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Isoperimetry for spherically symmetric
log-concave probability measures

Nolwen Huet

Abstract
We prove an isoperimetric inequality for probability measures μ

on R
n with density proportional to exp(−φ(λ|x|)), where |x| is the

euclidean norm on R
n and φ is a non-decreasing convex function.

It applies in particular when φ(x) = xα with α ≥ 1. Under mild
assumptions on φ, the inequality is dimension-free if λ is chosen such
that the covariance of μ is the identity.

1. Introduction

In his paper [10], Bobkov studies the spectral gap for spherically symmetric
probability measures μ on Rn with density

dμ(x)

dx
= ρ(|x|),

where ρ is log-concave. His main result can be stated as follows.

Theorem 1 (Bobkov [10]). The best constant Pμ in the Poincaré inequality

Varμ(f) ≤ Pμ

∫
|∇f |2 dμ, ∀f smooth

satisfies
Eμ(|X|2)

n
≤ Pμ ≤ 12

Eμ(|X|2)
n

.

In particular, if μ is isotropic, we get

1 ≤ Pμ ≤ 12,

which means a spectral gap not depending on n.

2000 Mathematics Subject Classification: 26D10, 60E15, 28A75.
Keywords : Isoperimetric inequalities, log-concave measures.



94 N. Huet

Remark. Actually the constant he obtained was 13, but bounding two
positive constants by their maximum instead of their sum in his proof, leads
to the slightly better constant 12 .

Here “μ is isotropic” means that the covariance of μ is the identity. How-
ever, we already know from the spherically invariance of μ that the covari-
ance is proportional to the identity. So in our case, the isotropy of μ reduces
merely to Eμ(|X|2) = n.

If we assume furthermore that μ itself is log-concave (see [11] for preci-
sions about log-concave measures), that is to say that ρ is non-decreasing,
then one can deduce an isoperimetric inequality for μ, thanks to a result
of Ledoux [18] (generalized in [20] by E. Milman) bounding the Cheeger
constant from below by the spectral gap.

Theorem 2. There exists a universal constant c > 0 such that, for any
n ∈ N, all log-concave measures μ on Rn spherically symmetric and isotropic
satisfy the following isoperimetric inequality:

(1.1) Isμ(a) ≥ c a ∧ (1 − a).

Here Isμ denote the isoperimetric function of μ and a ∧ b = min(a, b).
We need some notation to define Isμ properly. Let A be a Borel set in Rn.
We define its ε-neighborhood by

Aε = {x ∈ X; d(x, A) ≤ ε}.
The boundary measure of A is

μ+(∂A) = lim inf
ε→0+

μ(Aε) − μ(A)

ε
.

Now the isoperimetric function of μ is the largest function Isμ on [0, 1] such
that for all Borel sets A,

μ+(∂A) ≥ Isμ

(
μ(A)

)
.

The result of Bobkov answer the conjecture of Kannan, Lovász and Si-
monovits [14] in the particular case of spherically symmetric measures. This
conjecture asserts that (1.1) is true for all log-concave and isotropic mea-
sures μ, with a universal constant c.

Our aim is to sharpen Theorem 2 when ρ is “better” than log-concave. For
instance, the Gaussian measure γn corresponding to ρ(t) = (2π)−

n
2 exp− t2

2
,

is known to satisfy the log-Sobolev inequality and the following isoperimetric
inequality:

Isγn(a) ≥ c
(
a ∧ (1 − a)

)√
log

1

a ∧ (1 − a)
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with constants not depending on n either. We can ask what happens for
regimes between exponential and Gaussian, or beyond the Gaussian case.
This idea has already been developed in [16, 2, 7, 5, 6] for product measures.

Let φ : R+ → R+ be a convex non-decreasing function of class C2 such
that φ(0) = 0. Then we consider the probability measure on Rn

μn,φ(dx) =
e−φ(|x|) dx

Zn,φ

and its associated radial measure on [0, +∞)

νn,φ(dr) = |Sn−1|r
n−1e−φ(r) dr

Zn,φ

.

We denote by σn−1 the uniform probability measure on the unit sphere Sn−1

of Rn. If X is a random variable of law μn,φ, then |X| has the distribu-
tion νn,φ. Conversely, if r and θ are independent random variables whose
distributions are respectively νn,φ and σn−1, then X = rθ has the distribu-
tion μn,φ. In view of this representation, we will derive inequalities for μn,φ

from inequalities for νn,φ and σn−1.
In the particular case φ(x) = φα(x) = xα with α ≥ 1, we note μn,α =

μn,φα. Between the exponential and the Gaussian case, following the results
for μ⊗n

1,α and μ⊗n
1,φ from [6], we expect to bound from below the isoperimetric

function of μn,α on [0, 1/2] by

Lα(a) = a
(

log
1

a

)1− 1
α
,

and more generally the one of μn,φ by

Lφ(a) =
a log 1

a

φ−1
(
log 1

a

) .
On the other hand, since we are aiming at results which do not depend

on n and because of the Central-Limit Theorem [15], we cannot expect better
isoperimetric profile than the one of the Gaussian measure, proportional to

L2(a) = a

√
log

1

a
.

The point is to know the exact dependence in n of the constant in front
of the term in a, and in particular to know whether we recover universal con-
stants in the isotropic case. The main results of this paper are stated next.
The first theorem concerns the special case φ(x) = (λx)α. For every α ≥ 1
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and n ∈ N
∗, we define Jn,α as a continuous function on [0, 1], symmetric

around 1/2, by

Jn,α(a) =

⎧⎪⎨
⎪⎩

n1/α−1/2 a
(

log
1

a

)1−1/α

if 0 ≤ a ≤ e−n ∧ 1
2
,

a

√
log

1

a
if e−n ∧ 1

2
≤ a ≤ 1/2.

Theorem 3. Let α ≥ 1 and n ∈ N∗. Let μ be the isotropic probability
measure on Rn of density proportional to e−|λx|α, with λ > 0. Then, there
exists a universal constant C > 0 such that

∀a ∈ [0, 1], Isμ(a) ≥ C Jn,α(a).

In particular,

∀a ∈ [0, 1], Isμ(a) ≥ C
(
a ∧ (1 − a)

)(
log

1

a ∧ (1 − a)

)1− 1
α∧2

.

It can be seen as a corollary of Theorem 4 on more general functions φ.
Let us introduce the different assumptions made on φ before stating it.

Hypothesis (H0) φ : R+ → R+ is a non-decreasing convex function of
class C2 such that φ(0) = 0.

Hypothesis (H1) φ satisfies (H0) and x 
→ φ(x)/x2 is non-increasing.

Hypothesis (H2) φ satisfies (H0) and x 
→ φ(x)/x2 is non-decreasing.

Hypothesis (H2(α, β)) φ satisfies (H0) and there exists α ≥ β ≥ 2 such
that x 
→φ(x)/xα is non-increasing and x 
→ φ(x)/xβ is non-decreasing.

