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Strong A∞–weights are A∞–weights
on metric spaces

Riikka Korte and Outi Elina Kansanen

Abstract

We prove that every strong A∞–weight is a Muckenhoupt weight
in Ahlfors–regular metric measure spaces that support a Poincaré
inequality. We also explore the relations between various definitions
for A∞-weights in this setting, since some of these characterizations
are needed in the proof of the main result.

1. Introduction

The purpose of this paper is to study strong A∞–weights and A∞–weights in
Ahlfors-regular metric measure spaces. In particular, we answer to a ques-
tion proposed by Costea in [7], and show that every strong A∞–weight is
an Ap–weight for some p < ∞ also in general metric setting. The space is
assumed to be Ahlfors–regular and satisfy a weak (1, 1)–Poincaré inequality.
We thus extend the result by Semmes [18] from Rn to general metric spaces.
The Euclidean proof used extensively the linear structure of Rn, for example
convolutions and lines parallel to the coordinate axes. These tools are nat-
urally not available in the metric setting. However, they can be replaced by
more general methods. This shows, in particular, that the geometry of Rn

is not crucial to the result.
Strong A∞-weights were first introduced in Rn by David and Semmes

in [8] and [18] when trying to characterize the subclass of A∞–weights that
are comparable to the Jacobian determinants of quasiconformal mappings.
Later they have studied strong A∞–weights, for example, in [19]. See also
Bonk, Heinonen and Saksman [4] and [5] and Heinonen and Koskela [14] for
further results concerning the quasiconformal Jacobian problem. Recently,
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strong A∞-weights have been studied, for example, by Costea in [7] and [6].
In [7] he studies connections between strong A∞–weights and Besov and
Morrey spaces, and in [6] he extends the results to the metric setting.
Strong A∞–weights turn out to be useful in various applications, such as in
studying elliptic partial differential equations, weighted Sobolev inequalities
and Mumford–Shah type functionals. See, for example, [1], [3], [9], [10], [11],
[15] and [16].

In Euclidean spaces, there are several equivalent characterizations for
A∞–weights. For example, a weight is an A∞–weight if and only if it satis-
fies the reverse Hölder inequality or belongs to the class Ap for some finite p.
Some of these relations are needed in proving that strong A∞–weights are
A∞–weights. However, in more general spaces, all of these conditions are
not necessarily equivalent, and, in particular, the class of A∞–weights can
be strictly larger than the union of Ap–classes, see Strömberg and Torchin-
sky [21]. In the last section of the paper, following [21], we study the relations
between five different conditions in general metric spaces, and, in particular,
we show that strong A∞-weights satisfy all of them. Furthermore, we give
some examples of weights that only satisfy some of the characterizations.

2. Preliminaries

2.1. Assumptions on the measure

Let (X, d, μ) be a metric measure space, where μ is Borel regular. We assume
that the space is Ahlfors Q–regular with Q ≥ 1, i.e. there exists cA ≥ 1 such
that

1

cA
rQ ≤ μ(B(x, r)) ≤ cA rQ

for all x ∈ X and r > 0. Notice that such a measure is always doubling, that
is, there exists a constant cD ≥ 1 such that

μ(B(x, 2r)) ≤ cDμ(B(x, r))

for all x ∈ X and r > 0. Later, λB denotes the ball with the same center
as B but λ times its radius.

2.2. Modulus of a curve family and Newtonian spaces

Let 1 ≤ p < ∞. For a given curve family Γ in X, we define the p–modulus
of Γ by

modp(Γ) = inf

∫
X

ρp dμ,
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where the infimum is taken over all nonnegative Borel functions ρ :X→ [0,∞]
satisfying

(2.1)

∫
γ

ρ ds ≥ 1

for all rectifiable curves γ ∈ Γ. We recall that a curve is rectifiable if its
length is finite.

Let u be a real–valued function on X. We recall that a nonnegative Borel
measurable function g on X is said to be an upper gradient of u if for all
rectifiable curves γ joining points x and y in X we have

(2.2) |u(x) − u(y)| ≤
∫

γ

g ds.

If the above property fails only for a set of curves that is of zero p–modulus
then g is said to be a p–weak upper gradient of u. Every function u that
has a p–integrable p–weak upper gradient has a minimal p–integrable p–weak
upper gradient denoted gu.

Finally, we recall that the Newtonian space N1,p(X) is the collection of
all p–integrable functions u on X that have a p–integrable p–weak upper
gradient g on X. For the precise definition; see, for example, [20].

