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A counterexample for the geometric
traveling salesman problem in the

Heisenberg group

Nicolas Juillet

Abstract
We are interested in characterizing the compact sets of the Heisen-

berg group that are contained in a curve of finite length. Ferrari,
Franchi and Pajot recently gave a sufficient condition for those sets,
adapting a necessary and sufficient condition due to P. Jones in the
Euclidean setting. We prove that this condition is not necessary.

Introduction

In the Euclidean setting a subset E ⊂ Rn is said to be d-rectifiable if there
exists a countable family of Lipschitz maps (fk)k∈N from Rd to Rn such
that Hd

(
E \ (

⋃+∞
k=1 fk(R

d))
)

= 0, where Hd is the d-dimensional Hausdorff
measure. Federer generalized this notion in [4] with the d-rectifiable metric
spaces (X, ρ). These spaces have to be covered, up to a set of Hd

ρ-measure 0

by
⋃+∞

k=1 fk(Uk) where fk is Lipschitz, Uk ⊂ Rd and Hd
ρ is the d-dimensional

Hausdorff measure with respect to distance ρ. Unfortunately, as observed
by Ambrosio and Kirchheim [1], in the Heisenberg group with its Carnot-
Carathéodory distance (H, dc) this definition does not make much sense for
dimensions d ≥ 2. Indeed for these dimensions, d-rectifiable metric spaces
included in (H, dc) have vanishing d-Hausdorff measure. It should be noticed
that a definition of rectifiable set in codimension 1 has been proposed by
Franchi, Serapioni and Serra-Cassano [7, 8] in connection with sets of finite
perimeter and BV functions. The case d = 1 is particular. Indeed, any
rectifiable curve in a metric space can be parametrized by arclength and is
the Lipschitz image of an interval of R. Hence there is a lot of non-trivial
1-rectifiable metric spaces included in (H, dc).
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A more quantitative study of rectifiability properties of subsets of the
complex plane has been introduced by P. Jones in connection with problems
in harmonic analysis and complex analysis (L2-boundness of the Cauchy
operator on Lipschitz graphs, geometric characterisation of removable sets
for bounded analytic functions in C). This study has been pursued by
David and Semmes in general spaces and has led to the notion of uniform
rectifiability [3]. From the work of P. Jones arises the following problem
that is known now as the geometric traveling salesman problem or analyst’s
traveling salesman problem: under which condition is a compact set E in a
metric space (X, ρ) contained in a rectifiable curve? In the complex plane,
P. Jones gives a complete characterisation of such sets by introducing β
numbers. These quantities measure how well the set E is approximated by
straight lines at each scale and each place.

In [5] Ferrari, Franchi and Pajot adapted the β number of P. Jones to H

and proved that a condition similar to that of P. Jones is sufficient for being
contained in a rectifiable curve. In this paper, we prove that this condition is
not necessary. Our counterexample is a curve ω([0, 1]) ⊂ H of finite length.
This curve is constructed in an iterative way and Figure 1 represented the
projection on C of the first three curves (where H is seen as C × R). The
construction is inspired by the construction of the classical Koch snowflake.
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Figure 1: The counterexample curve.

0.1. Definitions

In order to give the characterization of P. Jones (and then of Ferrari, Franchi
and Pajot), we must first define what is a dyadic net of a compact subset E
in a metric space (X, ρ). It is an increasing sequence (Δk)k∈Z of subsets of E
such that for any k ∈ Z,

• for all x1, x2 ∈ Δk, we have x1 = x2 or ρ(x1, x2) > 2−k,

• for any y ∈ E there exists x ∈ Δk such that ρ(y, x) ≤ 2−k.
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Actually for any compact set E, there exists such a dyadic net (Δk)k∈Z. In
this paper the results are independent of the choice of the dyadic net. We
define

BΔ
X(E) =

∑
k∈Z

2−k
∑
x∈Δk

β2
X(x, A · 2−k)(E)(0.1)

where A > 1 is a constant to be specified (we will only assume that it
is greater than 5) and βX(x, r)(E) depends on the ambient space. In the
Euclidean case,

βRn(x, r)(E) = min
l is a line

max
y∈E∩B(x,r)

ρ(y, l)

r
.

We consider the maximum distance to an Euclidean line l of the points of E
that are included in B(x, r), the close ball of center x and radius r. The
minimum of this quantity over l is βRn(x, r)(E). A set that is “flat” around
x at scale r will have a small β number. We give a version of P. Jones’
theorem as it is formulated in the survey [16]. The original theorem is given
for dyadic squares instead of a dyadic net. Moreover the result proved in R2

by P. Jones [12] has actually been generalized by Okikiolu [15] who gave the
reverse implication for the Euclidean spaces of greater dimensions.

Theorem 0.1. ([12, 15]) There exists a constant C > 0 (independent of the
dyadic net Δ) such that for any compact subset E ⊂ R

n with BΔ
Rn(E) <

+∞, there are Lipschitz curves Γ = γ([0, 1]) ⊃ E satisfying the following
inequality

H1(Γ) ≤ C
(
diam(E) + BΔ

Rn(E)
)

and for each Lipschitz curve Γ containing E

BΔ
Rn(E) ≤ CH1(Γ).