Let n ∈ N∗, φ be a function satisfying (H0), and Jn,φ be a continuous function
on [0, 1], symmetric around 1/2, and defined on [0, 1/2] by

Jn,φ(a) =

⎧⎪⎪⎨
⎪⎪⎩

φ−1(n)√
n

a log 1
a

φ−1
(
log 1

a

) if a ≤ e−n,

a

√
log

1

a
if a ≥ e−n.

For every λ > 0, let φλ be the function defined by φλ(x) = φ(λx). Remark
that there exists always λ such that μn,φλ

is isotropic.

Theorem 4. • Let φ be a function satisfying (H1) or (H2), and n ∈ N∗.
Then, there exists a universal constant C > 0 such that

∀a ∈ [0, 1], Isμn,φ
(a) ≥ C

√
n

φ−1(n)
Jn,φ(a).
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• Let φ be a function satisfying (H1), α = 2, and β = 1, or φ be a
function satisfying (H2(α, β)) with α ≥ β ≥ 2. If we choose λ > 0
such that μn,φλ

is isotropic, then there exists universal n0 ∈ N∗ and
C > 0 such that, for every n ≥ n0,

∀a ∈ [0, 1], Isμn,φλ
(a) ≥ C (1/α)1/β Jn,φ(a).

We can also deduce isoperimetric inequalities not depending on the di-
mension n anymore.

Theorem 5. Let n ∈ N∗, φ be a function satisfying (H0), and λ > 0 such
that μn,φλ

is isotropic. There exists a universal constant C > 0 such that

i) if φ satisfies (H1) then

∀a ∈ [0, 1], Isμn,φλ
(a) ≥ C φ−1(1)

(
a ∧ (1 − a)

)
log 1

a∧(1−a)

φ−1
(
log 1

a∧(1−a)

) ,

ii) if φ satisfies (H2(α, β)) then

∀a ∈ [0, 1], Isμn,φλ
(a) ≥ C (1/α)1/β

(
a ∧ (1 − a)

)√
log

1

a ∧ (1 − a)
.

These theorems are optimal, in a sense specified in Section 7. Note that a
straightforward application of Bobkov’s inequality for log-concave measures
(Theorem 8) leads to isoperimetric inequalities with a (non-optimal) depen-
dence in the dimension. For instance, Lemma 4 of [2] and the computation
of exponential moments imply the Theorem 3 with C/

√
n instead of C.

Let us finish this section by showing how Theorem 4 implies the two
other ones. To deduce Theorem 5, we play with the properties of φ (see
Lemma 6). Indeed, under (H1),

φ−1(n)√
n

≥ φ−1(1),

and when a ≤ 1/2,

φ−1
(

log
1

a

)
≥ φ−1 (log 2)√

log 2

√
log

1

a
≥ φ−1(1)

√
log 2

√
log

1

a
.

Hence, if φ satisfies (H1) and a ∈ [0, 1/2],

Jn,φ(a) ≥ φ−1(1)
√

log 2
a log 1

a

φ−1
(
log 1

a

) .
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Similarly, under (H2) — all the more under (H2(α, β)) —,

∀a ≤ e−n, φ−1
(

log
1

a

)
≤ φ−1 (n)√

n

√
log

1

a
,

therefore, for every a ∈ [0, 1/2],

Jn,φ(a) ≥ a

√
log

1

a
.

As for Theorem 3, the second point of Theorem 4 gives us the result
for n large enough. On the other hand, the first point lead to the following
isoperimetric inequality for μn,α true for every n:

∀a ∈ [0, 1], Isμn,α(a) ≥ Cn1/2−1/α Jn,α(a).

where C > 0 is a universal constant. Here, the moments can be explicitly
computed, and thus also λ > 0 such that μ(dx) = Z−1e−|λx|αdx is isotropic.
We obtain

Eμn,α

(|X|2) =
Γ
(
(n + 2)/α

)
Γ(n/α)

and λ =

√
Γ
(
(n + 2)/α

)
nΓ(n/α)

.

Thanks to the formula of change of variable, one can deduce that for every
n ∈ N∗,

∀a ∈ [0, 1], Isμ(a) ≥ λCn1/2−1/α Jn,α(a).

Finally, λn1/2−1/α ≥ c where c > 0 is a universal constant because of the
Stirling formula and the equivalent φ(x) ∼ 1/x at 0. The second part of the
theorem is deduced like above.

The next lemma sums up some properties of φ under our assumptions.

Lemma 6. Let t ≥ 1 and x ≥ 0.

• Under (H0), it holds

tφ(x) ≤ φ(tx),

φ−1(tx) ≤ tφ−1(x),

φ(x) ≤ xφ′(x).

• Under (H1), it holds:

tφ(x) ≤ φ(tx) ≤ t2φ(x),√
tφ−1(x) ≤ φ−1(tx) ≤ tφ−1(x),

φ(x) ≤ xφ′(x) ≤ 2φ(x),

φ′(tx) ≤ 2tφ′(x).
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• Under (H2), it holds:

t2φ(x) ≤ φ(tx),

φ−1(tx) ≤ √
tφ−1(x),

2φ(x) ≤ xφ′(x).

• Under (H2’), it holds:

tαφ(x) ≤ φ(tx) ≤ t2αφ(x),

t1/2αφ−1(x) ≤ φ−1(tx) ≤ t1/αφ−1(x),

αφ(x) ≤ xφ′(x) ≤ 2αφ(x).

We establish in Section 2 the isoperimetric inequality for the radial mea-
sure. The proof relies on an inequality for log-concave measures due to
Bobkov and some estimates of probabilities of balls. Section 3 is devoted to
the argument of tensorization which yields the isoperimetric inequality on Rn

from the ones for the radial measure and the uniform probability measure
on the sphere. A cut-off argument is needed to get rid of the case of large
radius. This tensorization relies on a functional version of the inequality,
whose proof is postponed to Section 4 where we study the properties of the
profile Jn,φ. We combine the previous results in Section 5 to prove the first
point of Theorem 4. Eventually, we discuss the isotropic case in Section 6
and the optimality of these inequalities in Section 7.

2. Isoperimetry for the radial measure νn,φ

In order to deal with μn,φ, a first step is to establish a similar isoperimetric
inequality for its radial marginal. Recall that νn,φ is the probability measure
on R+ of density proportional to rn−1e−φ(r).

Theorem 7. There exists a universal constant C > 0 such that, for every
n ∈ N∗ and every function φ satisfying (H1) or (H2),

∀a ∈ [0, 1/2], Isνn,φ
(a) ≥ C

√
n

φ−1(n)
Jn,φ(a).

As νn,φ is a log-concave measure, we can apply the isoperimetric inequal-
ity shown by Bobkov in [9].

Theorem 8 (Bobkov [9]). If μ is a log-concave measure on Rn, then for
every r > 0 and every x0 ∈ Rn,
(2.1)

∀a ∈ [0, 1/2], 2rIsμ(a) ≥ a log
1

a
+ (1 − a) log

1

1 − a
+ log μ{|x− x0| ≤ r}.
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To derive other inequalities, one chooses r as small as possible but with
μ{|x − x0| ≤ r} large enough, such that the sum of the two last terms is
non-negative. This requires explicit estimates of probabilities of balls. In
our case, we will use two different estimates valid for two ranges of r, leading
to inequalities for two ranges of a. The first lemma is due to Klartag [15].
The balls are centered at the maximum of the density in order to capture a
large fraction of the mass.