2.3. Poincaré inequality

We assume that X satisfies a weak (1, 1)–Poincaré inequality, i.e., there
exists constants cP , λ > 0 such that∫

B(x,r)

|u − uB(x,r)| dμ ≤ cP r

∫
B(x,λr)

gu dμ

for all u ∈ N1,1(X), x ∈ X and r > 0.

The following estimate is a consequence of the Poincaré inequality; see
for example Lemma 3.3 in [3] for a proof.

Lemma 2.3. Let (X, d, μ) be a metric measure space, where μ is doubling
and X supports a weak (1, 1)–Poincaré inequality. Let Γ be a curve family
consisting of all rectifiable curves joining B(x0, r) and X \ B(x0, 2r). Then

mod1(Γ) ≥ Cμ(B(x0, r))/r.

The constant C > 0 depends only on cD and cP .

Next we define Ap– and strong A∞–weights.
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2.4. Ap–weights

Let 1 < p < ∞ and 1/p + 1/q = 1. Let ω be a nonnegative function
on X. We say that ω is an Ap–weight, and write ω ∈ Ap if there exists a
constant cω > 0 such that( ∫

B

ω dμ

)( ∫
B

ω1−q dμ

)p−1

≤ cω

for all balls B in X.
We say that ω is an A1–weight, and write ω ∈ A1 if there exists a

constant cω > 0 such that ∫
B

ω dμ ≤ cω ess inf
B

ω

for all balls B in X.

Finally, ω is an A∞–weight and we write ω ∈ A∞ if there exists con-
stants cω > 0 and δ > 0 such that∫

E
ω dμ∫

B
ω dμ

≤ cω

(
μ(E)

μ(B)

)δ

for all balls B in X and all measurable subsets E of B.

We will discuss the relations between these definitions in Section 4.

2.5. Strong A∞–weight

Let ν be a doubling measure on X. We associate to ν the quasi–distance
δν(x, y) on X defined by

δν(x, y) = [ν(B(x, d(x, y))) + ν(B(y, d(x, y)))]1/Q.

We say that ν is a metric doubling measure, if there exists a distance function
δ : X × X → [0,∞) and a finite constant C > 0 such that

(2.4)
1

C
δ(x, y) ≤ δν(x, y) ≤ Cδ(x, y)

for all x, y ∈ X. Moreover, ω ∈ L1
loc(X) is called a strong A∞–weight,

ω ∈ SA∞, if it is a density of a metric doubling measure, i.e.

(2.5) dν = ω dμ.

Notice that the property (2.4) can be characterized in the following way,
which will be useful later.



Strong A∞–weights are A∞–weights on metric spaces 339

Lemma 2.6. The condition (2.4) holds if and only if there is a constant
C > 0 such that for any finite sequence x1, x2, . . . , xk of points in X, we have

(2.7) δν(x1, xk) ≤ C

k−1∑
j=1

δν(xj , xj+1).

Proof. It is immediate that (2.4) implies (2.7). To prove the converse,
define

δ(x, y) = inf

N−1∑
i=0

δν(zi, zi+1),

where the infimum is taken over all finite sequences z0 = x, z1, . . . , zN = y.
Clearly δ(x, y) ≤ δν(x, y) for all x, y ∈ X, and (2.7) implies that δν(x, y) ≤
Cδ(x, y). It is also easy to check that δ(·, ·) is a distance function. �

The following theorems give some examples of strong A∞-weights.

Theorem 2.8. Every A1–weight is a strong A∞–weight.

Proof. Notice first that the statement of Lemma 2.6 holds if and only if
it holds with the additional restriction that xj ∈ B(x1, 2d(x1, xk)) for all j.
The proof is similar to the Euclidean case and can be found in [18].

Assume then, that ω ∈ A1 and dν = ω dμ. Let x1, . . . , xk be given and
assume, that xj ∈ B(x1, 2d(x1, xk)) for all j. Write B = B(x1, d(x1, xk))
and Bj = B(xj , d(xj, xj+1)) for j = 1, . . . , k − 1.

Notice also, that since ν is doubling, it readily follows from the definition
of δν that for all x, y ∈ X, we have

(2.9) ν(B(x, d(x, y)))1/Q ≤ δν(x, y) ≤ Cν(B(x, d(x, y)))1/Q,

where C depends only on the doubling constant. Then (2.9) implies that

δν(xj , xj+1) ≥
( ∫

Bj

ω dμ

)1/Q

≥ (
ess inf

Bj

ω
)1/Q

μ(Bj)
1/Q

≥ (
ess inf

6B
ω
)1/Q

μ(Bj)
1/Q.