In [17], Schul proved that in the previous result, one can find a constant C
that is independent of the dimension n while it was not the case in the
original proof of Theorem 0.1, where the β numbers are taken on dyadic
squares (C depends exponentially on the dimension). It permitted him
to prove a similar theorem for separable Hilbert spaces. From there it is
natural to try to prove the same type of result in other metric spaces. In
general metric spaces (X, ρ) there is an article by Haolama [10] where the
author uses the Menger curvature in the definition of the βX numbers. It
seems actually not possible to define these βX ’s as distance to some special
lines of (X, ρ). In the case of the first Heisenberg group H, Ferrari, Franchi
and Pajot [5] obtain the exact counterpart of the beginning of Theorem 0.1
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by using H-lines (see Subsection 1.4 for the definition) in the definition of
βH(x, r). Precisely

βH(x, r)(E) = min
l is a H-line

max
y∈E∩BH(x,r)

dc(y, l)

r

where the balls BH(x, r) are the close balls of H.

The authors show that if the quantity BΔ
H

(E) of (0.1) is finite, there is
a rectifiable curve γ covering E. Note that as a rectifiable curve, γ has a
Lipschitz parametrization on [0, 1]. We give here a discrete version of the
theorem – in the original theorem BH is defined by integrating continuously
the β2

H
on H × R+.

Theorem 0.2. ([5]) Let E be a compact subset of H and Δ a dyadic net.
Then if BΔ

H
(E) < +∞ there is a Lipschitz curve Γ = γ([0, 1]) such that

E ⊂ Γ. Moreover, Γ can satisfy

H1(Γ) ≤ C
(
diam(E) + BΔ

H
(E)

)
where the constant C is independent of E and of its dyadic net.

They also prove that for regular enough curves of finite length, BΔ
H

is
finite. We will define H and the horizontal curves in Section 1. For now
consider that H is C × R with a special distance dc.

Proposition 0.3. ([5]) Let γ : [0, 1] → H be C1,α-curve, i.e. a horizontal
curve such that the projection on C, Z(γ) is a C1,α-curve. Then

BΔ
H

(γ([0, 1])) < +∞.

The previous theorem suggests that it should be possible to characterize
any compact set E contained in a rectifiable curve by the condition BH(E) <
+∞. This would in particular happen for rectifiable curves themselves. Our
curve ω([0, 1]) is a counterexample to this statement.

Theorem 0.4. There is a Lipschitz curve ω : [0, 1] → H such that for any
dyadic net Δ of the set Ω = ω([0, 1]),

BΔ
H (Ω) = +∞.

We introduce the Heisenberg group in the first section. In the second part
of this paper, we complete our description of curves of H and we state two
useful lemmas that estimate the distance of points to H-lines. The third
part is the construction of the curve Ω and in the fourth one we use the
lemmas of Section 2 for reducing the problem to a planar geometry question
and proving Theorem 0.4. The appendix about Dido’s problem is important
for the comprehension of Proposition 1.4 and Section 2.
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1. Horizontal curves in H

The counterexample of this article is a horizontal curve. In this section we
define horizontal curves and give their main properties. By curve we mean
the continuous image of a closed interval of R.

1.1. Definition of H

We give a naive presentation of (H, dc), the (first) Heisenberg group equipped
with the Carnot-Carathéodory metric. As a set H can be written in the
form R3 	 C × R and an element of H can also be written as (z, t) where
z := x + iy ∈ C. The group structure of H is given by

(z, t) · (z′, t′) = (z + z′, t + t′ − 1

2

(zz′))

where 
 denotes the imaginary part of a complex number. H is then a Lie
group with neutral element 0H := (0, 0) and inverse element (−z,−t).

Throughout this paper, τp : H → H will be the left translation

τp(q) = p · q.

For λ > 0, we denote by δλ the dilation

δλ(z, t) = (λz, λ2t)

where p, q ∈ H and λ ≥ 0.

We also introduce the rotations

ρθ(z, t) = (eiθz, t)

for any θ ∈ R.

1.2. Lifts and projections between H and C

We first introduce the complex projection Z from H to C defined by

Z : (x, y, t) �→ (x + iy).
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A curve γ(s) = (γx, γy, γt) of H = R
3 is said to be horizontal if it is

absolutely continuous and

γ̇t(s) =
d

ds
[A (Z(γ))] (s)

for almost every point s. Here A (Z(γ)) is the algebraic area swept by the
curve α = Z(γ). It is uniquely defined by A(α)(s0) = 0 where s0 is the
initial time and by the relation

d

ds
[A(α)] (s) =

1

2
(αyα̇x − αxα̇y)

for almost every s.
Similarly we call planar curves the absolutely continuous curves of C.

The complex projections of horizontal curves γ are in particular planar
curves. Moreover if one knows γ at the initial time and the complex pro-
jection α = Z(γ), it is possible to recover the whole horizontal curve by the
formula giving the third coordinate:

γt(s) = αt(s0) +
1

2

∫ s

s0

(αyα̇x − αxα̇y).(1.1)

Thus we have the following proposition.

Proposition 1.1. Let p be a point of H. We denote by Υp the set of hori-
zontal curves α such that α starts in p, and ΥpC the set of planar absolutely
continuous curves starting in pC = Z(p). The projection Z is a bijection
from Υp to ΥpC.

We denote by Liftp the inverse of Z from ΥpC to Υp. We call it the H-lift
starting from p.

1.3. Direct similitudes

We introduce the complex direct similitudes

δC

λ (z) = λz

τC

a+ib(z) = a + ib + z

ρC

θ (z) = eiθz.