Lemma 9 (Klartag [15]). Let ν(dr) = rn−1ρ(r) dr be a probability measure
on R+ with ρ a log-concave function of class C2. Let r0 be the point where
the density reaches its maximum. Then,

∀δ ∈ [0, 1], ν{|r − r0| ≥ δr0} ≤ C1e
−c1nδ2

where C1 > 1 and 0 < c1 < 1 are universal constants.

Bobkov’s inequality combined with the latter lemma leads to the follow-
ing proposition.

Proposition 10. There exist two universal constants 0 < c < 1 and C > 0
such that for all functions φ satisfying (H0) and all n large enough to ensure
e−cn < 1

2
, it holds

∀a ∈
[
e−cn,

1

2

]
, Isνn,φ

(a) ≥ C

√
n

φ−1(n)
a

√
log

1

a
.

Proof. Let C1 and c1 be the constants given by Lemma 9. Let K > 0 and
set

δ =

√
K log 1

a

c1n
.

Choose a ∈ [
exp

(− c1n
K

)
, 1

2

]
and K > log C1

log 2
. It follows that δ ≤ 1 and

1 − C1a
K > 0. Then Lemma 9 implies

(2.2)

(1−a) log
1

1 − a
+log νn,φ{|r−r0| ≤ δr0} ≥ (1−a) log

1

1 − a
+log(1−C1a

K).

The right-hand term of (2.2) cancels at 0 and is concave in a on [0, 1
2
] if

K ≥ 1. Take K large enough such that it is also non-negative at 1
2
. Thus,

by concavity, it is non-negative on [0, 1
2
]. So Bobkov’s formula (2.1) yields

Isνn,φ
(a) ≥ 1

2

√
c1n

Kr2
0

a

√
log

1

a
.
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It remains to estimate the point r0 where the density of νn,φ reaches its
maximum. The differentiation of the density leads to

r0φ
′(r0) = n − 1.

By Lemma 6, φ(r0) ≤ n − 1. Thus

r0 ≤ φ−1(n).

�

To cope with smaller sets, we need another estimate for balls with greater
radius.

Lemma 11. Let φ be a function satisfying (H0) and n ∈ N
∗. Then for all

r ≥ φ−1(2n),

νn,φ{(r, +∞)} ≤ Fn,φ(r) =

(
er

φ−1(n)

)n

e−φ(r) ≤ 1.

Note that this tail bound gives estimates of probability of balls centered
at 0 for νn,φ, but also for μn,φ since

νn,φ{(r, +∞)} = μn,φ{|x| ≥ r}.

This lemma can thereby be used to derive isoperimetric inequalities from
Bobkov’s formula for both measures.

Proof. The main tool is integration by part.
∫ +∞

r

tn−1e−φ(t) dt =

∫ +∞

r

tn−1

φ′(t)
φ′(t)e−φ(t) dt

=
rn−1

φ′(r)
e−φ(r) +

∫ +∞

r

[
n − 1

tφ′(t)
− φ′′(t)(

φ′(t)
)2
]

tn−1e−φ(t) dt

≤ rn−1

φ′(r)
e−φ(r) +

∫ +∞

r

n − 1

tφ′(t)
tn−1e−φ(t) dt.

If t ≥ r ≥ φ−1(2n) ≥ φ−1
(
2(n − 1)

)
, then tφ′(t) ≥ 2(n − 1). So the last

integral in the above inequality is less than 1
2

∫ +∞
r

tn−1e−φ(t) dt. Moreover
rφ′(r) ≥ 2n. Hence

∫ +∞

r

tn−1e−φ(t) dt ≤ 2
rn−1

φ′(r)
e−φ(r) ≤ rn

n
e−φ(r).
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It remains to deal with the normalization constant which makes νn,φ a
probability measure:

∫ +∞

0

ntn−1e−φ(t) dt ≥
∫ φ−1(n)

0

ntn−1e−φ(t) dt

≥ e−n

∫ φ−1(n)

0

ntn−1 dt =

(
φ−1(n)

e

)n

.

Putting all together, we get the desired bound on the tail of νn,φ:

νn,φ{(r, +∞)} =

∫ +∞
r

tn−1e−φ(t) dt∫ +∞
0

tn−1e−φ(t) dt
≤
( er

φ−1(n)

)n

e−φ(r).

Then one can show that the bound is non-increasing for r ≥ φ−1(n) and is
equal to 1 for r = φ−1(n). �

Then, we show an isoperimetric inequality simultaneously for μn,φ and
νn,φ in the range of small sets.

Proposition 12. For every c > 0, there exists C > 0 such that for all
functions φ satisfying the hypotheses of (H0),

∀a ∈
[
0, e−cn ∧ 1

2

]
, Isμ(a) ≥ C

a log 1
a

φ−1
(
log 1

a

) ,
where μ stands for μn,φ or νn,φ.

Proof. As before, we start from (2.1) and set r(a) = φ−1
(
K log 1

a

)
, where K

is a constant large enough to ensure

Kc ≥ 2,(2.3)
K − 1 ≥ 1

c
,(2.4)

eKc exp (−(K − 1)c) ≤ 1
2
.(2.5)

By Lemma 6, r ≤ Kφ−1
(
log 1

a

)
, as K > 1. So the result is deduced from

Bobkov’s inequality (2.1) provided that

(2.6) (1 − a) log
1

1 − a
+ log μn,φ{|x| ≤ r} ≥ 0.

Now, by concavity, for all x ∈ [0, 1
2

]
,

(1 − x) log
1

1 − x
≥ log 2 x, and log(1 − x) ≥ −2 log 2 x.



Isoperimetry for spherically symmetric log-concave measures 103

So, for all a ∈ [0, 1
2
],

(1 − a) log
1

1 − a
+ log μn,φ{|x| ≤ r} ≥ log 2

(
a − 2Fn,φ(r)

)
≥ 0,

as soon as
r ≥ φ−1(2n) and Fn,φ(r) ≤ a

2
.

Assume that a ≤ exp(−cn)∧ 1
2
. Then r ≥ φ−1(Kcn) ≥ φ−1(2n) by (2.3).

Let us define the function G by

G(a) =
Fn,φ

(
r(a)

)
a

.

Then (2.6) holds as soon as G(a) ≤ 1
2
. To handle this, it is easier to look

on G as a function of r. We know that a = exp
(− φ(r)

K

)
. So

G(a) =
( er

φ−1(n)

)n

exp
(
− φ(r)

(
1 − 1

K

))
.

This function is non-increasing in r when

rφ′(r) ≥ n

1 − 1
K

.

This is the case if r ≥ φ−1
(

Kn
K−1

)
. Moreover φ−1(Kcn) ≥ φ−1

(
Kn

K−1

)
by (2.4).