Summing the above inequality over j = 1, . . . , k − 1 we get

k−1∑
j=1

δν(xj , xj+1) ≥
(
ess inf

6B
ω
)1/Q

k−1∑
j=1

μ(Bj)
1/Q

≥ C
(
ess inf

6B
ω
)1/Q

k−1∑
j=1

d(xj , xj+1) ≥ C
(
ess inf

6B
ω
)1/Q

d(x1, xk)

≥ C
(
ess inf

6B
ω
)1/Q

μ(B)1/Q,
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where we used the triangle inequality and the Ahlfors regularity of μ. More-
over, since ω is an A1–weight, and μ is doubling, we get

(
ess inf

6B
ω
)1/Q

μ(B)1/Q ≥ C

( ∫
6B

ω dμ

)1/Q

μ(B)1/Q

≥ C

( ∫
B

ω dμ

)1/Q

≥ Cδν(x1, xk).

The proof follows now from Lemma 2.6. �

Theorem 2.10. Let (X, dX , μX) and (Y, dY , μY ) be locally compact Ahlfors
regular metric measure spaces such that X supports a weak (1, p)–Poincaré
inequality for some p < Q and let f : X → Y be a quasisymmetric mapping.
Then the Jacobian of f is a strong A∞-weight.

Proof. We write

L(x, r) = sup
dX(x,y)≤r

dY (f(x), f(y)), l(x, r) = inf
dX(x,y)≥r

dY (f(x), f(y)),

and recall that f is quasisymmetric, if it is a homeomorphism with a positive
and finite constant K such that L(x, r) ≤ K l(x, r) for all x ∈ X and r > 0.
Moreover, remember that the generalized Jacobian is defined as

Jf (x) = lim
r→0

μY (f(B(x, r)))

μX(B(x, r))
.

By the Lebesgue-Radon-Nikodym theorem, the limit exists almost every-
where, and

(2.11)

∫
E

Jf dμX = μY (f(E))

for all measurable E ⊂ X, since the measures are absolutely continuous.
Consider dν = Jf dμX. Let x, y ∈ X and write d(x, y) = r. Then

dY (f(x), f(y))Q ≤ L(x, r)Q

≤ KQl(x, r)Q

≤ CKQμY (B(f(x), l(x, r)))

≤ CKQμY (f(B(x, r)))

= CKQ

∫
B(x,r)

Jf dμX

≤ CKQδν(x, y)Q.
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Here we used the Ahlfors regularity and quasisymmetricity. On the other
hand,

δν(x, y)Q =

∫
B(x,r)

Jf dμX +

∫
B(y,r)

Jf dμX

= μY (f(B(x, r))) + μY (f(B(y, r)))

≤ μY (B(f(x), L(x, r))) + μY (B(f(y), L(y, r)))

≤ C
(
L(x, r)Q + L(y, r)Q

)
≤ CKQ

(
l(x, r)Q + l(y, r)Q

)
≤ 2CKQdY (f(x), f(y))Q.

Since dY (f(·), f(·)) is a distance on X, the claim follows. �

3. Main result

In this section, we show that metric doubling measures have A∞-densities
in Ahlfors regular metric spaces. In particular, this implies that strong A∞–
weights are A∞-weights in this setting. First, we recall the Gehring lemma.
A proof can be found, for example, in [17], [22] and [2].

Theorem 3.1. Let 1 < p < ∞ and assume that f ∈ L1
loc(X) is nonnegative

and defines a doubling measure. If there exists a constant c such that f
satisfies the reverse Hölder inequality

(3.2)

(∫
B

f p dμ

)1/p

≤ c

∫
B

f dμ

for all balls B of X, then there exists positive constants ε and cε such that

(3.3)

(∫
B

f p+ε dμ

)1/(p+ε)

≤ cε

∫
B

f dμ

for all balls B of X. The constant cε as well as ε depend only on the doubling
constant, p, and on the constant in (3.2).

Now we are ready to state our main result.

Theorem 3.4. Suppose that ν is a metric doubling measure. Then ν has
an A∞–density.

