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Tropical plane geometric
constructions: a transfer technique

in Tropical Geometry

Luis Felipe Tabera

Abstract
The notion of geometric construction is introduced. This notion

allows to compare incidence configurations both lying in the algebraic
and the tropical plane. We provide sufficient conditions in a geometric
construction to ensure that there is always an algebraic counterpart
related by tropicalization. We also present some results to detect if
this algebraic counterpart cannot exist. With these tools, geometric
constructions are applied to transfer classical theorems to the tropical
framework, we provide a notion of “constructible incidence theorem”
and then several tropical versions of classical theorems are proved
such as the converse of Pascal’s, Fano’s or Cayley-Bacharach theo-
rems.

1. Introduction

Let K be an algebraically closed field provided with a nontrivial rank one
valuation v and valuation group T. We suppose that T is a subgroup of the
reals, v : K∗ −→ T ⊆ R. We have the following map on the algebraic torus:

T : (K∗)n −→ Tn

(x1, . . . , xn) �→ (−v(x1), . . . ,−v(xn))

This map is the tropicalization or projection map. Tropical varieties are then
defined as the image of an algebraic variety V ⊆ (K∗)n under the tropicaliza-
tion map T . One of the most interesting aspects of tropical varieties is that
they inherit relevant geometric properties from their algebraic counterparts.
In the present work we explore this inheritance for the case of translating
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incidence theorems of classical projective geometry to the tropical context.
The origin of this work is the Pappus theorem counterexample in [11]. In
that paper, a tropical configuration of points and lines in the shape of Pap-
pus’ theorem hypotheses is shown such that it does not verify Pappus thesis.
In particular, it implies that this configuration is not the projection of a
similar configuration of points and lines in the algebraic plane. The authors
provided then another alternative version of the same theorem and claimed
that this new version would hold in the tropical context. The key of this
new version of Pappus theorem is that the hypotheses are given as the result
of a geometric construction dealing with points and lines. The correctness
of this theorem was shown in [13] using some precursor techniques on geo-
metric constructions. Following this idea, many incidence theorems can be
given as a construction of a configuration of curves and points (hypothesis)
and then some information is derived (the thesis of the theorem). Thus, we
will focus on geometric constructions in the plane and how they behave with
respect to tropicalization.

Intuitively, a geometric construction is a procedure that starts with a
set of input curves and points and then defines other curves and points by
either intersecting two available curves or computing a curve defined by a
polynomial of fixed support passing through a set of points (a conic through
five points, for example). The main algorithm we present consists in tak-
ing a tropical instance of a geometric construction and then computing a
constructible set S, over the residual field of the valuation, that encodes
sufficient conditions for the compatibility with tropicalization of an alge-
braic geometric construction. We will also show some certificates during the
computation to detect if a tropical realization of a geometric construction is
not the projection of any algebraic realization.

Moreover, we present a notion of admissible geometric construction. This
is a combinatorial notion that ensures that for all tropical realizations of the
construction, the computed set S is non empty and dense. That is, there
will always be an algebraic preimage of the construction under the tropical-
ization T . This notion can be applied to prove that some incidence theorems
(so-called constructible incidence theorems) hold in the tropical context if
we are able to describe their hypotheses as the output of an admissible
geometric construction.

The paper is structured as follows: in Section 2 we present the notion
of geometric construction and show how to understand the steps of a con-
struction in both the algebraic and the tropical context. In Section 3 we
provide the main algorithm of the article. Then, the limits of our geometric
construction method are shown by a series of examples. Furthermore, we
include a generalization of the notion of admissibility related with the notion
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of points in general position with respect to a curve. Finally, in Section 4, we
use the results obtained so far to build up a notion of constructible incidence
theorem that is compatible with tropicalization and we show some relevant
instances of theorems of this kind.

1.1. Notation and preliminaries

Let k be the residual field of K by the valuation. There are three main
cases of valued fields according to the characteristics: the case char(K) =
char(k) = 0 (equicharacteristic zero), the case char(K) = char(k) = p > 0
(positive characteristic) and the case char(K) = 0 < p = char(k) (p-adic
case). All the results presented here are valid for any of these cases. We
suppose, after possibly rescaling the valuation, that our valuation group con-
tains the rationals, Q ⊆ T ⊆ R. We will also suppose that we have fixed a
multiplicative subgroup G ⊆ K∗ such that v : G → T is an isomorphism.
Let tγ denote the unique element of G such that v(tγ) = γ. By the iso-
morphism, we have that tutv = tu+v, t0 = 1, t−u = (tu)−1. π denotes the
projection from the valuation ring of K onto k. Let x ∈ K∗, u = v(x), then
xt−u is an element of valuation 0, so it has a nonzero image in the residual
field k. We write Pc(x) = π(xt−u) = y ∈ k∗ the principal coefficient of x.
Note that the principal coefficient depends on the group G chosen. The
principal term of x is denoted by Pt(x) = ytu. Remark that, in general, this
is neither an element of K nor k: for instance, if the valuation is a p-adic
one. It happens that v(z) = v(x) < v(x − z) if and only if Pt(z) = Pt(x).
We will usually write x = ytu + . . . or ytu + o(tu) in order to emphasize
the principal term of an element x.

The valuation group T is given a structure of idempotent semifield with
the tropical operations “a + b” = max{a, b}, “ab” = a + b. A tropical
polynomial is just a formal sum of monomials f = “

∑
i∈I aix

i” = max{ai +
ix : i ∈ I} where x = (x1, . . . , xn), i = (i1, . . . , in), ix = i1x1 + · · · + inxn.
The tropical hypersurface defined by a polynomial is:

Definition 1. Let f = “
∑

i∈I aix
i” ∈ T[x1, . . . , xn] be a tropical polyno-

mial. Then the hypersurface defined by f is the set of points p ∈ Tn such
that the value f(p) = max{ai + ip : i ∈ I} is attained for at least two
different indices i, j ∈ I.

T (f) = {p : ∃i �= j ∈ I ∀k ∈ I ai + ip = aj + jp ≥ ak + kp}

Hypersurfaces defined like this coincide with the projection by T of
algebraic hypersurfaces [4]. In fact, if f̃ =

∑
i∈I ãix

i ∈ K[x] and f =

“
∑

i∈I T (ãi)x
i” ∈ T[x], then T ({f̃ = 0}) = T (f). This result can be refined

(Theorem 3) by using residual polynomials.
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Definition 2. Let f̃ =
∑

i∈I ãix
i ∈ K[x] be a polynomial in n variables

x = x1, . . . , xn; i = i1, . . . , in, Pc(ãi) = αi, T (ãi) = ai, f(x) = “
∑

i∈I aix
i”.

Let b = (b1, . . . , bn) ∈ Tn be a tropical point. Let

f̃b(x1, . . . , xn) =
∑
i∈I

ai+i1b1+···+inbn=f(b1,...,bn)

αix
i = Pc(f̃(x1t

−b1 , . . . , xnt−bn))

be the residual polynomial of f̃ over b. This is a nonzero polynomial in
k[x1, . . . , xn].

Given a tropical object A (a point, a curve, a configuration,. . . ), a lift

or preimage of A is an object Ã over K such that T (Ã) = A. Let H be

a tropical hypersurface defined by a polynomial f and let H̃ be any lift
defined by a polynomial f̃ . Let b be any tropical point in H . The residual
polynomial f̃b encodes the possible principal coefficients of a lift b̃ of b as the
next result shows.

Theorem 3. Let f̃ ∈ K[x1, . . . , xn] and (̃b1, . . . , b̃n) ∈ (K∗)n be any point,

then there is a root (c̃1, . . . , c̃n) of f̃ such that Pt(c̃i) = Pt(̃bi), 1 ≤ i ≤ n, if

and only if b = T (̃b) is a zero of the tropical polynomial f and (Pc(̃b1), . . . ,

P c(̃bn)) is a root of f̃b in (k∗)n.

For a constructive proof of this theorem we refer to [8] or [14].
Given a tropical point q = (q1, . . . , qn) ∈ Tn, it can be written in pro-

jective coordinates q = [q1 : . . . : qn : 0]. Two tuples [a1 : . . . : an+1],
[b1 : . . . : bn+1] ∈ Tn+1 are identified if and only if there is a c ∈ T such
that ai = “cbi” = c + bi, 1 ≤ i ≤ n + 1. Given a tropical polynomial
f = “

∑
i∈I aix

i”, the tropical hypersurface T (f) has naturally a polyhedral
complex structure. f defines a regular subdivision on its Newton polytope
that is combinatorially dual to the hypersurface T (f) as a polhyedral com-
plex. Let Δ′ be the convex hull of the set {(i, t)|i ∈ I, t ≤ ai} ⊆ Rn+1. The
upper convex hull of Δ′ (that is, the set of boundary maximal cells whose
outgoing normal vector has its last coordinate positive) projects onto Δ by
deleting the last coordinate. This projection defines the regular subdivision
on Δ. It is called the subdivision of Δ associated to f (see [10] for details).

Proposition 4. The subdivision of Δ associated to f is dual to the set of
zeros of f . There is a bijection between the cells of Subdiv(Δ) and the cells
of T (f) such that:

• Every k-dimensional cell Λ of Δ corresponds to a cell V Λ of T (f) of
dimension n− k such that the affine linear space LΛ generated by V Λ

is orthogonal to Λ. When k = 0, the corresponding dual cell is a
connected component of Rn \ T (f).
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• The relative interior UΛ of V Λ in LΛ is non empty.

• If Λ1 �= Λ2, then UΛ1 ∩ UΛ2 = ∅
• If Λ1 ⊂ Λ2, then V Λ2 ⊂ V Λ1

• T (f) =
⋃

0�=dim(Λ)

V Λ.

• V Λ is not bounded if and only if Λ ⊆ ∂Δ.

In this paper, we will deal with families of tropical curves (lines, con-
ics. . . ). A first approach could consider fixing the Newton polygon of the
family of curves. This has a good geometric meaning. However, we will see
that it is easy to refine this idea by fixing the support of the family of the
curves. This has no geometric advantages, but it is a refinement from an
algebraic point of view.

Definition 5. A support is a finite subset of Zn modulo a translation by an
integer vector in Zn. That is, let A and B be two finite subsets of Zn and
let ∼ be the relation A ∼ B if and only if there is an integer vector v ∈ Zn

such that A = v + B. Then, the set of supports S(Zn) of Zn is the set of
equivalence classes. Given a support I ⊆ Zn, δ = δ(I) denotes the number
of elements of I. Δ = cv(I), the convex hull of I in Rn, is the Newton
polytope of I. Note that δ is invariant by translations, so it is well-defined
and Δ is well-defined up to translations. If H is a hypersurface defined by a
polynomial f =

∑
i∈I aix

i, the support of H is the set of tuples i ∈ Zn such
that ai appears in f .

It is known that in the tropical context, polynomials of different support
may define the same hypersurface. So, we will always fix a priori the support
of a defining polynomial. Sometimes this is not even enough. Contrary to
the algebraic case, there may be polynomials f , g defining the same tropical
curve C but such that one is not a multiple of the other. That is, there is no
monomial a such that f = ag, see Example 7. However, for some proofs, it
is convenient to have a tropical polynomial of fixed support defining a curve
that is canonical in a sense. In case we need a canonical polynomial, we will
use the notion of concave polynomial from [10].

Definition 6. To a given tropical polynomial f = “
∑

i∈I aix
i”, we may

associate the function ϕ : I ⊆ Zn → T, given by ϕ(i) = ai. We say
that ϕ is concave if for any (possibly non-distinct) i0, . . . , in ∈ I ⊆ Zn

and any t0, . . . , tn ≥ 0 with
∑n

k=0 tk = 1 and
∑n

k=0 tkik ∈ I we have that
ϕ
(∑n

k=0 tkik
)
≥

∑n
k=0 tkϕ(ik). If this is the case, we say that f is a concave

polynomial.
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Fixed the support I and a tropical hypersurface V defined by a polyno-
mial g of support I, there is (up to a multiplication by a Laurent monomial)
a unique concave tropical polynomial f of support I such that T (f) = V.

Example 7. Let f = “0+0x+(−2)x3”, g = “0+0x+(−2)x2+(−2)x3” and
h = “0 + 0x + (−1)x2 + (−2)x3”. These three polynomials define the same
hypersurface in T. Namely, the set of points {0, 1}, where 0 is counted with
multiplicity 1 and 1 is counted with multiplicity 2. However, the support
of f differs from the support of g and h. If we are dealing with the support
{0, 1, 3}, then the concave polynomial that defines the variety is f (up to a
multiplicative constant). On the other hand if we impose our representation
to have support {0, 1, 2, 3} then the concave polynomial that defines the
variety is h. Note that the polynomial g has the same support as h, but it
is not concave.

A notion that is essential for our concept of geometric construction is the
notion of stability. Given two tropical curves C1, C2 defined by polynomials
f1, f2, it may happen that the intersection of the curves is infinite even
when they share no common component. However, there is always a finite
set of points, called the stable intersection of C1 and C2 such that it varies
continuously as we deform the coefficients of f1, f2. This intersection set
verifies Bernstein-Kushnirenko theorem, [11]. Namely, let C1, C2 be two
tropical curves defined by polynomials f1, f2. Let Δ1, Δ2 be the Newton
polygons of the respective polynomials. Denote by M(Δ1, Δ2) the mixed
volume of Δ1 and Δ2, then the number of stable intersection points of C1, C2,
counted with multiplicities, equals M(Δ1, Δ2).

Analogously, given a support I and a set P of δ(I) − 1 tropical points,
it may happen that there are infinitely many curves of support I passing
through P . However, there is always a unique well-defined curve of sup-
port I that passes through P and such that it varies continuously as the
configuration P is perturbed. This curve can be computed using tropical
linear algebra, see Section 2.2, and it is called the stable curve of support I
passing through P .

Finally, when dealing with geometric constructions, we will end up work-
ing with oriented graphs. So, we recall some basic definitions of oriented
graphs. A directed graph is a graph such that each edge {x1, x2} has a
defined orientation (x1, x2) = x1 → x2. Double orientations in the edges
x1 → x2 and x2 → x1 are not allowed. For an oriented edge x1 → x2, we say
that x1 is a direct predecessor of x2 and that x2 is a direct successor of x1.
An oriented path is a chain of oriented edges x1 → x2 → . . .→ xn. If there
is an oriented path from x1 to xn, we say that x1 is a predecessor of xn and
that xn is a successor of x1. An oriented cycle is an oriented path such that
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its starting node equals its ending node, x1 = xn. A directed graph without
oriented cycles is called a directed acyclic graph (DAG). If G is a DAG, the
nodes x of G that are not the successor of any other node are called sources.
Any node x of a DAG G has associated a depth. If x is a source then its
depth is 0. If x is not a source, let y1, . . . , yn be the direct predecessors of x.
The depth of x is defined as: depth(x) = 1+max{depth(y1), . . . , depth(yn)}.
The depth of a DAG G is the maximal depth of its nodes.