Thus, when a ≤ exp(−cn),

G(a) ≤ G
(
exp(−cn)

) ≤ [eKc exp
(− (K − 1)c

)]n ≤ 1

2n
≤ 1

2
.

�
So far, we know that there exists a universal constant C > 0 such that,

for every function φ satisfying (H0),

∀a ∈ [0, e−n] ∪ [e−cn, 1/2], Isνn,φ
(a) ≥ C

√
n

φ−1(n)
Jn,φ(a),

where c ∈ (0, 1) is the constant from Proposition 10. Now, if a ∈ [e−n, e−cn],
then log 1

a
≤ n and under (H1),

φ−1
(

log
1

a

)
≤ φ−1 (n)√

n

√
log

1

a
.

Thus, Proposition 12 implies that under (H1),

∀a ∈ [e−n, e−cn], Isνn,φ
(a) ≥ C

√
n

φ−1(n)
a

√
log

1

a
,

and Theorem 7 is shown under the hypothesis (H1). We could also derive
the same inequality under (H2), but with

√
n/φ−1(cn) instead of

√
n/φ−1(n).

So we prove it directly, following the proof of Proposition 12.
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Proposition 13. For every c > 0, there exists C > 0 such that for all
functions φ satisfying (H2),

∀a ∈
[
0, e−cn ∧ 1

2

]
, Isμ(a) ≥ C

√
n

φ−1(n)
a

√
log

1

a
,

where μ stands for μn,φ or νn,φ.

Proof. We set

(2.7) r(a) =

√
K
(
φ−1(n)

)2
n

log
1

a
,

where K is a constant large enough to satisfy

Kc ≥ 2,

K − 1 ≥ 1
2c

,

e
√

Kc exp (−(K − 1)c) ≤ 1
2
.

Assume that a ≤ exp(−cn) ∧ 1
2
, then

r ≥
√

Kc φ−1(n) ≥
√

Kc

2
φ−1(2n) ≥ φ−1(2n).

So we can use the estimate from Lemma 11. Consider as before

G(a) =
Fn,φ

(
r(a)

)
a

.

Then, as explained in the proof of Proposition 12, Bobkov’s formula (2.1)
yields the required isoperimetric inequality as soon as

G(a) ≤ 1

2
.

From (2.7), we deduce

a = exp

(
− nr2

K
(
φ−1(n)

)2
)

.

So if we express G as a function of r,

G(a) =
( er

φ−1(n)

)n

exp

(
− φ(r) +

nr2

K
(
φ−1(n)

)2
)

.
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The derivative ∂rG
1
n is of the same sign as

1 +
2r2

K
(
φ−1(n)

)2 − rφ′(r)
n

.

Under (H2), rφ′(r) ≥ 2φ(r) ≥ 2n (r/φ−1(n))
2 as soon as r ≥ φ−1(n). Thus,

when r ≥ √
Kc φ−1(n),

1 +
2r2

K
(
φ−1(n)

)2 − rφ′(r)
n

≤ 1 +
2r2(

φ−1(n)
)2
(

1

K
− 1

)

≤ 1 +
2r2(

φ−1(n)
)2
(
− 1

2Kc

)
≤ 0.

So G is non-increasing in r whenever r ≥ √
Kc φ−1(n). For all a ≤ exp(−cn),

it follows

G(a) ≤
(
e
√

Kc
)n

exp

(
cn − φ

(√
Kc φ−1(n)

))

≤
[
e
√

Kc exp (−(K − 1)c)
]n

≤ 1

2
.

Here we use again (H2) which ensures that φ
(√

Kc φ−1(n)
)
≥ Kcn. �

3. Tensorization and cut-off argument

We derive the isoperimetric inequality for μn,φ by tensorization from the ones
for the radial measure and the uniform probability measure on the sphere,
following the idea of the proof by Bobkov of Theorem 1. For that purpose,
we need a functional version of our isoperimetric inequality. It exists in our
setting as explained in Section 4.

Let κ > 0. Let J : [0, 1] → R
+ be a continuous concave function sym-

metric with respect to 1/2, with J(0) = J(1) = 0 and J(1/2) > 0, and such
that the following property holds : for any measure μ on Rd and constant
C ≥ 0, if

Isμ ≥ CJ,

then for all smooth functions f : Rd → [0, 1],

κJ

(∫
f dμ

)
≤
∫

J(f) dμ +
1

C

∫
|∇f | dμ.

These properties are all satisfied when J is the isoperimetric profile of the
logistic ditribution or of the Gaussian one, with κ = 1 (see [4] and references
therein). Actually, we shall see in the next section that this is also the case
for J = Jn,φ, with some universal κ > 0.
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Remark. Ideally, one would expect κ = 1. For instance the latter inequality
implies the former one and is tight for constant functions only in the case
κ = 1. However this does not matter here as we tensorize only once.

For such profiles J , we can show the following proposition.

Proposition 14. Let μ be a measure on Rn with radial measure ν. Assume
that there exists positive constants Cν and Cσn−1 such that

Isν ≥ CνJ and Isσn−1 ≥ Cσn−1J.

There exist κ1, κ2 > 0 depending only on κ such that, for every r2 > r1 > 0
and a ∈ [0, 1/2], whenever

(3.1) r2 − r1 ≥ 1

CνJ(1
2
)

and

(3.2) κ1 ν{[r1, +∞)} ≤ a ≤ 1

2
,

then
Isμ(a) ≥ κ2 min

(
Cν ,

Cσn−1

r2

)
J(a).

The two conditions (3.1) and (3.1) arise in a cut-off argument needed in
the proof. The former condition ensures that the derivative of the cut-off
function is not too large; the latter that the error made by dropping large r,
is negligible compared to the measure of the considered sets.

Proof. Let f : Rn → [0, 1] be a smooth function. We recall some facts
on radial and spherical differentiation. If we define g on R+ × Sn−1 by
g(r, θ) = f(rθ), then the partial derivatives of g can be computed as follows:

∂rg = 〈∇f, θ〉,
∇θg = r Πθ⊥(∇f),

where Πθ⊥ is the orthogonal projection on θ⊥. Hence,

∇f = ∂rg θ +
1

r
∇θg,

|∇f |2 = |∂rg|2 +
1

r2
|∇θg|2.

First, we apply the functional inequality for σn−1 to the function F de-
fined on Sn−1 by

F (θ) =

∫
f(rθ) dν(r).
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As
∫

F dσn−1 =
∫

f dμ, this yields

κJ

(∫
f dμ

)
≤
∫

J(F ) dσn−1 +
1

Cσn−1

∫
|∇Sn−1F | dσn−1.

On one hand,

∇Sn−1F (θ) =

∫
r Πθ⊥(∇f)(rθ) dν(r).

On the other hand, we can use the inequality for ν to bound J(F ). Indeed,
for all θ ∈ Sn−1,

κJ
(
F (θ)

) ≤ ∫ J
(
f(rθ)

)
dν(r) +

1

Cν

∫
|∂rf(rθ)| dν(r).