The complex projection Z almost commutes with δλ, τp and ρθ: we have to
replace them by their corresponding complex similitudes. Precisely

Z(δλ(z, t)) = δC

λ (z)

Z(τp(z, t)) = τC

Z(p)(z)

Z(ρθ(z, t)) = ρC

θ (z).
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One can easily check that the transformations δλ, τp and ρθ conserve the
horizontality of curves. As a consequence for Liftp, we have the relations:

δλ(Liftp(α)) = Liftδλ(p)(δ
C

λ (α))

τp(Liftq(α)) = Liftp·q(τC

Z(p)(α))

ρθ(Liftp(α)) = Liftρθ
(p)(ρC

θ (α)).

1.4. Carnot-Carathéodory distance and geodesics

We define now the metric aspect of H.

Definition 1.2. The length of a horizontal curve α of H is the length in C

of the projected curve Z(α).

As a consequence of Subsection 1.3, the transformations δλ multiplies
the length of a horizontal curve by λ. This quantity does not change under
the action of ρθ and τp.

Definition 1.3. The Carnot-Carathéodory distance from p ∈ H to q ∈ H

is the infimum of the length over the horizontal curves going from p to q.

Then the Carnot-Carathéodory distance between two points is invariant
under the action of ρθ and τp. It is multiplied by λ if the points are dilated
by δλ.

This infimum in Definition 1.3 is in fact a minimum and the minimizing
curve is a H-line or a H-circle as we will see in Proposition 1.4. By H-line
we mean the H-lift of a line of C. Similarly a H-circle is the H-lift of a
circle of C. Here by circles and lines we don’t mean the sets but the curves.
In [5], the authors define the H-lines as the left-translations τp(l0) of the
lines l0 going through 0H in the plane C × {0R} (actually the H-lines going
through 0H). One can easily check that both definitions coincide.

Proposition 1.4. For any two points p and q of H, there is a shortest
horizontal curve from p to q. It is the H-lift of a line or of a circle arc.

Proof. The horizontal curves from p = (zp, tp) to q = (zq, tq) are exactly the
H-lifts starting in p of those absolutely continuous planar curves connecting
zp = Z(p) to zq = Z(q) that enclose an algebraic area tq−tp. Minimizing the
length of these curves is the same as minimizing the length in this family of
planar curves. This variational problem is strongly related to Dido’s problem
and its dual problem that are described both in the appendix. The main
difference is that the planar curves we are considering here are not closed
(except if zp = zq). Nevertheless the difference of algebraic area to the curves
closed with the segment [zp, zq] is a constant. Indeed it is up to a sign the
area of the planar triangle 0Czpzq. �
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Remark 1.5. We will not prove the following important facts that are widely
broadcasted. The Carnot-Carathéodory distance is a true distance. It pro-
vides the usual topology of R3. It is a geodesic distance and the length of the
curves is also the length one can define from this distance (it is true for the
curves of finite length and the curves of infinite length as well). See [6, 9, 13]
for classical presentations introducing the subRiemannian structure.

1.5. Closed horizontal curves

If α and β are two curves such that the end point of α is the starting point
of β, we define αβ as the concatenation of the two curves. For α defined on
[a, b], let the reverse curve ᾱ be defined on [−b,−a] by ᾱ(s) = α(−s).

Lemma 1.6. Let z ∈ C, z′ ∈ C and (α1, α2) two planar curves going from
z to z′, defined respectively on [a1, b1] and [a2, b2]. Then the algebraic area
swept by the concatenation α2α1 is equal to the third coordinate of

[Lift(α1)(b1) − Lift(α2)(b2)] − [Lift(α1)(a1) − Lift(α2)(a2)]

for any H-lift Lift(α1) and Lift(α2) of α1 and α2 respectively.

Proof. We first assume that both H-lifts Lift(α1) and Lift(α2) start in a
same point p with Z(p) = z. Then Lift(α2) Lift(α1) is a H-lift of α2α1 and
it follows that the planar curve encloses an algebraic area equal to the third
coordinate of

[Lift(α1)(b1) − Lift(α2)(b2)] − [0] =[Lift(α1)(b1) − Lift(α2)(b2)]

− [Lift(α1)(a1) − Lift(α2)(a2)].

The third coordinate difference between two H-lifts of a same planar curve
is a constant because of equation (1.1). The conclusion follows by making a
vertical translation of Lift(α1) or Lift(α2). �

2. Geometric Lemmas

In this section we will often use the exponent C for Z(·). For example, we
will write lC and pC for the complex projections of l and p respectively.

The orthogonal projection on a line of C has no obvious counterpart in H.
Let p be a point of H and l a H-line. Starting from p and lifting horizontally
the orthogonal segment from the pC to the line lC, we will not reach l.
Moreover the point pl ∈ l such that Z(pl) coincides with the orthogonal
projection of pC on lC is not the metrically closest point of l to p. Hence we
need special definitions:
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Definition 2.1. Let p ∈ H and l be a H-line. The C-projection of p on l
is the unique point pl ∈ l such that pl,C := Z(pl) = (pl)C is the orthogonal
projection of pC on lC.

Now, let ζ be a planar line. There is a unique the point pζ ∈ H such that

• pζ,C := (pζ)C is the orthogonal projection of pC on the line ζ ,

• p and pζ are on a H-line.