2. The notion of geometric construction

2.1. Geometric constructions and incidence structures

We take the notion of incidence structure from the classical context in the
study of finite geometries [2]. Intuitively, an incidence structure (or incidence
configuration) is a set of points, a set of lines and a set of incidence relations
of type point p belongs to line L. In our context, we are not only dealing
with lines, but with arbitrary curves in the plane. Still we will control which
curves are accepted in an incidence structure by specifying their support.

Definition 8. A finite incidence structure is a tuple G = (p, B, I, Sup),
where p, B, I are arbitrary sets such that

p ∩B = ∅, I ⊆ p×B

and Sup is a map

Sup : B→ S(Z2)

The elements of p are called points, the elements of B are curves and the
elements of I are flags or incidence relations. If x ∈ B, Sup(x) ∈ S(Zn) is
the support of x.

Every incidence structure G = (p, B, I, Sup) is naturally identifiable
with a labeled graph, the Levi graph of the incidence structure. This is a
bipartite graph, its vertices are the elements of p ∪B and its edges are the
elements of I. Each element x ∈ B has as label Sup(x). These two notions
of incidence structure will be used indistinctly.

Example 9. Desargues’ Theorem states that two triangles are in perspective
with respect to a point if and only if they are in perspective with respect
to a line. Desargues’ configuration consists of ten points and ten lines. Its
incidence structure is:

p = {A, B, C, A′, B′, C ′, P, Q, R, O},
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B = {AA′O, BB′O, CC ′O, ABP, A′B′P, ACQ,

A′C ′Q, BCR, B′C ′R, PQR},
I = {(X1, X1X2X3), (X2, X1X2X3), (X3, X1X2X3) | X1X2X3 ∈ B}.

As every curve in the structure is a line, the support map is constant, with
Sup(B) = {(0, 0), (1, 0), (0, 1)}. Figure 1 represents the incidence graph G
of the Desargues’ configuration.
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Figure 1: The graph of Desargues’ configuration

Definition 10. Let G = (p, B, I, Sup) be an incidence structure. Denote by
np, nB the cardinals of p, B respectively. For each y ∈ B, let δy = δ(Sup(y))
be the cardinal of the associated support. The algebraic support of G is the
space

SG =
∏
x∈p

(K∗)2 ×
∏
y∈B

(K∗)δy−1.

The tropical support of G is the space

St
G =

∏
x∈p

T2 ×
∏
y∈B

Tδy−1.

We identify the space (K∗)δy−1 (resp. Tδy−1) with the space of algebraic
curves (resp. tropical curves) of support Sup(y) (dehomogenizing the equa-
tion of the curve by a monomial). The dimension of SG is 2np+

∑
y∈B(δy−1).

An algebraic realization (resp. tropical realization) of G is a point

(x1, . . . , xnp ; y1, . . . , ynB
) ∈ SG (St

G)

such that, for every edge (xi, yj) ∈ I we have that xi ∈ yj, identifying yj

with the plane curve (resp. tropical curve) it represents. The set of algebraic
realizations of G is an algebraic set RG of SG (respectively, the set of tropical
realizations Rt

G is a prevariety of St
G).



Tropical Plane Geometric Constructions 189

A first problem we face at this level is that, in general, the tropicaliza-
tion of the algebraic realizations may not be equal to the set of tropical
realizations, T (RG) �= Rt

G. This yields the following questions:

• When does T (RG) equal Rt
G?

• Given x ∈ Rt
G, determine if x belongs to T (RG). In the affirmative

case, compute a preimage x̃ in RG.

These questions could be approached using the notion of tropical basis. A
tropical basis of the ideal defining the variety RG can be computed using the
algorithms in [1] or [7], the projection of the polynomials of this basis is a
set of tropical polynomials defining T (RG), so it would only remain to check
if this basis defines Rt

G or not. Therefore, this approach together with the
algorithms in [8] would answer the questions above. The main disadvantage
is that this procedure turns unfeasible as the graph becomes larger. On the
other hand, our method uses the strength of the geometric information that
the graph contains.

Theorem 11. Let G be an incidence structure such that its associated
graph is acyclic. Then, T (RG) = Rt

G. That is, for every tropical realiza-
tion x of G, we can compute an algebraic realization x̃ of G that projects
correctly T (x̃)=x.

Proof. Let G be the acyclic incidence graph. Reasoning on each connected
component of G, we suppose, without loss of generality, that G is a tree. Let
x0 be any node of G and let x̃0 be any lift of x to the algebraic context. The
remaining nodes can be inductively lifted from this one. Let y be adjacent
to a node x that has already been lifted to x̃. We distinguish two cases:

• x ∈ B and y ∈ p. In this case x is a tropical curve, x̃ is an algebraic
curve projecting onto x and y is a point in x. These are the condi-
tions of Theorem 3. Thus, starting from y we can compute a point ỹ
belonging to x̃ and projecting onto y.

• x ∈ p and y ∈ B is a curve of support I = Sup(y). y is a tropical
curve of equation “

∑
i∈I aiz

i”, with variables z = (z1, z2). The point x̃
defines, in the configuration space of ỹ, the hypersurface Hx of curves of
support I containing x̃. Its equation is

∑
i∈I aix̃

i, where the unknowns
are the variables ai. Moreover y belongs to the tropicalization of Hx.
Thus, again by Theorem 3, it can be computed a lift ỹ of y passing
through x̃. �

Although this Theorem presents a partial answer to the proposed ques-
tions, acyclic graphs are rather special, because they cannot model many
common situations. They cannot even deal with the intersection of two
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conics, because it requires four intersection points connected to both curves
and, hence, a cycle in G. Our proposals to extend this theorem are using
geometric constructions (Theorem 43) or the notion of points in general
position (Theorem 46).

Definition 12. A geometric construction C is an abstract procedure con-
sisting of:

• Input elements: an incidence structure G = G0 consisting of free ele-
ments only. That is: two finite subsets p0, B0 such that p0 ∩B0 = ∅
and a support map Sup : B0 → S(Z2). Initially, the set of incidence
relations is the empty set I = ∅.
• Steps of the construction: a finite sequence of different steps that

enlarge the incidence structure G adding new nodes and oriented in-
cidence relations. After each step we get a new incidence structure
provided with an orientation. There are two types of steps:

– Given a support I with δ(I) = n ≥ 2 and n−1 points in the plane
{q1, . . . , qn−1} in G, we add a new curve C of support I to B, we
also add new oriented incidence conditions qi → C, 1 ≤ i ≤ n−1.

– Given two curves C1, C2 ∈ B of supports I1, I2 and Newton
polygons Δ1, Δ2 respectively, we add M =M(Δ(I1), Δ(I2)) new
points q1, . . . , qM to p. We add the oriented incidence conditions
C1 → qi, C2 → qi, 1 ≤ i ≤M .

• Output: an incidence graph G provided with an orientation.

Definition 13. A tropical realization of a geometric construction C is a
tropical realization of its associated graph G such that:

• If x ∈ B is a curve and it is not an input element, let I be its support
and let {y1, . . . , yδ(I)−1} be the direct predecessors of x. Then x is
exactly the stable curve (Definition 17) of support I passing through
the set of points {y1, . . . , yδ(I)−1}.
• If x ∈ p and it is not an input point, let y1, y2 be the direct predecessors

of x and let {x1, . . . , xn} be the common direct successors of y1 and y2.
Then, {x1, . . . , xn} are exactly the stable intersection (Subsection 2.4)
of y1 and y2, counted with multiplicities.

An algebraic realization of a geometric construction C is an algebraic
realization of its associated graph G such that:

• If x ∈ B\B0, let I be its support and let {y1, . . . , yδ(I)−1} be the direct
predecessors of x. Then, x is the unique algebraic curve of support I
that passes through the points {y1, . . . , yδ(I)−1}.
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• If x ∈ p and it is not an input point, let y1, y2 be the direct predeces-
sors of x and let {x1, . . . , xn}, n =M(Δ1, Δ2) be the common direct
successor of y1 and y2. Then, the curves y1, y2 intersect exactly in
the finite set of points {x1, . . . , xn} where the points are counted with
multiplicities.

Remark 14. Given an algebraic (resp. tropical) realization of the input
elements of a geometric construction C, there can only be finitely many
realizations of C with these input elements, because the realizations of the
remaining elements are fixed by the input elements and the steps of the
construction. The only possibility to have different realizations of C with
the same input elements is permutating the labels of the intersection (resp.
stable intersection) of two curves y1, y2 and the subsequent changes in the
successor elements of y1, y2.

It is clear that, in the tropical plane, every possible step of a construction
can be realized. That is, given two curves C1, C2, we can always define the
set of M(Δ1, Δ2) stable intersection points (counted with multiplicities).
Analogously, the stable curve through a set of points is always well-defined.
Thus, in the tropical context, given a tropical realization of the input ele-
ments of C, there is always a realization of C with these input elements.

However, this is not the case in the algebraic context. Two different
curves C1, C2 may share a common component. Here, we cannot define a
finite intersection set with the nice properties the tropical stable intersection
has. Even if the intersection set of the curves is finite, there may not be
enough intersection points in the torus. For example, the lines 3x+2y+4 = 0,
5x + y + 2 = 0 do not have any intersection point in the torus. These
degenerate cases should be avoided.

So, we need a notion of a well-defined construction. A geometric con-
struction is well-defined if it is well-defined for a generic realization of the
input elements. That is, let R0 be the space of algebraic realizations of the
input elements p0 ∪ B0. In this case, as the set of incidence conditions is
empty, the realization space equals the support space, R0 = S0. Let L be
the subset of input configurations such that there exists a realization of the
construction C. That is, L is the projection of the realizations of C into R0.
The construction C is well-defined if L is dense in R0.

It is clear that the oriented graph G of a geometric construction C never
has an oriented cycle, so G is always a directed acyclic graph (DAG). The
input elements are exactly the sources of the graph and every node of G
has a well-defined depth. Usually, proofs are made by induction on the
depth of G.
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In practice, many interesting incidence configurations can be defined
as a subgraph of the graph of a geometric construction, see for example
Theorem 57. Sometimes we will have to add additional elements to fit the
incidence configuration into the definition of geometric construction. Hence,
we present a characterization of the incidence graphs G that appear as a
subgraph of a geometric construction.

Proposition 15. Let G be an incidence graph provided with an orientation.
Then it is a subgraph of the graph of a geometric construction if and only if

• G is a directed acyclic graph.

• If x is a vertex of type p, then it has at most two direct predecessors.

• If x is a curve of support I, then x has at most δ(I)− 1 direct prede-
cessors.

• If x, y are two different curves with a common direct successor, then
they have at most M(Δx, Δy) common direct successors.

• If x and y are two curves with the same support I and both curves have
exactly δ(I) direct predecessor, then the sets of direct predecessors are
different.

Moreover, G is exactly the graph of a geometric construction if and only if
the previous inequalities are equalities for every node different from a source.

Proof. Let G be a graph satisfying all these conditions, a construction C

can be built up such that it contains G as a subgraph. Every source of G
is defined as an input element. Suppose we have defined the construction of
every element of depth up to i, the definition of the depth i+1 elements is as
follows. Let x be a point (x ∈ p) of depth i+1. If it has two predecessors y, z,
then they have at most M(Δy, Δz) common direct successors. If there are
not enough intersection points, we add points of depth i+1 up toM(Δx, Δy)
and define all of them (in particular x) as the intersection of y and z. If x is a
point of depth i+1 that has only one direct predecessor y, we add a line z as
an input curve (a curve of support {(0, 0), (1, 0), (0, 1)}), define it as a direct
predecessor of x and proceed as in the previous case. In the case where x is
a curve of support I and depth i+1, there are at most δ(I)−1 predecessors
of x. Add to the construction C as many input points as necessary up to
δ(I)−1 and define x as the curve passing through these points. Note that the
last condition of the hypotheses disallows the construction to have repeated
steps. If two curves x and y of the same support I have both δ(I) direct
predecessors, then the two sets of direct predecessors are different, so x and
y are curves obtained by different steps.
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This method defines a construction C that contains G as a subgraph. It
is clear that G is exactly the graph of C if and only if the equalities in the
hypotheses hold. �

Remark 16. One could think about enlarging the definition of construction
by extending the definition of allowed steps. In particular, a common step
in Classical Geometry is to choose a point in a curve. Proposition 15 proves
that this step does not increase the expressivity of the constructions. If C

is a geometric construction such that the additional step of taking a curve
through a point or taking a point inside a curve is allowed, then the graph of
C is the subgraph of another construction C1 without these additional steps.
So, in practice, we may work with this additional step with the agreement
that “choosing a point in a curve is essentially equivalent to add an input line
(curve of support {(0, 0), (1, 0), (0, 1)}) to our construction, intersect the line
with the curve and choose one intersection point.” Or, analogously, “choos-
ing a line passing through a point p is essentially equivalent to add another
input point q and compute the line passing through p and q”. See Theorem 57
for an example of this technique of adding additional elements to a familiar
incidence configuration in order to obtain a geometric construction.

The advantage of the construction method to study incidence configu-
rations is that the problem of understanding the relation of algebraic and
tropical geometric construction is almost reduced to understand how one
step of a construction behaves with respect to tropicalization.

2.2. The stable curve through a set of points

Consider now the problem of lifting the curve of support I passing through
a set of points. Either in the algebraic or tropical context, this curve can
be computed solving a linear system of equations. Let q1, . . . , qδ−1 be the
set of points we want the curve to pass through. Let f = “

∑
i∈I aix

i1yi2”
be a polynomial defining the curve of support I passing through the set
of points. The coordinates ai of f belong to the hyperplanes defined by
“
∑

i∈I ziq
i1
j1q

i2
j2”, 1 ≤ j ≤ δ − 1. Thus, the coordinates ai form a solution of

a homogeneous tropical linear system of equations. The stable intersection
of the hyperplanes can be computed using tropical Cramer’s rule [11].

Definition 17. The stable curve of support I passing through {q1, . . . , qδ−1}
is the curve defined by the polynomial f = “

∑
i∈I aix

i1yi2”, where the co-
ordinates ai of f are the stable solution to the linear system imposed by
passing through the points qj .
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In order to lift these linear systems of equations, we recall the following
basic facts of tropical linear algebra:

Definition 18. A tropical matrix of dimension n × m is a matrix with
coefficients in T. The tropical determinant of a square matrix is:∣∣∣∣∣∣∣

x11 . . . x1n
...

...
xn1 . . . xnn

∣∣∣∣∣∣∣
t

= “
∑
σ∈Σn

x1σ(1) · · ·xnσ(n)” = max
σ∈Σn

{x1σ(1) + · · ·+ xnσ(n)},

where Σn is the permutation group of n elements. A square tropical matrix
is called singular if the value of its tropical determinant is attained for at
least two different permutations σ and τ . Otherwise it is called regular.