Putting all together,

(3.3) κ2J

(∫
f dμ

)
≤
∫

J(f) dμ

+
1

Cν

∫
|∂rf | dμ +

κ

Cσn−1

∫
|x| |Πθ⊥(∇f)| dμ(x).

We would like to get |x| out of the last integral. As it is not bounded,
we use a cut-off argument similar to the one in Sodin’s article [21], while
simpler in our case. Heuristically, we use the fact that on “a set of large
measure”, |x| is almost constant, close to its expectation for instance. Let
us introduce a cut-off function h(rθ) = h1(r) with

h1 =

⎧⎪⎨
⎪⎩

1 on [0, r1)
r2 − r

r2 − r1
on [r1, r2]

0 on (r2, +∞)

with 0 < r1 < r2 to be chosen later (typically of the same order as Eμ|X|).
It holds

∇(fh) = h∇f + f∇h,

thus

|∂r(fh)| ≤ |∂rf | + ||f ||∞|∂rh|,
|Πθ⊥

(∇(fh)
)| ≤ h |Πθ⊥(∇f)|.

As h = 0 if |x| > r2,∫
|x| ∣∣Πθ⊥

(∇(fh)
)∣∣ dμ(x) ≤ r2

∫
|Πθ⊥(∇f)| dμ(x).
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Besides, we can bound the derivative of h so that
∫

|∂rh| dμ ≤ ν
(
[r1, r2]

)
r2 − r1

.

Finally, Inequality (3.3) applied to fh yields

κ2J

(∫
fh dμ

)
−
∫

J(fh) dμ − ||f ||∞ν
(
[r1, r2]

)
Cν(r2 − r1)

≤

≤ max
( 1

Cν

,
κr2

Cσn−1

)(∫
|∂rf | + |Πθ⊥(∇f)| dμ

)

≤
√

2 max
( 1

Cν
,

κr2

Cσn−1

)∫
|∇f | dμ.(3.4)

Hence we have almost the functional inequality for f and μ with an addi-
tional term that we expect to be negligible. It is easier to look at functions
approximating characteristic functions to go back from fh to f in the left
hand term.

Let A ⊂ Rn be a closed set of measure a ≤ 1
2
. Let K > 0 and t ∈ (0, 1)

constants to be chosen later. Assume the following constraints on r1, r2,
and a:

Cν(r2 − r1) ≥ K,

ν{[r1, +∞)} ≤ ta.

Then it holds

μ{1Ah = 1} ≥ μ
(
A \ {h < 1}) ≥ (1 − t)a,

μ{1Ah > 0} ≤ a ≤ 1

2
.

As J is non-decreasing on (0, 1
2
), concave, and J(0) = 0,

J

(∫
1Ah dμ

)
≥ J

(
(1 − t)a

) ≥ (1 − t)J(a).

Besides J cancels at 0 and 1, and reaches its maximum at 1
2
, so∫

J(1Ah) dμ ≤ J(1
2
) μ{0 < 1Ah < 1}

≤ J(1
2
)
(
μ{1Ah > 0} − μ{1Ah = 1}

)
≤ J(1

2
) ta.



Isoperimetry for spherically symmetric log-concave measures 109

As for the third term of (3.4), it is bounded by

ν
(
[r1, r2]

)
Cν(r2 − r1)

≤ ta

K
.

For ε > 0, we approximate 1A by a smooth function fε : Rn → [0, 1] with
fε = 1 on A and fε = 0 outside Aε. Then we apply (3.4) to fε and let ε to
0, taking advantage of the continuity of J :

√
2 max

( 1

Cν

,
κr2

Cσn−1

)
μ+(∂A) ≥ κ2(1 − t)J(a) −

(
J(1

2
) +

1

K

)
ta.

Now by concavity, J(a) ≥ 2J(1
2
)a on

[
0, 1

2

]
. Hence

√
2 max

( 1

Cν
,

κr2

Cσn−1

)
μ+(∂A) ≥

(
κ2(1 − t) − J(1

2
) + 1

K

2J(1
2
)

t

)
J(a)

=

(
κ2 − t

(
κ2 +

1

2
+

1

2KJ(1
2
)

))
J(a).

Taking for instance K =
(
J(1

2
)
)−1 and t = κ2/(2(κ2 + 1)) yields a non-trivial

result.
Note that looking at closed sets was not a real restriction. Indeed, if

lim infε→0+ μ(Aε) − μ(A) > 0 then μ+(∂A) = +∞. �

4. Getting functional inequalities

To apply Proposition 14 to our case, we need to know how to pass from an
isoperimetric inequality to a functional inequality. When φ satisfies (H1),
we show that Jn,φ satisfies the required properties. Recall that L2(a) =

a
√

log 1
a
.

Lemma 15. Let n ∈ N∗ and φ be a function satisfying (H1).

i) The function Jn,φ is continuous and concave on [0, 1], symmetric with
respect to 1/2, with Jn,φ(0) = Jn,φ(1) = 0 and Jn,φ(1/2) ≥ 1/2.

ii) There exists an even log-concave probability measure on the real line
mn,φ such that Jn,φ = Ismn,φ

.

iii) There exists a universal constant D > 0 such that

∀0 < t ≤ s ≤ 1

2
,

Jn,φ(t)

L2(t)
≤ D

Jn,φ(s)

L2(s)
.
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iv) Let μ be a measure on R
d and C > 0. If

Isμ ≥ CJn,φ,

then for all smooth functions f : Rd → [0, 1],

κJn,φ

(∫
f dμ

)
≤
∫

Jn,φ(f) dμ +
1

C

∫
|∇f | dμ,

where κ > 0 is a universal constant.
Proof. For the first point, we only need to prove the concavity. Assume that
e−n ≤ 1/2. It is easy to see that Jn,φ is concave on [0, e−n] and [e−n, 1/2],
and non-decreasing on [0, 1/2]. It remains to compare the left and right
derivative of Jn,φ at point e−n. Under (H1),

∀x > 0, φ′ ◦ φ−1(x) ≤ 2
x

φ−1(x)
,

thus [
x

φ−1(x)

]′
=

1

φ−1(x)

(
1 − x

φ−1(x)φ′ ◦ φ−1(x)

)
≤ 1

2φ−1(x)
.

It follows [
a log 1

a

φ−1
(
log 1

a

)]′ ≥ log 1
a
− 1/2

φ−1
(
log 1

a

) .
Moreover, [

a

√
log

1

a

]′
=

log 1
a
− 1/2

φ−1
(
log 1

a

) .
So, denoting respectively by ∂−Jn,φ and ∂+Jn,φ the left and right derivatives
of Jn,φ, it holds

∂−Jn,φ(e
−n) ≥ ∂+Jn,φ(e

−n).

This shows the concavity of Jn,φ. The second point is a direct consequence
of i), according to Bobkov [8]. The point iii) holds for t ≤ s ≤ e−n as the
function defined by

t 
→ Lφ(t)

L2(t)
=

√
log 1

t

φ−1
(
log 1

t

)
is non-decreasing under (H1). When e−n ≤ t ≤ s, the quotient is constant
equal to 1. If t ≤ e−n ≤ s, we just use the transitivity of such inequalities.