We call pζ the lifted-C-projection of p on ζ .

We give an example. The line of equation

x = 2 and t = 3 + y

is a H-line. Its complex projection is x = 2. The C-projection of the origin
0H = (0, 0, 0) on this line is (2, 0, 3). The lifted-C-projection on x = 2
is (2, 0, 0) because y = t = 0 is a H-line and its complex projection is
orthogonal to x = 2.

Notice that like in the previous example, for a given H-line l and a point
p ∈ H, the point plC = pZ(l) is a well-defined point of H and that it is not
always on l. If it is, then plC = pl and this point also realizes the distance
of p to l. In the Lemma 2.2, we give pieces of information about the metric
projection of a point to a H-line in the general case.

Lemma 2.2. Let p be a point of H an l a H-line. There is a point q on l
that minimizes the distance to p. At the point qC the Z-projection of the
unique geodesic between p and q make a right angle with lC.

Proof. It is easier to convince oneself with a look at Figure 2. It represents
the situation seen from above, which is equivalent to the planar figure ob-
tained by Z-projection. Nevertheless the names of the points and curves are
the names of the figure in H. There are many analytical or geometric ways
to convince that the distance of p to a point of the H-line tends to ∞ at the
ends of this line. With a standard compactness argument, there is a point q
on l (maybe not unique) that minimizes the distance to p and the geodesic
from p to q is (one of) the shortest path from p to l. For now let q be any
point of l and γ a horizontal curve from p to q. We will apply Lemma 1.6 in
order to find a q and a γ minimizing the length of γ. For the first curve α1,
we start from α := γC and continue it with a part of lC going from qC to
pl,C = plC,C ∈ lC, the orthogonal projection of pC on lC. The second curve
(α2 in Lemma 1.6) is the segment line from pC to pl,C. The lemma brings
us the following information: our closed curve α2α1 encloses an algebraic
area whose value T is the difference between the third coordinates of pl and
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plC = pZ(l). Indeed starting from p, the H-lift of α1 is γ and then a part of l
until pl. The H-lift of α2 is a segment of H-line leading from p to plC. Using
Lemma 1.6 with starting points pl and plC we can actually be more precise:
the H-lift starting in p of a planar curve α will reach the H-line l if and only
if the algebraic area enclosed by the concatenation of α, the segment q0C

and qCpC is T .

The following argument and the dual of Dido’s problem conclude the
proof: using the symmetry with respect to the line lC, the shortest curve
from pC to its symmetric point that covers the area 2T is a circle arc. It is a
symmetric curve with respect to lC such that half of this curve is a solution
α of our variational problem. The right angle in qC is then a consequence of
the symmetry. Note that the solution is unique if pC /∈ lC. �

l

p

pl q

T

γ

η1

η2

T

Figure 2: Projection lemmas

Remark 2.3. Another proof could use the Heisenberg gradient of the dis-
tance [2, 14].

We estimate now the distance of a point to a H-line.

Lemma 2.4. Let p be a point of H and l a H-line. Then the distance of p to
the line l is comparable to the Euclidean distance between the projections pC

and lC plus the distance of the point plC = pZ(l) obtained by lifted-C-projected
to l. In fact

max

(
dc(p

C, lC),
dc(p

lC, l)√
2

)
≤ dc(p, l) ≤ dc(p

C, lC) + dc(p
lC, l).

Proof. We use the same notations as in Lemma 2.2. We have in fact to
compare the length of γ to the sum of the lengths of two curves: η1, the
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H-line segment from p to plC = pZ(l) and η2 one of the two possible shortest
curves from plC to l. The concatenation η of the two ηi’s goes from p to l.
It follows that the length of η is greater than the one of γ. For the other
estimate, we just need to remark than each of the ηi is up to a constant
smaller than γ. It is obvious for η1 with constant 1. For η2 we require one
more time Lemma 1.6 and the dual of Dido’s problem with a symmetrization
in a similar way as in Lemma 2.2. We observe that ηC

2 describes a half circle
and encloses an algebraic area T as it is represented on Figure 2. We obtain
that η2 has a length smaller than

√
2 times the one of α i.e. the ratio is

smaller than the quotient of the lengths of a circle and a half circle (solution
of Dido’s problem) with the same area. Indeed when we symmetrize ηC

2 we
obtain a circle of area 2T such that the length of ηC

2 is 2
√

πT . The curve
α = γC connected with its symmetrization enclose the same area such that
the length of α is greater than

√
2πT (equality if α is a quarter circle). �

We estimate the distance of two points to a H-line.

Lemma 2.5. Let p1 and p2 be two points that lie on a same H-line and
denote another H-line by l. Then

d(p1, l) + d(p2, l) ≥
d(pC

1 , lC) + d(pC

2 , lC) +
√

|U(pC
1 pl,C

1 pl,C
2 pC

2 )|
2

where U(pC

1 pl,C
1 pl,C

2 pC

2 ) is the algebraic area of the trapezoid pC

1 pl,C
1 pl,C

2 pC

2 .

Proof. First of all d(pC
i , lC) ≤ d(pi, l) for i ∈ {1, 2} and we can sum these two

relations. It is then enough to prove dc(p1, l)+dc(p2, l) ≥
√
|U(pC

1 pl,C
1 pl,C

2 pC
2 )|.