Tropical and algebraic determinants can be related by the notion of pseu-
dodeterminant. Let A = (aij) be an n× n tropical matrix. Let B = (bij) be
an n × n matrix with coefficients over any ring R. Let |A|t be the tropical
determinant of A. We define:

ΔA(B) =
∑
σ∈Σn

“a1σ(1)...an,σ(n)”=|A|t

(−1)i(σ)b1σ(1) · · · bnσ(n)

the pseudodeterminant of B with respect to weight A. With this notion we
can derive sufficient conditions for the compatibility of the algebraic and
tropical determinant.

Example 19. Let K be the field of Puiseux series, A =

(
1 2
2 4

)
. Let

Ã =

(
a11t

−1 a12t
−2

a13t
−2 a14t

−4

)

be a matrix whose tropicalization is A and let B be the matrix of principal
coefficients of Ã. Then ΔA(B) = a11a14. Notice that, in this case, ΔA(B) =

Pc(|Ã|).

Definition 20. Let A = (aij) be an n×(n+1) tropical matrix. Let B = (bij)
be a matrix with coefficients in a ring R with the same dimension as A. We
denote

CramA(B) = (S1, . . . , Sn+1)

where Si = ΔAi(Bi) and Ai (respectively, Bi) denotes the corresponding
submatrix obtained by deleting the i-th column in A (respectively, B).
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Lemma 21. Suppose we are given a system of n linear homogeneous equa-
tions in n+1 variables in T. Let A be the coefficient matrix of the system. Let
Ã be any matrix with coefficients in K such that T (Ã) = A. Let B = Pc(Ã)

be the matrix of principal coefficients of Ã. If no element of CramA(B) van-

ishes, then the linear system defined by Ã has only one projective solution
and its tropicalization equals the stable tropical solution [|A1|t : . . . : |An+1|t].

Proof. See [13]. �

If one pseudodeterminant ΔAi(Bi) = 0, there is a lack of information of

what the principal coefficient of the determinant |Ãi| is and, more serious,

the control on the tropicalization T (|Ãi|) is lost. A careful look at these
badly behaved systems yields the following:

Proposition 22. Let A be an n× (n + 1) tropical matrix. Let x = [ |A1|t :
|A2|t : . . . : |An+1|t ] be the stable solution of the linear system of equations

defined by A. Let Ã be any matrix in K∗ projecting onto A and B = Pc(A).
Let CramA(B) = (S1, . . . , Sn+1). Then:

• If every tropical determinant |Ai|t is regular, then Si �= 0, the homoge-

neous linear system defined by Ã has only one solution x̃ and it projects
onto x, T (x̃) = x.

• If Sj = 0 and there is an index i such that Si �= 0, then the homoge-

neous linear system Ã has only one projective solution x̃, that never
tropicalizes correctly: T (x̃) �= x.

• If Si = 0 for all i, we do not have any information. The linear system
defined by Ã may be either determined or undetermined. If x̃ is a
solution of the system, both possibilities T (x̃) = x and T (x̃) �= x can
occur, even if the solution x̃ is unique.

Proof. If Ai is regular, then |Ai|t = “a1,j1 · · ·an,jn” is attained for only one
permutation. It follows that ΔA(B) = b1,j1 · · · bn,jn �= 0 for any matrix B
with entries in k∗. Therefore, the algebraic system is determined, because
at least the i-th projective coefficient |Ãi| is not zero. Moreover, in this case

it will always happen that T (|Ãi|) = |Ai|t. If every tropical matrix Ai is
regular, then the first item holds.

For the second item, if Sj = 0, then T (|Ãj|) < |Aj|t. It is even possible

that |Ãj| = 0. But, as Si �= 0, then T (|Ãi|) = |Ai|t, so the coefficient i
can be used to dehomogenize the projective solution. If follows that x̃ is
well-defined (because |Ãi| �= 0), but it cannot project to x because they will
always differ in the term j.
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Finally, in the case where Si = 0 for every S, we cannot decide if the
system is determined without further information. This depends on the
terms of higher order of the elements of Ã. For an illustrative example, let
K be the field of Puiseux series, let

A =

(
0 0 0
0 0 0

)
Ã1 =

(
1 1 1
1 1 1

)
Ã2 =

(
1 + t 1 + t2 1 + t3

1 1 1

)
Ã3 =

(
1 + t 1 + 2t 1 + 3t

1 1 1

)

The three matrices Ã1, Ã2, Ã3 project to A. All of them satisfy that

CramA(Pc(Ã)) = (0, 0, 0).

The tropical stable solution of the tropical system is the point [0 : 0 : 0]. The

first algebraic system Ã1 is undetermined and it contains points such that
x̃ = [1 : 1 : −2] that projects correctly onto [0 : 0 : 0] and other points such

that x̃ = [1 : t : −1− t] that do not. The second system Ã2 is a determined
system such that its unique solution x̃ = [t2 − t3 : −t + t3 : t − t2] does

not project to x. The last system Ã3 is a determined one. Its solution is
[−1 : 2 : −1] and projects correctly. �

Before establishing the relationship of the algebraic and tropical curve,
let us check some properties of the pseudodeterminants. From Lemma 21,
it follows that if the entries of the matrix B are indeterminates, then no
pseudodeterminant ΔA(B) vanishes and the algebraic determinant projects
correctly. However, it may happen that the entries of the matrix B are
algebraically dependent elements. For example, suppose we are computing
the conic axxx

2 + ayyy
2 + axyxy + axx + ayy + a1 passing through a set of

points {p1, . . . , p5}, p1 = (b1, b2). This conic can be computed using linear
algebra. In the matrix B that describes the linear system to solve, the terms
b2
1, b2

2, b1b2 will appear in the system of equations. These monomials are not
algebraically independent. Nevertheless, in order to apply Lemma 21, it is
only needed that the involved pseudodeterminants do not vanish. Now it is
proved that, if the residual coefficients (γ1, γ2) of the points p1 are indeter-
minates (or generic elements), then, the pseudodeterminants are never zero.
The next is a rather technical lemma that proves a stronger property.

Lemma 23. Let Ci = {c1
i , . . . , c

ji

i }, 1 ≤ i ≤ r be disjoint sets of variables.
Suppose that we have Fu = {f 1

u , . . . , fn+1
u } ⊆ k[

⋃r
i=1 Ci], 1 ≤ u ≤ n sets

of polynomials in the variables cj
i . Suppose also that the following proper-

ties hold:

• For a fixed set Fu, f l
u, with 1 ≤ l ≤ n+1 are multihomogeneous polyno-

mials in the sets of variables Cu1, . . . , Cusu with the same multidegree.
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• If u �= v then Fu, Fv involve different sets of variables Ci.

• In a family Fu, if l �= m then the monomials of f l
u are all different

from the monomials of fm
u .

Let us construct the n× (n+1) matrix

B = (f l
u) 1≤u≤n,

1≤l≤n+1

Let A be any n× (n+1) tropical matrix. Write

S = CramA(B) = (S1, . . . , Sn+1).

Then

1. S1, . . . , Sn+1 are non-identically zero multihomogeneous polynomials in
the sets of variables C1, . . . , Cr with the same multidegree.

2. If σ, τ are different permutations in Σn+1 which appear in the expan-
sion of Sl (and, therefore σ(n + 1) = τ(n + 1) = l), then all result-

ing monomials in
∏n

u=1(A
l)

σ(u)
u are different from the monomials in∏n

u=1(A
l)

τ(u)
u

3. If l �= m, then Sl, Sm have no common monomials.

Proof. See [13]. �
In the case of computing the algebraic curve C̃ through a set of points P̃ ,

suppose for simplicity that the points q̃i are given in homogeneous coordi-
nates with generic principal coefficients and tropicalization [q1

i : q2
i : q3

i ].

q̃i = [γ1
i t

−q1
i + · · · : γ2

i t
−q2

i + · · · : γ3
i t

−q3
i + · · · ].

Suppose also that the defining equation of C̃ is homogenized adding a new
variable z,

C̃ ≡
∑
i∈I

ãix
i1yi2zr−i1−i2 .

Each point q̃j adds a linear restriction to the coefficients ãi. Let Ã be the

matrix of this homogenized linear system and B = Pc(Ã). For simplicity, it
is assumed that the columns of A are indexed by the set I. We claim that
the matrix B is in the conditions of Lemma 23. The j-th row of B is

Bj =
(
(γ1

j )
i11(γ2

j )
i21(γ3

j )
r−i11−i21, . . . , (γ1

j )
i1δ(γ2

j )
i2δ(γ3

j )
r−i1δ−i2δ

)
.

Hence, in the hypotheses of Lemma 23, Ci = {γ1
j , γ

2
j , γ

3
j }, each polynomial

f l
u is a different homogeneous monomial. So, the hypotheses hold. Thus, we
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conclude that, for this homogenized system, the vector CramA(B) belongs
to the torus, CramA(B) ∈ (k∗)n. This vector contains a representative of

the residues of the vector of coefficients of C̃. It follows that the algebraic
solution [ãi1 : . . . : ãiδ ] is in fact an element in the torus, ãij �= 0, 1 ≤ j ≤ δ.
Finally, as every coefficient of every point q̃j and [ãi1 : . . . : ãiδ ] is nonzero,

we can dehomogenize everything. The pseudodeterminants ΔAi(Pc(Ãi)) are
nonzero provided that Pc(q̃i) = (γ1

i , γ
2
i ) are generic. To sum up, we have

the following:

Theorem 24. Let I be a support, δ = δ(I), P = {q1, . . . , qδ−1} a set of

tropical points, P̃ = {q̃1, . . . , q̃δ−1} a lift of P , Pc(q̃j) = (γ1
j , γ

2
j ). Let A

and Ã be the matrices of the linear system defining the stable tropical curve C
and algebraic curve C̃ of support I passing through the corresponding sets of
points. Then, the pseudodeterminants are non-identically zero polynomials
in the set {γi

j, 1 ≤ j ≤ δ − 1, 1 ≤ i ≤ 2}. If the pseudodeterminants verify
that

ΔAi(Pc(Ãi)) �= 0, i ∈ I,

then, there is only one curve C̃ of support I passing through P̃ and T (C̃)=C.

In this case, let f̃ =
∑

i∈I ãix
i1yi2 be the polynomial of support I defin-

ing C̃ and dehomogenized with respect to the index i0 (ãi0 = 1), then, the
principal coefficients of ãi are

(Pc(ã1), . . . , P c(ãδ)) =
(ΔAi1 (Pc(Ãi1))

ΔAi0 (Pc(Ãi0))
, . . . ,

ΔAiδ (Pc(Ãiδ))

ΔAi0 (Pc(Ãi0))

)

Proof. If no pseudodeterminant ΔAi(Pc(Ãi)) vanishes, then T (|Ãi|)= |Ai|t.
In particular, no determinant |Ãi| is zero. Let

C̃ ≡
{ ∑

i∈I

±|Ãi|xi1yi2 = 0
}

be the unique algebraic curve of support I passing through P̃ . Then C̃
projects onto C, the curve defined by “

∑
i∈I |Ai|txi1yi2”, i.e. the stable

tropical curve through P .
Note that if no pseudodeterminant vanishes, the coordinates of C̃ be-

long to the algebraic torus in homogeneous coordinates (PK∗)δ. Thus, if
one wants an affine representation of the coordinates of the curve, it can
be dehomogenized with respect to any index i0 ∈ I and still the result will
project correctly to the (dehomogenized) equation of the tropical curve C.
Furthermore, taking principal coefficients commutes with dehomogenization
in (PK∗)δ, so the last claim holds. �
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We have shown sufficient conditions for the compatibility of the algebraic
and tropical curve through a set of corresponding points. If the lifts of
points P̃ are residually generic, the algebraic curve C̃ passing through them
is unique. We know that this curve projects onto the stable curve through
the tropical points, but it is not clear what is the relationship of the residual
coefficients of f̃ .

This is important in the context of incidence configurations. Proofs such
as the one in Theorem 11 are done recursively in the graph of the configura-
tion. On the other hand, theorems such as Theorem 24 impose as hypothesis
some genericity on the coefficients of Ã. So, if we want to use this result in
an induction scheme, we have to ensure that the coefficients of f̃ are residu-
ally generic. Next, we prove that if the points q̃i are residually generic, then
the coefficients of f̃ are also residually generic.

Theorem 25. Let I = {l1, . . . , lδ} be a support, lk = (ik, jk). Let P =
{q1, . . . , qδ−1} be a set of tropical points. Let C be the stable tropical curve

of support I passing through P . Let P̃ = {q̃1, . . . , q̃δ−1}, Pc(q̃i) = (γ1
i , γ

2
i )

be lifts. Let f̃ =
∑

(i,j)∈I ãi,jx
iyj be the algebraic polynomial representing

the curve C̃ dehomogenized with respect to the index l0 = (i0, j0). Let γ1 =
{γ1

1 , . . . , γ
1
δ−1}, γ2 = {γ2

1 , . . . , γ
2
δ−1}. Consider the map

k2δ−2 −→ kδ−1

(γ1, γ2) �→ Cramer(γ1, γ2) =
(

Δ
Al1

(Pc(Ãl1 ))

Δ
Al0

(Pc(Ãl0 ))
, . . . ,

Δ
Alδ

(Pc(Ãlδ ))

Δ
Al0

(Pc(Ãl0 ))

)
Then, the map Cramer is dominant. That is, if the principal coefficients
of P̃ are generic, then f̃ is generic among the polynomials of support I
dehomogenized with respect to l0.

Proof. Write ql = (q1
l , q

2
l ), C = T (“

∑
ij aijx

iyj”). Then, C is the curve
defined by the stable solution of:

“
∑

(i,j)∈I

aij(q
1
l )

i(q2
l )

j”, 1 ≤ l ≤ δ − 1

and the lifts of C verify the relations∑
(i,j)∈I

ãij(q̃
1
l )

i(q̃2
l )

j = 0, 1 ≤ l ≤ δ − 1

Take the equations

f̃l =
∑

(i,j)∈I

ãijx
iyjt−aij−iq1

l −jq2
l , 1 ≤ l ≤ δ − 1,
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which correspond to a (tropical) translation of the problem to the point 0.
We dehomogenize the tropical equation of C (ai0j0 = 0), and the algebraic

equation of C̃ ( ãi0j0 = 1) with respect to a term (i0, j0) ∈ I. The residual
conditions on the principal coefficients αij of ãij are:

fl =
∑
Jl

αij(γ
1
l )

i(γ2
l )

j, 1 ≤ l ≤ δ − 1,

where Jl ⊆ I are the monomials such that −aij − iq1
l − jq2

l is minimized.
Notice that, by construction, each Jl has at least two terms. Write α =
{αij |(i, j) �= (i0, j0)}, γ1 = {γ1

1 , . . . , γ
1
δ−1}, γ2 = {γ2

1 , . . . , γ
2
δ−1}. Each resid-

ual equation fl is affine in the set of variables α, and the coefficients of this
affine equations are monomials in {γ1

l , γ
2
l }. Moreover, we know that there

are nonzero solutions to this system. Without loss of generality, every poly-
nomial fl can be saturated with respect to the coordinate hyperplanes (that
is, we eliminate redundant γ). These polynomials are still denoted by fl.
Thus, we have a system of equations in 3δ − 3 unknowns.

