supp χ�′

ν′ .

This is our desired estimate for F�
ν − F�′

ν′.

We can now apply Lemma GPU from Section 2, to the partition of unity
{χ�

ν}, the open sets U�
ν := Ω, and the functions F�

ν ∈ Cm(Ω), with M = 1,
with Cε here in place of ε in Lemma GPU, and with the constants A0, A1

in Lemma GPU being controlled constants.

Let us check the hypotheses of Lemma GPU.
Evidently, the U�

ν = Ω form an open cover of Ω; and δ(x) > 0 on Ω.
For each 
, ν, we have F�

ν, χ�
ν ∈ Cm(Ω), thanks to (36) and (24).
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Also, hypotheses (GPU1,2,3,5,6,7) are immediate from our results (25),
(26), (27), (29), (36), (48), respectively. Hypothesis (GPU4) is immediate
from (28), since we take U�

ν = Ω.

Thus, all the hypotheses of Lemma GPU hold here.

Applying Lemma GPU, we learn that the function

(49) F̃ =
∑
�,ν

χ�
ν · F�

ν

belongs to Cm(Ω), and satisfies

(50) ‖ F̃ ‖Cm(Ω)≤ 1 + Cε.

To complete the proof of part (A) of the (1 + ε)-Whitney theorem, it
remains to show that

(51) |∂α(F̃ − Pȳ)(x)| ≤ C|x − ȳ|m−|α| for |α| ≤ m, x ∈ Ω, ȳ ∈ E.

To prove this, we argue as follows.

Fix x ∈ Ω, let ȳ be a point of E closest to x, and let (
, ν) be such
that x ∈ supp χ�

ν. Then the proofs of (41), (42), (45) apply. Let y be as
in (41), (42). Since δ(x) < C dist (x, E) = C |x − ȳ| (see (8)), we conclude
that

(52) y ∈ S�
ν ⊂ E, |x − y| ≤ C |x − ȳ|, and

(53) |∂α(F�
ν − Py)(x)| ≤ C |x − ȳ|m−|α| for |α| ≤ m.

On the other hand, (6) and (52) give

|∂α(Py − Pȳ)(ȳ)| ≤ C |y − ȳ|m−|α| ≤ C′|x − ȳ|m−|α| for |α| ≤ m .

This in turn implies that

(54) |∂α(Py − Pȳ)(x)| ≤ C |x − ȳ|m−|α| for |α| ≤ m.

From (53) and (54), we conclude that

(55) |∂α(F�
ν − Pȳ)(x)| ≤ C |x − ȳ|m−|α| for |α| ≤ m, x ∈ supp χ�

ν,
ȳ= point of E closest to x.

Moreover, with x, ȳ, (
, ν) as in (55), we have

(56) |∂αχ�
ν(x)| ≤ C · (δ(x))−|α| ≤ C′ · (dist (x, E))−|α| = C′|x − ȳ|−|α| for

|α| ≤ m.

(Here, we use (26), (27), (29) and (8).)
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Combining (55), (56), we learn that

|∂α[χ�
ν · (F�

ν − Pȳ)](x)| ≤ C|x − ȳ|m−|α|

for |α| ≤ m, x ∈ supp χ�
ν, ȳ = a point of E closest to x.

Together with (25), this shows that∣∣∣∣∂α

[∑
�,ν

χ�
ν · (F�

ν − Pȳ)

]
(x)

∣∣∣∣ ≤ C |x − ȳ|m−|α|

for |α| ≤ m, x ∈ Ω, ȳ = a point of E closest to x.

In view of (26) and (49), this in turn yields

(57) |∂α(F̃ − Pȳ)(x)| ≤ C |x − ȳ|m−|α|

for |α| ≤ m, x ∈ Ω, ȳ = point of E closest to x.

Finally, we pass from ȳ in (57) to an arbitrary point y ∈ E. By definition
of ȳ, we have

(58) |x − ȳ| ≤ |x − y|, hence also

(59) |y − ȳ| ≤ 2|x − y|.