For that we use Lemma 1.6 where we consider the two following curves (in
fact their complex projections): On the one hand the H-line segment of l

from pl
1 to pl

2 and on the other hand the H-polygonal line from plC

1 = p
Z(l)
1 to

plC

2 = p
Z(l)
2 going through p1 and p2. Then the algebraic area of the trapezoid

is the third coordinate of

[plC

1 − pl
1] − [plC

2 − pl
2].

Let Ti be the third coordinate of [plC

i − pl
i] for i ∈ {1, 2} and write simply

U instead of U(pC

1 pl,C
1 pl,C

2 pC

2 ). Then there is a i such that |Ti| ≥ |U|
2

. For

this i we know that the distance of plC

i to l is
√

2π|Ti| (Dido’s problem or
see the end of Lemma 2.4). Therefore and because of Lemma 2.4, we have
dc(pi, l) ≥ dc(p

lC

i , l)/
√

2 and finally

dc(p1, l) + dc(p2, l) ≥
dc(p

lC

i , l)√
2

≥ 1√
2

√
2π|Ti| ≥

1√
2

√
2π

|U|
2

≥
√
|U|.

�



1046 N. Juillet

3. Construction of ω([0, 1])

As we saw in Section 1, the H-lift provides a direct link between the horizon-
tal curves of H and the absolutely continuous curves of C. We will describe
our curve ω as the H-lift starting in ω(0) = (−1, 0, 0) of a planar curve ωC.
This curve is a Koch snowflake-like fractal with finite length that we obtain
as a limit of certain polygonal lines (ωC

n )n∈N (see Figure 1 for a representa-
tion of ωC

0 , ωC
1 and ωC

2 ). Before we explain the recursive way to build the
curves, we precise that ω and the ωn will go from (−1, 0, 0) to (1, 0, 0). The
direct consequence is that ωC and the ωC

n go from −1 to 1 in C.

For the construction of (ωC

n )n∈N, we require a sequence (θn)n≥1 of non-
negative angles that tends to 0. We start from the simple line segment
ωC

0 : s ∈ [0, 1] �→ (−1 + 2s, 0, 0) and we obtain ωC
n+1 from ωC

n in the way
we describe below. The curve ωC

n is made of 4n segments having the same
length. Let us denote this length by ln and the total length by Ln = 4n · ln.
On the (n+1)st step we change every segment line by a polygonal line made
of 4 segments, having the same beginning and the same end. These four
segments have length ln

4 cos θn+1
and all make with the former line segment an

angle θn+1 (see Figure 1). There are two ways to respect these conditions.
However, the construction is unique if we precise the orientation: when the
time grows the first of the 4 small segments makes a negative angle with
respect to the segment of length ln.

The important remark is that replacing the segment by the polygonal
line of 4 segments, we do not change the swept algebraic area. Namely this
area will be modified by the area of two equal isosceles triangles. One of
them will be sumed with a positive sign and the other with a negative sign.

Let us define the value of the angles θn. In all this construction, it will
be θn = C

n
where C = 0.2. We prove now that ωC is well-defined as the limit

of
(
ωC

n

)
n∈N

where each ωC

n is parametrized with constant speed on [0, 1].

Proposition 3.1. The sequence of curves (ωC

n )n∈N tends to a rectifiable
curve ωC : [0, 1] → H parametrized with constant speed.

Proof. The speed of the curves ωC

n is exactly the length Ln and they are
Ln-Lipschitz. Let us prove the uniform convergence. The curves ωC

n and
ωC

n+1 coincide at every time σ
4n ∈ [0, 1] where σ = 0, · · · , 4n. Between two

subsequent meetings the curve ωn+1 always repeats the same motion pattern
while ωn is a segment. On [ σ

4n , σ+1
4n ] the curves are the more distant at the

end of the first segment, exactly at time σ
4n + 1

4n+1 . The maximum distance
is also attained at time σ

4n + 3
4n+1 . From this observation we deduce

‖ωC

n − ωC

n+1‖ = (sin θn)ln+1.
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The quotient between ln and ln+1 is 1
4 cos(θn+1)

. Because all θn have a cosine

greater than 0.5, this quotient is smaller than 1/2. We conclude that the
series

+∞∑
n=0

‖ωC

n+1 − ωC

n‖ ≤
+∞∑
n=0

(sin θn)l0 · 2−n

converge.

In the next lemma we prove that L := lim supn→+∞ Ln < +∞. As a
direct consequence ωC will be L-Lipschitz. We recall that θn = C

n
where

C = 0.2 and with a little trigonometry we see that Ln = 2∏n
m=1 cos θm

.

Lemma 3.2. We have L ≤ 2.4 = 1.2 · L0. Moreover, L is the Lipschitz
constant and the length of ωC.

Proof. Because of the convexity of log, if (1 − x) ∈ [e−1, 1], then

log(1 − x) ≥ −x

1 − e−1
≥ −2x.

It is possible to apply it to x = θ2/2 because θ ≤ C ≤
√

2 − 2e−1. Then we
have

log

(
1∏N

n=1 cos θn

)
= −

N∑
n=1

log(cos θn)

≤ −
N∑

n=1

ln(1 − θ2
n

2
) ≤

N∑
n=1

θ2
n ≤ C2π2

6
≤ 0.08.

Then we have L ≤ L0 exp(0.08) ≤ 1.2 · L0.