Let V be the Zariski closure of the image of the map:

k2δ−2 −→ k3δ−3

(γ1, γ2) �→ (γ1, γ2, Cramer(γ1, γ2))

It is clear that this is a birational map between the space k2δ−2 and V.
Let I be the ideal of V. I is a prime ideal that contains the polynomials
(f1, . . . , fδ−1) in k[α, γ1, γ2]. By construction, the field of rational functions
of V is isomorphic to the field of fractions of the integer domain

L = Frac

(
k[γ1, γ2, α]

I

)
= k(γ1, γ2)

In particular, γ1, γ2 is a transcendence basis of k ⊆ L and the dimension
of L is 2δ − 2. For each fl, if the variable γ1

l does not appear in fl, then
γ2

l is an element of L which is algebraic over k(α, γ1
l ). Analogously, if γ2

l

does not appear in fl, then γ1
l is algebraic over k(α, γ2

l ). If both variables
appear in fl, then just choose γj

l algebraic over k(α, γ3−j
l ). In this way, the

set g = α ∪ {γ3−j
l , 1 ≤ l ≤ δ − 1} is such that L is algebraic over k(g).

As #g = 2δ − 2, we conclude that g is a transcendence basis of k ⊆ L. In
particular, the set α is algebraically independent over k. This means that:

(2.1) I ∩ k[α] = I ∩ k[γ1, γ2] = 0

Hence, the projection of V on the space of coordinates α is dense in kδ−1.
But the image of the projection is the image of k2δ−2 by the map Cramer,
so Cramer is dominant. �
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2.3. Points in generic position in a curve

Before dealing with the problem of the intersection of two curves, let us
explore the notion of points in general position inside a curve. This notion
will be helpful for subsequent results and is directly related with the notion
of stable curve through a set of points. First, an adequate notion of tropical
points in general position must be provided. There are slightly different
approaches to this definition in the literature. All of them share the same
idea and agree in most cases, but apply to different problems, see for exam-
ple [6], [9], or [10]. These notions are adequate for enumerative problems,
but not for the incidence structures we study. Moreover, we want to provide
a notion of generic points in a fixed curve C. Our definition is a weakening
of the notions presented in the previous references and it does not depend
on the genus of the involved curve, only on its degree (Newton polygon).
Informally, a set of points P is in general position inside a curve C if C is
the unique curve of its type that contains P . Again, to formalize this we
use the notion of stability:

Definition 26. Let C be a tropical curve of support I. A set of points
{q1, . . . , qn}, n ≤ δ(I)−1 is in general position with respect to C if there are
tropical points qn+1, . . . , qδ−1 such that C is the stable curve of support I
passing through {q1, . . . , qδ−1}.

One would like to characterize the points in general position in a curve C
because, in general, it is not straightforward to check the definition. A first
result is the following:

Lemma 27. Let C be a curve of support I = Z2 ∩Δ, where Δ is a convex
polygon. Suppose that the dual subdivision induced by C in Δ is a triangu-
lation that has all points in Δ ∩ I as vertices. Let q1, . . . , qδ−1 be different
points in C such that every point qi lies in the relative interior of an edge
of C and two different points do not lie in the same edge. Let Γ be the graph
contained in the subdivision of Δ consisting of those edges in Subdiv(Δ)
such that its dual cell in C contains a point qi. If Γ is a maximal tree con-
tained in Subdiv(Δ), then the vertices of Γ are exactly the points of I and C
is the unique curve of support I passing through q1, . . . , qδ−1. In particular,
q1, . . . , qδ−1 are points in general position in C.

Proof. We refer to [10]. �

This Lemma only works for very special curves, because of the restriction
on the support of the curve and the induced subdivision (triangulation) in Δ.
Our next goal is to generalize it to more general situations.
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Definition 28. Let C be a tropical curve of support I and Newton poly-
gon Δ. Let Γ0 be the skeleton of Subdiv(Δ) associated to C (the set of cells
of dimension 0 and 1. This is always a connected graph). Γ0 is modified
adding to it every point in I \ Γ0 as follows.

If x1, . . . , xr ∈ I are the points of I lying in the interior of an edge e
of Γ0, these points are added as 2-valent vertices of Γ0 splitting the edge e
into r + 1 edges. If x ∈ I lies in the relative interior of a polygon Δv of the
subdivision, then x is added to Γ0 as an isolated point. In this case, the
resulting graph, denoted by Γ, is no longer connected.

Let q be a point in C. If q lies in an edge of C, let Δq be the dual
edge in Γ0, then Δq = e1 ∪ . . . ∪ ed is refined as a union of edges in Γ. An
assignment of q is a choice of one of the edges e1, . . . , ed. In the case where
q is a vertex of C, the dual cell Δq of this vertex is a polygon. Let S be the
set of isolated points of I in the interior of Δq and e1, . . . , ed be the set of
refined edges in the boundary Γ∩ ∂Δq. An assignment of q is a choice of an
element in S ∪ {e1, . . . , ed}.

If q1, . . . , qn are points (possibly repeated) in C, an assignment of the
points is an assignment of each point qi such that:

• Let qi1 , . . . qir be the points lying in the same edge of C, let Δq =
e1 ∪ · · · ∪ ed be the refined dual edge in Γ. It is required that the
assignment of qij is different from the assignment of qik whenever j �= k
(even in the case that qij = qik is a repeated point).

• Let qi1 , . . . , qir be points identified with a vertex (that is, a vertex
with multiplicity r). Let Δq be the polygon dual to the vertex. Let
l = #{Δq ∩ I}. It is required that at most l points are assigned
to different points in S and that the r − l other points are mapped
to different refined edges of the boundary of Δq that have not been
previously assigned.

• The set of refined edges of Γ that have assigned a point qi form an
acyclic subgraph Λ of Γ.

Lemma 29. Let C be a curve of support I. Let q1, . . . , qδ−1 be a list of
points such that there exists an assignment in Γ. Then

• Every point of I that lies in the relative interior of a polygon Δv of
Subdiv(Δ) is assigned to a point qi.

• The set of assigned edges Λ is a maximal tree in Γ that contains as
vertices every non-isolated vertex of Γ.
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Proof. The proof is based on the properties of lattice subdivisions of tropical
curves presented in [10]. Let S be the set of points of I lying in the relative
interior of a polygon in Subdiv(Δ) and let l be the number of these points.
Let r = δ − l be the number of non-isolated vertices of Γ. Then, at most l
points qi are assigned to a point in S and at least δ−1− l = r−1 points are
assigned to an edge on Γ. Then, from the property that the set of assigned
edges of Γ is an acyclic graph, it follows that the number of assigned edges
must be smaller than the number of vertices. That is, the number of assigned
edges must be exactly r − 1. It follows that the graph of assigned edges is
connected, i.e. a tree. Moreover, this tree is maximal, because it attains
every non-isolated vertex of Γ. Finally, the number of isolated points of Γ
assigned to a point is l (every isolated point has been assigned). �

Lemma 30. Let C be a tropical curve of support I and Newton polygon Δ.
Let Γ be the refinement of Γ0. Let q1, . . . , qδ−1 be points in the curve. Suppose
that if a vertex v of C coincides with r points qi, then the dual polygon Δv

contains exactly r point of I in its interior. Suppose that there is an assign-
ment of the points. Then, C is the stable curve passing through q1, . . . , qδ−1.

Proof. Let q̃i be lifts of the points qi with generic residual coefficients
γj = (γ1

j , γ
2
j ). In order to define a curve C̃, we have to compute lifts of the

coefficients ãi of a polynomial defining C. Let f be the concave polynomial
of support I defining C, f = “

∑
i∈I aix

i1yi2” dehomogenized with respect to

a vertex i0 of the polygon Δ (ai0 = 0). Notice that, if g = “
∑

i∈I bix
i1yi2” is

any tropical polynomial of support I such that, if i is a vertex of Subdiv(C)
then bi = ai and bi ≤ ai in any other case, then f and g represent the same
piecewise affine function and T (g) = C. We will compute a polynomial g
with this characteristic.

Given an edge e of Subdiv(Δ), let e = e1 ∪ . . . ∪ ed−1 be the refinement
in Γ, ek = [ik, ik+1]. If there were two different edges ek, el, k < l that are
not assigned to any point qj , then, if k+1 = l then the vertex ik+1 would be
a vertex of Γ that is not attained by Λ, if k + 1 < l then either Λ does not
attain a vertex of Γ (if ek+1, . . . , el are not assigned) or Λ is not connected
(if at least one ej is assigned with k < j < l), contrary to the results in
Lemma 29. Hence, for the case of an edge Δq = e1 ∪ . . .∪ ed, at most one of
the refined edges ek is not assigned to any point. The residual values αi for
a point i of I contained in an edge of Subdiv(Δ) are computed recursively,
starting from αi0 = 1. By the maximal tree structure of Λ as a subgraph
of Γ, we can always suppose that we are in one of the following two cases:

1 ) The edge is e = [i1, . . . id], we only know the value of αi1 and there
are exactly d − 1 points qj1, . . . qjd−1

in the dual edge V e ⊆ C. The non-
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homogeneous residual system of equations associated to the points is:

⎧⎪⎪⎨
⎪⎪⎩

αi1γ
i1
j1

+ · · · + αidγ
id
j1

= 0

αi1γ
i1
j2

+ · · · + αidγ
id
j2

= 0
· · · · · ·

αi1γ
i1
jd−1

+ · · · + αidγ
id
jd−1

= 0

in the unknowns {αi2 , . . . , αid} and γil
jl

= (γ1
jl
)i1l (γ2

jl
)i2l . This system is de-

termined. To show this, we may homogenize each row of the monomial
matrix (γ) by a new variable γ3

li
, hence, we obtain a matrix fulfilling the

hypotheses of Lemma 23. By this Lemma, we conclude that its minors are
non-identically zero multihomogeneous polynomials that will remain non-
identically zero after dehomogenizing each variable γ3

li
= 1. The determina-

tion of αi1 is just a dehomogenization of the solution. Therefore, we conclude
that there is only one solution {αi2 , . . . , αid} of this linear system in the al-
gebraic torus over the residual field (k∗)d−1. Notice that, using induction,
each αij is a nonzero rational function in αi0 and γ. Applying these steps
recursively we can compute the values of every edge of integer length d− 1
and d − 1 assigned points. Notice that, in particular, we can compute the
values of every αi associated to a vertex of Subdiv(Δ) and that they are
non-zero.

2 ) The edge is e = [ai1 , . . . , aid] and the values of αi1 and αid have been
already computed. Necessarily, there are exactly d−2 points qj1, . . . , qjd−2

in
the dual edge of e, because if there were more points, there would be a cycle
in the graph Λ, contrary to the hypotheses, and if there were less points,
Λ would not be a maximal tree. The residual conditions on the unknowns
{α2, . . . , αd−1} form a non-homogeneous system of d− 2 linear equations in
d − 2 unknowns with a similar structure to the previous case. So, if the
coefficients of γi are generic, there is only one solution (this time in kd−2

because the determination of the values of αi1 and αid does not correspond
to just a dehomogenization). Again, applying induction, each αi is a rational
function of αi0 and γ.

Thus, if the coefficients γ are generic, all the values αi corresponding
to an index i that is not an isolated vertex of Γ can be computed from γ
and αi0 and its value is unique. It only remains to compute the values αi

corresponding to indices in I belonging to the relative interior of a polygon
in Subdiv(Δ). In this case, the corresponding point qi lies in a vertex v ∈ C.
Let Δv be its dual polygon in Subdiv(Δ). Every coefficient corresponding
to ∂Δv ∩ I has been already computed. Let {j1, . . . , jr} = ∂Δv ∩ I and
{k1, . . . , ks} = int(Δv) ∩ I. There are s points qi identified with v. The
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residual system of equations corresponding to these points is:⎧⎪⎪⎨
⎪⎪⎩

αk1γ
k1
l1

+ · · ·+ αksγ
ks
l1

= −αj1γ
j1
l1
− · · ·− αjrγ

jr

l1

αk1γ
k1
l2

+ · · ·+ αksγ
ks
l2

= −αj1γ
j1
l2
− · · ·− αjrγ

jr

l2

· · · · · ·
αk1γ

k1
ls

+ · · ·+ αksγ
ks
ls

= −αj1γ
j1
ls
− · · ·− αjrγ

jr

ls

in the unknowns {αk1, . . . , αks}. Again, if the values of γ are generic, there
is only one solution in ks.

So, starting from the value αi0 = 1 the remaining values are determined
from γ. Let ãi be any element of K∗ such that if αi �= 0 then Pt(ãi) = αit

−ai ,
and, if αi = 0, then Pt(ãi) = t−ai+1 (“a posteriori” one could show that this

latter case does not happen). Let g̃ =
∑

i∈I ãix
i1yi2. Let C̃ be the algebraic

curve defined by g̃, its projection T (C̃) is the curve C. But it may happen

that C̃ does not contain the points q̃i, because the computations have been
done just in the residual field. Anyway, by construction, the principal terms
of q̃i are in the hypotheses of Theorem 3, we can compute points q̃′i lying in C̃

such that Pt(q̃′i) = Pt(q̃i). To sum up, there is a curve C̃ passing through a
set of lifts q̃′i of qi with generic residual coefficients in the sense of Theorem 24.

Hence, C = T (C̃) is the stable curve passing through q1, . . . , qδ−1. �
Theorem 31. Let C be a curve of support I and Newton polygon Δ, let Γ
be the refinement of the subdivision of Δ. Let q1, . . . , qδ−1 be points in the
curve. If there is an assignment of q1, . . . , qδ−1, then C is the stable curve
of support I passing through the points.

Proof. For each vertex v of C containing points qj1, . . . , qjr , let Δv be
the dual cell to v in Subdiv(C). Suppose without loss of generality that
qj1 , . . . , qjs are assigned to interior points in I∩Λv and qjs+1, . . . qjr are points
identified with v but that are assigned to edges es+1, . . . er of Γ. Perturb the
point qji

in C translating it along the dual edge of ei for s + 1 ≤ i ≤ r.
Denote this point by q′ji

. For the remaining points, take q′ji
= qji

. The
points q′1, . . . q

′
δ−1 are points in C in the conditions of Lemma 30. Hence, C

is the stable curve through {q′1, . . . , q′δ−1}. Making a limit process on each
perturbed point q′ji

→ qji
along the edge that contains the point, the stable

curve C trough the points {q′1, . . . , q′δ−1} stays invariant along the whole
process. By the continuity of the stable curve through perturbations of a
set of points, we conclude that C is the stable curve through q1, . . . , qδ−1. �
Example 32. Consider the conic Cf given by the polynomial f = “4 +
4y2 + 4x + 3xy + 0x2” represented in Figure 2. Take the points q1 = q2 =
(2, 1). Both points are identified with the vertex connecting the two bounded
segments of the conic. To show that these points are in general position
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in Cf , first, in the dual subdivision of the Newton polygon of f , we only
need to add the point corresponding to the monomial “y” in order to have
the refined subdivision. Now, we may add additional points in the curve
following the strategy of marking a tree on the dual subdivision. We add
the following points: q3 = (5, 2), q4 = (0,−1), q5 = (−2, 0). There is the
following assignment of the points: to the points q3, q4, q5 we assign the dual
edge in the Newton polygon that contains them. The point q1 is assigned
to the edge {xy, y2} and q2 to the edge {x, xy}. Of course, this is not the
unique possible assignment of q1 and q2. This assignment corresponds to the
fact that, if we perturb the configuration of points taking p1 = (2 + ε, 1 + ε),
p2 = (2 + δ, 1), then the unique conic that passes through {p1, p2, q3, q4, q5}
is exactly Cf . So taking limits in ε and δ, Cf is the stable conic that passes
through {q1, q2, q3, q4, q5}. This means that {q1, q2} are in general position
in Cf .