Applying (6) and (59), we learn that

|∂α(Py − Pȳ)(y)| ≤ C |y − ȳ|m−|α| ≤ C′ |x − y|m−|α| for |α| ≤ m ,

and therefore

(60) |∂α(Py − Pȳ)(x)| ≤ C′′|x − y|m−|α| for |α| ≤ m.

From (57) and (58), we have also

(61) |∂α(F̃ − Pȳ)(x)| ≤ C |x − y|m−|α| for |α| ≤ m.

Combining (60) and (61), we learn that

|∂α(F̃ − Py)(x)| ≤ C |x − y|m−|α| for |α| ≤ m , x ∈ Ω, y ∈ E .

This is precisely our desired estimate (51). The proof of part (A) of the
(1 + ε)-Whitney theorem is complete. �
Remark. Suppose E is finite; say #(E) = N. Then, with a little extra care,
we can arrange the arguments in this section to produce the following:

• The function F̃, constructed here on R
n

� E, extends trivially to a
function F ∈ Cm(Rn), with norm at most 1 + Cε; and

• The construction of F̃ makes use of at most C(ε) ·N distinct ε-testing
sets S.

Here, C(ε) depend only on ε, m, n and the constants c̄0, C̄0 in the Boun-
ded Distortion Property; while C depends only on m, n, c̄0, C̄0. See [16].
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6. Patching Near E

In this section we prove part (B) of the (1+ε)-Whitney theorem. We recall
the results and notation of the preceding section, and we assume in addition
that F0 ∈ Cm(Rn), with

(1) Jy(F0) = Py for all y ∈ E.

Our plan is to patch together F0 with F̃ from part (A), using a gentle partition
of unity.

We start by analyzing F0 near E. From (1), together with (5.4), we have

|Jy(F0)|y ≤ 1 for all y ∈ E ,

and therefore (1.3) yields

(2) |Jy(F0)|x ≤ 1 + Cε for y ∈ E, |x − y| < ε.

Also, since F0 ∈ Cm(Rn), we have

(3) |∂α(Jx(F0) − Jy(F0))(x)| ≤ Cω(|x − y|) · |x − y|m−|α|

for y ∈ E , |x − y| < ε , |α| ≤ m ;

where ω(·) is the modulus of continuity of the mth derivatives of F0 on a
large closed ball containing E.

In particular, this yields

|∂α(Jx(F0) − Jy(F0))(x)| ≤ Cω(|x − y|) for |α| ≤ m , |x − y| < ε, y ∈ E ,

and therefore

(4) |Jx(F0) − Jy(F0)|x ≤ C′ω(|x − y|) for |x − y| < ε, y ∈ E,

by the Bounded Distortion Property.

Since ω(t) → 0 as t → 0, we can pick r1 > 0 such that

(5) ω(|x − y|) < ε for |x − y| < r1.

We may take r1 < ε; we don’t know how small r1 might be. From (2), (4)
and (5), we conclude that

(6) |Jx(F0)|x ≤ 1 + Cε for dist(x, E) < r1.

This is our desired estimate for F0 near E.
Next, we estimate F̃ − F0 at points of Ω near E. Let x ∈ Ω, and let ȳ be

a point of E closest to x. From (1), (3), (5), we obtain the estimate

(7) |∂α(F0 − Pȳ)(x)| ≤ Cε|x − ȳ|m−|α| for |α| ≤ m,

provided |x − ȳ| < r1.
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On the other hand, the conclusion of part (A) of the (1 + ε)-Whitney
theorem tells us that

(8) |∂α(F̃ − Pȳ)(x)| ≤ C|x − ȳ|m−|α| for |α| ≤ m.

Combining (7) and (8), we learn that

(9) |∂α(F̃ − F0)(x)| ≤ C|x − ȳ|m−|α| for |α| ≤ m,

provided |x − ȳ| < r1.

Since |x − ȳ| = dist (x, E), estimates (9) and (5.8) show that

(10) |∂α(F̃ − F0)(x)| ≤ C · (δ(x))m−|α| for |α| ≤ m, x ∈ Ω, δ(x) < r2,

where r2 > 0 is small enough that δ(x) < r2 implies dist (x, E) < r1.