We prove that L is the Lipschitz constant for ωC. Indeed for m ≥ n the
distance between ωC( σ

4n ) and ωC(σ+1
4n ) is Ln/4n because

ωC(
σ

4n
) = ωC

m(
σ

4n
) = ωC

n (
σ

4n
).

It follows also from the same observation that L is the length of ωC. �

We defined ω as the H-lift of ωC starting from (−1, 0, 0) and ωn the one of
ωC

n starting from (−1, 0, 0). All these curves are parametrized with constant
speed on [0, 1].

Lemma 3.3. The curves ωn and ωn+1 exactly coincide at the points σ
4n for

σ = 0, . . . , 4n.
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Proof. The property is surely true for σ = 0 because ωn+1(0) = ωn(0) =
(−1, 0, 0). Let σ be an integer smaller than 4n−1. We assume that on [0, σ

4n ]

the curves ωn and ωn+1 only coincide at the times σ′
4n for σ′ = 0, · · · , σ. Let

us now focus on what happen on [ σ
4n , σ+1

4n ]. The curves are both starting from
ωn( σ

4n ) = ωn+1(
σ
4n ) and respectively lift ωC

n and ωC
n+1. The previous planar

curves coincide at σ
4n , at σ+1

4n and at the midpoint σ
4n + 1

2·4n . Then these
are the only possible meeting points for ωn and ωn+1 on [ σ

4n , σ+1
4n ]. Now, We

consider two H-lifts, starting from ωn+1(
σ
4n ) and we will use Lemma 1.6 for

them. On the one hand we lift horizontally ωC

n+1 on
[

σ
4n , σ

4n + 1
2·4n

]
and on

the other hand we lift ωC

n on the same interval. Both planar curves arrive in
the same point and the associated closed planar curve sweeps the positive

area ( l2n·tan(θn+1)
16

) of a triangle. This quantity is the difference for the third
coordinate of the end points of the H-lifts. We have

ωn+1(
σ

4n
+

1

2 · 4n
) �= ωn(

σ

4n
+

1

2 · 4n
).

If we make the similar operation lifting ωC

n+1 and ωC

n on
[

σ
4n , σ+1

4n

]
, we con-

trarily obtain an algebraic area equal to zero and can conclude that

ωn+1(
σ + 1

4n
) = ωn(

σ + 1

4n
).

�

A corollary of this lemma is that for any integer m ≥ n, ω( σ
4n ) = ωm( σ

4n ).

Remark 3.4. In the previous lemma, we noticed that ωn+1(
σ
4n + 1

2·4n ) has
the same first coordinates as ωn( σ

4n + 1
2·4n ) but the t-coordinate difference is

l2n·tan(θn+1)
16

. Then the Carnot-Carathéodory distance between them is greater
than K

4n·√n
for some constant K. It is an indication that the linear segments

of ωn are not a good approximation of ω. This observation can be the key
of a heuristic computation in order to convice oneself of Theorem 0.4. As
we will see in Proposition 4.1, the approximations by the other H-lines are
not better that the one by the segments used in the construction. Indeed
in this proposition, the lower bound has order

√
θ which is also the order of

the distance between (AE) and C.

Remark 3.5. We can observe that ωC is not differentiable in any point σ
4n

for any n and σ ≤ 4n. Around these points, the curve is making a spiral
because

∑+∞
m=n θm = +∞. However, ωC is a Lipschitz curve and is then

almost everywhere derivable. In fact it seems that for a time s ∈ [0, 1],

written 0, a1a2 . . .
4

in basis 4, the curve ωC is differentiable in s if and only

if the series
∑+∞

m=1
ε(am

4)
m

converge. Here, ε is defined by

ε(0) = ε(3) = 1 and ε(1) = ε(2) = −1.
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4. Counterexample for the inverse implication in [5]

In this section we prove Theorem 0.4, i.e., that BΔ
H

(ω([0, 1])) is infinite.
With the notations of the beginning of this paper, the first step will consist
in estimating the cardinal of Δk. In the second step, we will estimate from
below the value of βH(x, A · 2−k) for a x ∈ Δk. For this we will require the
geometric lemmas of Section 2.

Because of the second property of the net, ω ⊂
⋃

x∈Δk
BH(x, 2−k). The

projection of a ball for the Heisenberg metric on the complex plane is a ball
of R2 with the same radius. That is why

ωC ⊂
⋃

x∈Δk

BC(xC, 2−k).

If we perform a second projection on the real axis, we obtain that the segment
[−1, 1] is covered by a family of segments of length 2−k+1 which is indexed
by Δk. We conclude that the cardinal of Δk is greater than 2k.

In this paragraph, we examine what is the right fractal scale of the por-
tion of ω([0, 1]) intercepted by a ball BH(x, A · 2−k) with center in Δk. Let
us compare A · 2−k to L∞

4n ≤ 2.4
4n and assume A = 5 for the rest of this

proof. We observe that for every k > 0 and n = �k/2�, 2.4
4n is smaller

than A · 2−k. It follows that there is a σ ∈ {0, 1, · · · , 4n − 1} such that
ω

(
[ σ
4n , σ+1

4n ]
)
⊂ B(x, A · 2−k).