�

�

�

�

�

p1

p2

q3

q4

q5

�

�

�

�

�

�

��

��

��

�� ��

q1

q2
q3

q4

q5

Figure 2: A conic and a set of points in general position

It is conjectured that the conditions imposed in the preceding Theorem
are also necessary in order to have the genericity of the points inside the
curve. That is, we claim that given a tropical curve C and q1, . . . , qδ−1 ∈ C,
C is the stable curve through the points if and only if there is an assignment
of the points. In many concrete examples it can be easily shown that this
condition is a complete characterization of a set of points in general position
in a curve. But the problem is still open for an arbitrary curve.

2.4. Stable intersection of curves

Let us face the second kind of steps in a geometric construction, namely the
intersection of two curves defined by two polynomials f , g. In this case we
find a similar result as in the case of the curve passing through a set of points.
Given two lifts f̃ , g̃, some polynomials in the residual coefficients of f and g
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can be computed such that, if none of them vanish, then the intersection
of f̃ and g̃ is a finite set of points projecting onto the stable intersection of f
and g. To obtain this result and compute the stable intersection itself we
use the notion of tropical resultant [15].

The tropical resultant of two univariate polynomials with fixed support
is defined as the tropicalization of the algebraic resultant of two generic
polynomials of the same support.

Definition 33. Let I, J be two finite subsets of N of cardinality at least 2
such that 0 ∈ I ∩ J . That is, the supports of two polynomials that do not
have zero as a root. Let R(I, J, K) be the resultant of two polynomials with

indeterminate coefficients, f̃ =
∑

i∈I aix
i, g̃ =

∑
j∈J bjx

j over the field K.

R(I, J, K) ∈ Z/(pZ)[a, b],

where p is the characteristic of the field K. Let Rt(I, J, K) be the tropi-
calization of R(I, J, K). This is a polynomial in T[a, b], which is called the
tropical resultant of supports I and J over K.

For the bivariate case, the tropical resultant is defined as the special-
ization of the adequate univariate resultant substituting the variables by
univariate polynomials:

Definition 34. Let f̃ and g̃ be two bivariate polynomials. In order to
compute the algebraic resultant with respect to x, we can rewrite them as
polynomials in x.

f̃ =
∑
i∈I

f̃i(y)xi, g̃ =
∑
j∈J

g̃j(y)xj,

where

f̃i =

ni∑
k=oi

Aikt
−νikyk, g̃j =

mj∑
q=rj

Bjqt
−ηjqyq

and Aik, Bjq are residually generic elements of valuation zero (indetermi-
nates). Let P (ai, bj , K) = R(I, J, K) ∈ Z/(pZ)[ai, bj ] be the algebraic uni-

variate resultant of supports I, J . The algebraic resultant of f̃ and g̃ is
the polynomial P (f̃i, g̃j, K) ∈ K[y]. Analogously, let f = T (f̃), g = T (g̃),
f = “

∑
i∈I fi(y)xi”, g = “

∑
j∈J gj(y)xj”, where

fi = “

ni∑
k=oi

νiky
k”, gj = “

mj∑
q=rj

ηjqy
q”.

Let Pt(ai, bj , K) = Rt(I, J, K) ∈ T[ai, bj ] be the tropical resultant of sup-
ports I and J . Then, the polynomial Pt(fi, gj, K) ∈ T[y] is the tropical
resultant of f and g.



208 L.F. Tabera

The tropical resultant polynomials Rt(I, J, K) and Pt(fi, gj, K) depend
on the characteristics of the fields K and k. However, the hypersurfaces
they define do not depend on the characteristics of the fields. Moreover,
they provide a method to relate the stable intersection of two curves. We
refer to [15] for the details of the following results.

Theorem 35. Let f , g ∈ T[x, y] be two tropical polynomials. Let Ry(y) ∈
T[y] be a tropical resultant of f and g with respect to the variable x. Then, the
tropical roots of Ry(y) are exactly the y-coordinates of the stable intersection
of f and g.

In this case, if we also compute Rx(x), the tropical resultant of f and g
with respect to y, we have that P = T (Rx(x)) ∩ T (Ry(y)) is always a fi-
nite set containing the stable intersection of C1, C2. Let a be a natural
number such that x − ay is injective on P . Let Rz(z) be the resultant of
the polynomials f(zya, y), g(zya, y) with respect to y. Then, we have that
C1 ∩ C2 ∩ T (Rx(x)) ∩ T (Ry(y)) ∩ T (Rz(xy−a)) is exactly the stable inter-
section of C1 and C2. In order to ensure the compatibility of the stable
intersection with the algebraic intersection, we just compute residually suf-
ficient conditions for the compatibility of the resultants. Let f̃ , g̃ be two
lifts of f and g with residually generic coefficients. Let R̃x(x) = Res(f̃ , g̃, y),

R̃y(y) = Res(f̃ , g̃, x), R̃z(z) = Res(f̃(zya, y), g̃(zya, y), y). Then R̃x(x) =∑
i∈K1

ãix
i, Rx(x) =

∑
i∈K1

aix
i and T (ãi) ≤ ai. The tropical polynomial

Rx induces a subdivision in the convex hull of K1, which is an interval in R

with integer endpoints. We have that T (V (R̃x(x))) = T (Rx(x)) if, for ev-
ery index j corresponding to a vertex of the subdivision induced by Rx(x),
T (ãj) = aj, which is equivalent to say that the principal coefficient of ãj

is αjt
−aj . But αj is a polynomial in the residual coefficients of f̃ , g̃. Let

{αj} ∪ {βj} ∪ {γj} be the polynomials in the residual coefficients of R̃x(x),

R̃y(y), R̃z(z) corresponding to vertices of the subdivision of their Newton
polytopes. If no one vanishes, there will be a correspondence between the
algebraic and tropical resultant. Moreover, this provides a relation between
the algebraic intersection and the tropical stable intersection. In particular:

Theorem 36. Let f̃ , g̃ ∈ K[x, y]. Then, it can be computed a finite set

of polynomials in the residual coefficients of f̃ , g̃ depending only on their
tropicalization f , g such that, if no one vanishes, the tropicalization of the
intersection of f̃ , g̃ is exactly the stable intersection of f and g. Moreover,
the multiplicities are conserved.∑

q̃∈f̃∩g̃
T (q̃)=q

mult(q̃) = multt(q)
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So the step of intersecting two curves is also compatible with tropical-
ization in the residually generic case. The problem we face now in order
to use this result in a nontrivial geometric construction is to determine the
residual genericity of the intersection points of the two curves. Of course, it
is not true in general that the intersection points of two curves are points in
general position. A classical example is the intersection set P of two generic
cubics in the plane. In this case, P has 9 points and all of them lie on two
different cubics. As there is only one cubic passing through 9 points in gen-
eral position, it follows that P cannot be a set of points in general position.
Actually eight of the points determine the ninth, [5]. However, taking strict
subsets of P , it is expected that these sets of points are in general position.
This is the aspect we want to explore. The election of adequate subsets of
the intersection points is done by geometric properties of the corresponding
tropical intersection points.

Theorem 37. Let C1, C2 be two curves of support I1, I2 and Newton poly-
gons Δ1, Δ2 respectively. Let q = {q1, . . . , qn} be a set of points contained
in the stable intersection of C1 and C2 such that q is in general position
(Definition 26) with respect to both curves. Let C̃1, (respectively C̃2) be a

lift of C1 (resp. C2), expressed by a polynomial f̃ , (resp. g̃) of support I1,
(resp. I2) and dehomogenized with respect to an index i0, (resp. j0) that is
a vertex of the Newton polygon Δ1, (resp. Δ2). Suppose that the residual

coefficients of the polynomials f̃ , g̃ range over a dense Zariski-open subset of
kδ1+δ2−2 and let q̃i be lifts of the points qi to the intersection of the algebraic
curves. Then, the tuple of possible values of (Pc(q̃1), . . . , P c(q̃n)) contains

an open dense subset of k2n−2. That is, if the residual coefficients of f̃ and g̃
are generic, so it is the tuple of coefficients of q̃i.

Proof. Let

f1 = “
∑

(i1,i2)∈I1

aix
i1yi2” , f2 = “

∑
(j1,j2)∈I2

bjx
j1yj2”

be two tropical polynomials defining C1 and C2 and let

f̃1 =
∑

(i1,i2)∈I1

ãix
i1yi2 , f̃2 =

∑
(j1,j2)∈I2

b̃jx
j1yj2

be the lifts of the curves. Without loss of generality, it is supposed that
both polynomials are dehomogenized with respect to two monomials that
are vertices of Δ1 and Δ2 respectively. Let αi = Pc(ãi), βj = Pc(̃bj),
(γ1l, γ2l) = Pc(q̃l), α = {αi}, β = {βj}, γ = {γkl}. As the points are in
general position, it must be n ≤ min{δ1, δ2} − 1. The proof mimics the
reasoning of Theorem 25. So, a parametrization of the residual coefficients
of the curves and the points q̃i is needed. The local equations (f̃1)qi

, (f̃2)qi
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(Definition 2) form a linear system of equations in the residual coefficients
of the points γil where the unknowns are the residual coefficients of the
curves αi, βj. This is a linear system of 2n equations in at most δ1 + δ2 − 2
unknowns of full rank. It follows that we may take α0 = {αi1 , . . . , αiδ1−n−1

}
residual coefficients of f̃1 as parameters such that the remaining system
is determined. Analogously, we may take β0 = {βi1, . . . , βiδ2−n−1

} residual
coefficients such that the remaining system of equations is determined. It
follows that the remaining variables αi, βj are rational functions of α0, β0

and γ. These rational functions define the parametrization

kδ1+δ2−2 → kδ1+δ2+2n−2

(α0, β0, γ) �→ (α, β, γ)

of a variety V that can be identified with the vectors of principal coefficients
(C1, C2, q). Let L be the field of rational functions of V. It is clear that
every class γki is algebraic over k(α, β) ⊆ L and that L = k(α0, β0, γ) by
the parametrization. Thus, {α0, β0, γ} and {α, β} are transcendence bases
of the field of rational functions of V. It follows that I(V ) ∩ k[γ] = 0, that
is, the set of possible tuples of residual coefficients of the points q̃i contains
a dense Zariski-open set. �

Example 38. Consider the case of two conics C1 = “(−11)+2x+2y+2xy+
0x2+0y2”, C2 = “0+8x+14y+20xy+12x2+14y2”, their stable intersection is
the set of points {(2,−6), (−4, 2), (−13,−14), (−6,−6)}. These four points
are in general position with respect to C1 and C2 so, for any generic lifts
of C1, C2, the residual coefficients of their intersection points are generic.
However, consider now the case of two conics C1 = “0 + (−10)x + (−10)y +
(−10)xy+0x2+0y2” and C2 = “0+(−10)x+(−10)y+(−10)xy+1x2 +2y2”.
They have only one intersection point of multiplicity 4, {(0,−1

2
)}. Taking

the point three or four times yields a set which is not in general position
in none of the curves. Hence, the maximal number of intersection points
that are in general position in both curves is 2. So, the drawback of this
theorem is that the number n of points in general position in both curves is
not uniform with respect to the supports. The following is a uniform result
that holds for every pair of curves with prescribed support.

Theorem 39. Suppose given two tropical curves C1, C2 with support I1

and I2 respectively. Let C̃1, C̃2 be two lifts of the curves whose principal
coefficients are generic and let q be one stable intersection point. Then,
the principal coefficients of q̃ are generic. That is, if we impose polynomial
conditions F �= 0 to the coefficients of C̃i then the set of possible residual
coefficients of the point q̃ contains a dense constructible set of k2.
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Proof. One point q is always in general position with respect to any curve,
so we are in the hypotheses of Theorem 37. �

3. Lift of a construction

Let C be a geometric construction of graph G. This Section deals with the
problem of lifting a tropical instance of G obtained by the construction to
an algebraic instance. Let H0 be the set of input elements of C and h a
tropical realization of H0. The steps of the construction define a tropical
realization p of G. On the other hand, let h̃ be any algebraic realization
of H0 that projects onto h, T (h̃) = h (recall that this lift is not unique).
Then, there are two potential problems. First, it is possible that C is not
well-defined in h̃. Second, if the construction is well-defined and p̃ is the
algebraic realization of G obtained from h̃, it is possible that T (p̃) �= p. We

study conditions for the lift h̃ such that the following diagram commutes:

(3.1)

(K∗)2 T2

Input h̃
T−1

←− Input h
C ↓ ↓ C

Output p̃
T−→ Output p

Given an instance of a geometric construction, we define sufficient resi-
dual conditions on the lifts h̃ of the input h for the compatibility T (p̃) = p.
In order to do this, let {C1, . . . , Cn, q1, . . . , qm} be the input elements of a
geometric construction C, were each curve Ci has support Ii 1 ≤ i ≤ n and
{q1, . . . , qm} are points in the plane. Take N = 2m+

∑n
i=1(δ(Ii)−1) and let

{f̃1, . . . , f̃n, q̃1, . . . , q̃m} be a set of lifts of a concrete tropical instance of the

input, where f̃i =
∑

(k,l)∈Ii
ãi

(k,l)x
kyl, q̃j = (q̃1

j , q̃
2
j ). We are going to compute

a constructible set S ⊆ (k∗)N , not always empty, that encodes the residual
conditions for the compatibility of the algebraic and tropical construction.
We define two auxiliary sets U and V first. The set U is defined adding the
residual restrictions obtained by Theorems 24 and 36 that ensure that each
step of the construction is compatible with tropicalization. Let

fi = “
∑

(k,l)∈Ii

ai
(k,l)x

kyl”, 1 ≤ i ≤ n, qj = (q1
j , q

2
j ), 1 ≤ j ≤ m

be the tropical input elements. Take a generic lift of the input

f̃ ′
i =

∑
(k,l)∈Ii

ãi
(k,l)x

kyl, 1 ≤ i ≤ n, q̃′j = (q̃1
j , q̃

2
j ), 1 ≤ j ≤ m
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and V0 = {αi
(k,l), γ

r
j} is a set of indeterminates where Pc(ãi

(k,l)) = αi
(k,l),

Pc(q̃i
j) = γi

j . These indeterminates will describe S. Perform the construc-
tion with this data as follows.