Let us turn now to the last point of the lemma. As mn,φ is an even log-
concave probability measure on the real line, half-lines solve the associated
isoperimetric problem (see e.g. [8]). So, if fφ : x 
→ e−φ(|x|)

Zφ
is the density of

mn,φ and Fφ(x) = mn,φ

{
(−∞, x)

}
its cumulative distribution function, then

Jn,φ = Ismn,φ
= fφ ◦ F−1

φ .
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Thereby the transfer principle emphasized by Barthe in [2] holds: if
Isμ ≥ cJn,φ then μ satisfies essentially the same functional inequalities as
mn,φ. As a consequence, it remains to establish that for all smooth functions
f : R → [0, 1],

κJn,φ

(∫
f dmn,φ

)
≤
∫

Jn,φ(f) dmn,φ +

∫
|f ′| dmn,φ.

Now, applying the 2-dimensional isoperimetric inequality to the set{
(x, y) ∈ R

2; y ≤ F−1
φ (f(x))

}
,

one can show (see e.g. [3]) that

Is⊗2
mn,φ

(∫
f dmn,φ

)
≤
∫

Jn,φ(f) dmn,φ +

∫
|f ′| dmn,φ.

So, iv) is shown if there exists a universal κ > 0 such that

Ismn,φ
⊗2 ≥ κJn,φ.

Actually, the following stronger dimension-free inequality holds.

Lemma 16. There exists κ > 0 such that for every φ satisfying (H1) and
all n,

Ismn,φ
⊗n ≥ κJn,φ.

To prove it, we check the simple criterion given by E. Milman in [19]:
“Jn,φ does not violate the Central-Limit obstruction with rate D”. This is
Lemma 15-iii). �

5. Isoperimetry for μn,φ

Now we can apply Proposition 14 to μn,φ with J = Jn,φ when φ satisfies (H1)
or J = L2 when φ satisfies (H2). Indeed, Jn,φ satisfies the required properties
under (H1) according to the previous section, and L2 also since L2 = Jn,φ2

with φ2 : x 
→ x2 satisfying (H1). Moreover,

Isνn,φ
≥ Cνn,φ

J

with Cνn,φ
= C

√
n

φ−1(n)
, where C > 0 is a universal constant, by Theorem 7.

This is direct under (H1). If φ satisfies (H2), we use that Jn,φ ≥ L2 as
explained page 98.
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As for the sphere, it is known that σn−1 satisfies the Gaussian isoperime-
try with a constant of order

√
n, e.g. by a curvature-dimension criterion

(cf. [1]). That means that for every a ≤ 1
2
, and every φ satisfying (H1),

Isσn−1(a) ≥ C
√

n L2(a).

As L2 ≥ Jn,φ when φ satisfies (H1), we conclude that, under (H1) or (H2),

Isσn−1(a) ≥ C
√

n J(a).

Proposition 17. Let n ∈ N∗ and φ be a function satisfying (H1) or (H2).
If e−n < 1

2
, then there exists a universal constant C > 0 such that

∀a ∈
[
e−n,

1

2

]
, Isμn,φ

(a) ≥ C

√
n

φ−1(n)
a

√
log

1

a
.

Proof. Let κ be the constant coming from Lemma 15-iv) for Jn,φ or Jn,φ2 if φ
satisfies (H1) or (H2) respectively. Then let κ1 and κ2 be the corresponding
constants given by Proposition 14. Set c large enough to ensure

c ≥ 2,

max(κ1, 1)ece−c ≤ e−1.

If we take r1 = φ−1(cn), then we know by Lemma 11 that

κ1νn,φ{(r1, +∞)} ≤ κ1

[
ece−c

]n ≤ e−n.

Here we use that φ−1(cn) ≤ cφ−1(n). So for every φ, n, and a ∈ [e−n, 1
2

]
,

the condition (3.2) holds, i.e.

κ1 νn,φ{[r1, +∞)} ≤ a ≤ 1

2
.

Now there exists a universal C > 0 such that Cνn,φ
≥ C

√
n

φ−1(n)
as explained

at the beginning of the section. So, if we set r2 = (1 + 2
C

)φ−1(cn), then the
condition (3.1) is also satisfied, i.e.

r2 − r1 ≥ 2

Cνn,φ

≥ 1

Cνn,φ
J(1

2
)
.

Thus Proposition 14 yields

Isμn,φ
(a) ≥ κ2 min

(
Cνn,φ

,
Cσn−1

r2

)
J(a).
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Now J(a) = a
√

log 1
a

when a ∈ [e−n, 1/2] and r2 ≤ c(1 + 2
C

)φ−1(n). Finally,
we have established

Isμn,φ
(a) ≥ κ2C min

(
1,

[
c

(
1 +

2

C

)]−1) √
n

φ−1(n)
a

√
log

1

a
.

�
Therefore the first point of Theorem 4 is proved at least for a large

enough. We complete its proof with Proposition 12 for smaller sets.

6. The isotropic case

If we set φλ(x) = φ(λx) with λ > 0, then one can see that

Isμn,φλ
= λIsμn,φ

.

If we want μn,φλ
to be isotropic, then we have to choose

λ =

√
Eμn,φ

(|X|2)
n

.

So, to finish the proof of Theorem 4, it remains to show that Eμn,φ
(|X|2) �

(φ−1(n))
2. Actually, we only need that Eμn,φ

(|X|2) ≥ c (φ−1(n))
2. Undoubt-

edly, this must be quite standard, nevertheless we state and prove the next
lemma for completeness.

Lemma 18. i) Let φ be a function satisfying (H0). Define rn(φ) the point
where the density of the radial measure νn,φ reaches its maximum, and
Eμn,φ

|X|2 the second moment of μnφ. For every M > 1, there exists
n0 ∈ N not depending on φ such that, for all n ≥ n0,

1

M

√
Eμn,φ

|X|2 ≤ rn(φ) ≤ M
√

Eμn,φ
|X|2.

ii) Moreover, if there exists α ≥ β ≥ 1 such that x 
→ φ(x)/xα is non-
increasing and x 
→ φ(x)/xβ is non-decreasing, then

φ−1(n) ≥ rn(φ) ≥
(

1

2α

)1/β

φ−1(n) ≥ (e−2/e
)α/β

φ−1(n).

Proof. To prove the first point, we can assume that μ = μn,φ is isotropic,
that is to say that Eμ(|X|2) = n. Let X be a random variable with distri-
bution μ. In the following, we denote by P, E, and Var the corresponding
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probability, esperance, and variance. Let δ ∈ (0, 1). In view of Lemma 9,
there exist universal constants c > 0 and C > 0 such that

P
{∣∣rn(φ) − |X|∣∣ ≥ δrn(φ)

} ≤ Ce−cnδ2

.

On the other hand, μ satisfies a Cheeger inequality with a universal con-
stant, according to Theorem 2. Thus, Lipschitz functions concentrate ex-
ponentially (cf. [12, 17]) and there exists a universal constant d > 0 such
that

∀t > 0, P
(∣∣|X| − E|X|∣∣ ≥ t

) ≤ e−2dt.