If we rescale correctly the last portion of curve using the similitudes of
the Heisenberg group (Subsection 1.3), we obtain a curve that could have
been ω if we had chosen the sequence of angle (θn+m)+∞

m=1. In particular this
curve includes the set Λθ made of the five points{

(−1; 0), (−1 + i tan(θ)

2
;
tan(θ)

4
), (0;

tan(θ)

4
), (

1 + i tan(θ)

4
;
tan(θ)

2
), (1; 0)

}

for θ = θn+1. We are interested in the maximal distance of one point of Λθ to
a given H-line l. We denote this distance by dθ(l) and by Dθ the minimum
of dθ(l) over all the H-lines l. We noticed that there is a similitude mapping
Λθ on a part of ω ∩ B(x, A · 2−k). This map multiplies the distances by ln

2

where we recall that ln is the length of the 4n segments composing ωn. Then
the distance of ω ∩ B(x, A · 2−k) to the closest H-line is greater than ln

2
Dθ

and

βH(x, A · 2−k) ≥ ln
2
· Dθ

A · 2−k

≥ 2.4 · Dθ

4n · A · 2−k

≥ Dθ

A
.(4.1)
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Proposition 4.1. Let θ < 0.2 be a positive angle and l a H-line. Then the
maximum distance of one of the five points of Λθ to l is greater than K ·

√
θ

for some constant K independent of l and θ. In other words

Dθ ≥ K
√

θ.

�

A
�

C

�

B

�

D

� Eϕ

Figure 3: Some of the five points are far from a H-line.

Proof. In this proof the points of H will be denoted with capital letters. We
will write A, B, C, D, E where we would have wrote a, b, c, d, e before (and A
is different from the real constant A ≥ 5 introduced before). Let us first
denote the five points by A, B, C, D, E where A = (−1, 0, 0) and E = (1, 0, 0)
like on Figure 3. Thanks to the two geometric lemmas, Lemma 2.4 and
Lemma 2.5, we will just have to consider the projections

AC = −1

BC = −1

2
− i

tan(θ)

2
CC = 0

DC =
1

2
+ i

tan(θ)

2
EC = 1

and a planar line lC together with the fact that some points are on a same
H-line. It is the case of the couples (A, B), (D, E) and (A, E). The three
points B, C and D are also on a same H-line.

In this proof, we will sort the possible planar lines lC by the geometric
angle ϕ ∈ [0, π

2
] they make with the line (BCDC). If ϕ ≥

√
θ, then one of

the point BC or DC is more distant than lθ sin
√

θ to the line lC where lθ is
the distance between BC and CC (it is also the distance between B and C in
H or between AC and BC for example in C). Then because of Lemma 2.4,
the distance of the line l to the farthest point is greater than 1

2
· (
√

θ 2
π
).



A counterexample for the geometric TSP in in the Heisenberg group 1051

If ϕ ∈ [ θ
4
,
√

θ], we consider one of the segment [BCCC] or [CCDC] that
the line lC does not intersect. Let assume for example, lC does not intersect
[BCCC]. Then the area of the trapezoid obtained when we project BC and

CC on lC is greater that
l2θ sin(ϕ)·cos(ϕ)

2
≥ sin(2ϕ)

16
. But 2ϕ ≤ 2

√
0.2 ≤ π

2
. It

follows that sin(2ϕ) ≥ 2·2ϕ
π

and

√
|U(BC, Bl,C, C l,C, CC)| ≥

√
ϕ

4π
≥

√
θ

16π
,

which thanks to Lemma 2.5 provides a lower bound for the distance to l
with the right exponent of θ.

The last case, ϕ ∈ [0, θ
4
] is the more intricate. Here, the line lC can be very

close to (BCDC). We will prove that it composes a great enough area when
projecting orthogonally one of the segments [ACBC] or [DCEC] on lC. Unlike
in the previous case, lC can intersect both [ACBC] and [CCDC]. Let assume
for a while that lC cannot intersect the central segment of [ACBC] and the
central segment of [DCEC] where we mean by central segment the points on
the segment obtained as barycenter of the ends with coefficients between 1

4

and 3
4
. This assumption is true and we postpone it to Lemma 4.2. Assume

for example that lC does not intercept the central segment of [ACBC]. Then
projecting AC and BC on lC, we compose a trapezoid (self-intersecting in
the more difficult case as on Figure 3). The angle ψ between lC and (ACBC)
is contained in [2θ − ϕ, 2θ + ϕ]. Then 7θ

4
≤ ψ ≤ π

4
. Hence we can estimate

the algebraic area of the trapezoid in a similar way as in the previous case.

|U(ACBCBl,CAl,C)| ≥
(

3 · lθ
4

)2
sin(2ψ)

4
−

(
lθ
4

)2
sin(2ψ)

4

≥ sin(2ψ)

32
≥ 2 · (2ψ)

π · 32
≥ 7θ

32π
.

Then we have
√
|U(ACBCBl,CAl,C)| ≥

√
θ 7

32π
and Lemma 2.5 concludes the

proof.

Lemma 4.2. A planar line lC that makes an angle ϕ < θ
4

with (BCDC) can
not intercept both the central segments of [ACBC] and the one of [DCEC].