Start defining the constructible set U = (k∗)N={x ∈ kN |αi
(k,l) �=0, γr

j �= 0,

1 ≤ i ≤ n, 1 ≤ j ≤ m} and V = V0, K = #V . We are going to redefine
U and V inductively at each step of the construction. Suppose that we
have defined V and the constructible set U ⊆ (k∗)K for the construction
up to a construction step. We redefine U after the step as follows: For
the case of the computation of the curve C of support I passing through
δ(I) − 1 points, we have to solve a system of linear equations. The coeffi-

cients of C̃ are rational functions of the variables V . Theorem 24 provides
sufficient conditions in the variables V for the system being compatible with
tropicalization. These conditions are of the form ΔAi(Pc(Ãi)) �= 0 where
A is the tropical matrix of the system of linear equations. We add to V
(δ(I) − 1) new variables s1, . . . , sδ−1 and we consider U ⊆ (k∗)K+δ−1. We

add the conditions ΔAi(Pc(Ãi)) �= 0 to the definition of U and the equations

ΔAi(Pc(Ãi))−siΔAi0 (Pc(Ãi0)) = 0, where i0 is a dehomogenization variable

for C. We follow the construction with C̃ among our available objects.
Suppose now that our construction step consists in the intersection of

two curves f̃ , g̃ of support If , Ig respectively. Its stable intersection can
be determined using the technique of resultants. That is, consider first the
resultant polynomials R̃x(x) = Res(f̃ , g̃, y), R̃y(y) = Res(f̃ , g̃, x). Let a
be a natural number such that x − ay is injective on the finite set T (f) ∩
T (g) ∩ T (R(x)) ∩ T (R(y)). Let R̃z(z) = Res(f̃(zya, y), g̃(zya, y), y). If tr
are the variables of V corresponding to the principal coefficients of f̃ , g̃,
Theorem 36 provides sufficient conditions of the form ũ(tr) �= 0 that ensure
that the algebraic and tropical intersection are compatible. We add these
polynomials ũ(tr) �= 0 to the definition of U . In the tropical context, there
are M = M(Δf , Δg) stable intersection points bj = (b1

j , b
2
j ). We add 2M

new variables s1
j , s2

j , 1 ≤ j ≤ M to V . Consider U contained in (k∗)K+2M .
For each tropical point bj , let sj1, . . . , sjn be the algebraic points projecting
onto bj . We take the following equations:

(R̃x)b1j
=

n∏
r=1

(x− s1
jr

), (R̃y)b2j
=

n∏
r=1

(y − s2
jr

),

(R̃z)“b1j (b2j )−a” =
n∏

r=1

(z − s1
jr

(s2
jr

)−a).

In this way, the coefficients of (R̃x)b1j
, (R̃y)b2j

and (R̃z)“b1j (b2j )−a” are identified

with symmetric functions in s1
jr

, s2
jr

and s1
jr

(s2
jr

)−a respectively. We add
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these identifications to the definition of U . In this way, we ensure that there
is a bijection between the roots of the resultants and the variables sj . We
also add the residual conditions of the curves over the intersection points
f̃bj

(s1
j , s

2
j) = 0, g̃bj

(s1
j , s

2
j) = 0, and the conditions of the points being in the

torus s1
js

2
j �= 0. We continue the construction with the points (s1

i t
−b1i , s2

i t
−b2i ).

Notice that we are only defining the principal terms of the elements, because
this is all the information needed for the Theorem. After the whole construc-
tion, we have defined a constructible set U that characterizes the possible
principal term of every element in the construction. Finally, S is defined as
the projection of the set defined by U to the space of variables V0.

Definition 40. The set S previously defined is called the set of valid prin-
cipal coefficients of the input elements.

Theorem 41. Let {C1, . . . , Cn, q1, . . . , qm} be the input elements of a geo-
metric construction C, were each curve Ci has support Ii 1 ≤ i ≤ n and
{q1, . . . , qm} are points in the plane. Take N = 2m +

∑n
i=1(δ(Ii) − 1) and

let {f̃1, . . . , f̃n, q̃1, . . . , q̃m} be a set of lifts of a concrete tropical instance

of the input, f̃i =
∑

(k,l)∈Ii
ãi

(k,l)x
kyl, q̃j = (q̃1

j , q̃
2
j ), Pt(ãi

(k,l)) = αi
(k,l)t

−ai
k,l,

Pt(q̃i
j) = γi

jt
−qi

j . Let S ⊆ (k∗)N be the set of valid principal coefficients of
the input. Then, if the vector(

α1
(k,l), . . . , α

n
(k,l), γ

1
1 , . . . , γ

2
m

)
∈ (k∗)N

of principal coefficients lies in S, the algebraic construction is well-defined
and the result projects onto the tropical construction.

Proof. Suppose that the vector (α1
(k,l), . . . , α

n
(k,l), γ

1
1 , . . . , γ

2
m) belongs to S.

We are going to construct suitable algebraic data. Perform the steps of the
construction: for the curve passing through a number of points, the set S

imposes that there is only one solution of the linear system we have to solve
and that this solution projects correctly; for the case of the intersection of
two curves, the resultants R̃x, R̃y, R̃z are compatible with projection. So,
the curves intersect in finitely many points in the torus and these points
project correctly onto the tropical points. So this step is also compatible
with the tropicalization. �

In this theorem, it is not claimed that there is always a possible lift, as
Theorem 11 does. It is possible that the set S is empty. In this case, the
theorem does not yield any conclusion. In Subsection 3.1 we will discuss
what can be said if the computed S is empty.

Now, we search sufficient conditions for a construction C that assert that
the set S is non empty for every realization h of the input. For example,
let C be a depth 1 construction. There are only two kinds of elements, input
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elements and depth 1 elements. If the realization h̃ of the input elements
is generic, by Theorems 24 and 36, every depth 1 element is well-defined
and projects correctly. Thus, every depth 1 tropical construction can be
lifted to the algebraic plane. Furthermore, if the vector of coefficients of
the depth 1 elements is generic, we would be able to construct some other
depth 2 elements from them. By Theorems 25 and 39, we already know
that every single depth 1 element is generic. However, it may happen that
there are algebraic relations among the set of depth 1 elements that do not
allow to apply induction in further steps. So, in order to use an induction
scheme over the construction, we need to ensure that in future steps of the
construction we will only use elements that are generic. The next defini-
tion describes constructions such that this genericity of the elements always
holds, whatever the input elements are.

Definition 42. Let C be a geometric construction. Let G be the incidence
graph with the orientation induced by the construction. The construction C
is admissible if, for every two nodes A, B of G, there is at most one oriented
path from A to B. The case where there are at least two oriented paths
from A to B is denoted by A ⇒ B.

The main Theorem of the Section proves that, if C is an admissible
geometric construction, then every tropical realization of C can be lifted to
a compatible algebraic realization.

Theorem 43. Let C be an admissible geometric construction. Then, for
every tropical instance of the construction, the set S defined in Theorem 41
is non empty and dense in (k∗)N . Moreover, for every element X of the
construction, its possible values, as the input elements range over S, con-
tains a dense open subset of its support space. In particular, every tropical
instance of the construction C can be lifted to the algebraic plane (K∗)2.

Proof. We prove the Theorem by induction on the depth of the construc-
tion. If the construction is of depth 0, then there is nothing to prove, because
the set of steps is empty and S = (k∗)N which is dense and the values of
each element are dense in their respective space of configurations. Suppose
the theorem is proved for admissible constructions of depth smaller or equal
to i. Let C be any admissible construction of depth i + 1. For each ele-
ment X of depth i + 1, let Y1, . . . , Yn be the direct predecessors of X. By
induction hypothesis, the set of possible values of Yi contains a dense open
set in its space of configurations. As the construction is admissible, the set
of predecessors of Yi is disjoint from the set of predecessors of Yj, if i �= j,
because if both elements had a common predecessor A, there would be a
double path A ⇒ X, contrary to the hypotheses. Hence, the coefficients
Y1, . . . , Yn are completely independent and the possible tuples (Y1, . . . , Yn)
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are just the concatenation of possible values of coefficients of each element Yi.
By the results in the Theorems 25 and 39, as the elements Yj are generic, so
is X. That is, the possible values of X contain a dense open set of its support
space. The conditions imposed by the definition of X to the auxiliary set U
in Theorem 41 are a set of inequalities in the tuples (Y1, . . . , Yn) that are
verified on an open set. Likewise, the restrictions in the elements Yj impose
other restrictions to their predecessors. Again, these restrictions are verified
in an open set, we are explaining this with more detail:

If Yj is constructed from elements Zji, there is a set of restrictions
fs(Zji) �= 0, s ∈ S that ensure that Yj is well-defined and it is compatible
with tropicalization. Let gl(Y1, . . . , Yn) �= 0, 1 ≤ l ≤ L be the polynomi-
als imposed by X to be well-defined and compatible with tropicalization.
In addition to this, if Yj = (Y 1

j , . . . , Y
nj

j ), each variable Y r
j is algebraic

over the field p(k)(Zji), where p(k) is the prime field of k. If we multi-
ply each polynomial gl(Y1, . . . , Yn) by its conjugates in the normal closure
of p(k)(Zji) ⊆ p(k)(Zji, Yi), we obtain some polynomials Gl(Zj1, . . . , Zjn).
If neither Gl(Zij) nor fs(Zij) are zero, then the elements Yi and X are
well-defined and are compatible with projection. These polynomials define
possible valid principal coefficients for the subconstruction Zji → Yi → X.
Applying this method recursively, we obtain a set of conditions in the input
elements. Let Si be the set of good input elements for every subconstruction
of C consisting of the elements of depth up to i. By induction hypothesis,
Si is non empty and contains a Zariski-open set. Intersecting this set with
the open sets induced by each element X of depth i + 1 to be compatible
with tropicalization, we obtain that the required set Si+1 contains a dense
Zariski-open set. �

Tropical geometric constructions are a useful tool when dealing with
nontrivial incidence relations between varieties. It agrees naturally with
the stable intersection of the curves taken in consideration. Moreover, it
permits to arrange the computations focusing on the smaller set of input
objects. Now, we quantify how well a realization of a construction behaves
with respect to tropicalization. In order to determine the potentially good
situations, we focus on the following concepts:

• An abstract geometric construction. That is, we do not specify the
coordinates of the points, neither the concrete curves, only their sup-
port and the steps of the construction. Moreover, we ask it to be
well-defined in both fields K and k.

• The specialization of the input elements of the abstract construction
to concrete tropical elements.

• A concrete algebraic lift of the given set of input elements.
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These concepts are manipulated by adding quantifiers relating them in
order to obtain a statement like:

“K1 tropical construction K2 specialization of the input data K3 lift of
these input data, diagram 3.1 commutes”.

Where K1, K2, K3 ∈ {∀, ∃}. We arrive naturally to the following problems:

Questions 44.

1. For all constructions, for all input tropical data and for all lifts of these
tropical data, diagram 3.1 commutes.

2. For all constructions and for all input tropical data there is a lift of
these tropical data such that diagram 3.1 commutes.

3. For all constructions, there is a choice of the input tropical data such
that for all lift of these tropical data, diagram 3.1 commutes.

4. There exists a construction such that for all input tropical data and
for all lifts of these tropical data, diagram 3.1 commutes.

5. For all constructions, there is a choice of input tropical data and there
is a lift of these tropical data such that diagram 3.1 commutes.

6. There exists a construction such that for all input tropical data there
is a lift of these tropical data such that diagram 3.1 commutes.

7. There exists a construction and there is suitable input tropical data
such that for all lifts of these tropical data, diagram 3.1 commutes.

8. There exists a construction, particular input tropical data and a suit-
able lift of these tropical data such that diagram 3.1 commutes.

Clearly, these relations are not independent, ranking (non linearly) from
item 1, which is the strongest, to item 8, the weakest one. Checking these
problems gives an overview of the typical problems we find when dealing
with incidence conditions in Tropical Geometry. The only statements that
hold are items 5, 6, 7 and 8. For the sake of brevity, we will consider mostly
the case where our curves are lines on the plane.

Proposition 45. The only items of problem 44 that hold are 5, 6, 7 and 8.

Proof.
• Take two tropical lines in the plane that intersect in only one point.

Then, for all lifts of these two lines, the intersection point always tropicalizes
to the tropical intersection. So statement 44.7 holds and, from this, we derive
that 44.8 also does.

• Choose two curves that intersect in an infinite number of points. In
Theorem 11, we are given a way to compute lifts that intersect in non-stable
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points. So the property of agreement with tropicalization is not universal for
the non-transversal cases. This simple example shows that statement 44.1
does not hold. Using duality, we observe also that the concept of stable
curve through a set of points does not work for every input data and every
lift (ie. there will always be exceptional cases). Thus, since every tropical
geometric construction consists of a sequence of these two steps (computing
the stable curve through a set of points, or computing the stable intersection
of two curves), we deduce that statement 44.4 neither holds. In particular,
if we are able to find a construction such that for all input data we arrive to
these exceptional cases, we will find a counterexample to question 44.3. An
example of such a construction is as follows:

Input: points a, b, c, d, e.

Depth 1: lines l1 := ab, l2 := ac, l3 := ad, l4 := ae.
Depth 2: points p12 = l1 ∩ l2, p13 = l1 ∩ l3, p14 = l1 ∩ l4, p23 = l2 ∩ l3,

p24 = l2 ∩ l4, p34 = l3 ∩ l4.

First, we compute four tropical lines through one fixed point a. If point
a is exactly the vertex of one of the lines, then two of the input points are
the same and there is an infinite number of lines passing through these two
points. On the other hand, if a is never the center of the lines, it must be
in one of the three rays. There are only three possibilities for the rays, the
directions (−1, 0) (0,−1) and (1, 1). As there are four lines involved, two of
the branches must have the same direction, so these two lines intersect in
an infinite number of points and we are done.

• To go further in the analysis, it is necessary to have more tools that
takes care of more complicated constructions. Theorem 43 establishes that
for an admissible construction and for all realizations of the input elements,
there always exists a lift of these elements such that all the steps of both
constructions are coherent with the tropicalization. In particular, we have
the validity of question 44.6 for every admissible construction.