Proof. Let ν be a metric doubling measure. First, we construct a set of mea-
sures {νt}t>0 that approximate ν. Then we show that the weights {ωt}t>0

related to measures {νt}t>0 as in (2.5) satisfy a reverse Hölder inequality
with uniform constants.
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Fix t > 0. Let {Bt
i = B(xi, t)}∞i=1 be a collection of balls such that

X =
∞⋃
i=1

Bt
i

and
B(xi, t/5) ∩ B(xj , t/5) = ∅ for all i 
= j.

Note that the doubling property of μ implies that

(3.5)

∞∑
i=1

χ2Bt
i
< C.

To construct a partition of unity, we define cut–off functions

φ̃t
i(x) =

⎧⎪⎨
⎪⎩

1, x ∈ Bt
i ,

2 − dist(x, xi)/t, x ∈ 2Bt
i \ Bt

i ,

0, x ∈ X \ 2Bt
i ,

and we set

φt
i =

φ̃t
i∑∞

i=1 φ̃t
i

.

Let

at
i =

∫
X

φt
i dν∫

X
φt

i dμ
.

Since both μ and ν are doubling, and

1

C
χBt

i
≤ φt

i ≤ χ2Bt
i
,

we have

(3.6)
1

C

ν(Bt
i )

μ(Bt
i)

≤ 1

C

ν(Bt
i)

μ(2Bt
i)

≤ at
i ≤ C

ν(2Bt
i)

μ(Bt
i)

≤ C
ν(Bt

i )

μ(Bt
i)

.

Finally, we define the measures νt, t > 0 as

νt(A) =

∞∑
i=1

at
i

∫
A

φt
i dμ.

Thus

dνt = ωt dμ =
( ∞∑

i=1

at
iφ

t
i

)
dμ.
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The doubling property of μ and ν together with (3.6) imply that for every
x, y ∈ X such that d(x, y) ≤ 2t, we have

(3.7)
1

C
ωt(x) ≤ ωt(y) ≤ Cωt(x).

More precisely, we have

(3.8)
1

C

ν(B(x, t))

μ(B(x, t))
≤ ωt(y) ≤ C

ν(B(x, t))

μ(B(x, t))
,

where C depends only on the doubling constants of μ and ν.

Now fix a ball B(x0, r0) in X. If t ≥ r0, we have by (3.7)

(3.9)

(∫
B(x0,r0)

ωt dμ

)1/Q

≤ Cωt(x0)
1/Q ≤ C

∫
B(x0,r0)

ω
1/Q
t dμ.

Now consider the case t < r0. By the definition of ωt and the fact that
diam(supp(φt

i)) ≤ 4t, we have

∫
B(x0,r0)

ωt dμ =

∫
B(x0,r0)

( ∞∑
i=1

at
iφ

t
i

)
dμ ≤

∑
i∈I

∫
X

φt
idν∫

X
φt

idμ

∫
X

φt
i dμ

≤
∫

B(x0,r0+4t)

1dν = ν(B(x0, r0 + 4t))

(3.10)

where i ∈ I if supp(φt
i) ∩ B(x0, r0) 
= ∅.

Let Γ be the set of all rectifiable curves γ : [0, L] → X parametrized by
arc length such that γ(0) ∈ B(x0, r0/2) and γ(L) ∈ ∂B(x0, r0). Fix γ ∈ Γ.
Let k be the integer part of L/t. Using the previous estimate, Lemma 2.6
and the doubling property of ν, we obtain

∫ L

0

ωt(γ(s))1/Q ds =

k∑
j=1

∫ jt

(j−1)t

ωt(γ(s))1/Q ds +

∫ L

kt

ωt(γ(s))1/Q ds

≥ 1/C

k∑
j=1

ν(B(γ(jt), t))1/Q ≥ 1/C

k∑
j=1

δν(γ((j − 1)t), γ(jt))

≥ 1/Cδν(γ(0), γ(L)).

Thus for every γ ∈ Γ we have

ν(B(x0, r0))
1/Q ≤ C

∫
γ

ω
1/Q
t ds.
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If we define

ρ =
C

ν(B(x0, r0))1/Q
ω

1/Q
t χB(x0,r0),

then ρ satisfies (2.1) for every γ ∈ Γ and consequently

mod1(Γ) ≤
∫

X

ρ dμ =
C

ν(B(x0, r0))1/Q

∫
B(x0,r0)

ω
1/Q
t dμ.