Proof. We argue by contradiction and assume that lC intercepts both the
central segment of [ACBC] and the central segment of [DCEC]. We can
suppose that lC goes through CC. Actually as [ACBC] is the image of [DCEC]
by central symmetry, the image l′C of lC by the same symmetry has the same
property as lC. Namely it goes through the central segments. Moreover,
because both central segments of [ACBC] and [DCEC] are convex, the parallel
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lines between lC and l′C also intercept these two sets. That is why we can
assume that lC is one of the two lines making an angle ϕ with (BCDC) and
going through CC. It’s not difficult to convince oneself that lC can not cross
the central segment of [ACBC]. Indeed, assume that we divide uniformly
[ACBC] in four equal parts and join the five points with CC, the greatest of
the four angles is the one involving the line (BCCC). Then it is greater than
θ/4 which is the angle average and it is also greater than ϕ. This implies a
contradiction. �

By (4.1) and Proposition 4.1, we finally get

BΔ
H

(ω([0, 1])) ≥
∑
k∈N

2−k
∑
x∈Δk

β2
H
(x, A · 2−k)(ω([0, 1]))

≥
∑
k∈N

2−k2k

(
Dθ�k/2�+1

A

)2

≥ C
∑
k∈N

1

�k/2� + 1
≥ +∞.

Hence we have proved Theorem 0.4.

Remark 4.3. As we wrote in the introduction there is an analogue of the
theory of the geometric salesman problem for metric space, using Menger
curvature in the definition of beta numbers [11]. As we did in this paper for
the theorem of [5], Schul presented in [16] a counterexample to the converse
implication: the criterion of Haholamaa would not be necessary. However
the counterexample of Schul should not be completely satisfactory (see [16,
Subsection 3.3.1]). Notice that it seems that Ω, described in this paper
cannot be turned into a counterexample for the approach of Haholamaa.

Appendix: Dido’s problem

In Proposition 1.4 and Section 2 we use this kind of statement:

Proposition. (Dual of Dido’s problem) Over the absolutely continuous closed
planar curves

• that are the concatenation of a segment with a path α,

• of given algebraic area A,

the half circles minimize the length L of the path α.

In a variant of this problem, the length of the segment is now given.
Then L is minimized when α is a circle arc.
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This proposition is actually the dual statement of a very old problem
called Dido’s problem [18]. Instead of proving the dual statement, we will
state and prove the direct one. For that purpose we will suppose that we
know that the solutions of the planar isoperimetric problem are circles.
Dido’s problem is related to the foundation of Carthage in Tunisia. It is
written that Queen Dido and her followers arrived on a coast by the sea and
that the local inhabitants allowed her to stay in as much land as can be en-
compassed in an oxhide. Then Dido made a rope by cutting the oxhide into
fine strips and encircle a wide domain of land. Finding the way to limit this
piece of land is a variant of the isoperimetric problem and we will see that
the optimal way is to make a circle arc. However, the full circle is not opti-
mal because it does not take advantage of the fact that the coast is a natural
border. This classical result of calculus of variation can be reformulate in
the following way:

Proposition. (Dido’s problem) Over the absolutely continuous closed pla-
nar curves

• that are the concatenation of a segment with a path α

• such that the length L of α is given,

the half circles maximize the algebraic area A of the curve.

In a variant of this problem, the length of the segment is now given.
Then A is maximized when α is a circle arc.

We present here a demonstration of this proposition.

Proof. We can fix the segment to be a part of the real axis y = 0. Con-
sider the curves α : [0, 1] → C of given length L such that α(0) = 0C and

 (α(1)) = 0 where 
 is the imaginary part of a complex number. Then

the problem is to maximize the algebraic area A = 1
2

∫ 1

0
α × α̇ for a given

L =
∫ 1

0
|α̇|. In the variant, α(1) is given. We will treat it just after the next

paragraph.
The key idea is to close the curve α by connecting it with its symmetric

curve with respect to the real axis. We obtain a closed curve whose swept
area is twice the initial one.

1

2

∫ 1

0

α × α̇ +
1

2

∫ 0

1

ᾱ × α̇ = 2 · 1

2

∫ 1

0

α × α̇ = 2A

(Here, ᾱ is the complex conjugated curve. It is not the curve with inverse
parametrization defined at the beginning of Subsection 1.5.) The length
of this curve is also twice the initial one. If the new curve is a positively
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oriented circle, its algebraic area is the maximum among all closed curves
with length 2L. This is in particular true among the curves symmetric
with respect to y = 0. It follows that the solution of the authentic Dido’s
problem is a half circle. There are for a given starting point and a given area
(positive or negative) exactly two solutions to the problem. These solutions
are symmetric with respect to the starting point 0C.

x 0

Figure 4: Two curves of same length.

A scheme of the variant of Dido’s problem is presented on Figure 4. Here
we fix the two ends of the curve so that the length of the segment is given. Let
us assume for example α(0) = 0C and α(1) = x for a given x ∈ [−L,L]\{0}.
There is an unique circle arc of length L from the first to the second point
that encloses a positive algebraic area. Indeed, the radius of the circle arcs
is a strictly increasing and continuous function of L. We prove that this
circle arc enclose the greatest possible area A. Compare our candidate with
another curve and connect both of them with the rest of the circle. Hence
we have two closed curves with the same length and one of them is a circle.
The area of the circle is greater. Then the circle arc also encloses a greater
area as the other curve. Thus we proved that the circle arcs of a given length
provide the greatest area in Dido’s problem with constraint. In the critical
case x = 0, the problem is the classical isoperimetric problem. An infinite
number of circles are solution. �

The solutions of the dual problem presented at the beginning of this
appendix can be proved in a similar way as we did for Dido’s problem.
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