• Also, a counterexample to 44.2 is the following. Take three points a,
b, c. Construct the lines l1 = ab, l2 = ac and the point p = l1 ∩ l2. If we
perform this construction in the projective plane with three points not in the
same line, we will always find that p = a. But in the tropical case, taking
a = (0, 0), b = (−2, 1), c = (−1, 3), we arrive to p = (0, 1) �= a. This simple
example shows a concrete construction and input data such that for all lifts
of the input elements, diagram 3.1 does not commute. Note that in this case
there are double paths in the construction graph. If we follow the method
exposed in Theorem 41, then, for all lifts, we arrive that the constructible
set S is contained in 0 �= 0. That is, the set of valid principal coefficients is
empty.
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• Finally, let us prove 44.5. This case of course cannot be restricted to
the linear case. Suppose given a geometric construction, we choose as input
data the most degenerate case possible: if we have a point, we choose the
point to be p0 := (0, 0) and if we have a curve with prescribed support,
we take all its coefficients equal to zero. As a set, it consists of some rays
emerging from the origin (0, 0) in perpendicular directions to the edges of the
Newton polygon of the curve. The stable intersection of any two such curves
is always the isolated point p0 with the convenient multiplicity. The stable
curve with prescribed support taking all elements equal to the origin is the
one with all coefficients equal to zero. It only remains to check that there
is a lift compatible with this tropical construction. As the construction is
well-defined, it is realizable for the generic input in (k∗)2. This construction
can be embedded in (K∗)2 with all the elements of order 0. �

As an application of the construction method and Theorem 43, we are
able to extend Theorem 11 to a wider set of incidence configurations.

Theorem 46. Let G be an incidence structure, suppose that we have a
tropical realization p of G such that, for every curve C, the set of points
incident to C is in general position with respect to C. Then, the tropical
realization can be lifted to an algebraic realization.

Proof. For each curve C of support I, let q1, . . . , qn be the set of points
incident to C. By definition of points in general position, we can extend
this set to a set of points q1, . . . , qδ(I)−1 such that C is the stable curve
through these points. Add to the configuration G these additional points
for every curve C. We obtain in this way an incidence configuration G1 that
contains G as a substructure and such that every curve C of support I is
exactly the stable curve passing through the points q1, . . . , qδ(I)−1. Hence,
by Proposition 15, G1 is the graph of a geometric construction C. The input
elements are the set of points qi and every curve is the stable curve through
{q1, . . . , qδ(I)−1}. This construction is admissible, because it is of depth 1.
By Theorem 43, every tropical instance p1 of C can be lifted to an algebraic
instance p̃1 of C. In particular, the instance p of G we started from can be
lifted to the algebraic plane. �

This Theorem shows how the notion of points in general position helps
to solve the problem of lifting an incidence configuration. Our next goal is
to apply this notion to more complex configurations coming from geometric
constructions. The key idea for this application is that points in general
position with respect to a curve C behave like input points for the purposes
of Theorem 43.
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Theorem 47. Suppose that we are given a non-admissible geometric con-
struction C but such that the only obstacle to be an admissible construction is
that we have two curves C1, C2 with intersection Q = {q1, . . . , qn} such that
Q is used twice to define some successor element x. That is, every double
path A ⇒ B in C can be restricted to a double path from both curves passing
through Q,

C1 ⇒ Q ⇒ B and C2 ⇒ Q ⇒ B.

Suppose we have an instance p of this construction. If, for every element
x which is the end of a double path, the set Qx = {qi ∈ Q | ∃qi → x} is
in general position in C1 and C2, then the tropical instance can be lifted to
an algebraic realization p̃ of the construction. More concretely, the set S of
Theorem 41 associated to p contains an open dense subset of (k∗)N .

Proof. First, we are proving that, for any single node x of C, its construction
can be lifted. Let x be a node of C. Let Cx be the minimal subconstruction
of C such that it contains every input element of C and the element x. This
minimal subconstruction can be defined as follows. First, we consider as
nodes of Cx the input elements of C, the node x and every predecessor of x.
The incidence conditions will be those induced by C. Second, we complete
it with the necessary nodes of C as in the proof of Proposition 15. Actually,
the only nodes we have to add are the intersection points of two curves y1,
y2 that have to be intersected (necessarily, these curves will be predecessors
of x). Let Sx be the set of valid input elements of the construction Cx. By
the construction of S,

S =
⋂

x∈p∪B

Sx.

So, if every Sx contains a non-empty Zariski-open set of (k∗)N , the same
occurs for S.

If Cx is admissible, then Sx contains a non-empty Zariski-open set by
Theorem 43. If Cx is not admissible, the set Qx contains at least two ele-
ments. Moreover, for every node y in Cx it happens that Qy ⊆ Qx.

Consider now the minimal subconstruction C1
x containing every input

element and the set Qx. This construction is admissible, so S1
x is dense.

On the other hand, the possible principal coefficients of the set Qx form a
dense set of its space of configurations by Theorem 37. Let C2

x be the sub-
construction obtained from Cx by deleting every predecessor of the points
in Qx and the intersection of C1 and C2 not in Qx. This construction is also
admissible, because the curves C1, C2 have been deleted among other ob-
jects. Therefore S2

x is also dense. The projections of the set S1
x and S2

x into
the support space of Qx contains an open dense subset, their intersection
also contains a non-empty dense subset. This means that there are values
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of the principal coefficients of Qx that are generic and compatible with both
subconstructions C1

x and C2
x. It follows that for a residually generic lift of the

input elements of Cx, every step will be well-defined and compatible with
tropicalization. Thus, Sx contains a dense subset of (k∗)N . �

In contrast to Theorem 43, this Theorem does not work for every tropical
realization of a particular construction C, because it is stated in terms of the
realization. It needs some additional hypotheses in the construction (some
points are in general position) that depend on the concrete realization. It
still has its applications, such as Theorem 60.

3.1. Impossibility for the existence of a lift

Suppose that we have a non-admissible geometric construction C and a trop-
ical instance of it such that the constructible set S is empty. Then, we would
still like to know if it is possible to lift the construction. The only result
that affirms that it is impossible to have a lift is Proposition 22. We can
provide a similar notion for the stable intersection of curves. Theorem 36
provides compatibility restrictions in the residual coefficients of f̃ and g̃ in
terms of resultants R(x). The next proposition states some certificates of
compatibility and incompatibility between the algebraic and the tropical
resultant.

Proposition 48. Let f, g be two tropical curves, let {γ1, . . . , γr} be the resid-
ual conditions for the compatibility of the algebraic and tropical resultant
R(x) provided by Theorem 36. These are the residual coefficients γi �= 0
corresponding to the indices i that are vertices of the subdivision induced in
the Newton polygon of R(x). With these conditions:

• If every polynomial γi is a monomial, then, the algebraic resultant is
always compatible with tropicalization T (R̃(x)) = T (R(x)).

• If one polynomial γi is a monomial, then the algebraic resultant R̃(x) is
compatible with tropicalization if and only if the remaining polynomials
γj are nonzero.

• If every polynomial γi is zero, we cannot derive any information about
the compatibility.

Proof. Let R̃(x) =
∑r

i=0 h̃ix
i, R(x) =

∑r
i=0, hix

i be the algebraic and

tropical resultants. If γi �= 0 then the principal term of h̃i is exactly γit
−hi.

The conditions searched for the compatibility of the resultants is that the
elements γi associated to an index i such that it is a vertex of the subdivi-
sion induced in the Newton polytope of R(x) do not vanish. If one γi is a
monomial, then it will never evaluate to zero. So the Newton diagram will
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not change if and only if the remaining γj do not evaluate to zero. Hence we
have the first two items. On the other hand, if every γi evaluates to zero,
we cannot know how the Newton diagram of R̃(x) is with respect to the
Newton diagram of R(x), it may change or not. �
Definition 49. Let C be a construction and p a tropical realization of it.
Let x be a node of C. We say that x is a fixed element of C if:

• x is an input element of C.

• x is the curve of support I passing through {y1, . . . , yδ(I)−1} and at least
one of the tropical minors of the linear system defining x is regular (See
Proposition 22).

• x is an intersection point of y1 and y2 and, if C1, C2 are the tropical
realization of curves y1, y2, then, at least one the residual conditions
γi1(x), γi2(y) and γi3(xy−a) of each resultant R(x), R(y), R(xy−a)
defined in Theorem 36 is a monomial.

Remark 50. Let C be a geometric construction and p a tropical realization
of C. Suppose that the set S associated to the tropical realization is empty.
Then, during the definition of the auxiliary set U in Theorem 41, there will be
a step such that U was not empty before the step, but the restrictions added
in this step forces U to be empty. This step consists in defining an element x.
Let h1, . . . , hr be the residual polynomials codifying the compatibility of
this algebraic step with tropicalization defined using Theorem 24 and 36.
Suppose that at least one of the polynomials hi does not evaluate to zero.
Then:

• If every predecessor of x is fixed, by Propositions 22 and 48, there
cannot be any lift of the tropical realization of C. Because for every
lift of the input elements, either one of the predecessors of x does not
tropicalize correctly or, if every lift of the predecessors of x tropicalize
correctly, then the element x either is not well-defined, or it will never
tropicalize correctly.

• If at least one predecessor of x is not fixed, then, there might be a
lift of the tropical realization of C or not. But at least, there cannot
be any lift with residually generic input elements. There must be
some algebraic relations among the residual coefficients of the algebraic
input elements of C.

On the other hand, if every residual polynomial hi evaluates to zero, we
cannot conclude anything, there might be a lift of the realization or not.
And this lift may work for the generic input or not. In this case the residual
coefficient approach is not enough to answer the question.
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For most geometric constructions the remarks above are enough. That
is, if the associated set S is empty, then either we can deduce that for the
generic lift of the input elements the algebraic construction will not project
correctly. Or even that there cannot be a lift at all. In fact, for every
geometric construction that we have faced during the development of this
theory, every instance of every construction fell in these two cases. It is
difficult to find a construction and an instance of the construction such that
the construction method and the set S do not provide any information. The
following example is basically the only one with this behaviour that we are
aware of.

Example 51. In this example, for convenience with the geometric language
and to show how common situations are modeled, we will suppose that the
algebraic torus (K∗)2 is contained in the affine plane and this one contained
in the projective plane. With this in mind, we can talk about concepts
such as horizontal line (curve of support {(0, 0), (0, 1)}) vertical line (curve
of support {(0, 0), (1, 0)}) or the line at infinity. This is intended only to
simplify notations and use a more natural language, but it does not interfere
with the result itself.

First, we need a specific construction. Given a point a and a line l. We
look for a geometric construction such that, in the algebraic plane, it defines
the parallel of l passing through a. The difficulty is to define it with the
restricted allowed steps of Definition 12.

l′=Parallel(a, l, q):
Input: points a, q, line l.
Depth 1: vertical line v1 passing through a.

vertical line v2 passing through q.
horizontal line h1 passing through q.
line r1 passing through {a, q}.

Depth 2: point p1 = l ∩ r1 and point p2 = l ∩ v2.
Depth 3: horizontal line h2 passing through p1.
Depth 4: point p3 = h2 ∩ v1.
Depth 5: line r2 passing through {p2, p3}.
Depth 6: point p4 = r2 ∩ h1.
Depth 7: line l′ passing through {a, p4}.

In the algebraic case, if the input elements a, l, q are generic, then the
construction yields a realization of the hypotheses of Pappus’ Theorem with
one of the lines being the line at infinity and two of the points are the points
at infinity with projective coordinates [0 : 1 : 0] and [1 : 0 : 0], see Figure 3.
Pappus theorem implies that the lines l, l′ intersect at the line at infinity.
Thus, l′ is the parallel to l passing through a. The same approach works
if we replace l (a generic line) by a line passing through the affine origin
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Figure 3: How to construct a parallel line through one point

of coordinates (curve of support {(1, 0), (0, 1)}) and a. We will use this
construction as an auxiliary for the following:

Take as input points a, b, c, q, let o = (0, 0) be the origin of coordinates in
the affine plane K2, a line through a point p and o is just the curve through
p of support {(1, 0), (0, 1)}. Consider the following construction:

Depth 1: l1 = oa, l2 = ob, l3 = oc
Depth 2-8: l4 = Parallel(a, l2, q), l5 = Parallel(b, l1, q)
Depth 9: d = l4 ∩ l5
Depth 10: l6 = od
Depth 11-17: l7 = Parallel(d, l3, q), l8 = Parallel(c, l6, q)
Depth 18: z = l7 ∩ l8
Depth 19: l9 = az

In the affine plane, we have constructed the parallelograms oadb and odzc.
Hence, if a = (a1, a2), b = (b1, b2) and c = (c1, c2), then d = (a1 + b1, a2 + b2)
and z = (a1 + b1 + c1, a2 + b2 + c2). Notice that this construction if far from
being an admissible one.

Take the following tropical input elements of this construction, a = (0, 0),
b = (−1,−1), c = (−2,−2) and q = (2,−1). For this input, we have that
z = (0, 0) and l9 = “0x+0y +0”. The constructible set S associated to this
input is the empty set. Lifts of the input elements are

ã = (α1 + · · · , α2 + · · · ), b̃ = (β1t + · · · , β2t + · · · ),
c̃ = (γ1t

2 + · · · , γ2t
2 + · · · ), q̃ = (η1t

−2 + · · · , η2t + · · · )
The algebraic computation of z̃ leads to the point

z̃ = (α1 + · · · , α2 + · · · ).
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That is, the principal term of ã and z̃ are the same. So, we cannot compute
the algebraic line l̃9 nor we can deduce if the generic lift of the input will
work or if there will be a lift at all. However, it can be checked that the set
Sz associated to the subconstruction that defines z is non empty and dense
{β2 − η2 �= 0, α2β1 − α1β2 �= 0,−α1γ2 + γ1α2 �= 0} ∩ (k∗)8.

In fact, for this construction and this tropical realization, the generic
lift works and it is compatible with tropicalization. To explain this, we
know that z̃ = ã + b̃ + c̃. If ã = (ã′

1, ã
′
2), b̃ = (̃b′1t, b̃

′
2t), c̃ = (c̃′1t

2, c̃′2t
2), q̃ =

(q̃′1t
−2, q̃′2t), where ã′

i, b̃
′
i, c̃

′
i, q̃

′
i are elements of valuation zero, then z̃ = (ã′

1 +

b̃′1t+c̃′1t
2, ã′

2+b̃′2t+c̃′2t
2) and l̃9 = (̃b′2t+c̃′2t

2)x+(−b̃′1t−c̃1t
2)y+(ã′

2b̃
′
1−ã′

1b̃
′
2)t+

(ã′
2c̃

′
1−ã′

1c̃
′
2)t

2 = 0. If α2β1−α1β2 �= 0 then T (l̃9) = “(−1)x+(−1)y+(−1)” =
“0x + 0y + 0” = l9.

As a negative example, take the same construction but we take as input
element b = (−1,−2), then we will arrive to the same situation of unde-
cidability as above: the set S is again empty. If we take as before generic
lifts of the input elements, the element b̃ is of the form b̃ = (̃b′1t, b̃

′
2t

2). Now,

z̃ = (ã′
1 + b̃′1t + c̃′1t

2, ã′
2 + (̃b′2 + c̃′2)t

2) and l̃9 = (̃b′2 + c̃′2)tx + (−b̃′1 − c̃′1t)y +

ã′
2b̃

′
1 + (ã′

2c̃
′
1 − ã′

1b̃
′
2 − ã′

1c̃
′
2)t. Then T (l̃9) = “(−1)x + 0y + r”, where r ≥ 0.