This combined with (3.10) and Lemma 2.3 gives(∫
B(x0,r0)

ωt dμ

)1/Q

≤ C
ν(B(x0, r0 + 4t))1/Q

μ(B(x0, r0))1/Q

≤ C
ν(B(x0, r0))

1/Q

μ(B(x0, r0))1/Q
≤ C

∫
B(x0,r0)

ω
1/Q
t dμ,

(3.11)

where C is independent of t, x0 and r0. The first two inequalities above
follow from the definition of νt and the doubling property of ν. Here we also
used the Ahlfors regularity of μ. By combining (3.9) and (3.11), we obtain(∫

B(x0,r0)

ωt dμ

)1/Q

≤ C

∫
B(x0,r0)

ω
1/Q
t dμ

for all t > 0.
If we set f = ω

1/Q
t , the Gehring lemma 3.1 now implies that there exists

ε > 0 such that(∫
B(x0,r0)

ω
1+ε/Q
t dμ

) 1
1+ε/Q

≤ C

∫
B(x0,r0)

ωt dμ,

with C independent of t, x0 and r0. By Lemma 4.2 in the next section
this implies that ωt is an A∞–weight, and there exist p > 1 and C > 0,
independent on t, such that

(3.12)
νt(E)

νt(B)
≤ C

(
μ(E)

μ(B)

)1/p

for all balls B and measurable subsets E ⊂ B.

Next, we show that
νt → ν

weakly in the sense of measures as t → 0. In order to do that, fix an open
set U ⊂ X. Denote

Uε = {x ∈ U : d(x, X \ U) > ε}
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and
I t = {i : 2Bt

i ⊂ U} = {i : φt
i = 0 in X \ U}.

Note the fact that diam(2Bt
i) ≤ 4t implies that i ∈ I t whenever

supp(φt
i) ∩ U4t 
= ∅,

and, consequently, ∑
i∈It

φt
i ≥ χU4t .

Now by the definition of νt, we have

νt(U) =

∞∑
i=1

∫
X

φt
i dν∫

X
φt

i dμ

∫
U

φt
i dμ ≥

∑
i∈It

∫
X

φt
i dν∫

X
φt

i dμ

∫
U

φt
i dμ

=

∫
X

∑
i∈It

φt
i dν ≥ ν(U4t).

Thus
lim inf

t→0
νt(U) ≥ lim inf

t→0
ν(U4t) = ν(U).

Since this holds for all open sets U ⊂ X, the claim follows.

Next we show that (3.12) holds true for ν. To this end, fix a ball B, a
measurable set E ⊂ B and an open set V such that E ⊂ V ⊂ B. Note that
the weak convergence of νt implies that

lim sup
t→0

νt(S) ≤ ν(S)

for all closed sets S ⊂ X, and by the doubling property of ν we have

ν(B) ≤ ν(2B) ≤ cDν(B)

for all balls B ⊂ X. Consequently,

ν(E)

ν(B)
≤ C

ν(V )

ν(2B)
≤ C

ν(V )

ν(B)
≤ C

lim inft→0 νt(V )

lim supt→0 νt(B)

≤ C lim inf
t→0

νt(V )

νt(B)
≤ C

(
μ(V )

μ(B)

)1/p

.

Since μ is Borel regular, taking infimum over all such V finishes the proof
of the claim. Finally, Lemma 4.2 implies that ν has an A∞–density. �

Corollary 3.13. Every strong A∞–weight is an A∞–weight.
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4. Characterizations for A∞-weights

There are several equivalent characterizations for A∞-weights in the Eu-
clidean setting. However, not all of them are necessarily equivalent in gen-
eral metric spaces. In this section, we study the relationship between these
conditions in metric spaces that are only assumed to satisfy the doubling
condition. Most of these results can be found in [21], but for completeness,
we have included the proofs here.

Recall the definitions of Ap–weights from Section 2.4. It follows imme-
diately from the definitions that for every 1 < p < q < ∞ we have

A1 ⊂ Ap ⊂ Aq ⊂ A∞ .

Moreover, in the Euclidean case,

A∞ =
⋃

p<∞
Ap .

Also in the metric setting, an Ap–weight is always an A∞–weight, but there
exist metric spaces, where the class of A∞-weights is strictly larger than the
union; see [21] and Example 4.1.

Next, we state five conditions that are equivalent in the Euclidean setting.
For more definitions and the Euclidean case; see [12]. We consider a slightly
more general situation first. Let ν be an arbitrary measure on X. We say
that ν is a weighted measure with respect to μ is there exists ω ∈ L1

loc(X)
such that for every μ–measurable set A ⊂ X we have

ν(A) =

∫
A

ω dμ.