Moreover, by Jensen inequality,

(E|X|)2 ≤ E|X|2 = n,

and Bobkov proved in [10] the following upper bound for the variance of |X|
to establish Theorem 1:

Var|X| ≤ (E|X|)2

n
,

which translates into

(E|X|)2 ≥ n

n + 1
E|X|2 ≥ n − 1.

Therefore, √
n ≥ E|X| ≥ √

n − 1 ≥ √
n − 1√

n
.

From this estimation and the above concentration inequality, we deduce

∀h ≥ 2

n
, P

(∣∣∣ |X|√
n
− 1
∣∣∣ ≥ h

)
≤ e−dh

√
n.

Fix δ ∈ (0, 1), and choose n large enough to ensure Ce−cnδ2
+ e−dδ

√
n < 1.

Then there exists x > 0 such that |rn(φ)−x| ≤ δrn(φ) and |x−√
n| ≤ δ

√
n.

It follows
1 − δ

1 + δ

√
n ≤ rn(φ) ≤ 1 + δ

1 − δ

√
n.

Now, rn(φ) satisfies rn(φ)φ′(rn(φ)
)

= n − 1. Therefore, as already men-
tioned, (H0) ensures that rn(φ) ≤ φ−1(n). Assume moreover the existence
of α ≥ β ≥ 1 such that x 
→ φ(x)/xα is non-increasing and x 
→ φ(x)/xβ is
non-decreasing. Then

rn(φ) ≥ φ−1

(
n − 1

α

)
≥ φ−1

( n

2α

)
≥
(

1

2α

)1/β

φ−1(n) ≥ (e−2/e
)α/β

φ−1(n).

�
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7. Optimality

The inequalities of Theorem 4 are optimal, at least for a large range of a.
Actually we can exhibit almost isoperimetric sets, i.e. sets whose bound-
ary measure is minimal, up to a multiplicative constant. When a is large,
these are half-spaces which are the exact isoperimetric sets for the Gaussian
measure. This is due to the fact that marginals of spherically symmetric
log-concave measures are approximately Gaussian in high dimension. When
a is small, these are the complementary of balls. This is quite surprising
since it holds also for the Gaussian measure. These two facts are stated in
the next lemmas.

Lemma 19. Let φ be a function satisfying (H0) and n ≥ 4. Let us choose
λ > 0 such that μn,φλ

is isotropic. Then, for every r such that

c1 ≤ r ≤ c2n
1/8,

or every a := μn,φλ

({x1 ≥ r}) such that

e−c3n1/16 ≤ a ≤ e−c4 < 1/2,

it holds

μ+
n,φλ

(
∂{x1 ≥ r}) ≤ C a

√
log

1

a
,

where C, c1, . . . , c4 > 0 are universal constants.

Lemma 20. Let φ be a function satisfying (H0). Assume moreover that
there exists α ≥ 1 such that x 
→ φ(x)/xα is non-increasing, and that φ is
log-concave. Then there exists a universal constant C > 0 such that, for
every n ≥ α + 1, whenever a := μn,φ{|x| ≥ r} ≤ e−3n ∧ 1/2,

μ+
n,φ

(
∂{|x| ≥ r}) ≤ Cα

a log 1
a

φ−1
(
log 1

a

) .
Note that Theorem 5 gives also optimal lower bounds for Isμn,φ

among
functions of the form f(n)g(a). When φ satisfies (H1), the optimality in
a comes from the case n = 1. In this case, we know that half-lines solve
the isoperimetric problem and one can prove (see [6] or [13] for universal
constants c1 and c2) that if φ satisfies (H0) and

√
φ is concave — which

implies (H1) —, then there exist c1, c2 > 0 such that

c1Lφ ≤ Isμ1,φ
≤ c2Lφ.
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Beyond the Gaussian regime, the central limit theorem for convex bodies
of Klartag (see [15]), in the simpler case of spherically symmetric distribu-
tions, ensures that we cannot find a profile bounding from below Isμn,φ

for
all n, better than the Gaussian one (times a constant depending possibly
on n). Else we should have concentration properties stronger than Gaussian.
However by Klartag’s theorem, there exists a sequence of positive number
εn → 0 such that for every Borel set A ⊂ R and every r > 0,

1 − μn,φ

((
A × R

n−1
)

r

) ≥ 1 − γ(Ar) − εn,

where γ denotes the standard normal distribution. Thus we cannot have a
rate of concentration valid for all n and better than the Gaussian one. Now
Poincaré inequalities are equivalent up to universal constants to Cheeger in-
equalities (see [20]), so the optimal constant in n must in fact be independent
of n in the isotropic case, in view of Theorem 1.

Let us now turn to the proofs of the two previous lemmas.

Proof of Lemma 19. The constants c, C, ci,. . . denote here positive univer-
sal constants that may change from line to line. The main ideas are classical
and related to the central limit theorem for convex sets: if X follows the
law μn,φλ

, its radius concentrates around
√

n and θ = X/|X| is a uniform
variable on the sphere. Now the projection of

√
nθ on a line is known to tend

towards a standard Gaussian. Then we deduce a bound for the boundary
measure of a half-space.

Let us recall the concentration inequality (see page 114) proved un-
der (H0):

(7.1) ∀h ≥ 2

n
, P

(∣∣∣∣ |X|√
n
− 1

∣∣∣∣ ≥ h

)
≤ e−ch

√
n.

On the other hand, if θ is a uniform variable on the sphere Sn−1, the density
of

√
nθ1 is

Cn 1[−√
n,
√

n](x)

(
1 − x2

n

)(n−3)/2

where Cn ∼ (2π)−n/2. Moreover, for every x ∈ [0,
√

n], it holds

(
1 − x2

n

)(n−3)/2

≤ exp

(
−x2

2

(
1 − 3/n

))
,

so that, for 0 ≤ r ≤ R,

P
(√

nθ1 ∈ [r, R]
) ≤ C γ1

([
r
√

1 − 3/n, R
√

1 − 3/n
])

.
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Conversely, if 0 ≤ x ≤ R ≤√n/2, then

(
1 − x2

n

)(n−3)/2

≥ exp

(
−x2

2

(
1 + R2/n

))
.

To see that, we used that if 0 ≤ u ≤ U ≤ 1/2, then

log(1 − u) ≥ −u
log(1 − U)

−U
≥ −u

−U − U2

−U
= −u(1 + U).

Hence, for 0 ≤ r ≤ R ≤√n/2,

P
(√

nθ1 ∈ [r, R]
) ≥ C exp

(
−R4

2n

)
γ1

(
[r, R]

)
.

The following bounds on Gaussian tail will also be useful. One can show by
integration by parts that for every r > 0,

e−r2/2

√
2πr

(
1 − 1

r2

)
≤ γ1

(
(r, +∞)

) ≤ e−r2/2

√
2πr

.