So it never tropicalizes correctly.

4. The notion of constructible theorem

Many classical theorems in Projective Geometry deal with properties of con-
figurations of points and curves. Thus, we can use the relationship between
the algebraic and tropical configurations in order to transfer a theorem from
Classical Geometry to Tropical Geometry. So, we need a notion of “Theo-
rem” in terms of configurations. We propose the following notion.

Definition 52. A constructible incidence statement is a triple (G, H, x) such
that G is an incidence structure, H is a geometric construction, called the
hypothesis, such that, considered as an incidence configuration, H is a full
substructure of G, H ⊆ G. Moreover,

{pG ∪BG} \ {pH ∪BH} = {x},

there is only one vertex x of G which is not a vertex of H , this is called the
thesis node.

Let H0 be the set of input elements of H as a construction. Let K be
an algebraically closed field. The incidence statement holds in K or it is a
constructible incidence theorem over K if it holds for the generic realization
of H0. That is, if there is a non-empty open set L defined in the support
space of H0, L ⊆ SH0 such that:
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• For every h̃ ∈ L, the construction H is well-defined.

• If p̃ ∈ RH is the realization of H constructed from h̃, then there is an
element x̃ such that (p̃, x̃) is a realization of G.

In the tropical context, the construction H is always well-defined. Every
realization h of the input of H defines a realization p of H by the construc-
tion. So, a constructible statement holds in the tropical plane or it is a
tropical constructible incidence theorem if, for each realization p of H ob-
tained by the construction, there is a tropical element x such that (p, x) is
a tropical realization of G.

Example 53. There are many straightforward theorems that fit in this
definition. For example, let H0 = {p1, p2, l1}, where p1, p2 are points and l1
is a line. Let C be the construction consisting in computing the line l2
through p1 and p2. Let x be the thesis node representing a point and impose
the conditions that x belongs to both lines l1 and l2. The vertices of G
are {p1, p2, l1, l2}. The edges (incidence conditions) of G are those of H ,
{(p1, l2), (p2, l2)} plus the edges connecting the thesis node {(x, l1), (x, l2)}.
This statement only asserts that l1, l2 have a common point. So it holds in
every field K and also in the tropical plane T2.

Of course, this notion is interesting if the thesis node x and the elements
linked to it h1, . . . , hn form an incidence structure G0 that is not realizable
whenever the elements h1, . . . , hn are generic. For instance, the case where
x is a line containing three points h1, h2 and h3. Now we prove a transfer
result for constructible incidence theorems.

Theorem 54. Let Z = (G, H, x) be a constructible incidence statement.
Suppose that the construction H is admissible. If Z holds in a concrete
algebraically closed field K, then it holds for every tropical plane T2.

Proof. First, suppose that T is the value group of the algebraically closed
field K such that Z holds. Let h be a tropical realization of the input
elements of the hypothesis H . Let p be the tropical realization of H con-
structed from h. As H is an admissible construction, by Theorem 43, the
set S defined in (k∗)N associated to h contains a non-empty open set. It

follows that there is always a lift h̃ of h belonging to L and such that its
principal coefficients belong to the set S. Then, we can lift p to an alge-
braic realization p̃ of H constructed from h̃. As Z holds in K, there is an
element x̃ such that (p̃, x̃) is a realization of G. It follows that its projection
(p, x) is a tropical realization of G and Z holds in T.

For the general case, the set L of good input elements of H is definable
in the first order language of the prime field of K. So, if the theorem holds
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in an algebraically closed field, it holds over any algebraically closed field of
the same characteristic [12]. In particular, fixed a tropical semifield T, there
is an algebraically closed valued field L of the same characteristic as K and
whose valuation group is T. Thus, if Z holds in K, then it also holds in L

and hence, it holds in T. �

4.1. Examples of theorems

Some examples of constructible incidence theorems are shown. They are all
classical theorems, but they are rewritten as constructible incidence theo-
rems. There is an additional problem when expressing the theorems this way.
Usually, it is not enough to provide a naive construction of the hypotheses,
because it is very likely that the resulting construction is not admissible and
Theorem 54 does not apply. So, the presentation of the theorems might
seem strange at first sight.

4.1.1. Fano plane configuration theorem

This first example shows the dependence of the characteristic of the field K

in order to derive the validity of a constructible incidence theorem in the
tropical context. The classical Theorem deals with the configuration of
points and lines in the projective plane over the field F2.

7

4

5

6

321

�

��

��

�

�

Figure 4: Fano plane configuration

This Fano plane configuration consists of 7 lines and 7 points as repre-
sented in Figure 4. This configuration cannot be realized over a plane of char-
acteristic zero. In a field of characteristic 2, if for seven points 1, 2, 3, 4, 5, 6, 7
the triples (1, 2, 3), (1, 4, 7), (3, 6, 7), (1, 5, 6), (2, 5, 7), (1, 4, 7) are collinear,
then the points (2, 4, 6) are also collinear. This Theorem holds in a field K

if and only if the field is of characteristic 2. About the tropicalization of
this Theorem, it was proved to hold in T2 by M. Vigeland using specific
techniques [16]. See also [3] for an application of this configuration to the
comparison of different notions of the tropical rank of a tropical matrix.
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Theorem 55. (Fano plane configuration Theorem). Construction of
the hypothesis H:

Input: points 1, 3, 5, 7.
Depth 1: lines a = 13, b = 15, c = 17, d = 35, e = 37, f = 57.
Depth 2: points 2 = a ∩ f , 4 = c ∩ d, 6 = b ∩ e.
Thesis node: l

Thesis: points 2, 4, 6 belong to l.

The construction hypothesis is admissible, so we can derive that the the-
orem holds in the tropical plane. In brief, this Theorem proves that, if we
start with any set of points 1, 3, 5, 7 in which even we may allow repetitions
and we perform the construction steps above, then three new points 2, 4, 6
will be obtained, and these three new points will necessarily lie on a common
tropical line l.

4.1.2. Pappus Theorem

This classical theorem was studied from a tropical perspective in [11]. There,
the authors showed that a direct translation of the usual hypotheses of the
theorem does not imply the thesis in the tropical context. On the other
hand, they proposed a constructive version of this Theorem. We proved this
constructive version of this Theorem in [13] using a precursor technique of
our construction method.

Theorem 56. (Pappus Theorem). Construction of the hypothesis H:

Input: points 1, 2, 3, 4, 5.
Depth 1: lines a = 14, b = 24, c = 34, a′ = 15, b′ = 25, c′ = 35.
Depth 2: points 6 = b ∩ c′, 7 = a′ ∩ c, 8 = a ∩ b′.
Depth 3: lines a′′ = 16, b′′ = 27, c′′ = 38.
Thesis node: point p

Thesis: lines a′′, b′′, c′′ pass through p.

4.1.3. Converse of Pascal’s Theorem

Let A, B, C, A′, B′, C ′ be six points in the plane, let P = AB′ ∩ A′B,
Q = BC ′ ∩B′C, R = AC ′ ∩A′C. The converse of Pascal’s Theorem proves
that if P, Q and R are collinear, then A, B, C, A′, B′, C ′ belong to a conic.
The dimension of the space of realizations of a Pascal configuration is 11:
5 degrees of freedom come from the conic and the points A, B, C, A′, B′, C ′

belonging to the conic add one degree of freedom each. If we want to define
a constructible theorem such that the thesis node is the conic, then the
algebraic elements of the construction of the hypothesis can only be points
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and lines. By the nature of the steps of a construction, any construction that
only uses points and lines will provide configurations whose realization space
has even dimension (as it equals the dimension of the support space of the
input elements). It follows that the dimension of the support space of any
potential construction of a Pascal configuration H is even. So, we cannot
obtain such a construction for this theorem. However, we can define a bigger
construction such that it contains a Pascal configuration as a substructure.
Namely, we can add three arbitrary points X1, X2, X3 belonging to AB′,
BC ′, CA′ respectively, see Figure 5. Hence our configuration G is a Pascal
configuration with three additional marked points X1, X2, X3. Its dimension
is now 14. This is an example of how an additional step “choose a line
through A” in a construction can be modeled by adding the additional free
point X1 and then defining the line AX1.

Theorem 57. (Converse of Pascal’s Theorem). Construction of the
hypothesis H:

Input: points A, B, C, X1, X2, X3, line l.

Depth 1: lines LAB′ = AX1, LBC′ = BX2, LCA′ = CX3.
Depth 2: points P = LAB′ ∩ l, Q = LBC′ ∩ l, R = LCA′ ∩ l.
Depth 3: lines LAC′ = AR, LBA′ = BP , LCB′ = CQ.
Depth 4: points A′ = LCA′ ∩ LBA′ , B′ = LAB′ ∩ LCB′ ,

C ′ = LAC′ ∩ LBC′.
Thesis node: conic R.

Thesis: points A, B, C, A′, B′, C ′ belong to conic R.

Figure 5: Converse of Pascal’s Theorem
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4.1.4. Chasles’ Theorem

Chasles’ Theorem [5] states that if {q1, . . . , q9} are the intersection points
of two cubics, then any cubic passing through {q1, . . . , q8} also passes through
q9. This implies that given another free point q0, there is always a cubic
through {q0, q1, . . . , q9}. This version can be easily translated to the tropical
context.

Theorem 58. (Chasles’ Theorem). Construction of the hypothesis H:

Input: cubics C1, C2, point q0.
Depth 1: points {q1, . . . , q9} = C1 ∩ C2.
Thesis node: cubic R.

Thesis: points {q0, q1, . . . , q9} belong to cubic R.

It is not true that every cubic passing through eight of the intersection
points passes through the ninth. See Figure 6. Let f = “0+1x+1y +1x2 +
3xy + 1y2 + 0x3 + 1x2y + 1xy2 + 0y3”, g = “19 + 14x + 20xy + 24y + 7x2 +
12x2y + 23xy2 + 28y2 + 0x3 + 31y3”,

f ∩st g = {(−1,−3), (0,−3), (1,−3),
(−1,−4), (0,−4), (1,−4),
(−1,−5), (0,−5), (1,−5) }

Take h = “0 +1x+5y + 11
2
xy +1x2 +9y2 +5x2y +9xy2 +0x3 +12y3”. This

is a cubic passing through 8 of the stable intersection points of f and g but
not through the ninth.

An alternative to Chasles’ Theorem that also holds in the tropical plane
is the following. Take 8 + n points {q1, . . . , q8}, {x1, . . . , xn}, n ≥ 3. All the
steps are computing the cubic Ci passing through {q1, . . . , q8, xi}, 1 ≤ i ≤ n.
The thesis node is a point x and the thesis is that x belongs to Ci, 1 ≤ i ≤ n.
The difference with the previous version of Chasles’ Theorem is that, by
construction, the eight points {q1, . . . , q8} are always in general position in
every cubic Ci. In our example, the points are not in general position neither
in T (f) nor T (g).

An immediate generalization of Chasles’ Theorem is the following.

4.1.5. Cayley-Bacharach Theorem

The generalization of Chasles’ Theorem (cf [5]) we discuss here is the follow-
ing: let C1, C2 be plane curves of degrees d and e respectively, intersecting
in de distinct points Q = {p1, . . . , pde}. If C is any plane curve of degree
d + e − 3 containing all but one point of Q, then C contains every point
of Q. The second version of Chasles’ Theorem given does not fit well to this
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theorem, but the generalization of the first version of Chasles’ Theorem is
immediate, note that a curve of d+e−3 is determined by d2+e2−3e−3d

2
points:
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Figure 6: A cubic through 8 but not 9 intersection points of two other cubics

Let d, e ≥ 3 be natural numbers, l = 1 + d2+e2−3e−3d
2

Theorem 59. (Cayley-Bacharach Theorem). Construction of the hy-
pothesis H:

Input: degree d curve C1, degree e curve C2, points p1, . . . , pl.
Depth 1: points {q1, . . . , qde} = C1 ∩ C2.
Thesis node: curve R of degree d + e− 3.

Thesis: points {q1, . . . , qde} ∪ {p1, . . . , pl} belong to curve R.

4.1.6. Weak Pascal’s Theorem

This Theorem is not in the context of Theorem 54 because the construction
involved is not admissible. Nevertheless, for some tropical realization of the
hypothesis, we will be in the context of Theorem 47. So this Theorem does
not hold for every tropical input, we have to add conditions in the tropical
realization.

Theorem 60. (Weak Pascal’s Theorem). Consider the following con-
struction:

Input: conic Z, lines L1, L2, L3.
Depth 1: points {A, B′}=Z ∩ L1, {B, C ′}=Z ∩ L2, {C, A′}=Z ∩ L3.
Depth 2: lines L4 = AC ′, L5 = BA′, L6 = CB′.
Depth 3: points P = L1 ∩ L5, Q = L2 ∩ L6, R = L3 ∩ L4.

If a tropical instance of this construction is such that each set of points
{A, C ′}, {B, A′} and {C, B′} is in general position with respect to Z, then
there is a line L (thesis node) that contains the points P , Q and R.
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Proof. This construction, in the algebraic context, provides instances of
Pascal’s Theorem. Hence, if the input is generic, then the points P̃ , Q̃, R̃
are collinear. But this construction is not admissible, so Theorem 54 does
not apply. Nevertheless, this construction is in the context of Theorem 47.
The minimal multiples paths are Z ⇒ L4, Z ⇒ L5 and Z ⇒ L6. By The-
orem 47, if each one of these three sets is in general position with respect
to R, then this tropical instance can be lifted to a generic instance in the
algebraic framework. Since Pascal’s Theorem holds in K, P̃ , Q̃ and R̃ are
collinear. So P , Q and R will be collinear. �

Example 61. Let Z = “3y +5+3y2 +0x2 +4x+0xy”, L1 = “1y +0x+0”,
L2 = “0y + 0x + 2” L3 = “(9/2)y + 0x + 3”, then A = (3, 2), B′ = (1, 0),
B = C ′ = (2, 3/2), C = (1,−3/2), A′ = (4,−1/2), L4 = “3y + 2x + (9/2)”,
L5 = “(3/2)x+4y +(11/2)”, L6 = “0x+1y +1”, P = (5/2, 3/2), Q = (2, 1),
R = (5/2,−3/2). The points P , Q and R are not collinear, in this example,
the set {C, B′} is not in general position in Z.

However, for these input elements, the election of the points in the
depth 1 steps is arbitrary. If we now take A = (1, 0), B′ = (3, 2), B = C ′ =
(2, 3/2), C = (4,−1/2) and A′ = (1,−3/2), now L4 = “2y+(3/2)x+(5/2)”,
L5 = “2y + (3/2)x + (5/2)”, L6 = “4y + 2x + 6”, P = (1, 0), Q = (2, 2),
R = (1,−3/2). In this case, the three sets of points are in general position
in Z, it can be checked that the three points belong to the tropical line of
equation L = “2x + 2y + 3”.
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