We define the conditions:

1. There are 0 < ε, δ < 1 such that for each ball B and each measurable
set E ⊆ B, we have ν(E) ≤ (1 − δ)ν(B) whenever μ(E) ≤ εμ(B).

2. There are constants c > 0 and p ≥ 1 such that

ν(E)

ν(B)
≤ c

(
μ(E)

μ(B)

)1/p

for each ball B and each measurable set E ⊆ B.

3. ν is a weighted measure with respect to μ, and there exist positive
constants ε , C such that the weight ω satisfies the reverse Hölder in-
equality (∫

B

ω1+ε dμ

)1/(1+ε)

≤ C

∫
B

ω dμ

for all balls B.
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4. ν is a weighted measure with respect to μ, and there exist constants
c > 0, p ≥ 1 such that

ν(E)

ν(B)
≥ c

(
μ(E)

μ(B)

)p

for each ball B and each measurable set E ⊆ B.

5. ν is a weighted measure with respect to μ, and the weight ω is in Ap

for some p > 1.

If only the measure μ is assumed to be doubling, we obtain the following
relations between the conditions above in the metric setting:

(1) ⇐ (2) ⇔ (3) ⇐ (4) ⇔ (5).

First we make some immediate remarks. The condition (1) follows easily
from (2), and, since (1) is symmetric with respect to ν and μ, it follows also
from (4). Condition (4) follows from (5) by applying the Hölder inequality on

μ(E) =

∫
B

χEω1/pω−1/p dμ.

In addition, (4) implies that ν is doubling.

The following example shows that in general metric spaces, the condi-
tions (3) and (4) are not necessarily equivalent:

Example 4.1. Let X = {x ∈ Rn : x1 = 0 or x2 = 0} with n ≥ 2. We
endow X with the l∞-metric i.e. d(x, y) = max1≤i≤n |xi−yi| and the (n−1)-
dimensional Lebesgue measure μn−1. Clearly, the measure μn−1 is doubling
and the space (X, d, μn−1) satisfies a (1, 1)-Poincaré inequality.

Now let ω(x) = χ{x1 �=0}(x). This weight satisfies condition (2) with p = 1
and c = 2 (and therefore also (3)). This follows easily from the fact that
any ball B ⊂ X that intersects the set {x ∈ X : x1 = x2 = 0} satisfies

μn−1({x ∈ B : x1 = 0}) = μn−1({x ∈ B : x2 = 0}) = μn−1(B)/2.

However, it cannot satisfy condition (4) since it is not doubling.

Lemma 4.2. (2) ⇔ (3)

Proof. We give a sketch of the proof. If we assume (2), the absolute conti-
nuity part in (3) is clear. We fix a ball B and write Eλ = {x ∈ B : ω(x) > λ}.
Then by (2), we have

μ(Eλ) ≤ 1

λ
ν(Eλ) ≤ c

λ
ν(B)

(
μ(Eλ)

μ(B)

)1/p

,
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and, hence
μ(Eλ) ≤ min{μ(B), c

(
ν(B)q/(λμ(B)1/p)q

)}.
Now (3) follows from∫

B

ω1+ε dμ = (1 + ε)

∫ ∞

0

λεμ(Eλ) dλ

with 0 < ε < q − 1.
On the other hand, (2) follows from (3) by applying first the Hölder and

then the reverse Hölder inequality to ν(E) =
∫

B
χEω dμ.

Note that the doubling property of μ is not needed here. �

The proof of the following lemma is similar to the Euclidean case; see [12].

Lemma 4.3. (2) & (4) ⇒ (5)

The proof of the following theorem is based on ideas in [21]. However,
the proof we present here is organized in a different way and contains more
details.

Theorem 4.4. If ν is doubling, then (1) ⇒ (2) and (1) ⇒ (4).

In order to prove Theorem 4.4 we introduce the notion of telescoping
sequences of sets.

Definition 4.5. Let s > 0. We say that {Fk}k0

k=1 is a s–telescoping sequence
of collections of balls, Fk = {Bi,k}∞i=1, provided that

• Bi,k ∩ Bj,k = ∅, for each i 
= j and k.

• For each B ∈ Fk, k = 1, 2, . . . , k0 − 1, there exists B̃ ∈ Fk+1 such that

sB ⊂ sB̃.

The following lemma is a standard covering argument, see for example
Theorem 1.2 in [13]. We have formulated it here to emphasize the fact that
the cover can be chosen in such a way that every ball in F is included in 5B
for some B ∈ G.