We then have also

(11) |Jx(F0)|x ≤ 1 + Cε for x ∈ Ω, δ(x) < r2,

thanks to (6). Moreover, from part (A) of the (1 + ε)-Whitney theorem, we
have

(12) |Jx(F̃)|x ≤ 1 + Cε for all x ∈ Ω.

Estimates (10), (11), (12) will give us hypotheses (GPU6,7) of Lemma GPU.

Next, we define our gentle partition of unity.

Let χ(t) be a function on [−∞, ∞), with the following properties:

(13) χ(t) = 0 for t ≥ −1; χ(t) = 1 for t ≤ −2; 0 ≤ χ(t) ≤ 1 for all t; and

(14) χ(t) is a Cm-function on (−∞, ∞), with |
(

d
dt

)k
χ(t)| ≤ C

for k ≤ m , t ∈ (−∞, ∞) .

We define

(15) χin(x) = χ
(
ε log δ(x)

r2

)
and χout(x) = 1 − χin(x), for all x ∈ R

n.

(If x ∈ E, we define δ(x) = 0, χin(x) = 1, χout(x) = 0.) From (13) and (15),
we see that

(16) χin(x) = 1, χout(x) = 0 for dist (x, E) < r3; and

(17) χin(x) = 0, χout(x) = 1 for x ∈ Ω, δ(x) ≥ e−1/εr2.

Here, r3 is a small enough positive number, such that

(18) dist (x, E) < r3 implies δ(x) < e−2/ε r2, for x ∈ Ω. (See (5.8).)
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Also from (13), (15), we obtain

(19) 0 ≤ χin(x), χout(x) ≤ 1 for all x ∈ R
n, and

(20) χin(x) + χout(x) = 1 for all x ∈ R
n.

Finally, the proof of (5.16) applies here, to prove that χin, χout ∈ Cm(Ω),
and

(21) |∂αχin(x)|, |∂αχout(x)| ≤ Cε · (δ(x))−|α| for 0 < |α| ≤ m, x ∈ Ω.

We now define

(22) F = χin · F0 + χout · F̃ on R
n.

We first study F on Ω. Taking Uin = Uout = Ω and M = 1+ Cε, we can
check the hypotheses of Lemma GPU, with controlled constants for A0, A1

in that lemma. In fact:

Uin, Uout form an open cover of the open set Ω;

δ(x) > 0 for all x ∈ Ω;

F0 ∈ Cm(Uin) and F̃ ∈ Cm(Uout);

χin and χout belong to Cm(Ω);

(GPU1) is obvious, since there are only two functions χin, χout in our partition
of unity;

(GPU2) is (20);

(GPU3) is immediate from (19);

(GPU4) holds, since, for Lemma GPU, supp χin, supp χout are defined to be
subsets of Ω, and we are taking Uin = Uout = Ω.

(GPU5) is (21);

(GPU6) is immediate from (11), (12) and (17); finally,

(GPU7) is immediate from (10) and (17).

Thus, all the hypotheses of Lemma GPU hold. Applying that lemma, we
learn that F ∈ Cm(Ω), and ‖ F ‖Cm(Ω)≤ 1 + Cε, i.e.,

(23) |Jx(F)|x ≤ 1 + Cε for all x ∈ Ω.

On the other hand, (16) and (22) show that

(24) F = F0 on U = {x ∈ R
n : dist (x, E) < r3}.

In particular, F ∈ Cm(U), and we have

(25) Jx(F) = Jx(F0) = Px for all x ∈ E. (See (1).)
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Consequently,

(26) |Jx(F)|x ≤ 1 for all x ∈ E,

thanks to (5.4).
Since F ∈ Cm(Ω) and F ∈ Cm(U), with {Ω, U} an open cover of R

n

(see (24)), we have

(27) F ∈ Cm(Rn).

From (23) and (26), we have |Jx(F)|x ≤ 1 + Cε for all x ∈ R
n, i.e.,

(28) ‖ F ‖Cm(Rn)≤ 1 + Cε.

Our results (27), (28), (25) are the conclusions of part (B) of the (1 + ε)-
Whitney theorem. The proof of part (B) is complete. �
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