We turn now to the proof of the bound. Let X be of law μn,φλ
. Let r

satisfy
1 < c1 ≤ r ≤ c2n

1/8.

We choose c2 small enough such that

1

6r2
≤ n/2

and
6r4 ≤ c

√
n,

so that we can use (7.1) with h = 1/6r2 and e−ch
√

n ≤ e−r2/2. Thus, with
probability 1−exp(−r2/2), the random variables |X|√

n
,

√
n

|X| and n
|X|2 all belong

to [1 − 1/r2, 1 + 1/r2]. We choose also c1 large enough to ensures

e−3/2 1 − c−2
1

1 + c−2
1

− e−c21/2

√
2

> 0.

Then, using the previous inequalities and that te−t2r2/2 ≤ C for every
t ≥ 0 and r ≥ 1, and splitting the expectation according to the values of |X|,
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we get:

μ+(∂{x1 ≥ r}) = lim
ε→0+

1

ε
μ({x1 ∈ [r − ε, r]})

= lim
ε→0+

1

ε
EX

(
P

(√
nθ1 ∈

[
r − ε

|X|/√n
,

r

|X|/√n

]))

≤ CEX

(
lim

ε→0+

1

ε
γ1

([
r − ε

|X|/√n − 3
,

r

|X|/√n − 3

]))

≤ CEX

(√
n − 3

|X| exp

(
−(n − 3)

|X|2
r2

2

))

≤ C(1 + 1/r2) exp

(
−r2

2
(1 − 1/r2)(1 − 3/n)

)

+ C P

(√
n

|X| and
n

|X|2 /∈ [1 − 1/r2, 1 + 1/r2]

)
≤ Ce−r2/2.

To bound from below the measure of a half-space, we use that |X| is inde-
pendent of θ = X/|X| and the bounds on the Gaussian tails:

a := μ({x1 ≥ r})

≥ P

(√
n

|X| ∈
[
1 − 1/r2, 1 + 1/r2

])
P

(√
nθ1 ∈

[
r(1 + 1/r2),

√
2r
])

≥ c γ1

([
r(1 + 1/r2),

√
2r
])

≥ c

(
exp (−r2(1 + r−2)2/2)√

2πr(1 + r−2)

(
1 − 1

r2

)
− exp(−r2)

2
√

πr

)

≥ c
e−r2/2

√
2πr

(
e−3/2 1 − r−2

1 + r−2
− e−r2/2

√
2

)

≥ c
e−r2/2

r
.

These two inequalities lead to

μ+(∂{x1 ≥ r}) ≤ Ca r.

To estimate r, we bound from above a. We use the same techniques as for
the lower bound to get:

a ≤ P

(√
n

|X| /∈ [1 − 1/r2, 1 + 1/r2]

)
+ P

(√
nθ1 ∈ [r(1 − 1/r2), +∞)

)
≤ e−r2/2 + Cγ1

(
[r(1 − 1/r2), +∞)

)
≤ Ce−r2/2,
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and

r ≤ C

√
log

1

a
.

Therefore, we obtain

μ+(∂{x1 ≥ r}) ≤ Ca

√
log

1

a
.

Finally, let us show that the conditions on a imply indeed c1 ≤ r ≤ c2n
1/8.

Assume that
e−c3n1/16 ≤ a ≤ e−c4 < 1/2.

Using (7.1) with a constant h < 1 depending neither on r nor n, we get

a ≤ e−c
√

n + Cγ1

(
(cr, +∞)

) ≤ a

2
+ C

e−cr2

r
,

thus

e−c3n1/16 ≤ e−cr2

r
and r ≤ Cn1/8.

Conversely,

a ≥ (1 − e−c
√

n)e−Cr4/nγ1

(
(Cr, +∞)

) ≥ cγ1

(
(Cr, +∞)

)
,

and so r ≥ c. �
Proof of Lemma 20. The same integration by parts as in Lemma 11 gives
a lower bound for a. Indeed, under our hypotheses,

φ′′(t)
φ′(t)2

≤ 1

φ(t)
≤ α

tφ′(t)
≤ n − 1

tφ′(t)

and

a = μn,φ{|x| ≥ r} = Cn,φ

∫ +∞

r

tn−1e−φ(t) dt

= Cn,φ
rn−1

φ′(r)
e−φ(r) + Cn,φ

∫ +∞

r

[
n − 1

tφ′(t)
− φ′′(t)(

φ′(t)
)2
]

tn−1e−φ(t) dt

≥ Cn,φ
rn−1

φ′(r)
e−φ(r) ≥ Cn,φ rn−1e−φ(r) r

αφ(r)
.(7.2)

Therefore,

μ+
(
∂{|x| ≥ r}) = Cn,φ rn−1e−φ(r) ≤ α a

φ(r)

r
.

It remains to bound from above r. This is done in two steps.
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The first one consists in proving that r ≥ φ−1(2n) so that we can use the
estimate of Lemma 11. To see that, we complete our lower bound for a by
bounding the constant Cn,φ from above:

Cn,φ =

∫ +∞

0

tn−1e−φ(t) dt

≤
∫ φ−1(2n)

0

tn−1e−φ(t) dt +

∫ +∞

φ−1(2n)

tn−1e−φ(t) dt

≤ (φ−1(2n))
n

n
+

(φ−1(2n))
n

n
e−2n ≤ 2

(φ−1(2n))
n

n
.(7.3)

The upper bound of the second integral comes from our proof of Lemma 11.
Thus, if r < φ−1(2n), it holds by (7.2) and (7.3),

a ≥ μn,φ{|x| ≥ φ−1(2n)} ≥ e−2n

4α
,

which contradicts the condition a ≤ e−3n as soon as n ≥ log 4α.
Then, we need to reverse the inequality shown at Lemma 11, which was

a ≤ Fn,φ(r) =

(
er

φ−1(n)

)n

e−φ(r).

This is done by Lemma 21 below. So

μ+
(
∂{|x| ≥ r}) ≤ α a

K log 1
a

φ−1
(
K log 1

a

) ≤ αK1−1/α a log 1
a

φ−1
(
log 1

a

) .
�

Lemma 21. Let φ be a function satisfying (H0) and n ∈ N∗. Define the
function Fn,φ on R

+ by

Fn,φ(r) =

(
er

φ−1(n)

)n

e−φ(r).

Then, for every c > 0, there exists K > 0 such that, whenever a ≤ e−cn,

Fn,φ(r) ≥ a =⇒ r ≤ φ−1

(
K log

1

a

)
.

Proof. First, note that the function Fn,φ is decreasing on
(
φ−1(2n), +∞).

Thus, whenever t ≥ φ−1(2n), the inequality Fn,φ(r) ≥ Fn,φ(t) implies r ≤ t.
Now, we saw in the proof of Proposition 12 that if a ≤ e−cn, there exists K
large enough such that t = φ−1

(
K log 1

a

)
satisfies

t ≥ φ−1(2n) and Fn,φ(t) ≤ a

2
.

As a ≤ Fn,φ(r), it holds Fn,φ(r) ≥ Fn,φ(t) and r ≤ t by the preceding
remark. �
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