Lemma 4.6. Every family F of balls of uniformly bounded diameter in a
metric space X contains a disjointed subfamily G such that⋃

B∈F
B ⊂

⋃
B∈G

5B.

In fact, every ball B from F meets a ball from G with radius at least half
that of B.
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Now we are ready to prove Theorem 4.4.

Proof of Theorem 4.4. We show that (1) implies (2). Note that in this
proof, cD denotes a constant that only depends on the doubling constants
of μ and ν, but it is not necessarily exactly the doubling constant.

Fix a ball B0 = B(x0, R) and a measurable set E ⊂ B0. To prove
the assertion, we will construct a 5-telescoping sequence of collections of
balls Fk, k = 1, 2, . . . , k0, where k0 is an integer such that

(4.7) (ε/c2
D)k0+2 < μ(E)/μ(B0) ≤ (ε/c2

D)k0+1,

and the following properties hold: If

(4.8) Ek :=
⋃

B∈Fk

B and Ẽk :=
⋃

B∈Fk

5B,

then we have E ⊂ Ẽ1, Ẽk0 ⊂ 5B0, and

(4.9) ν(Ẽk−1 ∩ B) ≤ (1 − δ)ν(B)

for all B ∈ Fk. Here δ is as in (1). Note that (4.7) implies that

(4.10) k0 ≥ log(μ(E)/μ(B0))

log(ε/c2
D)

− 2.

We may assume that μ(E)/μ(B0) is small enough so that k0 is positive,
because if μ(E)/μ(B0) is bigger than a fixed constant, choosing c big enough
makes the right–hand side of (2) bigger than one.

Once such a telescoping sequence of collections of balls has been con-
structed, the conclusion follows since

ν(Ẽk−1) = ν(Ẽk−1 ∩ Ek) + ν(Ẽk−1 \ Ek)

≤
∑

B∈Fk

ν(Ẽk−1 ∩ B) + ν(Ẽk \ Ek) ≤ (1 − δ/cD)ν(Ẽk).
(4.11)

Here we used the fact that Ek is a union of disjoint balls satisfying (4.9),

Ẽk−1 ⊂ Ẽk, and that
ν(Ẽk) ≤ cDν(Ek).

The last estimate above follows from the doubling property of ν. Iterat-
ing (4.11), we obtain

ν(E)/ν(B0) ≤ cDν(E)/ν(5B0) ≤ cDν(Ẽ1)/ν(Ẽk0) ≤ cD(1 − δ/cD)k0−1.

Then (2) follows by (4.10) with constants c and p depending only on δ, ε and
the doubling constants of μ and ν. Now it remains to construct the Fk’s.
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We start with F1. Let x ∈ E be a Lebesgue point of X. Then we have

lim
r→0

μ(E ∩ B(x, r))

μ(B(x, r))
= 1,

and hence there exists rε > 0 such that

(4.12)
μ(E ∩ B(x, rε))

μ(B(x, rε))
> ε.

On the other hand, for all r > 0,

(4.13)
μ(E ∩ B(x, r))

μ(B(x, r))
≤ μ(E)

μ(B(x, r))
,

where the right–hand side tends to zero as r tends to infinity since E is of
finite measure. We set rx = 2nrε, where n is the smallest positive integer
such that

(4.14)
μ(E ∩ B(x, rx))

μ(B(x, rx))
≤ ε.

By (4.13) such an n exists, and by the choice of rx and (4.12), it follows that

(4.15)
μ(E ∩ B(x, rx/2))

μ(B(x, rx/2))
> ε.

Now the doubling property of μ together with (4.14) and (4.15) implies that

(4.16) εμ(B(x, rx))/cD < μ(E ∩ B(x, rx)) ≤ εμ(B(x, rx)).

Now let F1 be a pairwise disjoint subfamily of the balls {B(x, rx)}x∈E

given by the 5–covering Theorem 4.6. Note that we are actually only able
to cover Lebesgue points of E but this is enough, since μ–almost every point
is a Lebesgue point.

Now let E1 and Ẽ1 be defined by (4.8). Next, we replace E by Ẽ1 and
construct F2 the same way as we constructed F1. Moreover, we repeat the
procedure k0−1 times and construct Fk by replacing E above by Ẽk−1, k ≥ 2.

Next, we show that Ẽk0 ⊂ 5B0. Assume, by contradiction, that there

exists m ≤ k0 such that Ẽm � 5B0. Then there exist balls B(xk, rk) ∈ Fk,
k = 1, 2, . . . , m such that

xk+1 ∈ B(xk, 5rk), k = 1, 2, . . . , m − 1,

and B(xm, 5rm) � 5B0.
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Since E ⊂ B0, we also know that B(x1, r1) intersects B0. This im-
plies that

(4.17)

m∑
k=1

5rk > 4R0.

Note also that since Ẽm−1 ⊂ 5B0, also xm ∈ 5B0. Next, we need an estimate
for the measure of Ẽk. First, by (4.16), we obtain

μ(Ẽk) = μ
( ⋃

B∈Fk

5B
) ≤ cD

∑
B∈Fk

μ(B) ≤ c2
D

ε

∑
B∈Fk

μ(Ẽk−1 ∩ B)

=
c2
D

ε
μ(Ẽk−1 ∩ Ek) ≤ c2

D

ε
μ(Ẽk−1).

Write Ẽ0 = E. By iterating the above inequality and by using (4.7) we get

μ(Ẽk) ≤
(

c2
D

ε

)k

μ(E) ≤
(

ε

c2
D

)k0+1−k

μ(B0)(4.18)

for k = 0, 1, . . . , k0.

The doubling property of μ and the fact that xk ∈ 5B0, k = 1, 2, . . . , m,
implies that there exists s > 0 depending only on the doubling constant of μ
such that(

5rk

5R

)s

≤ C
μ(5Bk)

μ(5B0)
≤ C

μ(Ẽk)

μ(B0)
≤ C

(
ε

c2
D

)k0+1−k

≤ Cεk0+1−k

for k = 1, 2, . . . , m. The last inequality above follows from (4.18). From this
we deduce that

m∑
k=1

5rk ≤ C

k0∑
k=1

ε(k0+1−k)/sR ≤ Cε1/sR

provided that ε is small enough. Here the constant C depends only on the
doubling constant. If μ and ν satisfy (1) for some 0 < ε < 1, they satisfy
it for all smaller ε as well. Thus we can assume that ε is small enough to
guarantee that the right–hand side of the above inequality is less than 4R.
However, this contradicts (4.17). Thus Ẽk ⊂ 5B0 for all k = 1, 2, . . . , k0.

Next, we verify that {Fk}k0
k=1 is a telescoping sequence of collections

of balls. First, by construction, the balls in Fk are pairwise disjoint for
k = 1, 2, . . . , k0.
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Finally, if B(x, r) ∈ Fk−1, then B(x, 5r) ⊂ Ẽk−1. Hence, in the construc-

tion of Fk, rx ≥ 5r, since (4.14) with E replaced by Ẽk−1 cannot hold for
any smaller radius. As B(x, rx) is one of the balls that is available when we
use the covering argument to choose Fk, we have B(x, 5r) ⊂ B(x, rx) ⊂ 5B
for some B ∈ Fk. This shows that also the second condition for telescoping
sequences holds and thus the collection is telescoping.

Since μ and ν satisfy condition (1), we conclude from (4.16) with E

replaced by Ẽk−1 that (4.9) holds for every k = 1, 2, . . . , k0. This completes
the proof of (1) ⇒ (2).

Since (1) is symmetric with respect to μ and ν, and (4) is (2) with the
roles of μ and ν interchanged, we also get (1) ⇒ (4). �

If the function r �→ μ(B(x, r)) is continuous for every x ∈ X, then it
is rather easy to show that the condition (1) implies that ν is doubling
and consequently the conditions (1)–(5) are all equivalent, see Theorem 17
on page 9 in [21]. In particular if X is a geodesic space and μ doubling,
the conditions are equivalent. However, Example 4.1 shows that there are
quite simple doubling metric measure spaces supporting a (1, 1)-Poincaré
inequality where r �→ μ(B(x, r)) is not always continuous and all of the
conditions are not equivalent.

However, a combination of the results in this section gives us the follow-
ing:

Corollary 4.19. If ν is a doubling measure, then the conditions (1)–(5) are
equivalent. In particular, if dν = ω dμ with ω ∈ SA∞, then μ and ν satisfy
all the conditions.

Remark 4.20. If p < ∞ then for every ω ∈ Ap, the measure dν = ω dμ is
doubling. Therefore, Lemma 4.3 and Theorem 4.4 imply that an A∞–weight
is an Ap–weight for some p < ∞ if and only if the weight defines a doubling
measure.

Now, by Remark 4.20, we obtain the following.

Corollary 4.21. Every strong A∞–weight is an Ap–weight for some p < ∞.
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